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Splashes in isotropic media
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The response of a weakly absorbing isotropic medium to a sudden localized perturbation (a “splash”) is
explained within the framework of linear response theory. In this theory splashes result from the interference of
the collective excitations of the medium, with the outcome determined by the interplay between their phase and
group velocities as well as the sign of the latter. The salient features of splashes are controlled by the existence
of extremal values of the phase and the group velocities: the group velocity gives the expansion rate of the locus
of the points where new wave fronts nucleate or existing ones disappear, while the phase velocity determines
the large-time expansion rate of a group of wave fronts. If the group velocity is negative in a spectral range and
takes on a minimal value within it, then converging wave fronts will be present in the splash. These results are
relevant to the studies of several experimentally viable setups, such as a splash on the surface of deep water due
to a small pebble or a raindrop, a splash in the two-dimensional electron gas caused by a short voltage pulse
applied with the tip of a scanning tunneling microscope, or a bulk splash in superfluid 4He due to formation of
an electron bubble. Specifically, the gross features of a splash in superfluid 4He are determined by five extremal
velocities. Additionally, due to the existence of a negative group-velocity spectral range, some of the wave fronts
in the superfluid splash are converging.

DOI: 10.1103/PhysRevE.107.024117

I. INTRODUCTION

Recent years have seen major advances in imaging of
the fluid density n(r, t ) and velocity v(r, t ) fields in neutral
quantum liquids such as superfluid 4He [1–4], superfluid 3He
[5], atomic gas superfluids [6], and charged quantum liquids
such as electrons in graphene [7] and Cooper-pair liquids in
superconductors [8]. These emerging capabilities open a door
to visualization of a variety of effects, some of which have
already been described [9,10]. A theoretical study of a family
of such effects, splashes, is given in this paper.

A splash is the response of the medium to a local per-
turbation of a short duration; it is described by an initial
value problem. A familiar example from classical physics is
the expanding pattern of annular waves caused by a small
rock impacting a surface of calm water [11–13]. Analogs of
this phenomenon exist in quantum liquids. For instance, a
low-energy electron injected inside liquid 4He triggers quick
formation of a bubble around it [14]; the reaction of the
superfluid to the formation of the bubble is an example of
a three-dimensional splash in a neutral quantum liquid. The
surfaces of superconductors and two-dimensional electron
systems allow for a large degree of control over the pertur-
bation. Specifically, applying a short voltage pulse with the
tip of a scanning tunneling microscope to a graphene sheet
[15] can initiate a splash in the two-dimensional sea of Dirac
electrons.

For any localized disturbance, the response of the medium
is small at long times t after the perturbation ceased to op-
erate, and then is described by a linear theory. In such a
theory, developed below, splashes are a result of the interfer-
ence of collective excitations of the medium; the outcome is

determined by their frequency spectrum �(k) (here k is the
wave vector).

Previous treatments of splashes focused on the water sur-
face as a medium. Here the relevant excitations are the
capillary gravity waves whose dispersion law in the deep
water (and incompressible fluid) limit has the form [16]

�2(k) = gk + γ

ρ
k3, (1)

where g is the free-fall acceleration, k = |k| is the wave num-
ber, γ is the coefficient of surface tension of water, and ρ is
the density of water.

For γ = 0 the initial value problem has been fully solved
by Cauchy and Poisson (CP) [11]. Specifically, the position of
the lth wave front in the splash rl as measured from the point
of impact in the large time limit gt2/rl � 1 is given by the
expression

rl = gt2

8π l
(2)

whose hallmark is accelerated expansion of the rings.
The parameters of the spectrum, (1), can be combined to

form a spatial scale λ, the capillary length, and a timescale τ ,
such as

λ =
(

γ

gρ

)1/2

= 0.28 cm, τ =
(

γ

g3ρ

)1/4

= 0.017 s, (3)

where the numerical values are for water at 20 ◦C [16]. The
CP theory is only valid for wavelengths long compared to the
capillary length. When the scales, (3), are used as units of
length and time (see below), the dispersion law, (1), acquires
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FIG. 1. Group �′(k) and phase �(k)/k velocities versus the
wave number k in units of l/τ and 1/l , respectively, Eq. (3), for
capillary gravity waves, (4).

the parameter-free form

�2 = k + k3, (4)

which means that there is more to the water splash than im-
plied by the CP result, (2).

