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The emergence of a collective behavior in a many-body system is responsible for the quantum criticality
separating different phases of matter. Interacting spin systems in a magnetic field offer a tantalizing opportunity
to test different approaches to study quantum phase transitions. In this work, we exploit the new resources
offered by quantum algorithms to detect the quantum critical behavior of fully connected spin-1/2 models. We
define a suitable Hamiltonian depending on an internal anisotropy parameter γ that allows us to examine three
paradigmatic examples of spin models, whose lattice is a fully connected graph. We propose a method based on
variational algorithms run on superconducting transmon qubits to detect the critical behavior for systems of finite
size. We evaluate the energy gap between the first excited state and the ground state, the magnetization along
the easy axis of the system, and the spin-spin correlations. We finally report a discussion about the feasibility of
scaling such approach on a real quantum device for a system having a dimension such that classical simulations
start requiring significant resources.
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I. INTRODUCTION

The abrupt change of the system properties during a phase
transition has always paved the way to the advancement of
our understanding of nature in both fundamental and applied
aspects. The phase transition mechanism, in the limit of an
infinite number of particle composing the system, has been
successfully addressed within the formalism of the renor-
malization group [1,2]. Quantum phase transitions are the
cornerstone of a great variety of ground-breaking theories
ranging from the Higgs mechanism for mass generation in
high-energy physics [3,4] to the superfluid and superconduct-
ing phase of matters in low-energy physics [5,6], and now
their exploitation is getting attention. also in the context of
quantum technologies [7,8].

Given a Hamiltonian H (�λ), describing a system consti-
tuted by N interacting particles, it exhibits a continuous (or
second-order) quantum phase transition, whether in the limit
N → ∞, the gap between the energies of the ground state and
the first excited state vanishes for a certain value of the internal
parameters �λ. This value corresponds to the critical point of
the model and, in contrast to any classical model, it can also
exist for zero temperature [9,10]. Nevertheless, assuming a
diverging number of particle is well motivated and substan-
tiated. The relaxation of such assumption prompts the study
of finite-size corrections to such transition [11,12] that can
show unprecedented results [13–15]. With abuse of notation
we write that a quantum phase transition occurs in a system
with finite N , whenever for a value of �λ, a crossing between
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the energies of the ground state and the first excited level is
observed. This is in contrast to what one would expect by a
semiclassical approach in which the finite size is responsible
for suppressing the symmetry-breaking mechanism associated
with the second-order phase transition [11,16]. Criticality of
quantum system requires an exponential number of degrees
of freedom that makes the problem quickly intractable. The
advancement of machine-learning techniques has been of
paramount importance for the determination of macroscopic
phases of matter and efficient quantum-state representation.

With the advent of quantum techniques in machine learn-
ing, phase diagrams of different systems have been obtained,
such as a cluster Ising or the Bose-Hubbard model at zero
temperature. The former uses a supervised learning approach
where the states are classified according to classical labels
using a quantum convolutional neural network [17–19], while
the latter discovers the phases in an unsupervised way using
anomaly detection [20]. The intersection between machine
learning and quantum techniques applied to physical systems
is rapidly increasing; not only is obtaining information about
critical point of a system pursued but also general dynamical
simulations are important testbeds. In Ref. [21] the authors
rigorously analyze the requirements of an algorithm in terms
of training data and define generalization bounds for their ef-
fective execution on current quantum devices. For an overview
of the state of the art and future perspectives for quantum
simulation, looking at possible quantum advantage in specific
applications we refer to Ref. [22].

We consider the Lipkin-Meshkov-Glick (LMG) model,
a fermionic model that served as a testbed for many-body
approximations in different fields [23–25]. Due to the pos-
sibility of mapping this model into an N spin-1/2 system,
we will study its criticality with current quantum computation
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techniques on real noisy-intermediate-scale quantum (NISQ)
devices [26,27].

Here we propose a way to study the finite-size critical
behavior of the system with the freshly introduced methods of
quantum machine learning. Our motivation is threefold. First,
very few examples of such methods have been used to study
magnetic systems [28]. Second, the finite size criticality with
regard to this model is of interest to the molecular magnetism
community [29]. Last, and a bit ambitiously, we would like
to pave the way to a feasible application of the now-available
NISQ hardware as a tool to simulate physics with (quantum)
computers. In fact, before addressing more complex magnetic
systems, we have chosen as a testbed a magnetic model that,
due to its symmetries, served to validate geometrical methods
developed in the framework of quantum information [30–32]
as signature of quantum phase transitions. However, the class
of models that can be studied are not so trivially integrable to
be considered as a mere academic exercise.

A simplified version of the spin model that we consider
has been tackled in recent papers [33–36] for system up to
four spins and the analysis is carried on noiseless simulators.
This allows us to contribute to the validation of a heuristic
approach such as the variational quantum eigensolver (VQE)
[37,38] in the challenging research field of statistical physics
of finite-size models on a lattice.

