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We investigate a universal curve in asymptotic correlation functions of off-critical systems that possess
C6v symmetry following the argument for C4v symmetry in our previous paper [Phys. Rev. E 102, 032141
(2020)]. Unlike the C4v case, a minimal asymptotic form exists, which contains only two free parameters: the
normalization constant and the modulus of the universal curve. We perform large-scale Monte Carlo simulations
of the triangular lattice Q-state Potts model above the transition temperature. For Q = 1, 2, 3, and 4, we
successfully obtain numerical evidence that the minimal form gives the leading asymptotic behavior. We also
discuss the possibility that the corrections to the minimal form are expressed using this form as a building block.
From the minimal form with optimized parameters, we derive the equilibrium crystal shape of the honeycomb
lattice Potts model, which is given by an algebraic curve of genus 1 and is universal among models with C6v .
Although the curve differs from those obtained in the C4v case, the latter curves also have genus 1. We indicate
that the birational equivalence concept can play an important role in comparing asymptotic forms for different
point group symmetries, for example, C6v and C4v .
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I. INTRODUCTION

The thermal evolution of the equilibrium crystal shape
(ECS) is a long-standing problem. In 1901, Wulff [1] pro-
posed a method to determine the ECS from the anisotropic
interfacial tension, which is called Wulff’s construction; also
see Refs. [2,3]. ECSs are polygons or polyhedrons at the
zero-temperature limit. When the interactions are isotropic,
they become circles or spheres near the critical temperature.
A roughening transition exists between them [4].

The roughening transition should be investigated as a coop-
erative phenomenon from the microscopic Hamiltonian within
the framework of statistical mechanics. Practically, however, it
is quite difficult for these calculations to give reliable results.
In the 1970s, the development of exact analyses of solvable
lattice models enabled detailed studies of the roughening tran-
sition. In the early stage of research, the disappearance of a
sharply defined interface at the roughening transition temper-
ature TR received much attention. In Refs. [5,6], the interface
profile of the square lattice Ising model was investigated to
show that its width diverges at the thermodynamic limit. Then,
it was recognized that this phase transition might influence
crystal morphology [7–11]. Pioneering research on this is-
sue was conducted in Refs. [7,8], where the body-centered
solid-on-solid (BCSOS) model was investigated with the help
of the exact solutions of the six-vertex model [12,13]. The
facet shape in the BCSOS model was analyzed to identify a
universal jump at TR in the principal curvature of the two-
dimensional (2D) surface of the three-dimensional ECS; also
see Refs. [14,15]. Meanwhile, for the square lattice Ising
model, the 2D ECS was calculated in Refs. [9–11] and ex-

pressed as a simple algebraic curve in the αβ plane:

α2β2 + 1 + A3(α2 + β2) + A4αβ = 0, (1.1)

with α = exp[−λ(X + Y )/kBT ] and β = exp[−λ(X − Y )/
kBT ], where (X,Y ) is the position vector of a point on the
ECS and λ is a scale factor; for the definitions of A3 and A4,
see Ref. [11].

In Ref. [16], the authors indicated that the ECS (1.1)
is identical to the facet shape of the BCSOS model. The
accumulation of research on the ECSs revealed a paradox-
ical scenario: Clearly, the interfaces of lattice models have
model-dependent microscopic profiles (see, e.g., Ref. [17]).
Equation (1.1) commonly represents the ECSs of a wide range
of solvable models [18–20]. Furthermore, for some unsolv-
able models, researchers showed that the ECS (or facet shape)
is quite close to Eq. (1.1) [21–23].

For the square lattice Ising model, the anisotropic corre-
lation length (ACL) is related by duality to the anisotropic
interfacial tension [24]. The ECS (1.1) was derived from the
ACL via the duality relation and Wulff’s construction; also
see Refs. [16,25,26]. Thus, Eq. (1.1) appears in the repre-
sentation of the asymptotic correlation function of the square
lattice Ising model. The same situation was found in other
solvable models on the square lattice without the duality
relation [18,19]. These facts suggested a close relationship
between the algebraic curve (1.1) and symmetry properties of
the square lattice; see, for example, Ref. [27].

Quite recently, Fujimoto and Otsuka [28] investigated the
asymptotic correlation functions of the square lattice Q-state
Potts model. The model is solvable at the phase transition
point [13,29–31]. For Q > 4, the phase transition is first order.
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TABLE I. The first column shows the elements in C2v: π -rotation c2, vertical reflection σx , and horizontal reflection σy; the second shows
the corresponding coordinate transformations; and the third shows the induced transformations of the integration path in Eq. (2.1). Conditions
in the fourth column are required for X (�) and Y (�) to ensure C2v symmetry.

C2v Coordinate trans. Path shifts Conditions for X (�) and Y (�)

c2 (n′, m′) = (−n,−m) �′ = � + ω2 X (�′) = X (�)−1, Y (�′) = Y (�)−1

σx (n′, m′) = (n, −m) �′ = −� X (�′) = X (�), Y (�′) = Y (�)−1

σy (n′, m′) = (−n, m) �′ = −� + ω2 X (�′) = X (�)−1, Y (�′) = Y (�)

Researchers showed that Eq. (1.1) appears in the asymptotic
behavior of the correlation function at the first-order tran-
sition point [20]; also see Refs. [32,33]. When Q = 2, the
Potts model reduces to the Ising model. We reexamined its
asymptotic correlation function both above and below the
transition temperature. Using the combination of the transfer
matrix and shift operator [18,34–36], we reproduced the same
results as those using the Pfaffian method [37,38]; also see
Refs. [39–42]. Furthermore, we analyzed the Ising model on
a square lattice rotated through an arbitrary angle with respect
to the coordinate axes. Johnson, Krinsky, and McCoy [43]
showed that the summation over the eigenvalues of the trans-
fer matrix becomes contour integrals in the thermodynamic
limit. Although lattice rotation causes the integration paths to
move, the contour integrals must be independent of the path
movement. We found that (i) wide analyticity domains of the
eigenvalues of the transfer matrix and the shift operator is nec-
essary to ensure path independence with the help of Cauchy’s
theorem; (ii) satisfying a functional equation corresponds to
π -rotational invariance; and because 2π rotation returns the
contour integrals to the original integrals, (iii) the eigenvalues
possess doubly periodic structures.

We pointed out a possibility that (i)–(iii) are connected
with C2v symmetry, not with the exact solvability of the
Ising model; hence, they apply to a general Q. Assuming a
massive dispersion curve, and using these properties, we can
construct the general asymptotic form Eq. (2.1) with Eq. (2.2)
in Ref. [28]. The system possesses C4v symmetry when the
interactions are isotropic. Because C2v is a normal subgroup of
C4v , we found Eq. (2.3) [or equivalently Eq. (3.2)] in Ref. [28],
which contains three free parameters. To test Eq. (3.2), we
numerically analyzed correlation function data provided by
Monte Carlo (MC) simulations. Choosing the three param-
eters suitably, we reproduced the MC data over wide areas
with high accuracy; see Table I of Ref. [28]. Thus, we ob-
tained strong evidence that the asymptotic form Eq. (3.2) in
Ref. [28] applies to the correlation function and the ACL in
the disordered phase.

From C4v symmetry the shape in Eq. (1.1) possibly de-
forms for general Q. In Eq. (3.2) of Ref. [28], one of the free
parameters corresponding to the deformations was denoted
by b. We derived the ECSs via duality [20,44] and Wulff’s
construction. Then, we found that Eq. (1.1) should be replaced
by

α2β2 + 1 + Ā2(αβ + 1)(α + β ) + α2 + β2 + Ā4αβ = 0
(1.2)

(also see Sec. IV B and Ref. [45]). We numerically detected
a quite small Q dependence of the ECSs: For Q = 2, b = 1,
that is, an exact value, where Eq. (1.2) is reduced to Eq. (1.1)

[45]. The MC data showed that b > 1 for Q = 1 (the bond
percolation), and b < 1 for Q = 3, 4. According to Eq. (1.2),
the ECS is rounded in the facet directions and flattened in the
corner directions as Q increases.

The results in Ref. [28] strongly suggest that the three
properties (i)–(iii) connect with the C2v symmetry. Analysis
for C6v is desirable since C6v also contains C2v as a normal
subgroup. From the viewpoint of solvability structures, the
study of the C6v cases is quite interesting. Some attempts have
been made to calculate the asymptotic correlation functions on
the triangular lattice Ising model by the Pfaffian method [46];
also see Refs. [47,48], Chap. VIII of Ref. [38], and Ref. [49].
In Ref. [26], the analyses were extended for Ising models on
honeycomb, diced, and Kagomé lattices. Little is known about
transfer matrices for these models. However, the asymptotic
form in the Kagomé lattice eight-vertex model [50] and that
of the triangular/honeycomb lattice Potts model at the first-
order transition point [51] were calculated using the transfer
matrix argument. Unlike the square lattice case, however, the
commuting transfer matrices can only be constructed along
some special directions for these lattices.