Kelvin [17] pioneered a general method for analyzing
splashes due to excitations with arbitrary dispersion law, and
found that the dynamics of splashes is determined by the
interplay between the phase and the group velocities. The CP
result, (2), has its simple form because the group velocity for
gravity waves [γ = 0 in Eq. (1)] is half the phase velocity.

For the general dispersion relation, Kelvin argued that
interesting phenomena are sure to occur whenever there are
extrema of the phase velocity, because then the phase velocity
�/k and group velocity d�/dk ≡ �′(k) are equal [indeed the
condition (�/k)′ = 0 is equivalent to �/k = �′(k)]. For the
particular case of capillary gravity waves (shown in Fig. 1),
there is a minimum when k = kc = 1 and

v = vc =
√

2 (23 cm/s, physical units). (5)

The group velocity �′ also has a minimum (Fig. 1) at km =
(2/

√
3 − 1)1/2 ≈ 0.39 corresponding to the velocity

vm =
√

3

(
2√
3

− 1

)1/4

≈ 1.08 (18 cm/s, physical units).

(6)
Observations show [12,13] that a few seconds following the
perturbation of a water surface, a quiescent region inside the
annular waves is formed. Rayleigh demonstrated [18] that this
region expands with the constant velocity vm, (6). Outside the
quiescent region there are two systems of waves of different
wavelength present at the same place. In practice only one
system is visible, and Rayleigh conjectured that the other (cor-
responding to short waves of predominantly capillary origin)
is rapidly damped. Rayleigh’s conjecture has been justified
by Lighthill [19] who also observed that new wave fronts
nucleate “from nowhere” at the boundary of the expanding
region of calmed water.

Le Méhauté [20] additionally argued that the waves in the
annular region have a narrow range of wave numbers centered
around km, Fig. 1, corresponding to the minimum group ve-
locity vm, (6).

Below we give a general theory of dynamics of wave fronts
in splashes in the weakly absorbing isotropic medium and
apply it to various cases. While elaborating on Rayleigh’s re-
sults [18] regarding the water splash, we expand on Lighthill’s
observation [19], showing that new wave fronts arise at the
inner boundary of the annular region in pairs at equal time
intervals. We also support Kelvin’s intuition regarding the
significance of the minimum phase velocity vc, (5): it sets the
velocity of expansion of a group of capillary gravity rings in
the long-time limit where the conjecture of Ref. [20] fails.

This theory also applies to a plasmonic splash in a two-
dimensional Fermi sea. Here the relevant dispersion law
is [21–25]

�2(k) = gk + u2k2, (7)

where g (no longer the free-fall acceleration) and the speed of
sound u are determined by the equation of state of the electron
gas [25]. While the spectra (1) and (7) are the same in the
long-wavelength limit, the remaining difference, k3 versus k2

contributions, makes the plasmonic splash a simpler version
of its water counterpart as discussed below.

A final application of the theory involves a splash in bulk
superfluid 4He whose elementary excitations exhibit a spectral
region with negative group velocity [26]. A recent analysis of
the wake patterns in this system [27] established that these ex-
citations are responsible for features similar to the Kelvin ship
wake. Below it will be shown that negative group-velocity
excitations are responsible for converging wave fronts in su-
perfluid 4He splashes.