The remainder of this paper is structured as follows: In
Sec. II we provide a short but comprehensive introduction to
the VQE technique, and then we focus on the definition of
the wave-function ansatz in terms of design and trainability
of quantum circuits and provide an overview of the adopted
error mitigation techniques, with ad hoc consideration for
the specific Hamiltonian. After introducing all the tools, we
terminate the section with the definition of the LMG Hamil-
tonian of our critical system. In Sec. III, we substantiate our
approach showing simulated results obtained under ideal con-
dition with quantum simulator as well as evidences collected
on real quantum device. In Sec. IV, we provide a numerical
interpretation and analytical derivation of higher-order excited
states for the LMG model, as well as their realisation with the
variational algorithm. Finally, in Sec. V, we summarize the
outcomes of this work, discussing the quality of the results
with an estimation about the actual feasibility of studying
proposed models, like on NISQ devices.

II. METHODS

In this section, before introducing the Hamiltonian of an
LMG critical system and its behavior in the thermodynamic
limit, we review the quantum computational techniques that
we employ to assess the critical behavior of the system.

A. Variational quantum eigensolver

The VQE, proposed by Peruzzo et al. [37], is a varia-
tional quantum algorithm [39] used to find the ground state
of a Hamiltonian H by using the Rayleigh-Ritz variational
principle. This variational method has been widely applied
in quantum chemistry [40–43], nuclear physics [44–46], and
spin systems [28,33–36,47,48].

Concretely, a parametrized wave function |ψ (θ )〉 [49] is
prepared on a quantum computer and its parameters updated
to minimize the energy,

E0 � 〈ψ (θ )|H |ψ (θ )〉
〈ψ (θ )|ψ (θ )〉 , (1)

where the normalization factor at the denominator can be
dropped if the wave function is normalized.

The design of the wave-function ansatz is of importance
for the trainability and accuracy of the results and is an
active area of research. Some systems, typically written in
the second quantisation formalism, allow physically moti-
vated ansätze, for instance based on unitary coupled cluster
[40,45,46,50,51]. In this setting the related quantum circuits
are usually deep, require an increased connectivity, and are
therefore difficult to implement on near term quantum de-
vices. On the other hand, hardware efficient ansatz (HEA) [41]
are tailored to the device and are consequently shallow enough
to minimize the effects of noise and decoherence. Despite
working with shallow circuit, in general HEA may suffer from
scalability issues due to the increasing number of parameters
to optimize, leading to untrainability issues, namely barren
plateau [52]. An alternative direction to optimize the choice
of the ansätze is the possibility of exploiting symmetries in
the system. As recently proposed in Ref. [53] it is possible to
work with equivariant ansätze which might mitigate the bar-
ren plateau problem. However, as underlined by the authors,
there a trade-off always exists between the equivariance and
expressivity of the parametric circuit.

More recently, the ADAPT-VQE [54], which builds the
ansatz by iteratively adding a term from an operator pool
bringing the best improvement, has been proposed as a way
to build optimal circuits. Even if the picking action can be
implemented in a parallel fashion, it can be expensive for
current devices, time- and resources-wise. Consequently, we
will focus on fixed hardware-efficient ansätze, which are con-
structed with single qubit rotations around the y-axis, and
CNOT interactions with linear connectivity.

The VQE can be extended to compute excited states
as well. The method adopted here is the one proposed by
Higgott et al. [55], called variational quantum deflation
(VQD), which first computes the ground state and then looks
for the state minimizing the energy while being orthogonal to
the, previously determined, ground state. This procedure can
be generalize for the kth excited state in an iterative fashion.
In practice, the following loss function is minimized:

F (θk ) = 〈ψ (θk )|H |ψ (θk )〉 +
k−1∑
i=0

βi〈ψ (θk )|ψ (θi)〉, (2)

where we assume, for simplicity, that the states are normal-
ized. The wave function |ψ (θi )〉 corresponds to the ith excited
state and βi hyperparameters to be tuned. It has been shown
[55] that βi has to be greater than the energy gap between the
states i and i + 1 to ensure that the wave function converges to
the correct excited state. Additional techniques, based on the
quantum equation of motion [56], using a discriminator [57],
or constraining the ansatz around the state of interest [58] have
been proposed in the literature but will not be considered here.
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FIG. 1. Representation of the chosen ansatz to design the
parametric function ψ (θ ), namely the Hardware efficient ansatz,
composed of Ry(θ ) rotations and CNOTs between neighboring qubits
executed in parallel. We sketch here a single layer of the circuit,
corresponding to D = 1, where higher values of D correspond to
sequential repetitions of such a circuit.

B. Ansatz

We use a simple hardware efficient ansatz [41], which can
be run on NISQ devices without an overhead due to circuit
transpilation. For instance, we use D repetitions of a layer
consisting of free rotations around the y axis Ry(θ ) = e−iθσy/2,
where σy is the y Pauli matrix, CNOT gates with linear con-
nectivity, and a final rotation layer before the measurements.
Since the depth of the circuits grows as O(N ) due to the linear
entanglement, this ansatz fails on hardware when performing
error mitigation based on noise scaling. We therefore adapt
the ansatz to grow as O(1) by applying the CNOT gates in
parallel on the two following groups of qubits:

{(i, i + 1) for i even},
{(i, i + 1) for i odd},

thus considerably reducing the depth of the circuits. We
observe a small decrease in the accuracy on the simulator
compared to the linear entanglement scheme but an increase
on the hardware due to the depth’s reduction. We choose the
minimal case D = 1, as depicted in Fig. 1, when running on
quantum hardware, while pushing for maximal performance
on the simulator by allowing larger D.