In this paper, following the analysis for the C4v case [28],
we consider asymptotic correlation functions with C6v sym-
metry. Our strategy for investigating the C6v symmetric case
is as follows: We expect that the transfer matrices satisfy the
three properties (i)–(iii) mentioned above. This leads us to
the asymptotic correlation function given by Eq. (2.1) with
Eq. (2.2) in Ref. [28]. The factor group C4v/C2v is the cyclic
group of order 2. However, the factor group C6v/C2v is the
cyclic group of order 3. We find a minimal form that includes
only two parameters. This is because one more condition than
that for C4v fixes the b parameter and then yields a model-
independent minimal form for C6v . Although the number of
free parameters, two, is equal to that in the usual Ornstein–
Zernike (OZ) form, our minimal form possesses discrete C6v

symmetry.
To proffer numerical evidence to support the applicabil-

ity of the minimal form with C6v , we perform large-scale
MC simulations of the triangular lattice Q-state Potts model
[13,31]. We analyze the MC data of the asymptotic correlation
functions for the Q = 1, 2, 3, and 4 cases above the critical
temperature. We find that the minimal form well fits numerical
data in these cases and yields precise estimates of the ACLs.
Additionally, we fit the data using the OZ form and reveal
the superiority of the minimal form via a comparison of their
fittings.

We present some implications of our findings for asymp-
totic correlation functions on the triangular lattice. Unlike the
case of C4v , ACLs include only one parameter: the modulus.
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This fact means that, in discussing long-distance behavior,
Potts models with various Q have the same character, with
a mere rescaling of the temperature. Using the ACLs obtained
from the minimal form, we derive the ECS on the honeycomb
lattice via the duality transformation and Wulff’s construction,
which suggests that the same asymptotic forms appear in the
honeycomb lattice Potts model. Furthermore, similar to the
case of C4v symmetry, the ECS is given by an algebraic curve
of genus 1. Based on the previous study [28] and the present
study, we can explain the mathematical background to relate
the asymptotic correlation functions of different models, even
on different 2D lattices.

The present paper is organized as follows: In Sec. II, we
provide the minimal form adaptable to asymptotic correlation
functions with C6v symmetry. In Sec. III, we perform MC
simulations of the triangular lattice Q-state Potts model in
disordered phases. The minimal form fits the numerical data
of correlation functions well and yields precise estimates of
the ACLs. Additionally, we fit data using the OZ form and
reveal the superiority of the minimal form by comparing their
fittings. In Sec. IV, we discuss and summarize the study. We
derive an ECS on the honeycomb lattice from the ACLs in
triangular lattice models. Then we provide a birational trans-
formation [52] to connect the algebraic curve for C6v to that
for C4v . In Appendices A and B, we explain the exact calcu-
lation of the asymptotic correlation function of the triangular
lattice Ising model by the transfer matrix method and derive
the birational transformation given in Sec. IV, respectively.

II. ASYMPTOTIC CORRELATION FUNCTIONS FOR C6v

To make our discussion specific, we assume a triangular
lattice on which the Q-state Potts model with isotropic inter-
actions is defined. In Ref. [28], from the exact calculation of
the Q = 2 Potts model on a square lattice, it was explicitly
shown that the three properties (i)–(iii) are satisfied; see also
[53]. Here we derive general forms of the correlation functions
with C6v symmetry using them as necessary basic conditions.

As depicted in Fig. 1, a triangular lattice consists of all
points with position vectors r = ja1 + ia2, where the prim-
itive vectors are denoted by a1 and a2. The lattice spacing
|a1| = |a2| = a and the angle between them is 2π/3. For
the triangular lattice Ising model, the asymptotic correlation
function was analyzed using the Pfaffian method [46]; also
see Refs. [26,49]. We can derive almost the same results by
introducing the shift operator into the transfer matrix method.
We restrict ourselves to the case of isotropic interactions,
where the system possesses C6v symmetry. To find the role of
C6v symmetry, we investigate the model on triangular lattices
rotated clockwise through various angles to the coordinate
axes: we consider the cases of the rotation angle nπ/6 with
n = 0, 1, . . . , 11. We summarize the main results in the main
text and provide the details in Appendix A.

In the thermodynamic limit, the summations over eigen-
values of the transfer matrix and of the shift operator become
integrals because of their continuous distribution. The asymp-
totic correlation functions are represented using contour
integrals on Riemann surfaces, as shown in Eqs. (A9) and
(A12); also see Refs. [13,43]. Considering transfer matrices in
the rotated systems shows that the three properties (i)–(iii) are

FIG. 1. Blue arrows a1 and a2 represent the primitive vectors
of the triangular lattice, which correspond to A1(�) and A2(�) in
Eq. (2.7), respectively. We divide the triangular lattice into two sub-
lattices, represented by open and closed circles. Red arrows b1 and
b2 represent the primitive vectors of a sublattice, which correspond
to X (�) and Y (�) in Eq. (2.1), respectively.

fulfilled: In Appendix A 2, we indicate that the lattice rotations
shift the integration paths for Q = 2. After the eigenvalues are
summed up, thermodynamic averages must be independent of
the rotation angle. This equivalence is derived with the help
of the analyticity of the eigenvalues of the transfer matrices
and the shift operators. Hence, (i) wide analyticity domains
of the eigenvalues is indispensable; (ii) the eigenvalues should
satisfy a functional equation corresponding to the π -rotational
symmetry; see Eq. (A27) or Eq. (A28) in Ref. [28]; and (iii)
the eigenvalues should possess two periods. Intuitively, we
can explain this property as follows: The 2D lattice models are
related to the 2D Euclidean field theories in their critical limit
and for distances much larger than a. The correlation function
has the periodicity of rotational symmetry in the limit. For
off-critical lattice models, the crystal momentum is defined
as modulo 2π/a. Therefore, any lattice models possess two
types of periodicity: one is the two, four, or sixfold rotational
symmetry, and the other is that the eigenvalues of transfer
matrices are periodic functions of the crystal momentum.

Because C2v is the normal subgroup of C6v , we consider
C2v symmetry as the first step; that is, we start with (i)–(iii) to
shape the asymptotic correlation functions with C6v symme-
try. For this purpose, it is convenient to divide the triangular
lattice into two sublattices shown by open and closed circles in
Fig. 1. Let o be the position vector of the origin, and r+ that
of another site in the same sublattice. Then, in terms of the
primitive vectors of sublattice b1 and b2, r+ = nb1 + mb2 =
(n + m)a1 + 2ma2. We suppose a massive dispersion curve.
The above-mentioned situation is expected to occur for gen-
eral Q: The thermodynamic averages are represented in terms
of contour integrals on Riemann surfaces. Although lattice
rotations make integration paths move, they are independent
of the rotation angle. To ensure the independency and C2v

symmetry, (i)–(iii) are expected to be satisfied.
Because of property (iii), the massive dispersion curve can

be parametrized in terms of elliptic functions; the argument is
denoted by �, and the half periods are by ω1 and ω1. We can
represent the leading asymptotic correlation function between
o and r+ as a contour integral on a Riemann surface of genus
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FIG. 2. Periodic rectangles for (a) C2v , (b) C4v , and (c) C6v . They are divided into (a) two, (b) four, and (c) six subregions because of the
rotational symmetries; a cyan area represents a subregion. Blue and red dotted lines are the reflection axes for the integration paths (see the
text). For instance, (a) integrals along the paths represented by the black, blue, and red curves yield the same result for Eq. (2.1) if m and n are
transformed correspondingly. The same occurs (b) in Eq. (2.3) in Ref. [28] for C4v , and (c) in Eq. (2.6) for C6v .

1 (see Fig. 2):

Fo,r+ ∼
∫ ω1

−ω1

d� ρ(�)X (�)nY (�)m, (2.1)

where Y (�) corresponds to eigenvalues of the row-to-row
transfer matrix along the vertical direction and X (�) to those
of the shift operator along the horizontal direction; ρ(�) is to
be determined from the distribution of the eigenvalues and the
matrix elements. We assume that the ACL is obtainable from
Eq. (2.1) by the saddle-point method; see Sec. IV A. Then,
as discussed below Eq. (A10) in Appendix A, we expect that
ρ(�) = const.

As explained above, X (�) and Y (�) are doubly periodic
functions: X (� + 2ω1) = X (� + 2ω2) = X (�) and Y (� +
2ω1) = Y (� + 2ω2) = Y (�). Also the property (ii), the in-
variance under π -rotation (say c2), enforces the functional
equations among them:

X (� + ω2) = X (�)−1, Y (� + ω2) = Y (�)−1. (2.2)

From C2v symmetry, it follows that (i) analytic regions of
X (�) and 1/X (�) must appear alternatively along the ω2

direction; and the same is true for Y (�) and 1/Y (�); thus
X (�) and Y (�) are meromorphic functions. Using their se-
ries expansions, we obtain

X (�)=
ν∏

l=1

k
1
2 sn(� + αl ), Y (�) =

ν ′∏
l=1

k
1
2 sn(�+v+βl ),

(2.3)
where k ∈ (0, 1) is the modulus corresponding to the mod-
ular parameter τ = ω2/ω1; see Appendix A.3 of Ref. [28].
For definitions of Jacobi’s elliptic functions, see Chap. 15 of
Ref. [13].

In addition to c2, it is necessary to consider the invariance
of Eq. (2.1) under the vertical reflection (σx) or the horizontal
reflection (σy) to achieve C2v symmetry. For example, we
obtain the following functional equations from the invariance

under σx:

X (−�) = X (�), Y (−�) = Y (�)−1. (2.4)

Because σy = σx · c2, the conditions (2.2) and (2.4) yield the
invariance of Eq. (2.1) under σy. In Table I, we summarize
the functional equations to achieve C2v symmetry. Because
sn(−�) = −sn(�), we find that v = −ω2/2, and ν and ν ′
are even integers. Additionally, τ must be purely imaginary
because the correlation function is real-valued (see below).