II. FORMALISM

Regardless of its particular manifestation, splashes are de-
scribed by linear response theory [26,28,29]. Let us suppose
that every particle of the medium is perturbed by an external
field of the potential energy U (r, t ). Then the operator of the
perturbation acting on the whole medium is

V̂ (t ) =
∫

n̂(r, t )U (r, t )dd x, (8)

where n̂(r, t ) is the Heisenberg density operator and d is the
space dimensionality [in classical linear water wave theory
n(r, t ) is the height of the water surface while U (r, t ) is
the excess pressure [30]]. The Fourier transform of the in-
duced density due to the perturbation is given by δn(ω, k) =
−α(ω, k)U (ω, k) where α(ω, k) is a generalized susceptibil-
ity [26,28,29] and U (ω, k) is the Fourier transform of U (r, t ).
Inverting the Fourier transform and specifying to the case of
a point instantaneous source, U (ω, k) = const, the induced
density will be given by

δn(r, t ) ∝
∫

dω dd k

(2π )d+1
α(ω, k)ei(k·r−ωt ). (9)

The dynamics of the wave fronts in the splash can be deter-
mined by using Kelvin’s stationary phase argument [11,17].
At positions and times such as the phase f = k · r − ωt is
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large in magnitude, the exponential in (9) is highly oscillatory,
and contributions of elementary plane waves interfere destruc-
tively leaving almost no net result, unless ω = ±�(k) [which
are the poles of the susceptibility α(ω, k) [26,29]] and have
a phase which is stationary with respect to k. Subjecting the
phase

f = k · r ∓ �(k)t (10)

to the condition of stationarity ∇k f = 0 one finds

r = ±∇k� · t . (11)

Since the phase f is constant along the wave fronts, the
last two equations can be solved to determine the wave-front
dynamics in a parametric form. In an isotropic medium they
become

r(k) = �′

�′k − �
f , t (k) = ± 1

�′k − �
f , (12)

where the lower sign in the expression for t (k) accounts for
the possibility of a negative group velocity.

Since r and t are positive, the phase f is determined by
the interplay between the phase and the group velocities, as
well as by the sign of the latter. Specifically, there are three
possibilities:

f =

⎧⎪⎪⎨
⎪⎪⎩

2π l, if �′ > �/k

− 2π l, if 0 < �′ < �/k

2π l, if �′ < 0,

(13)

where l is a positive integer. The dynamics of the wave fronts
of the last type is given by Eqs. (12) with the lower sign chosen
in the expression for t (k); otherwise, the expression for t (k)
with the upper sign should be used.

Several conclusions anticipating the gross features of
splashes can be deduced from Eqs. (12):

(i) When the equation �′′ = 0 has real solutions, i.e., the
group velocity has an extremum v = vm, the expressions for
r(k) and t (k) have simultaneous extrema. Then the equa-
tion r = |vm|t gives the locus of the points where new wave
fronts nucleate or existing ones disappear. When this happens
at a nonzero k = km which is not an end point of the spectrum,
the wave fronts appear or disappear in pairs. Since positions
of extrema of t (k) are l independent, the wave fronts appear
(or disappear) at regular time intervals

t (km) ≡ tm = 2π

|vmkm − �(km)| . (14)

(ii) In the vicinity of an extremum of the group velocity,
the spectrum can be approximated by its Taylor expansion

�(k) = �(km) + vm(k − km) + �(3)(km)

3!
(k − km)3. (15)

Combining it with Eqs. (12) and (13), one can then see that
when the group velocity has a minimum [�(3)(km) > 0], that
is negative, vm < 0, then t (k) has a minimum while r(k) has a
maximum at k = km. The consequence is that pairs of wave
fronts nucleating with period tm, (14), will be converging
toward the center of the splash.

(iii) The large t limit is controlled by the points of the
spectrum where the phase and the group velocities are equal;

these are also extrema of the phase velocity. If this happens at
k = kc with finite common velocity v = vc, equation r = vct
gives the asymptotic large t behavior of wave fronts whose
wave numbers are close to k = kc. If kc = 0, then vc is the
speed of sound u. If kc = 0 and vc = 0 (vc = ∞), then the
asymptotic large t expansion of wave fronts is subballistic
(superballistic).