C. Error mitigation

Error mitigation methods are used to diminish the effect
of the hardware noise on the results. Unlike error correction,
these strategies are used in the postprocessing steps on the raw
data. Two complementary techniques, measurement error mit-
igation (MEM) and zero noise extrapolation (ZNE), are used
to mitigate the readout and two-qubit gate errors, respectively.

For MEM, we follow Nation et al. [59] and individually
invert the error matrices

Mk =
[

P(k)
0,0 P(k)

0,1

P(k)
1,0 P(k)

1,1

]
(3)

and used them to calibrate the samples. Here P(k)
i, j is the proba-

bility of the kth qubit to be in state j ∈ {0, 1} while measured
in state i ∈ {0, 1}. The probabilities of measuring 0 or 1,

�Sk =
(

P0

P1

)
(4)

obtained by measuring the kth qubit, are corrected as follows:

�Sk
corrected = (Mk )−1 �Sk . (5)

While this only corrects uncorrelated readout errors, it is
argued in Ref. [59] that they are the predominant ones. More-
over, this strategy can be scaled for an arbitrary number of
qubits and only has a O(1) overhead in the number of circuit
execution. In the ZNE [60,61] scheme, the CNOT noise is
artificially stretched and the results are then extrapolated to
the noiseless regime. More precisely, the energy is estimated
multiples time for different scaling factor k ∈ {1, 2}, and then
a fit is performed to extrapolate up to the k = 0 value. In
practice, the noise is stretched by replacing every CNOT in the
circuit by 2k − 1 CNOT gates. The 2k − 2 additional CNOTs
cancel each other, leaving the circuit unchanged. However, by
adding barriers between them, preventing the CNOTs from
being canceled in the transpilation phase, the noise is artifi-
cially stretched. Richardson [62] originally used a linear fit for
the extrapolation; however, the considerable effect of the noise
in NISQ devices increases the risk of overshooting. Conse-
quently, an exponential fit f (x) = aebx is instead used, where
a and b ∈ R are fitted to the energies E using least-squares
regression. To improve the results, E is scaled before the fit

E �→ E − s

s
(6)

and scaled back afterwards, with s being an estimate of the
exact energy. In ZNE the scaling of sampling required could
also be exponential, at least in some cases [63]. Of course
this is just a theoretical upper bound in measurement but in
practice we use a scalable MEM method which requires only
two circuits as a sufficient quantity to mitigate the noise.

It is important to make sure that the total runtime of the
noise-scaled circuits does not exceed the coherence time of the
device, which would destroy any useful information. For in-
stance, we only considered k = 1 and k = 2, since for higher k
the results were no longer reliable. Also the ansatz definition
plays an important role, as described in Sec. II B. With the
construction of Fig. 1, the CNOT gates can be run in parallel,
thus shortening the runtime significantly. This can be done
using additional qubits available on the device to run all the
noise-scaled circuits in parallel, reducing the total number of
circuit execution; however, for sake of meticulousness one can
note that in principle this strategy might result in additional
cross-talk, even if, looking at IBM current hexagon topology,
one can really minimize this effect.

D. The Lipkin-Meshkov-Glick model

The LMG model was introduced in Refs. [23–25] to de-
scribe a system of N fermions whose state space is made of
two degenerate shells with two fixed energy levels. Each shell
has degeneracy N and can accommodate all of the N particles,
thus resulting in a total of a 2N -dimensional state space. Due

024113-3



MICHELE GROSSI et al. PHYSICAL REVIEW E 107, 024113 (2023)

to the symmetry of the Hamiltonian with the total spin, the
low-energy states are in the subspace of maximum spin, which
has a dimension that scales linearly with N . However, to sub-
stantiate our approach we do not consider only the maximum
spin sector of the Hamiltonian, but we use the VQE on the full
space as outlined in Sec. II A. Via a Jordan-Wigner transfor-
mation [64], the LMG model can be mapped into a system of
interacting spins. Moreover, in the thermodynamic limit N →
∞, it is solvable via a two-boson Holstein-Primakoff trans-
formation [65]. This peculiarity made it one of the most used
models to understand many problems of interest in physics,
from nuclear to condensed-matter physics.

Considering that we will study our model on qubit-based
quantum computers, it is natural and convenient to use the
following expression for the LMG Hamiltonian:

H = − 1

N

N∑
i< j

σ i
xσ

j
x + γ σ i

yσ
j

y − B
N∑

i=1

σ i
z . (7)

This Hamiltonian describes a system of N spins in a fully
connected planar graph, immersed in a transverse magnetic
field B. The first sum in Eq. (7) accounts for an anisotropic
interaction in the x-y plane that couples each spin with all
the other ones with the same strength, an archetype and
exemplary version of any long-range interaction. Different
coupling strengths along the two planar directions are taken
into account via the anisotropy parameter 0 � γ � 1. From
a physical perspective, this type of Hamiltonian has been
implemented on various platforms [66–69] to design feasible
quantum technologies applications [70–75].