Note that c2 shifts integration paths by ω2 without deform-
ing them. In this sense, twofold rotational symmetry divides a
periodic rectangle into two subregions. Meanwhile, the reflec-
tions σx and σy cause reflections of paths about the blue and
red dotted lines in Fig. 2(a), respectively. Consequently, the
equivalent integration paths appear repeatedly in the periodic
rectangle because of C2v symmetry.

We showed in Ref. [28] that to derive the asymptotic
forms for C4v from those for C2v , fourfold rotational symmetry
requires an additional functional equation: Y (�) = X (� −
ω2/2) (see the upper part of Table II). Similarly, we construct
an asymptotic form for C6v from those for C2v . For this aim,
it is convenient to introduce A1(�) and A2(�). These are as-
sociated with primitive translations of a1 and a2, respectively,
and are related to X (�) and Y (�) as

X (�) = A1(�), Y (�) = A2(�)2A1(�) (2.5)

(see Fig. 1). Then, sixfold rotational symmetry yields two
additional functional equations:

A2(�) = A1

(
� − 2ω2

3

)
, A1(�)A2(�) = A1

(
� − ω2

3

)
(2.6)

(see the lower part of Table II). Using A1(�) and A2(�), we
can express the correlation function between o and r = ja1 +
ia2 as

Fo,r ∼ const
∫ ω1

−ω1

d� A1(�) jA2(�)i. (2.7)
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TABLE II. Conditions for C4v and C6v in addition to those for C2v in Table I. In the C4v case, invariance under π/2-rotation c4 imposes one
more condition between X (�) and Y (�). In the C6v case, invariance under π/3-rotation c6 and 2π/3-rotation c2

6 require two more conditions
between A1(�) and A2(�).

C4v Coordinate trans. Path shifts Condition for X (�) and Y (�)

c4 (n′, m′) = (−m, n) �′ = � + ω2
2 Y (�′) = X (�)

C6v Coordinate trans. Path shifts Conditions for A1(�) and A2(�)

c6 ( j ′, i′) = ( j − i, j) �′ = � + ω2
3 A1(�′)A2(�′) = A1(�)

c2
6 ( j ′, i′) = (−i, j − i) �′ = � + 2ω2

3 A2(�′) = A1(�)

A. Minimal case for C6v

The unit cell of a sublattice is vertically long (see Fig. 1),
and the relations (2.5) and (2.6) require a condition for the
integers: ν ′ = 2ν. Therefore, we can find the simplest ex-
pression by setting ν = 2 and ν ′ = 4 in Eq. (2.3), whose
parameters are fixed as α1 = −α2 = ω2/6, β1 = β2 = 0, and
β3 = −β4 = ω2/3. The integrand is built from two elliptic
functions, each composed of two sn functions, and possesses
essentially the same structure as the simplest case for C4v [28].
As different points, we replace the value of ω2/2 in Eq. (2.3)
in Ref. [28] with 2ω2/3 and fix the undetermined constant
B to ω2/6 because C6v requires not one but two additional
conditions, as given in Table II.

As a result, a minimal form of the asymptotic correlation
function with C6v symmetry is obtained as

F (min)
o,r = const

∫ ω1

−ω1

d�

[
ksn

(
� + ω2

6

)
sn

(
� − ω2

6

)] j

×
[

ksn
(
� − ω2

2

)
sn

(
� − 5ω2

6

)]i

. (2.8)

Note that Eq. (2.8) contains only two parameters: a normal-
ization constant and modulus k.

Once we determine the expressions of these parameters as
Eqs. (A10) and (A11), Eq. (2.8) provides the leading asymp-

totic correlation function of the triangular lattice Ising model
above the critical temperature. Because the pair of integers
(ν, ν ′) = (2, 4) cannot change as a result of continuous varia-
tions of Q, the minimal case applies unless a phase transition
occurs. Indeed, we found that the simplest case with ν = ν ′ =
2 is commonly observed in the square lattice Q-state Potts
model in the disordered phase [28]. Therefore, we expect that
the minimal form (2.8), including the normalization factor and
modulus as free parameters, describes the leading asymptotic
behavior of the triangular lattice Q-state Potts model above
the transition temperature TC(Q) [see Eq. (3.2)].

B. Next to minimal case

We find a candidate of the next to the minimal case by
setting (ν, ν ′) = (4, 8) in Eq. (2.3). In addition to α1, α2,
β1, . . . β4, six parameters exist; say ᾱ1, ᾱ2, β̄1, . . . β̄4. We
introduce � for αis and β js, and �̄ for ᾱis and β̄ js. The
contour integral in Eq. (2.1) is replaced by a double integral
with respect to � and �̄, and ρ(�) by ρ(�, �̄). Suppose that
their ACLs can be calculated by the method of steepest de-
scent. Then, we find ρ(�, �̄) = ρ(� − �̄); see the argument
below Eq. (A13) in Appendix A. To determine the asymptotic
form, we repeat the same argument as that in the previous
subsection. Then, we obtain a form for the next to the minimal
case as follows:

F (next)
o,r =

∫ ω1

−ω1

d�

∫ ω1

−ω1

d�̄ ρ(� − �̄)

[
ksn

(
� + ω2

6

)
sn

(
� − ω2

6

)] j[
ksn

(
� − ω2

2

)
sn

(
� − 5ω2

6

)]i

×
[

ksn

(
�̄ + ω2

6

)
sn

(
�̄ − ω2

6

)] j[
ksn

(
�̄ − ω2

2

)
sn

(
�̄ − 5ω2

6

)]i

, (2.9)

where ρ(� − �̄) is a function that we determine from the
distribution of the eigenvalues and the matrix elements. Below
the critical temperature Eq. (2.9) exactly gives the leading
asymptotic correlation function of the triangular lattice Ising
model; see Appendix A. The same may be true for general
Q. Other than the correlation functions of magnetic moments,
there exists a possibility to observe the minimal case (2.8) in
the calculation of the anisotropic interfacial tension; we shall
address this point in Sec. IV.

The analysis in Appendix A also suggests that Eq. (2.9)
is naturally regarded as a candidate of correction terms to
Eq. (2.8) for the triangular lattice Potts model above TC(Q).
Note that Eq. (2.9) is a higher-order term of the sn functions’
pairs. The argument in this section indicates that the integral

on the right-hand side of Eq. (2.8) plays the role of a building
block of correlation functions.

III. NUMERICAL ANALYSES OF TRIANGULAR LATTICE
Q-STATE POTTS MODEL

The Hamiltonian of the triangular lattice Q-state Potts
model is given by

H = −J
∑
〈r,r′〉

[2δ(qr, qr′ ) − 1] (J > 0), (3.1)

where the Q-valued variable qr = 0, 1, . . . , Q − 1 is associ-
ated with a site in a triangular lattice r ∈ tri and the sum
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runs over all nearest-neighbor pairs of sites. For each qr, we
introduce a spin variable σr = exp(2π iqr/Q).

The phase transition is continuous for Q � 4 and first order
for Q > 4 [13,31]. The transition temperature TC(Q) is given
by √

Qx3
C + 3x2

C = 1,
√

QxC = e2J/kBTC(Q) − 1. (3.2)

This section restricts ourselves to the disordered phase: T >

TC(Q). The spin correlation function c(r) is defined as

c(r − r′) = 〈σrσ
∗
r′ 〉 =

〈
exp

[
2π i(qr − qr′ )

Q

]〉
. (3.3)

Some MC algorithms are known to simulate Potts models
efficiently [54–56]. In the previous study of the square lattice,
Q-state Potts model [28], we used a cluster MC algorithm
for infinite-size systems proposed by Evertz and von der Lin-
den [57]. It allows us to simulate off-critical systems in the
thermodynamic limit directly. We can also benefit from these
strong points in the numerical analysis of Eq. (3.1), which
provides solid ground to check the applicability of the C6v

form for asymptotic correlation functions.
First, we summarize the methodological aspect of MC sim-

ulations by borrowing some notation and definitions provided
in Ref. [28]. The MC algorithm is based on the Fortuin–
Kasteleyn representation of the partition function of Eq. (3.1),
say Z (Q) [58]. Suppose nr∗ (= 0, 1) is an occupation number
of a site r∗ in the medial lattice of tri. Then Z (Q) represents
a bond percolation on tri with the percolation probability

p(T ) = 1 − e− J
kBT . Each cluster generated in the percolation

process randomly possesses a Q-valued color property. There-
fore, the Q → 1 limit of the Potts model provides the standard
bond percolation defined on tri.

The infinite-system MC method [57] is based on Wolff’s
single-cluster algorithm [56]. It fixes the seed site to the origin
of a lattice o throughout a simulation. For disordered systems
with correlation length ξ , we start with random spin configu-
rations on finite lattice systems with linear dimension lB. The
initial MC steps equilibrate spin configurations within a cir-
cular domain that gradually broadens toward its outer region.
We denote the ratios of an equilibrated circular domain as lT,
and the number of MC steps required increases exponentially
as exp(alT/ξ ). Typically, we prepare equilibrated spin config-
urations with lT 	 20ξ and then calculate the MC averages of
the correlation functions within the circular domains. We use
finite systems that satisfy the condition lB 
 lT (in a typical
case lB 	 4 lT). Then, the probability of the generated clusters
touching the lattice boundary is negligible during viable MC
simulation steps.