(iv) Equations (12) and (13) imply that if r/l and t/l are
used as variables to represent splashes, visual complexity of
their original r(t ) patterns is reduced since all the wave fronts
of a given family [according to Eq. (13)] “collapse” onto a
single curve (or a pair of curves) representing that family.

III. APPLICATIONS

We now proceed to selected applications of the general
results (12)–(14).

A. Acoustic spectrum

When the excitation spectrum is linear in the wave number
k,

� = uk, (16)

the phase �/k and the group �′ velocities are equal to u for
all k. According to Eqs. (12) this is the marginal case. The
well-known outcome r = ut then follows from Eq. (11): there
is only one wave front propagating away from the point of
disturbance with the speed of sound.

B. Gravity waves

For gravity waves [γ = 0 in Eq. (1)] the group velocity
is always smaller than the phase velocity, thus implying,
Eq. (13), that f = −2π l . Then according to Eq. (12) one finds
that r = 2π l/k and t = 4π l/

√
gk; combining them recovers

the CP result, (2). This is an example of a superballistic
expansion.

C. Capillary waves

For capillary waves [g = 0 in Eq. (1)] the group velocity is
always larger than the phase velocity, thus implying, Eq. (13),
that f = 2π l . Then according to Eq. (12) one finds that r =
6π l/k and t = 4π l/

√
γ k3/ρ. Eliminating the wave number k

one obtains

rl = 3

(
πγ lt2

2ρ

)1/3

, (17)

i.e., the expansion is subballistic, rl ∝ t2/3.

D. Capillary gravity waves

With capillarity included, (4), the first two possibilities of
Eq. (13) are realized. To understand the dynamics of the wave
fronts, in Fig. 2 we plotted corresponding t (k) dependences,
(12), for several values of l [the r(k) dependences are not
shown; they are qualitatively the same]. We observe that at
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FIG. 2. Dependences of t (k), Eqs. (12) and (13), for the capillary
gravity waves, (4). The legend and line styling are the same as in
Fig. 1. Numbers next to the curves are values of integer l .

times smaller than

tm = 23/2π
(1 + 2/

√
3)1/4

1 − 1/
√

3
≈ 25.47 (0.43 s, physical units)

(18)
given by Eq. (14), the equation for t (k), (12), only has so-
lutions corresponding to short waves k(l )(t ) > kc where f =
2π l . In the t � tm limit the effects of gravity are negligible,
and evolution of these annular rings follows Eq. (17). As
t → ∞ the solutions k(l )(t ) asymptotically approach k = kc

from above. The corresponding rings expand with the velocity
vc, (5), corresponding to zero of the denominator in Eqs. (12).
The behavior for arbitrary t is displayed in Fig. 3 by a series of
dashed wave fronts; line styling is coordinated with the k > kc

regions in Figs. 1 and 2. As in the purely capillary case (17),
the number of these wave fronts is infinite and they extend
over the whole surface; this is an artifact of the incompressible
liquid approximation.

At t = tm, (18), the equation for t (k), (12), acquires an
additional solution k = km which for t > tm bifurcates into
two: k−(t ) < km and k+(t ) > km. As the time progresses, the
first of these tends to zero, k−(t → ∞) → 0, where Eqs. (12)
reduce to the CP result, (2), for r1. On the other hand, as
t → ∞ the second solution k+(t ) asymptotically approaches
k = kc from below; a corresponding ring expands with the
constant velocity vc, (5). For arbitrary t � tm this is shown
in Fig. 3: “nucleation” at t = tm followed by bifurcation into
two branches.