The system is known to be critical and shows, in the ther-
modynamic limit, a second-order phase transition between
a broken-symmetry (disordered) phase for B < 1 and an or-
dered phase for B � 1, with a critical value of the external
magnetic field B = Bc = 1. Usually, the Lipkin model is used
to denote a limiting and easily diagonalizable case of the LMG
model [76]. Introducing the set of collective-spin operators
Sα = 1

2

∑N
i=1 σ i

α , and setting γ = 1 in Eq. (7), we have:

H = − 2

N

(
S2 − S2

z

) − 2BSz. (8)

The Hamiltonian in Eq. (8) is diagonal on the Dicke basis
| j, m〉 formed by the simultaneous eigenvectors of S2| j, m〉 =
j( j + 1)| j, m〉 and Sz| j, m〉 = m| j, m〉. Due to the fact that the
interaction term commutes with the free-energy term, the Lip-
kin model with γ = 1 belongs to a different universality class
of the general model described by the Hamiltonian in Eq. (8);
see Ref. [65]. In particular, it has been shown to belong to
the same class of the super-radiant Dicke model [77]. Within
our formalism, we can also address the criticality of the fully
connected Ising model imposing γ = 0. This model presents,
in the thermodynamical limit, a quantum phase transition due
the spontaneous breaking of the Z2 symmetry [78].

The phase diagram of this model at zero temperature was
derived in Ref. [79], thanks to a two-boson Schwinger bo-
son realization of the SU (1, 1) Richardson-Gaudin integrable
models. However, classifying phase transitions in systems
having finite number of elements is a challenging and an
open problem. In particular, in the quantum domain, the is-
sue relating to the scaling of the Hilbert space size, such us

the exponentially growing size of the Hilbert space for the
considered systems, impacts strongly the performance of clas-
sical techniques.

We will study the precursors of the quantum phase transi-
tion for the finite-size LMG model via quantum computational
techniques. With abuse of notation, we will call the values
of the magnetic field B and of the anisotropy γ , for which
the ground state and the first excited state of the system are
degenerate, critical values.

The adopted strategy can be easily extended to other crit-
ical systems, but the choice of the LMG model to test our
approach is driven by two reasons. On one side, the model
is of interest for several communities and it has been used
to test many-body approximations [65,80]. The expression in
Eq. (7), in terms of Pauli operators, makes the implementation
on a superconducting quantum processor quite straightfor-
ward and requires less physical resources compared with its
fermionic formulation. On the other side, the model has some
peculiarities, namely anisotropy and long-range interaction,
that makes it a nontrivial model to assess quantum criticality
at finite size.

III. RESULTS

This section presents the numerical results obtained in
this work. We remark that a truly QPT is related to a sin-
gular behavior of the energy spectrum and the consequent
nonanalyticity of several observable quantities such as the
magnetization. For systems of finite size a critical behavior
occurs when the ground-state energy has a level-crossing, viz.,
there is an interchange of the ground-state level and the first
excited state at a critical point. This reflects in a null energy
gap at the critical point and in a nonanalytic behavior of the
mean magnetization along the model easy axis. Section III A
contains the ground- and first-excited-state energy and mag-
netization for N = 4, 5, 6 spins and different values of γ and
B obtained on state vector simulations and we analyze their
behavior in the anisotropic and isotropic case. Section III B
shows the ground-state energy and magnetization for N = 5
spins, γ = 0.49, and different values of B computed on super-
conducting transmon qubits and comments on the scalability
of the VQE in the near term. We refer to Appendix for a
detailed explanation about different simulation backends and
variational circuit optimizers.

A. Noiseless VQE simulations

For a small number of spins N , the classical approach
of the diagonalization of H is straightforward. Defining
the spectrum of the Hamiltonian H |ψn〉 = En|ψn〉 with n =
{0, . . . , 2N−1}, multiple crossing points between the energies
of the ground and the first excited state (EGS and E1st, respec-
tively) are found for the following critical values:

Bk
C = N − k

N

√
γ , (9)

for a fixed γ , k � N , and odd [80]. Hence, the ground-state
energy can be recast in N/2 + 1 phases if N is even or in (N −
1)/2 + 1 otherwise. Introducing the ground-state magnetiza-
tion along the model easy axis 〈Sz〉 = 〈ψ0(B, γ )|Sz|ψ0(B, γ )〉,
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we can observe that for any nonanalytic point limB→Bk−
C

〈Sz〉 
=
limB→Bk+

C
〈Sz〉 ∀ B(k)

C holds. In the following, we will denote
|ψ0〉 ≡ |ψGS〉 and |ψ1〉 ≡ |ψ1st〉.