Because of the random cluster representation of the Potts
model, the so-called improved estimator for the correlation
functions is available: Suppose C ⊂ tri is a set of sites that
form a cluster. Then we evaluate the spin correlation functions
as

c(r − r′) =
〈

Qδ(qr, qr′ ) − 1

Q − 1

〉
=

〈
1

|C|δ(r, r′ |C)

〉
MC

, (3.4)

where |C| is the number of sites in C, and δ(r, r′ |C) = 1 if
r, r′ ∈ C, and δ(r, r′ |C) = 0 otherwise. For Q = 1, 2, 3, and 4
and at several reduced temperatures t = [T − TC(Q)]/TC(Q),

we prepare the correlation function data and associated statis-
tical errors as functions of r = ja1 + ia2, say {c(i, j), d (i, j)}.
In this step, we typically generate about 6 × 1015 clusters for
each average calculation to satisfy a high statistical accuracy
requirement (see below).

Now we check the applicability of Eq. (2.8) for the trian-
gular lattice Q-state Potts model. For convenience, we replace
ω1 and ω2 with I and iI ′, respectively. Then, the form for C6v

is given by

Ftri(i, j; A, k) = A(1 − k2)
1
4

π

∫ I

−I
dϕ

×
[

ksn

(
ϕ + iI ′

6

)
sn

(
ϕ − iI ′

6

)] j

×
[

ksn

(
ϕ − iI ′

2

)
sn

(
ϕ − 5iI ′

6

)]i

. (3.5)

We represent the normalization factor using a parameter A
[28], which refers to the exact value A = 1 for Q = 2; see
Eq. (A11). We use the reduced χ -square statistic to fit the
calculation of the C6v form (3.5) for MC data and then extract
optimal values by minimizing χ2

tri(A, k) concerning A and k:

χ2
tri(A, k) =

∑
(i, j)∈D

[Ftri(i, j; A, k) − c(i, j)

d (i, j)

]2

. (3.6)

In this process, we should pay attention to a region D in
which the form will fit the MC data. There are two types
of sources of errors in fitting calculations: statistical and
systematic. Equation (3.5) does not take the contributions
of eigenvalues with (ν, ν ′) �= (2, 4) into account (see Ap-
pendix A), which causes a systematic error for short-distance
fittings. By contrast, the longer the distances, the larger the
statistical error of MC data, which causes uncertainty in the
estimated optimal values. As discussed in Ref. [28], to control
the two types of errors, we use an annular region defined as
D(cmax, cmin) = {(i, j)|cmin < c(i, j) < cmax} and check the
D dependence of the fitting conditions.

We determine a lower cutoff cmin so that a statistical error
does not affect the fitting. As mentioned above, we perform
large-scale MC calculations, which allow us to use a small
value independently of Q, for example, cmin = 10−7. We
should determine the upper cutoff cmax according to the mag-
nitude of systematic errors. For Q = 2, the correction from the
second-band eigenvalues is absent because of Z2 symmetry;
see Appendix A and Ref. [28]. However, for Q �= 2, it does
exist in the MC data. Therefore, we use cmax depending on Q;
see below.

Once we obtain the optimal values, say Ā and k̄, the corre-
lation function is asymptotically given by c(r) ∼ F̄tri(i, j) =
Ftri(i, j; Ā, k̄). From this expression, we can find the ACLs for
the Q-state Potts model; see Sec. IV A.

A. Potts model with Q = 2

First, we analyze the triangular lattice Ising model because
the exact results are available to check our numerical pro-
cedure’s accuracy. The second part of Table III summarizes
the fitting results. The geometrical properties of D and the
ACLs in the row and diagonal directions are given for several
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TABLE III. Temperature dependence of the optimal values and ACLs in the row and diagonal directions. Annular domains D(Cmax, 10−7)
with Cmax = 10−4, 10−2, 10−4, and 5 × 10−5 were used for Q = 1, 2, 3, and 4, respectively. Underlined digits in the second part coincide with
the exact values and parenthesized numbers are error estimates.

Q t |D| k̄ Ā ξrow ξdiag

1 0.50 3462 0.6414103(7) 1.0331304(205) 3.0054826(63) 3.0054714(63)
0.65 2076 0.5615632(8) 1.0261963(185) 2.3146357(57) 2.3146114(57)
1.00 966 0.4245572(4) 1.0166832(89) 1.5621318(17) 1.5620547(17)
1.50 510 0.3036457(1) 1.0100107(5) 1.1265246(3) 1.1263275(3)
2.00 336 0.2299296(5) 1.0066811(124) 0.9164885(13) 0.9161383(13)
5.00 108 0.0792507(11) 1.0021472(566) 0.5402944(30) 0.5389299(31)

14.00 66 0.0195738(5) 0.9999633(50) 0.3571421(2) 0.3538792(2)

2 0.20 5994 0.6800375(4) 1.0000052(55) 3.4604115(52) 3.4604041(52)
0.30 3042 0.5789032(6) 1.0000020(83) 2.4429856(46) 2.4429648(46)
0.50 1344 0.4385518(7) 1.0000037(57) 1.6231582(18) 1.6230892(18)
1.00 522 0.2588192(3) 0.9999989(43) 0.9952521(8) 0.9949732(8)
2.00 234 0.1290396(4) 0.9999965(64) 0.6635029(9) 0.6626786(9)
5.00 114 0.0421156(0) 1.0000003(1) 0.4373675(0) 0.4351778(0)

10.00 66 0.0164018(0) 0.9999957(78) 0.3428788(5) 0.3393696(5)

3 0.15 2490 0.6267329(4) 0.9615277(102) 2.8568853(19) 2.8568723(19)
0.20 2046 0.5597793(4) 0.9679882(105) 2.3019859(28) 2.3019611(28)
0.30 1164 0.4590180(0) 0.9765406(10) 1.7176157(0) 1.7175572(0)
0.50 582 0.3320364(4) 0.9856334(119) 1.2166812(13) 1.2165227(13)
1.00 258 0.1859817(8) 0.9938120(222) 0.8032343(20) 0.8027337(20)
2.00 144 0.0896159(2) 0.9974591(132) 0.5666246(5) 0.5654062(5)
8.00 42 0.0151040(3) 1.0002672(340) 0.3366384(12) 0.3330153(13)

4 0.10 2874 0.6265930(2) 0.9176194(7) 2.8555249(19) 2.8555119(19)
0.14 1812 0.5552042(22) 0.9321563(549) 2.2699906(152) 2.2699648(152)
0.20 1152 0.4739819(12) 0.9468457(269) 1.7909835(60) 1.7909317(60)
0.30 684 0.3793838(12) 0.9619715(266) 1.3821942(45) 1.3820842(45)
0.50 384 0.2667541(14) 0.9776521(388) 1.0176226(40) 1.0173604(40)
1.00 186 0.1449223(5) 0.9915611(105) 0.7020979(12) 0.7013848(12)
2.00 108 0.0685188(9) 0.9956911(506) 0.5122705(24) 0.5107258(24)
6.00 42 0.0168894(3) 0.9984632(330) 0.3451569(12) 0.3416882(12)

reduced temperatures t , where |D| denotes the number of sites
in D. Concerning cmax, we observe that the fitting condition is
almost independent of it, and thus use a larger value, that is,
cmax = 10−2, to improve statistical accuracy.

Then we find that the optimized parameters agree well with
the exact values, that is, at all temperatures, they yield Ā =
Aexact = 1 and k̄ = kexact with at least six-digit accuracy. In the
table, note that the underlined digits coincide with the exact
values and the parenthesized digits are error estimates. As t
decreases, the directional dependence of the correlation length
becomes weaker; hence, highly accurate numerical data are
necessary for its detection. The second part of Table III shows
that our numerical approach using the form (3.5) is sufficiently
efficient to analyze the ACLs with C6v symmetry (see ξrow and
ξdiag).

In our previous paper [28], we proposed the C4v form and
established its goodness of fit for correlation functions of
the square lattice Potts model. Naturally, we expect that the
advantages explained contribute to the present high accuracy.
Additionally, as given in Sec. II, C6v symmetry reduces the
number of free parameters in the form to two. Therefore,
we recognize that the triangular lattice offers a more suitable
framework for studying the directional dependence of corre-
lation functions.

B. Potts model with Q �= 2

Next, we investigate the applicability of Eq. (3.5) to the
Q = 1, 3, and 4 Potts model. In the C4v case, the deformation
parameter, b (=1 for the Ising case), exists and represents
the Q dependence of the ACLs; see Sec. III of Ref. [28]. By
contrast, Eq. (3.5) only includes amplitude A and modulus
k (see Secs. II and IV). If the form can fit the correlation
function data independently of Q, then it provides strong
numerical evidence for the wide applicability of Eq. (3.5),
including unsolvable cases. Simultaneously, it leads us to the
conjecture that triangular lattice models that satisfy the three
conditions in Sec. II can exhibit a unique ACL identical to the
Ising model.

Because the fittings suffer from corrections that originate
from the second band of eigenvalues, annuli with a larger
cutoff cmax than the Ising case should be used [28]. Following
the same procedure as the Ising case, we optimize the cut-
off as cmax = 10−4, 10−4, and 5 × 10−5 for Q = 1, 3, and 4,
respectively; a finer optimization may be possible by taking
temperature dependence into account, but we avoided it for
clarity.