At t = 2tm, (18), the equation for t (k) (12), acquires yet
another solution k = km that for t > 2tm bifurcates into two.
Their evolution repeats what was already found for the first
pair of solutions k−,+(t ). Generally, new wave fronts are
created periodically in 0.43 s intervals, (18), followed by
bifurcation into two, one of which, at t large, approaches
the CP result, (2), while the other expands with the velocity
vc = 23 cm/s, (5). These wave fronts given by f = −2π l
solutions to Eqs. (12), are shown in Fig. 3. The shaded gray

FIG. 3. Radii of annular capillary gravity wave fronts vs time
following a sudden localized perturbation of the water surface, in
units of Eq. (3) for several values of l according to Eqs. (4), (12),
(13), and (18). The line styling is coordinated with Figs. 1 and 2. The
grayscale line r = vct separates annular rings made by short k > kc

(dashed) and long k < kc waves. The shaded gray region of calmed
water expands with the velocity vm, (6).

region of calmed water expands with the constant velocity
vm = 18 cm/s, (6). In practice it should become clearly de-
fined in a time interval estimated as several tm, (18), i.e.,
several seconds, which explains observations.

The grayscale line r = vct is shown for reference; it sepa-
rates the two f = ±2π l regimes discussed earlier.

Despite their ubiquity, systematic quantitative studies of
splashes on deep water in the linear regime have been lacking.
Possible reasons for this have already been given by Rayleigh
[18]: the short waves of capillary-gravity origin represented
in Fig. 3 by the “dashed” wave fronts may be rapidly damped,
and the length scale for full development of the splash pattern
may be inconveniently large.

Both of these obstacles can be overcome if instead of
water one uses superfluid 4He. Damping is eliminated in
the superfluid state, and the coefficient of surface tension
of the superfluid extrapolated to zero temperature, γ =
0.37 erg/cm2 [31], is about 200 times smaller than that of
water. Given the density of the superfluid ρ = 0.145 g/cm3

[26], the 4He counterparts of the capillary length and the
timescale (3) can be found as

λ(He) = 0.051 cm, τ (He) = 0.0072 s. (19)

Since the capillary length of water, (3), is five times larger,
many more wave fronts will be present within the same ob-
servation area in the case of the superfluid. Moreover, the
velocity unit in the case of superfluid 4He, λ(He)/τ (He) =
7 cm/s, is about a half of that of water λ/τ = 16 cm/s, (3).

E. Plasma waves in a two-dimensional electron gas

Evaluation of Eq. (7) shows that both the group �′ and
the phase �/k velocities are monotonically decreasing func-
tions of k which asymptotically approach the speed of sound

024117-4



SPLASHES IN ISOTROPIC MEDIA PHYSICAL REVIEW E 107, 024117 (2023)

FIG. 4. Radii of the annular plasma wave fronts vs time (in units
of u2/g, the screening length, and u/g, respectively) following a
sudden localized perturbation of a two-dimensional electron gas, as
described by Eqs. (12), (13), and (7). The region of calmed electron
liquid r < ut is shaded gray.

as k → ∞, leading to the results that vm = u and km = ∞.
Since �′ < �/k, Eq. (13) further implies that f = −2π l . The
second of Eqs. (12) then becomes t = 4π l (u/g)

√
1 + g/u2k.

The consequence is that Eqs. (12) acquire solutions only for
t � tm = 4πu/g. The first of these is a monotonically increas-
ing function of time shown in Fig. 4 as the leftmost curve
approaches the CP result, (2), for r1 for t → ∞.

More generally, new wave fronts are created periodically
at times t = ltm = 4π lu/g. Their evolution is shown in Fig. 4;
as t → ∞ they approach the CP result, (2). These wave
fronts are found at space-time locations r � ut . The region
of calmed electron liquid r < ut is shaded gray.

The annular waves in Fig. 4 are counterparts to the acceler-
ating wave fronts found in the water splash, Fig. 3. The central
difference is that annular waves in the two-dimensional elec-
tron gas are created one at a time.