We use state vector simulations as a theoretical tool to
explore more-complex ansatz and increase the performance
as much as possible. We choose the depth of the ansatz as
a function of the system size, namely D = N . This differs
from the results obtained on real hardware, as explained in
Sec. II B. The training is performed with the SLSQP optimizer
[81] with 2000 maximum iterations. Adiabatic computing is
applied to speed up the calculations and improve the accuracy,
following the recommendation of Harwood et al. [82]. The
excited states are found using a VQD-like algorithm. Using
the state vector given by the solution of the Hamiltonian it is
possible to redefine a new effective Hamiltonian,

H ′ = H + β0|ψGS〉〈ψGS|. (10)

When the superposition between |ψ1st〉 found by using VQE
on H ′ and |ψGS〉 is small the loss function associated to this
Hamiltonian reduces to Eq. (2) with k = 1. We found this
to be true every time the β0 is set greater than the energy
gap between the ground and first excited state, as specified
in Sec. II A. Knowing that transitions happen for B = Bk

C , see
Eq. (9), we choose five points between the transition points
and the chosen bounds. Starting from the upper bound, where
the energy gap is wider, the ground-state energy and the first
excited energy are evaluated using random initial parameters.
For each point in the interval, in decreasing order, the optimal
point found in the previous step are chosen as initial param-
eters. Moreover, for the next interval, the optimal parameters
for the ground state are used as the initial point as well as for
the first excited state. This technique significantly speeds up
the simulation, improves the quality of the results, and allows
us to compute the energies for systems up to N = 10 spins,
using state vector simulations.

Figure 2 shows the ground- and first-excited-state energy
for an LMG Hamiltonian with N = 4 spins for the specific
value of γ = 0.81, as a function of the magnetic field B. The
VQE is compared to the exact diagonalization (black solid
lines), while the VQE points are obtained using state vector
simulation (crosses) as well as shoots-based probabilistic out-
put without hardware noise contribution (filled squares and
circles). We will refer to the second case as to QASM sim-
ulation, intending noise free simulation with finite statistics.
Another figure of merit to assess a quantum phase transition
for finite-size systems is the energy difference between the
first excited state and the ground state, namely E1st − EGS (to
which we will refer to as the gap, for shorthand of notation).
The gap as a function of the magnetic field is shown in Fig. 3
for N = 5 spins and two values of γ , γ = 0.36, 0.81. Even
if they are far from the extreme values 0, 1 they already
underline a difference in the behavior, at least for B < 0.6.
Similar considerations hold as a function of the system size,
shown in Fig. 4 for N = 4, 5, 6 with γ = 0.44. In both cases,
the energy gap rapidly explodes after B � 0.6.

Finally, we consider the extreme cases of the fully con-
nected Ising model and the Lipkin-Dicke model for γ = {0, 1}
respectively. We report our results in Fig. 5, together with an
intermediate γ value of 0.49, where the system size is fixed to

FIG. 2. We report the energies of the ground state EGS and first
excited one E1st of the Hamiltonian in Eq. (7) for N = 4 and for value
of the anisotropy parameter γ = 0.81 as a function of the magnetic
field B. Solid lines represent the values obtained via exact classical
diagonalization, while discrete points are the results obtained via
VQE. The results for EGS are marked in light blue with tri-down
markers (state vector simulation) and filled squares (QASM noiseless
simulation), while results for E1st are in orange with crosses marking
the state vector simulation and filled circles the QASM noiseless
outputs. Vertical dotted lines show crossing points for values given in
Eq. (9). The inset makes it possible to better appreciate the accuracy
of energy estimates as a function of the number of shoots, where the
error bar correspond to one standard deviation.

N = 5. The energy gap between the first excited state and the
ground state is shown in Fig. 5(a), while the correlation func-
tion along the x axis 〈S2

x 〉 in Fig. 5(b) and the magnetization
along the longitudinal direction of the magnetic field 〈Sz〉 in
Fig. 5(c). We have decided to plot the correlation function 〈S2

x 〉
because, due to the spin-flip simmetry of the Hamiltonian in

FIG. 3. We plot the difference between the energy of the first-
excited-state E1st and the ground-state energy EGS as a function of
the tuning field B. The results are shown for a system with N = 5
lattice sites, focusing on different values of the anisotropy parameter
γ = 0.36, 0.81. The results obtained via VQE are marked by blue
crosses (γ = 0.36) and orange dots (γ = 0.81). The blue dashed
line (γ = 0.36) and the orange dotted line (γ = 0.81) represent the
exact diagonalization values of E1st − EGS. Vertical lines correspond
to values of the critical magnetic field such that Eq. (9) holds, where
the (I) refers to γ = 0.36 and (II) to γ = 0.81.
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FIG. 4. We report the energy difference E1st − EGS as a func-
tion of the magnetic field B. The results are computed at γ = 0.44
for different lattice sizes N = 4 (blue), N = 5 (orange), and N = 6
(red). The results obtained via VQE are represented by a blue cross
(N = 4), an orange dot (N = 5), and a red plus (N = 6), while the
blue dashed line (N = 4), the orange dotted line (N = 5), and a
red dot-dashed line (N = 6) represent the values obtained by exact
diagonalization of the Hamiltonian H . The vertical lines correspond
to the values of the magnetic field for which by we observe a crossing
points between the two lowest state energies [see Eq. (9)]; they are
labeled with (I) for N = 4, (II) for N = 5, and (III) for N = 6 sites.