We summarize the results in Table III. Compared with
the Ising case, the fitting conditions worsen because the cor-
relation function data include larger errors in outer regions.
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Q=1 Q=2 Q=3

 1×10-7  1×10-6  1×10-5  1×10-4  1×10-3  1×10-2  1×10-1 1×10-7  1×10-6  1×10-5  1×10-4  1×10-3  1×10-2  1×10-1

Q=4

 1×10-7  1×10-6  1×10-5  1×10-4  1×10-3  1×10-2  1×10-1 1×10-7  1×10-6  1×10-5  1×10-4  1×10-3  1×10-2  1×10-1

FIG. 3. The first and second rows show the color maps of the residual errors ROZ(i, j) and Rtri (i, j), respectively. From left to right, their
comparisons are given for Q = 1, 2, 3, and 4 at t = 1, 0.5, 0.3, and 0.2, respectively. Each site (i, j) corresponds to one hexagon whose color
represents |ROZ| or |Rtri|. Boundary lines of hexagons indicate that the residual errors are positive.

Additionally, the decrease of |D| may cause a lowering of the
statistical accuracy of the estimates of optimal values. Despite
this, we find that our procedure estimates Ā and k̄ within four
or five-digit accuracy based on the following observations:
First, deep in the disordered phase, we theoretically expect
the amplitude to be A 	 1. The estimates Ā in the table agree
with this condition and converge to 1 for large t independently
of Q. Second, in the second row of Fig. 3, we provide color
maps of reduced residual errors in fittings between F̄tri(i, j)
and c(i, j) defined by

Rtri(i, j) = F̄tri(i, j) − c(i, j)

c(i, j)
. (3.7)

One hexagon corresponds to each site (i, j), whose color
represents the absolute value |Rtri| and whose boundary
line represents its sign, that is, we draw boundary lines for
hexagons if the residual errors are positive. We see that the
optimized form asymptotically fits the MC data in all direc-
tions, excluding the central circular domain. Compared with
the Q = 2 case, the directional dependence of residuals is
visible for Q �= 2, which can be attributed to the second-band
eigenvalue corrections; see Sec. II B. As a result, we confirm
that the form (3.5) can also fit unsolvable models’ asymp-
totic correlation functions, although their accuracy is lower
by about 1 or 2 digits than that in the Ising case.

C. Comparison with the Ornstein–Zernike form

Following the square lattice case [28], we have provided
a second example in which the form extracted from the three
conditions (i)–(iii) combined with the lattice symmetry (see

Sec. II) well describes the asymptotic behavior of correlation
functions. Indeed, we observed that Eq. (3.5) could fit the
correlation functions of the triangular lattice Q-state Potts
model and clarified its wide applicability.

Now we compare fitting qualities between the present form
and OZ form: FOZ(i, j; B, ξ ) = Be−R/ξ /

√
R (R �= 0). FOZ has

been widely used to analyze the correlation functions in disor-
dered phases. Note that Eqs. (2.1), (2.7), (2.8), and (3.5) yield
the OZ form by the saddle point method, and thus our form is
compatible with the OZ form for larger distances.

To clarify the difference in degree consistent with MC
data, we perform the same fitting calculations using χ2

OZ(B, ξ )
statistics, that is, we replace the measure Ftri in Eq. (3.6) with
FOZ, but keep the annular regions D the same in both cases.
We denote the optimized value by B̄ and ξ̄ , and define the
reduced residual errors of fittings as ROZ(i, j) = [F̄OZ(i, j) −
c(i, j)]/c(i, j), where F̄OZ(i, j) = FOZ(i, j; B̄, ξ̄ ). The color
maps of the residuals are displayed in the first row of Fig. 3.

Although the number of free parameters is the same, the
quality of fitting using the OZ form is much lower than that
using the form (1.5). This discrepancy indicates the existence
of large systematic errors in the OZ form and identifies its in-
sufficiency in describing the off-critical correlation functions.
As the comparison in the Q = 2 case demonstrates, although
Rtri is seemingly rotational symmetric, ROZ is C6v symmetric
in direction, which reflects the lack of discrete properties in
the OZ form. Similarly, comparing other cases demonstrates
the advantage of the present C6v form. One might expect that
the OZ form can improve its fitting quality by introducing an
anisotropic correlation length, i.e., ξ (θ ). In principle, this may
be correct, but in the reality of fitting calculations to MC data,
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the larger errors in the estimates due to the increase of degrees
of fitting parameters and statistical errors are inevitable; see
Appendix B in Ref. [28].

Meanwhile, Rtri clearly shows an oscillation accompanied
by the sign changes in the angular direction. Intriguingly,
Rtri < 0 and Rtri > 0 in the row and diagonal directions,
respectively for Q = 1, whereas they take the opposite sign
for Q = 3 and 4. Because the correction from the second-band
eigenvalues mainly contributes to the residual errors, its sign
for Q < 2 is seemingly the opposite of that for Q > 2. Indeed,
this prediction is consistent with the exact result (and the
numerical result) that the correction from the second-band
eigenvalues Eq. (2.9) vanishes for Q = 2. As a result, the
observed Q-dependent pattern in Fig. 3 implies a possibility
of canonically improving the leading form Ftri by taking cor-
rection terms into account; see also Sec. IV.

IV. DISCUSSION AND SUMMARY

We investigated the leading asymptotic behavior of the
correlation functions of the Q-state Potts model on a triangular
lattice. In Sec. II, following the argument for C4v [28,53],
we constructed asymptotic forms for C6v . First, we took the
three properties (i)–(iii) into account, which are expected to
be connected with C2v symmetry directly. Our exact analyses
in Appendix A showed that the asymptotic correlation func-
tion of the triangular lattice Ising model satisfies (i)–(iii). We
assumed that the three properties are widely applicable to the
models on the triangular lattice, whether solvable or not. Then,
we found that the asymptotic correlation function is written
as integrals of the products of sn functions. Based on this
integral representation, we derived the asymptotic form for
C6v using the fact that C2v is the normal subgroup of C6v . The
product structure of the sn functions is essentially the same
as that of C4v [28]. By contrast, unlike the C4v case, where
the fitting forms include three or more free parameters, we
found the minimal case, which has only two parameters: the
normalization constant A and modulus k.

From the exact analyses for Q = 2, we indicated that
the minimal form (2.8) [or (3.5)] applies to the general-Q
Potts model above transition temperatures. We performed MC
simulations using the infinite-size algorithm [57] for Q =
1, 2, 3, 4 above TC(Q) and then successfully fit the MC data
with about five-digit accuracy. It is worth noting that, although
there were fewer free parameters, we performed the fittings
with the same accuracy as the square lattice model calcula-
tions [28]. The present observation indicates the validity of
the minimal form for correlation functions and the efficiency
of using our approach to study triangular lattice models.

In Ref. [28] and this paper, we applied the three properties
(i)–(iii) to massive dispersion curves. Although we cannot
prove them rigorously, these are expected to be reasonable
working hypotheses. Using them, we derived a possibility of
systematic deformations for general Q from the exact result
Eq. (1.1) in the C4v case, and the Q-independent minimal form
(2.8) here. These were confirmed numerically in quite high
accuracy. We expect the argument in Sec. II based on point
groups is applicable to a wide class of lattice models; see
also the argument in Sec. II of Ref. [28]. Finding the minimal
form is the main result in this paper. The minimal form with

two parameters indicates the existence of an algebraic curve
containing one parameter. We can point out a possibility that
this algebraic curve plays the important role as a temperature
scale. In the following, we discuss the ECS [1,4] to clarify the
physical meaning of the minimal form. We show that the ECS
derived from the ACL is given by a simple algebraic curve
of genus 1. Furthermore, the product structures of sn func-
tions relate to differential forms on the algebraic curve. Using
birational transformations, we indicate an important role of
modulus k in representing the weak universality concept [59]
in critical phenomena.