F. Elementary excitations in superfluid 4He

The dispersion law �(k) of elementary excitations in a
superfluid is a nonmonotonic function of the wave number k
[26]: after an initial linear in k increase, (16), the function
�(k) reaches a maximum at k = k∗ followed by a “roton”
minimum at k = k0. Therefore the group velocity is negative
and takes on its minimal value in the [k∗; k0] range. Ad-
ditionally, the spectrum has an end point k = ke where the
group velocity vanishes [26]. As a result, the group velocity
is positive and takes on its maximal value in the [k0; ke] range.
Dependences of the group and the phase velocities on k are
sketched in Fig. 5; the phase velocity also has a minimum and
a maximum at k finite, and both velocities have simultaneous
maxima of magnitude u at k = 0. A color legend is employed
for the phase velocity curve to distinguish, according to the
inequalities (13), five different spectral ranges corresponding
to five families of the wave fronts:

(i) The [0; k∗] range (blue). Here the group velocity is
smaller than the phase velocity.

FIG. 5. Sketches of the group �′(k) and phase �(k)/k velocities
of elementary excitations in superfluid 4He. The extrema of �(k) are
located at k = k∗, k = k0 (roton minimum), and k = ke (end point).
Hereafter the function � = 2k + sin 2πk is employed to mimic the
true dispersion law. Color legend is explained in the main text.

(ii) The [k∗; k0] range (red). Here the group velocity is
negative and takes on a minimal value.

(iii) The [k0; kc1 ] range (black). Here the group velocity is
smaller than the phase velocity. In the superfluid this range
of the wave numbers [27] is very narrow; an arrow in Fig. 5
points to it.

(iv) The [kc1 ; kc2 ] range (green). Here the group velocity
is larger than the phase velocity and the former takes on a
maximal value.

(v) The [kc2 ; ke] range (magenta). Here the group velocity
is smaller than the phase velocity.

Employing the empirically known dispersion law [26], the
extremal phase and group velocities (extrapolated to zero
pressure) characterizing the splash in a superfluid can be esti-
mated as

vm1 = −2 × 104 cm/s, vc1 = 5.9 × 103 cm/s,

vm2 � u = 2.4 × 104 cm/s, vc2 = 9 × 103 cm/s. (20)

The velocity v = vc1 known as the Landau critical roton ve-
locity to destroy superfluidity is also a threshold velocity
for the generation of a wake pattern behind a small source
uniformly moving through the superfluid [27].

To understand the dynamics of the wave fronts, in Fig. 6
we sketched the t (k)/l and r(k)/l dependences, (12) and (13),
color coordinated with Fig. 5. The resulting splash pattern
in the (r/l, t/l ) variables consisting of five families of wave
fronts is shown in Fig. 7:

(i) The blue (largest slope) wave fronts emerge with
period t∗ = 2π/�(k∗) at the center of the splash and ex-
pand, asymptotically reaching the speed of sound u (20) for
large t .

(ii) The magenta (second-largest slope) wave fronts nucle-
ate at the center of the splash with period te = 2π/�(ke), (14).
As t → ∞, the corresponding solution to the equation for t (k)
(Fig. 6) approaches k = kc2 , thus implying that the wave fronts
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FIG. 6. The t (k)/l and r(k)/l dependences (12) and (13) based
on the behavior of the velocities in Fig. 5 using the same legend
and colors. Dashed curves of the same color display the r(k)/l
dependences.

expand asymptotically reaching the velocity v = vc2 , (20); the
grayscale double-dashed line r = vc2t is shown for reference.

(iii) The black (smallest slope) wave fronts emerge at the
center of the splash with period t0 = 2π/�(k0) and expand,
asymptotically reaching the Landau critical roton velocity
v = vc1 , (20), for large t ; the grayscale dashed line r = vc1t
is shown for reference.