Eq. (7), the mean value of the magnetization along the plane
perpendicular the magnetic field is zero (see Ref. [65].) We
observe the oscillatory trend of the energy gap for γ = 1 as
opposed to the monotonic trend of the isotropic case (γ =
0). A completely different behavior can be appreciated also
for the two magnetization observable, where the anisotropic
model is characterized by a stepwise trend as opposed to the
continuous one for γ = 0, signaling how the three models
in the thermodynamical limit belong to distinct universality
classes.

B. Runs on the real devices

1. Experimental device

The quantum device used in this work consists of 27
fixed-frequency transmons qubits, with fundamental transi-
tion frequencies of approximately 5 GHz and anharmonicities
of −340 MHz, with the same topology as displayed in
Fig. 6. Microwave pulses are used for single-qubit gates
and cross-resonance interaction [84] for two-qubit gates. The
experiments took place over one month, but each different
computation took place over a span of 5 h, without interme-
diate calibration, with the use of Qiskit Runtime. The median
qubit lifetime T1 of the qubits is 121 and 129 µs, the median
coherence time T2 is 90 and 135 µs, and the median readout
and CNOT error is 0.014 and 0.045, respectively. The SABRE
[85] algorithm is used for the transpilation to the quantum
hardware.

2. Small system size

We begin by computing the ground-state energy of a
system with N = 5 spins and γ = 0.49 for different val-
ues of the magnetic field B. We use the hardware efficient

ansatz with D = 1 repetition, as shown in Fig. 1. As a warm
initialization, the ansatz is first trained on the noiseless simula-
tor, and the optimal parameters are used as an educated guess
for the initial parameters. The training is composed of a max-
imum 100 steps, or until convergence, with the simultaneous
perturbation stochastic approximation (SPSA) [86] optimizer
using a learning rate of 0.005 for the first 30 steps and 0.001
afterwards, using 8092 shots. The graphs are obtained with
32 000 shots and statistics are collected from five distinct runs.
Measurement error mitigation and zero noise extrapolation are
performed to enhance the results, which are shown in Fig. 7.
Solid lines correspond to the exact diagonalization, the black
dots to the noiseless QASM simulation with 32 000 shots,
the blue crosses to the raw results from the quantum device,
and the red ones to the mitigated energies. The error bars
correspond to the 99.5% confidence interval. The inset shows
the effect of different error mitigation tuning on a specific
point. The k = 1 point corresponds to the original circuit
while k = 2 to the dilated case, where every CNOT is replaced
with three CNOTs. The cross shows a scaled exponential fit
while the triangle a linear one. As explained in Sec. II C, the
linear fit overshoots the true ground-state energy, while this is
not the case for the scaled exponential fit.

We observe that the ground-state energy is reproduced
with less than 1% error ratio everywhere, suggesting that the
quality of current devices is good enough for such tasks. How-
ever, the computed magnetization observables are not equally
accurate. The explanation is twofold: First, we observe that
the noiseless simulations are also less precise than the energy
calculations, more particularly for 〈S2

x 〉 at large magnetic field.
This is essentially caused by the ansatz which is too shallow
to represent the true ground state but instead is only a good
approximation with similar energy. But more importantly,
there is a discrepancy between the noiseless and real hardware
results, which is due to overfitting to the hardware noise.
For the ground-state calculation the noise is adapted to get
to the GS, according to the real condition, which includes
the presence of noise, and this is why we refer to this as an
overfitting behavior. By doing so, we get closer to the true
energy but drift from the true ground state. The approximation
in computing the correct ground state is amplified when 〈S2

x 〉
and 〈Sz〉 are computed shifting uniformly the curve.

3. Discussion on large system size

Finally, we tried to extend the reach of VQE to sizes where
simulations are unavailable due to the exponential scaling
of the Hilbert space. Even if density-matrix renormalization
group [87] techniques are able to compute the ground-state
energy for a large number of spins (∼102), we choose N = 20
since it is out of reach, in terms of simulation time, for our
availability. This problem is more interesting than the previous
case since we are unable to start from a set of previously
trained parameters. In addition, these calculations are also
more challenging for current devices for the following rea-
sons. Gradient-free optimizers, such as SPSA, require small
amounts of circuit executions to estimate the gradient. Yet,
since they rely on finite-difference techniques, the gradient is
strongly affected by the noise and can lead to erratic paths
in the optimization landscape. On the other hand, analyti-
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FIG. 5. We report the three relevant quantities to detect the criticality in a fully connected spin system. In (a) we show the energy gap
E1st − EGS. In (b) we plot the correlation function 〈S2

x 〉 and in (c) the mean magnetization along the direction of the magnetic field 〈Sz〉. The
results are shown for N = 5 spins for particular values of the anisotropy identifying different classes of models γ = 0 (fully connected Ising
model), γ = 0.49 (LMG model), and γ = 1 (Lipkin-Dicke model). In all the three plots, the results obtained via the quantum variational
algorithm are represented by blue crosses (γ = 0), orange dots (γ = 0.49), and red plusses (γ = 1) and the benchmarking is given by the
corresponding exact diagonalization values, shown as a blue dashed line (γ = 0), an orange dotted line (γ = 0.49), and a red dot-dashed line
(γ = 1). The results are in agreement with the critical values in Eq. (9) and such values are reported as vertical lines [(I) denotes the only trivial
value for γ = 0, (II) denotes critical values for γ = 0.49, and (III) denotes critical values for γ = 1].