A. Equilibrium crystal shape for the honeycomb lattice

In this subsection, we derive the ECS for the honeycomb
lattice from the asymptotic correlation function in Sec. III.
Suppose that i and j become large with i/ j fixed to be a con-
stant in Eq. (3.5). We introduce angle θ between the directions
of a1 and ja1 + ia2 as follows:

R cos θ = j − 1

2
i, R sin θ =

√
3

2
i with R =

√
j2 + i2 − i j

(4.1)
(see Fig. 1). We estimate the integral on the right-hand side
using the method of steepest descent. We calculate ACL ξ as
follows:

−1

ξ
= 2√

3

{
cos

(
θ − π

6

)
ln

[
ksn

(
φs + iI ′

6

)
sn

(
φs − iI ′

6

)]

+ sin θ ln

[
ksn

(
φs − iI ′

2

)
sn

(
φs − 5iI ′

6

)]}
, (4.2)

where we determine the saddle point φs as a function of θ by

cos

(
θ−π

6

)
sn(2φs) sinh

{
ln

[
ksn

(
φs+ iI ′

6

)
sn

(
φs − iI ′

6

)]}

+ sin θ sn

(
2φs − 4iI ′

3

)
sinh

{
ln

[
ksn

(
φs − iI ′

2

)

× sn

(
φs − 5iI ′

6

)]}
= 0, (4.3)

with the condition φs = I for θ = 0. Then, the duality [51]
relates ξ on the triangular lattice to the anisotropic interfacial
tension γ ∗

h below the transition temperature on the honeycomb
lattice as follows:

γ ∗
h

kBT ∗
h

= 1

ξ
in all directions (4.4)

(also see Refs. [26] and [49]). The reduced interaction con-
stant on the honeycomb lattice Jh/kBT ∗

h is given by

e2Jh/kBT ∗
h − 1 = Q

e2J/kBT − 1
. (4.5)

From γ ∗
h , we can determine the ECS for the honeycomb

lattice using Wulff’s construction: We denote the point on the
ECS by (X,Y ), use Eq. (4.2) in Ref. [28] with θ⊥ replaced by
θ , and define the exponentials as follows:

α = exp (−X ), β = exp

[
−

(√
3Y

2
− X

2

)]
, (4.6)
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where  is a scale factor used to adjust an area of the ECS.
Then, the ECS is given by

α = ksn

(
φ + iI ′

6

)
sn

(
φ − iI ′

6

)
,

β = ksn

(
φ − iI ′

2

)
sn

(
φ − 5iI ′

6

)
. (4.7)

As φ moves from I to I + 2iI ′ on the line �(φ) = I , for
example, (X,Y ) sweeps out the ECS; see Fig. 5 in Ref. [49]
or Fig. 6(a) in Ref. [60]. Generally, the ECSs are written
in a compact form [25]. In the present case, we can rewrite
Eq. (4.7) as

α2β2 + 1 + (αβ + 1)(α + β ) + Hαβ = 0, (4.8)

with

H = 2
dn3

(
2iI ′
3

) + 1

k2sn2
(

2iI ′
3

) . (4.9)

B. Birational transformations among algebraic curves

Equation (4.8) defines an algebraic curve on the αβ plane.
By introducing the homogeneous coordinate, we find two
nodes at its infinity [52,61]. According to the so-called genus
formula in Chap. 2.1 of Ref. [61], Eq. (4.8) is an algebraic
curve of genus 1. With this in mind, we return to the corre-
lation functions in the minimal case. Using Eq. (4.8), we can
re-express Eq. (3.5) as

Ftri(i, j; A, k)

= A
∮

dα

∮
dβ

α jβ i

α2β2 + 1 + (αβ + 1)(α + β ) + Hαβ
,

(4.10)

where the contour integrals are performed along the unit cir-
cles on the complex planes [16,25,26,46]. This expression
shows that the product structure of sn functions in Eq. (2.8)
can be regarded as polynomials on the algebraic curve (4.8)
on the αβ plane.

The same expression was also obtained for the Ising
models on the honeycomb, diced, and Kagomé lattices in
Ref. [26]; thus Eq. (4.10) is a universal leading asymptotic
form with C6v . As mentioned in Appendix A 2, unlike in
C4v case, solvable models with C6v do not necessarily have
structures of commuting transfer matrices. We have numeri-
cally demonstrated that the product structure on the algebraic
curve (4.8) deduced from the C6v symmetry describes leading
asymptotic correlation functions of triangular lattice models,
including unsolvable ones. As a common correction term for
general Q, we derived Eq. (2.9). Meanwhile, the second row
of Fig. 3 showed Q-dependent corrections, which implies a
possibility that different forms exist from Eq. (4.8) for Q �= 2.
In most of the solvable lattice models, the asymptotic behavior
of the correlation functions is rather simple since so-called
bound states are absent (see, for example, the expansion in
Ref. [46]); a well-known exception is the eight-vertex model
[13]. It is important to examine whether the Q-dependent
correction is explainable by Eq. (2.9) or not. We will address
this point in future research.

As we considered the bond percolation, i.e., the Q → 1
limit, in Sec. III B to find that Eq. (3.5) applies to it, lat-
tice models without transfer matrices attract attention. For
example, while the Q-state Potts model possesses discrete
variables, the XY model [62,63] is defined by continuous
variables. Its numerical study is currently in progress. Fur-
ther investigation from the viewpoint of symmetry is also
needed: Since C6v contains C3v as a normal subgroup as well
as C2v , the Ising model on the honeycomb lattice and the
hard-hexagon model are worth investigating. As mentioned
in Sec. II, for T < TC(Q), we expect that the form in the
next to the minimal case (2.9) gives the leading asymptotic
behavior of the correlation function. According to the analysis
in Sec. IV A, to find the minimal case, we should consider the
anisotropic interfacial tension that is related to the ACL of
the honeycomb lattice Potts model in the disordered phase.
Thus, a numerical study of the honeycomb lattice Potts model
is important (in this respect, note that the minimal case was
found in the antiferroelectric ordered regime of the Kagomé
lattice eight-vertex model [50]). We will report on this point
next publication.

At the beginning of this section, we argued the wide ap-
plicability of our method based on both the three properties
(i)–(iii) and the lattice symmetries. However, as mentioned
in Sec. IV B of Ref. [28], the modified KDP model is an ex-
ceptional example because it does not satisfy (i)–(iii) [26,64].
In general, our method applies not to all but to a certain
range of lattice models. To consider its applicability, one
important clue is the birational equivalence concept. The al-
gebraic curves here and in Ref. [28] are related to each other
by birational transformations, but the algebraic curve for the
modified KDP model is not.

Lastly, based on the birational equivalence, we discuss that
the algebraic curve (4.8) plays a role of a universal scale
to measure an amount of deviation from criticalities. As ob-
served, it is common among models with C6v symmetry and
contains only one parameter H , or equivalently, k by which
we determine H via Eq. (4.9). Additionally, it is independent
of the types of criticalities. Hence, the shapes of the algebraic
curve can specify the deviations from criticalities. Meanwhile,
this argument is restricted to models with C6v symmetry. We
can extend it to include a wider class of models with different
lattice symmetries, for example, C2v and C4v . As mentioned in
Ref. [28], in performing this extension, birational equivalence
among algebraic curves plays a crucial role. We demonstrate
such an extension by considering C4v symmetry as an exam-
ple.

We obtained the asymptotic form for the square lattice Q-
state Potts model, that is, Fsq(i, j; A, k, b) [28]. We denote the
point on the ECS by (X ′,Y ′), and write the exponentials as

α′ = exp(−X ′), β ′ = exp(−Y ′). (4.11)

We find that they satisfy Eq. (1.2), that is,

α′2β ′2 + 1 + Ā2(α′β ′ + 1)(α′ + β ′) + α′2 + β ′2 + Ā4α
′β ′ = 0.

(4.12)
This is also an algebraic curve of genus 1. If the values of
k in Eqs. (4.8) and (4.12) are the same, then we can suitably
choose rational functions to connect the variables of these two
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curves:

α′ = α + c

1 + cα
, β ′ = �1(α, β )

�2(α, β )
, (4.13)

with

c = −ksn

(
b

iI ′

4
+ iI ′

6

)
sn

(
b

iI ′

4
− iI ′

6

)
, (4.14)

where �1(α, β ) and �2(α, β ) are the polynomials of α, β.
Because a lengthy calculation is required, we provide the
details of their derivation in Appendix B. Additionally, we
find the inverse transformation from α′, β ′ to α, β; hence, the
transformation is bidirectional.

To understand the implications of the transformation, we
consider the critical limit by taking k → 1. Using the con-
jugate modulus transformation, from Eq. (4.13), we obtain
a transformation between the ECS in Sec. IV A and that in
Sec. IV of Ref. [28]. It follows that

k ∼ 1 − 8q′, q′ = exp

(
−π

I

I ′

)
. (4.15)

Note that the conjugate nome q′ ∼ 1/ξ . To fix the areas of the
ECSs, we adjust the scale factor as follows:

 = q′. (4.16)

Then, Eqs. (4.6) and (4.11) reduce to

α ∼ 1 − X, β ∼ 1 − 

(√
3Y

2
− X

2

)
(4.17)

and

α′ ∼ 1 − X ′, β ′ ∼ 1 − Y ′, (4.18)

respectively. Equations (4.8) and (4.12) show that the ECSs
become circles near the critical point; only their radii are
different. From the transformation (4.13), we find that

√
X ′2 + Y ′2 = cos bπ

4

cos π
6

√
X 2 + Y 2. (4.19)

To explain the continuously varying exponents in the eight-
vertex model [13,43], Suzuki proposed the weak universality
concept [59], where the inverse correlation length 1/ξ was
regarded as a natural scale to measure the departure from
critical points. The relation (4.19) indicates that to match the
correlation length given in Sec. IV A with that in Ref. [28],
dilatation by the amount of cos(bπ/4)/ cos(π/6) is required,
which depends on both the degrees of freedom (like Q) and
the types of lattices (e.g., triangle and square). In this respect,
birational equivalence states that k is more fundamental than
1/ξ .