(iv) The dynamics of the green (diverging) wave fronts can
be understood via the argument already given in the discussion
of the water splash. They nucleate at r finite with period tm2 ,

FIG. 7. Radii of the spherical density wave fronts vs time (scaled
by integer factor l to “collapse” wave fronts of given family onto a
single curve or a pair of curves) in a superfluid following a sudden lo-
calized perturbation, according to Eqs. (12), (13), and the functional
dependences of the phase and group velocities depicted in Fig. 5. The
color legend is coordinated with Figs. 5 and 6. Grayscale dashed and
double-dashed lines, r = vc1 t and r = vc2 t , respectively, are shown
for reference.

(14); the locus of these events belongs to the straight line
r = vm2t . Each nucleation event results in a pair of diverging
spherical wave fronts. In the large time limit the slower of
the two expands with velocity approaching the Landau critical
roton velocity v = vc1 , (20), while the faster expands with
velocity approaching v = vc2 , (20).

(v) The red (converging) wave fronts made by elementary
waves of negative group velocity nucleate at r finite with pe-
riod tm1 , (14); the locus of these events belongs to the straight
line r = |vm1 |t . Since now r(k)/l has a maximum at k = km1 ,
each nucleation event results in a pair of converging spherical
wave fronts. The faster of these reaches the center of the
splash exactly as the blue (largest slope) wave fronts nucleate
there while the slower one arrives at the center when black
(smallest slope) wave fronts emerge there. This lends itself to
the following interpretation: converging wave fronts made of
waves of negative group velocity rebound off the splash center
in the form of diverging wave fronts made of waves of positive
group velocity.

IV. CONCLUSIONS

To summarize, we demonstrated that in large-time regime
the dispersion law of relevant collective excitations alone suf-
fices to understand the dynamics of wave fronts in splashes in
isotropic media. The outcome is determined by the interplay
between the excitation’s phase and group velocities as well as
the sign of the latter. The salient features of splashes are con-
trolled by the existence of extremal values of the phase and the
group velocities: the group velocity gives the expansion rate
of the locus of the points where new wave fronts nucleate or
existing ones disappear, while the phase velocity determines
the large-time expansion rate of a group of wave fronts. If the
group velocity is negative in a spectral range and takes on a
minimal value within it, then converging wave fronts will be
present in the splash.

To illustrate our theory we also carried out several
case studies of experimentally relevant setups. Specifically,
splashes on water and in two-dimensional electron gas were
found to be similar: following a localized perturbation, a
quiescent region inside the annular waves forms. This region
expands with a constant rate corresponding to the minimum
group velocity—the speed of sound for the two-dimensional
electron gas or 18 cm/s for water, the conclusion due to
Rayleigh [18]. New wave fronts nucleate at the boundary
of the quiescent region at regular time intervals (0.43 s for
water), in pairs (in water) or one at a time (in a two-
dimensional electron gas). When the wave fronts appear in
pairs, one of them expands with the minimal phase velocity
(23 cm/s for water). The other (water and two-dimensional
electron gas) expands asymptotically with a constant ac-
celeration. The gross features of a splash in a superfluid
are determined by five extremal velocities. Additionally,
due to the existence of a negative group-velocity spectral
range, some of the wave fronts in superfluid 4He splash are
converging.

The existence of converging wave fronts in splashes is
not unique to superfluid 4He. Similar conclusions apply to
a dipolar quantum gas whose spectrum also features a ro-
ton minimum [32]. More generally, whenever there exists a
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spectral range where the group velocity as a function of the
wave number is negative and it takes on a minimal value
within this range, then converging wave fronts will be neces-
sarily present in the splash. The first known realistic example
of a spectrum featuring excitations of negative group velocity,
the optical branch of vibrations in crystals [33], belongs to this
category, too.

We hope that both the general analysis and sample studies
carried out in this work will guide future observations of
splashes.
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