cal gradients provided by the parameter-shift rule [88] are
more reliable but also more expensive to compute, since they
require 2 · d circuit executions, where d is the number of
parameters (d = 40 in this case). Accordingly, we estimate
more than 1 h runtime per optimization step, accounting for
error mitigation techniques, e.g., ZNE and MEM, which is
more than what we can reasonably obtain from on a shared
device and without running into further recalibration prob-
lems [63,89]. This is one of the main reasons an innovative
integrated architecture of a quantum and classic computer like
the one proposed by IBM with Qiskit Runtime would strongly
reduce the computation time.

IV. HIGHER EXCITED STATES

The VQE can be used to compute the energies of the
second and third excited states as well. Figures 8 and 9 show
the seven lowest energy eigenvalues for a system of N = 4
spins as a function of the magnetic field B at two differ-
ent interaction configurations γ = {1, 0.67}, respectively. The

FIG. 6. Topology of the superconducting quantum device
ibmq_kolkata with color map representation. Color associated to
each qubit represents the readout error at the time of calibration while
the color of the connection between two qubits represents the CNOT
error rate. Image taken from the IBM Q Lab [83].

simulations are performed using a state vector and superim-
posed to exact diagonalization. For γ = 0.67, VQE seems at
first to fail in computing the third excited state but actually
finds degenerate states. To better understand the degeneracy,
let us consider γ = 1 and use Eq. (8) to obtain

H | j, m〉 = [− 1
2 ( j( j + 1) − m2 − 2) − 2Bm

]| j, m〉. (11)

For N = 4 spins, j = 0, 1, 2, leading to nine distinct degen-
erate values for the energies of the 16 eigenstates. The first
degenerate eigenvalue for B < 1

4 is the one with the j =
1, m = 1 quantum numbers. However, it becomes the fourth
excited for 1

4 < B < 1
2 , the third for 1

2 < B < 5
4 , and, finally,

the second for B greater than 5
4 . Numerical investigations

suggest an analogous behavior for γ 
= 1 and 0 < γ � 2. In
the region B � 5

4
√

γ , the first eigenvalue to be degenerate is
the third excited while in B � 5

4
√

γ , it is the second excited.
Hence, VQE actually shows in Fig. 9 that for B ≈ 1.2, the
third eigenvalue is degenerate (3 times, in particular). The
numerical investigations for γ = 1 show that the degenerate
levels are

(i) threefold: j = 1, m ∈ {0,±1},
(ii) twofold: j = 0, m = 0,

in agreement with Ref. [77]. A similar argument can be ad-
dressed also to justify the behavior of the energies of the
excited states for the model with γ 
= 1 as those observed
in Fig. 9. However, the impossibility to diagonalize the two
terms of the Hamiltonian in a common basis would make the
argument only less intuitive and more cumbersome.

V. DISCUSSION AND OUTLOOKS

The advent of reliable quantum hardware, although not yet
fault tolerant, has paved the way to novel techniques to tackle
problems from different research areas. A natural avenue of
research is the one that incorporates the quantum computing
techniques to understand the physics of complex systems as
many-body systems. To this end, we have proposed a way
to exploit the variational quantum eigensolver, and the al-
gorithms stemmed from it to study the finite-size criticality
of paradigmatic spin models. On introducing a Hamiltonian
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FIG. 7. We report the three relevant quantities to detect the criticality in a fully connected spin system, using the VQE algorithm run on the
superconducting device ibmq_kolkata. The energy gap E1st − EGS is in (a). The mean value of two magnetic observables: In (b) the correlation
function along an axis transverse to the magnetic field 〈S2

x 〉, and in (c) the mean magnetization along the direction of the magnetic field 〈Sz〉.
The results are done for a lattice size of N = 5 spins at γ = 0.49. Points are obtained on the superconducting device ibmq_kolkata with (red
crosses) and without (blue tri-left markers) error mitigation. The experimental values are compared to noiseless simulation (black dots) and
the final benchmark is given by the exact diagonalization values (solid line). The inset in (a) shows the extrapolation to the zero noise regime,
both with an exponential and linear fit.

with an anisotropic interaction γ in the x-y plane we have
studied the level crossings between the ground-state and the
first excited state in the proper LMG (0 < γ < 1) and in the
two limit cases: the fully connected Ising model (γ = 0) and
the Lipkin-Dicke model γ = 1. We used as a figure of merit
some relevant magnetic observables, i.e., the magnetization
along the field direction and the spin-spin correlation along
the x axis.

Due to the geometry of the system, no length scale of the
correlation can be defined, and this makes the fully connected
spin models interesting systems to look for unconventional re-
sults at finite size [65,80] or to give a quantitative evaluation of
the quality of a new computational or experimental technique
[66,70,76].