Because the birational transformation (4.13) is well-
defined for general k, including the k → 1 limit, the modulus
can provide a universal measure of the departure from critical
points among various models defined on different lattices.
Mathematically, birational equivalence is a basic concept in
the field of algebraic geometry [52]. In addition to the genus,
k is known as a birational invariant. It is strongly suggested
that the rich structures of birational geometry introduce a new
insight into the study of lattice models.
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APPENDIX A: ASYMPTOTIC CORRELATION
FUNCTIONS FOR Q = 2

In Appendix A of Ref. [28], we investigated the correlation
length in the square lattice Ising model by extending the
method of commuting transfer matrices in Chap. 7 of Ref. [13]
using the shift operator. In this Appendix, we apply the same
method to the Ising model on the triangular lattice. We define
inhomogeneous systems on the square lattice. Each system
still possesses a one-parameter family of commuting trans-
fer matrices. The products of commuting transfer matrices
yield transfer matrices on the triangular lattice. We analyze
the asymptotic correlation function along 12 directions and
then find the three properties (i)–(iii) in Ref. [28] that hold
for the triangular lattice. This result supports our discussion
on obtaining the asymptotic correlation functions with C6v

symmetry in Sec. II.

1. Inhomogeneous transfer matrices

First, we draw a square lattice diagonally. For the Ising
model, each σr takes the values of ±1 because it is defined as
σr = exp(iπqr ) with qr = 0, 1 (see Sec. III). The Hamiltonian
is written as Eq. (A1) in Ref. [28], where the nearest-neighbor
spins are coupled by J or J ′ depending on the direction.
Using Jacobi’s elliptic functions, we parametrize the reduced
coupling constants K = J/kBT , K ′ = J ′/kBT using Eq. (A5)
in Ref. [28] for T > TC and Eq. (A6) in Ref. [28] for T < TC.
To investigate the triangular lattice Ising model, we suppose
that the spectral parameter u varies from site to site [13].
We introduce a real number v0 and define inhomogeneous
transfer matrices. We consider two successive rows, and let
σ = {σ0, . . . , σN−1} and σ ′ = {σ ′

0, . . . , σ
′
N−1} be two sets of

spins in the lower and upper rows, respectively (N even);
see Fig. 4. We assume periodic boundary conditions in both

FIG. 4. Square lattice is drawn diagonally. Transfer matrices W
and V connect three successive rows. For the parametrization of
coupling constants, see the text.
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directions. Then, the transfer matrices V and W are given by
elements as follows:

[V(u)]σ,σ ′ = exp

{
N−1∑
l=0

[K ′(u)σlσ
′
l + K (u + v0)σl+1σ

′
l ]

}
,

[W(u)]σ,σ ′ = exp

{
N−1∑
l=0

[K (u)σlσ
′
l + K ′(u + v0)σlσ

′
l+1]

}
,

(A1)

where σN = σ0 and σ ′
N = σ ′

0. We regard modulus k and v0

as fixed constants. They satisfy the following commutation
relations:

[V(u), V(u′)] = [W(u), W(u′)] = [V(u), W(u′)] = 0

∀u, u′ ∈ C. (A2)

We denote the eigenvalues of V(u) and W(u) by V (u) and
W (u), respectively. Then, as N → ∞,

V (u) ∼ κ (u)
N
2 κ (u + v0)

N
2 , W (u) ∼ κ (u)

N
2 κ (u + v0)

N
2 ,

(A3)
where κ (u) is given by Eqs. (A14)–(A16) in Ref. [28]; also see
Chap. 11 of Ref. [13]. To calculate the asymptotic correlation
function, we define the following limiting functions:

lim
N→∞

W (u)

[κ (u)κ (u + v0)]
N
2

, lim
N→∞

V (u)

[κ (u)κ (u + v0)]
N
2

. (A4)

In Ref. [28], we proved that they are the same form and satisfy
Eq. (A27) or Eq. (A28). Thus, we write both of them as

±
μ∏

l=1

k
1
2 sn

(
−φl + iI ′

2
+ iu + iv0

2

)
. (A5)

As a result, we label the limiting function using μ-real vari-
ables φ1, . . . , φμ. We denote it by L(φ1, . . . , φμ|u).

To investigate the triangular lattice Ising model with the
isotropic interaction, we set v0 = I ′/3 and take the limits of u
as follows: The transfer matrix can be constructed as

Y = lim
u1→0

u2→2v0

W
(

I ′

3

)
V(u1)

κ (u1)
N
2

W
(

I ′

3

)
V(u2)

κ (u2 + v0)
N
2

, (A6)

and the shift operator as

X = lim
u1→I ′

u2→2v0

W(u1)

[κ (u1)κ (u1 + v0)]
N
2

V(u2)

[κ (u2)κ (u2 + v0)]
N
2

. (A7)

We showed in Appendix A of Ref. [28] that the asymptotic
correlation function is calculated from two ratios LY and LX ;
the former (latter) denotes the ratio between the eigenvalues
and the largest eigenvalue of Y (X); see also Refs. [34–36].

Using L(φ|u), they are represented as

LX (φ) = L(φ|I ′)L
(
φ

∣∣∣2I ′

3

)
,

LY (φ) = L

(
φ

∣∣∣ I ′

3

)
L(φ|0)L

(
φ

∣∣∣ I ′

3

)
L

(
φ

∣∣∣2I ′

3

)
. (A8)

In the N → ∞ limit, the summation over eigenvalues
becomes integrals because of their continuous distribution.
In particular, for T > TC, we calculate the leading asymp-
totic behavior of the correlation function from a band of the
next-largest eigenvalues with μ = 1. For r = ja1 + ia2 (see
Fig. 1), it is given by the integral with respect to φ1 as

〈σoσr〉 ∼
∫ I

−I
dφ1 ρ(φ1)

×
[

ksn

(
−φ1 − iI ′

3

)
sn

(
−φ1 − 2iI ′

3

)] j

×
[

ksn
(−φ1 − iI ′)sn

(
−φ1 − 4iI ′

3

)]i

, (A9)

with

sinh K = i

sn
(

2iI ′
3

) , (A10)

where ρ(φ1) is to be determined from the distribution of the
eigenvalues and the matrix elements. Note that the minimal
form (2.8) with (ν, ν ′) = (2, 4) coincides with Eq. (A9) if
we change the integration variable to � = −φ1 − iI ′/2 and
shift the integration path suitably. Because of Z2 symmetry,
the contribution of the next-to-next-largest eigenvalues with
μ = 2 vanishes. Therefore, the first correction to the asymp-
totic behavior (A9) originates from μ = 3 (see the numerical
results in Sec. III C).

When i and j become large with i/ j fixed, we can calculate
the correlation length ξ along the direction θ by shifting the
integration path and using the method of steepest descent [43];
θ is related to i and j by tan θ = √

3 i/(2 j − i); see Sec. IV A.
Increasing θ by 2π causes the saddle point to move by 2iI ′ on
the line �(φ1) = I . We expect that ρ(φ1) is a doubly periodic
function and is analytic inside a periodic rectangle. According
to Liouville’s theorem, it should be a constant. Because the
normalization constant is identical to that of the square lattice
Ising model,

ρ(φ1) = (1 − k2)
1
4

π
(A11)

[65]; see also Chap. 11 of Ref. [13].
For T < TC, the two largest eigenvalues are asymptoti-

cally degenerate as N → ∞. The next-largest eigenvalues
correspond to the case μ = 2. Thus, the asymptotic correla-
tion function is given by the double integral with respect to
φ1, φ2 as

〈σoσr〉 − 〈σo〉〈σr〉 ∼
∫ I

−I
dφ1

∫ I

−I
dφ2 ρ(φ1, φ2)

[
ksn

(
−φ1 − iI ′

3

)
sn

(
−φ1 − 2iI ′

3

)] j[
ksn

(−φ1 − iI ′)sn

(
−φ1 − 4iI ′

3

)]i

×
[

ksn

(
−φ2 − iI ′

3

)
sn

(
−φ2 − 2iI ′

3

)] j[
ksn

(−φ2 − iI ′)sn

(
−φ2 − 4iI ′

3

)]i

, (A12)
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with

sinh K = i

ksn
(

2iI ′
3

) , (A13)

where we determine the function ρ(φ1, φ2) from the distribu-
tion of the eigenvalues and the matrix elements [43]. Note that
the next to minimal case with (ν, ν ′) = (4, 8), that is, Eq. (2.9)
reproduces Eq. (A12) by a suitable transformation.

We use the method of steepest descent for each integral
to calculate the ACL. Repeating the same argument below
Eq. (A10), we find that, if ρ(φ1, φ2) is rewritten as ρ(φ1 +
φ2, φ1 − φ2), it has no φ1 + φ2 dependence: ρ(φ1, φ2) =
ρ(φ1 − φ2).

2. Passive rotations

We consider transfer matrices along various directions to
find the role of C6v symmetry. In Appendix A of Ref. [28], we
defined the Ising model on a square lattice rotated through
an arbitrary angle. We found that the lattice rotations shift
the integration paths with their deformations. The same is
expected to occur in lattice models with C6v . However, exact
calculations for C6v symmetry are somewhat complicated: For
the Kagomé lattice eight-vertex model, we can construct com-
muting transfer matrices along special directions [50,51,60].
Here, for the triangular lattice Ising model, we construct com-
muting transfer matrices along twelve directions to derive
the three properties (i)–(iii). Note that commuting families
have not been constructed so far for the Ising models on the
Kagomé and diced lattices, which were investigated by the
Pfaffian method; see, for example, Ref. [26].

We consider calculations of the ACLs. For example, above
TC (μ = 1), we can estimate the integral in Eq. (A9) using
the saddle-point method; see Sec. IV A. To calculate the cor-
relation length along the horizontal direction θ = 0, we take
the j → ∞ limit with i = 0 and then find the saddle point at
φ1 = −iI ′/2 + I; for the definition of θ , see Eq. (4.1). When
θ increases as θ = nπ/6 with n = 1, 2, . . . , 5, we find that
the saddle point moves on the line �(φ1) = I; it is located at
φ1 = −iI ′/2 − inI ′/6 + I .