Looking at this LMG model the number of measurements
scale maximally at three for the three independent terms in the

FIG. 8. Representation of various excited states for N = 4 and
γ = 1. VQE results are represented by a blue cross (ground state), an
orange dot (first excited state), a red plus (second excited state), and
a black triangle (third excited state). The blue dashed line (ground
state), the orange dotted line (first excited state), the red dot-dashed
line (second excited state), and the black solid lines (third, fourth,
fifth, and sixth excited states, some are degenerate) represent the clas-
sical diagonalization values. Vertical lines indicate crossing points.

Hamiltonian that do not commute. According to the results
presented so far, it turns out that a limiting factor in getting
better performance is the noise while the barren plateau rep-
resents potentially a second-order factor.

Recently, several papers [33–36] addressed the Lipkin
model on a quantum computer to question whether techniques
and methods proper of quantum machine learning can be
employed in nuclear physics. In general, the authors rely on a
system size of relatively small dimensions N � 4 to perform a
preliminary noiseless analysis for the isotropic model that can
be analytically solved exactly.

FIG. 9. We plot the energies E2nd and E3rd of the two excited
states, beyond the first one, for the Hamiltonian in Eq. (7) with N = 4
at the value anisotropy γ = 0.67. In order to make the comparison
clear, we report also the values of the energies of the ground state
EGS and of the first one E1st . The markers of the VQE results are
the following: blue cross for the ground-state energy, an orange dot
for the first excited state, a red plus for second excited state, and a
black triangle for third excited state. Exact diagonalization results
are shown as a blue dashed line (ground state), an orange dotted line
(first excited state), and a red dot-dashed line (second excited state),
while the black solid lines are for the energies of degenerated states
(ranging from the third excited and up to the sixth). Vertical lines
indicate crossing points [see Eq. (9)].
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FIG. 10. We plot the SLSQP loss curve for the two lowest-energy states for different values of the magnetic field. Namely, in (a) we set
B = 0.01 and in (b) B = 0.5 for N = 4 spins at γ = 0.49. The blue crosses refers to the ground state (GS) and the green filled circles to the
first excited state (1st).

Our analysis is complementary to those previously carried
out and goes in the direction of employing quantum algo-
rithms to have a direct insight on problems of relevance in
statistical physics. In fact, we have shown that the VQE is a
powerful tool to assess the quantum phase transition of critical
systems of finite size. We have also addressed how to mitigate
the errors present when employing NISQ devices and how it is
feasible on real hardware based on superconducting transmon
qubits.

As final remark and open question, we surmise that
our method could be employed in the future, when better-
performing hardware with more qubits will be available as a
benchmark for the renormalization group approaches used to
study the finite-size scaling behavior of quantities of interest
in statistical and condensed-matter theory.
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APPENDIX: PERFORMANCE OF THE OPTIMIZER

In this section we give additional information and further
explanation about the techniques adopted in this work. The
gate-based quantum circuits used in this work are built using
the open-source framework qiskit-nature [90].

The state vector simulation results are referred to classical
simulation of a quantum circuit, probing the potential of this
approach under ideal conditions, such as using exponentially
many shots, without noise. For the optimization in a state
vector setting we use Sequential Least SQuares Programming
(SLSQP) [81]. It minimizes a function of several variables

with any combination of bounds and equality and inequality
constraints. We refer to scipy for further details.

We have termed QASM simulations the results obtained
via the noise free simulation of the quantum circuit and the
measurements and for which a finite statistics has been col-
lected. This implies the simulation of probability outcomes of
quantum observable given as a sequence of bit strings with the
relative counts or number of repetitions. For the optimization
in a state vector setting we use COBYLA [82]. This is a
gradient-free optimizer like the one used for optimization on
the quantum computer: the SPSA [86] optimizer. Differently
from gradient based optimization, where the next best pa-
rameters in the optimization are obtained from the gradient
of a given function with a high possibility to be stuck in a
local minima/maxima when traversing parameter(s), SPSA
efficiently approximates the gradient with few circuit evalua-
tions by shifting the parameters in two random directions. The
learning rate is changed at every bunch of iterations to ensure
a fast convergence at the beginning and avoid oscillations at
the end. Looking at realistic experiments, the stochastic nature
of SPSA makes it resilient to the statistical noise coming
from the finite number of measurements, making it appeal-
ing for quantum devices. A quantum natural variant of the
SPSA optimizer using the geometry of the Hilbert space has
been recently proposed by Gacon et al. [91]. In this variant
the Hessian is approximated with six circuit evaluations and
significantly improves the optimization efficiency of quantum
circuits. In the present work, this optimizer is not considered.

To better understand the performance and the behavior of
the optimizer we provide the loss curve during the learning
process for the SLSQP (state vector simulation) optimizer in
Fig. 10. The energy difference in the plot is given by:

log
Ecount − Efinal

Efinal
. (A1)

The huge difference in the number of evaluations needed be-
tween the first B value and B = 0.5 shows one of the benefits
of taking the last B value optimal parameters as the initial ones
for the next B.
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