The increase of θ corresponds to active rotations. Mean-
while, the method using passive rotations yields the same
result. First, we consider the triangular lattice rotated clock-
wise by angle nπ/3 (n = 1, 2, . . . , 5). If we define the transfer
matrix and shift operator on the rotated lattice, then they are
identical to Y and X, respectively. We repeat the analysis
from Eq. (A1) to Eq. (A5); the limiting function is given
by Eq. (A5) with φl replaced by φ̄l if we choose a suitable
relation between them.

Above TC, we rename φ1 on the right-hand side of Eq. (A9)
as φ̄1. Comparing the saddle point on the φ̄1 plane with that
on the φ1 plane, we find that φ1 and φ̄1 are related as φ̄1 =
φ1 − inI ′/3. Note that

LX

(
φ1 + iI ′

3

)2

= LX (φ1)LY (φ1),

LY

(
φ1 + iI ′

3

)2

= LX (φ1)−3LY (φ1). (A14)

We extend these relations into the cases with μ > 1, which
indicates that φ̄l = φl − inI ′/3 for all l . We find that the lat-
tice rotation by nπ/3 shifts the integration paths by −inI ′/3
without deformations. In fact, for T < TC, we start with
Eq. (A12) with φ1, φ2 replaced by φ̄1, φ̄2. We obtain the same
integration-path shifts caused by the nπ/3-lattice rotations.

Second, to investigate the case (2n − 1)π/6 (n =
1, 2, . . . , 6), we define inhomogeneous transfer matrices
as follows:

[Ṽ(u)]σ,σ ′

= exp

{
N−1∑
l=0

[
ε

(0)
2l,2l + ε

(1)
2l+1,2l + ε

(2)
2l+1,2l+1 + ε

(3)
2l+2,2l+1

]}
,

[W̃(u)]σ,σ ′

= exp

{
N−1∑
l=0

[
ε

(0)
2l,2l + ε

(1)
2l,2l+1 + ε

(2)
2l+1,2l+1 + ε

(3)
2l+1,2l+2

]}
,

(A15)

where σ2N = σ0 and σ ′
2N = σ ′

0. We denote local energies be-
tween σl and σ ′

l ′ with coupling constants K (u), K (u + v0),
K (u + I ′ − v0) and K (u + v0) [K ′(u), K ′(u + v0), K ′(u +
I ′ − v0) and K ′(u + v0)] as ε

(0)
l,l ′ , ε

(1)
l,l ′ , ε

(2)
l,l ′ and ε

(3)
l,l ′ [ε(0)

l,l ′ , ε
(1)
l,l ′ ,

ε
(2)
l,l ′ and ε

(3)
l,l ′ ], respectively. Then, the transfer matrix in the

rotated system is given by

Ỹ = lim
u1→v0
u2→0

W̃(u1)

κ (u1 + I ′ − v0)
N
2

Ṽ(u2)

κ (u2)
N
2

. (A16)

We cannot construct the shift operator X̃ in a similar man-
ner. Despite this, we calculate the correlation length along
the direction (2n − 1)π/6 from the limiting functions cor-
responding to Ỹ using the method of steepest descent. We
find that the distances between the saddle points and integra-
tion paths change, which means that the lattice rotation by
(2n − 1)π/6 shifts the integration paths by −i(2n − 1)I ′/6.

As a result, the lattice rotation clockwise by nπ/6 causes
the integration paths to shift by −inI ′/6 (n = 1, 2, . . . , 11).
The ACL calculated on the rotated lattice must be the same
as that on the original lattice. We derive the equivalence
with the help of the analyticity of the limiting functions (or
eigenvalues). We find that (i) wide analyticity domains of
the eigenvalues are required to ensure equivalence between
the results in analyses along various directions. As shown
in Eq. (A14), we find relations connected with the coordi-
nate transformations for even n. The product structures of
the sn functions in Eq. (A5) can derive the sixfold rotational
symmetry. A necessary condition is that each of the limiting
functions satisfies the inversion relation, that is, the first equa-
tion of Eq. (A27) or Eq. (A28) in Ref. [28]. Thus, (ii) the
limiting functions should satisfy the equation corresponding
to π -rotational symmetry. Note that if we assume (iii) doubly
periodic structures, we obtain Eq. (A5). We expect that (iii) is
generally satisfied for lattice systems; see Sec. II.

APPENDIX B: BIRATIONAL TRANSFORMATIONS

In this Appendix, we consider a relation between the al-
gebraic curves (4.8) and (4.12); for the latter, see Sec. IV
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of Ref. [28]. The set of α and β in Eq. (4.8) is a basis
of an elliptic function field. Alternatively, the set of α and
β in Eq. (4.12) is another example of a basis of the same
elliptic function field. If this is the case, then the algebraic
geometry indicates the possibility that rational functions relate
to these two bases [52]. The relation is called a birational
correspondence, and the two curves are considered to be

birationally equivalent. We clarify a condition necessary for
this possibility.

We start with the algebraic curve (4.12) found in the C4v

case:

α′2β ′2 + 1 + Ā2(α′β ′ + 1)(α′ + β ′) + α′2 + β ′2 + Ā4α
′β ′ = 0.

(B1)

Using the sn functions, we parametrize Eq. (B1) as follows:

α′ = ksn

(
φ + b

iI ′

4

)
sn

(
φ − b

iI ′

4

)
, β ′ = ksn

(
φ + b

iI ′

4
− iI ′

2

)
sn

(
φ − b

iI ′

4
− iI ′

2

)
, (B2)

with

Ā2 = 2cn
(
biI ′

2

)
dn

(
biI ′

2

)
1 + ksn2

(
biI ′

2

) , Ā4 = 4 − 4

(
k

1
2 + k− 1

2
)2

1 + ksn2
(
biI ′

2

) , (B3)

where b is a free parameter introduced in Sec. III of Ref. [28]; also see the errata [66].
Equations (B1) and (4.8) are algebraic curves of genus 1. Furthermore, if both have the same modulus k, then we can relate

them using rational functions as follows: Using the additional formula for Jacobi’s elliptic functions, we obtain the first relation
of Eq. (4.13):

α′ = α + c

1 + cα
, (B4)

where

c = −kS+S−, S± = sn(v ± η), (B5)

with v = biI ′/4 and η = iI ′/6.
To find the second relation of Eq. (4.13), we define the following quantities:

X0 = S2
+ + S2

− − sn2(η) − c2

k2sn2(η)
,

X1 = S2
+ + S2

− − c2sn2(η) − 1

k2sn2(η)
,

X2 = 1 − c2

k
[cn(2v)dn(2η) + dn(2v)cn(2η)] + 2c

[
cn dn

ksn
(η)

]2

,

X3 = 1 − c2

k
[cn(2v)dn(2η) + dn(2v)cn(2η)] − 2c

[
cn dn

ksn
(η)

]2

,

X4 = 4S2
+ + 4S2

− + 2(1 + c2)

[
2cn2(η)dn2(η) − 1

k2sn2(η)
− sn2(η)

]
. (B6)

Then, we can prove that

X0(β ′2β2 + 1) + X1(β ′2 + β2) + X2(β ′β2 + β ′) + X3(β ′2β + β ) + X4β
′β = 0. (B7)

We multiply Eq. (B1) by (X0β
2 + X1 + X2β ), and Eq. (B7) by (α′2 + Ā2α

′ + 1). We subtract the latter from the former. Then, it
follows with the help of Eq. (B4) that

β ′ = �1(α, β )

�2(α, β )
, (B8)

where �1(α, β ) and �2(α, β ) are the polynomials of α and β given by

�1(α, β ) = (X1 − X0){(c2 + Ā2c + 1)(α2 + 1) + [Ā2(c2 + 1) + 4c]α}(β2 − 1),

�2(α, β ) = {[Ā2(c2 + 1) + Ā4c](α2 + 1) + [Ā4(c2 + 1) + 4Ā2c]α}(X0β
2 + X3β + X1)

− {(c2 + Ā2c + 1)(α2 + 1) + [Ā2(c2 + 1) + 4c]α}(X2β
2 + X4β + X2). (B9)
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We derive the inverse transformation similarly: From Eq. (B4) we obtain

α = α′ − c

1 − cα′ . (B10)

We use Eq. (4.8) instead of Eq. (B1). It follows that

β = �1(α′, β ′)
�2(α′, β ′)

, (B11)

where �1(α′, β ′) and �2(α′, β ′) are the fourth-order polynomials of α′ and β ′ given by

�1(α′, β ′) = (1 − c)(α′ + 1)[(cα′ − 1)(X0β
′2 + X2β

′ + X1) + (α′ − c)(X1β
′2 + X2β

′ + X0)],

�2(α′, β ′) = {(c2 − cH + 1)(α′2 + 1) + [(c2 + 1)H − 4c]α′}(X0β
′2 + X2β

′ + X1)

+ (c − 1)(α′ + 1)(α′ − c)(X3β
′2 + X4β

′ + X3). (B12)

Consequently, we obtain the birational transformation that connects the algebraic curves (1.10) and (4.12) [52].
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