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Entropy production plays an important role in the regulation and stability of active matter systems, and its rate
quantifies the nonequilibrium nature of these systems. However, entropy production is hard to experimentally
estimate even in some simple active systems like molecular motors or bacteria, which may be modeled by the run-
and-tumble particle (RTP), a representative model in the study of active matters. Here we resolve this problem
for an asymmetric RTP in one dimension, first constructing a finite-time thermodynamic uncertainty relation
(TUR) for a RTP, which works well in the short observation time regime for entropy production estimation.
Nevertheless, when the activity dominates, i.e., the RTP is far from equilibrium, the lower bound for entropy
production from TUR turns out to be trivial. We address this issue by introducing a recently proposed high-order
thermodynamic uncertainty relation (HTUR), in which the cumulant generating function of current serves as a
key ingredient. To exploit the HTUR, we adopt a method to analytically obtain the cumulant generating function
of the current we study, with no need to explicitly know the time-dependent probability distribution. The HTUR
is demonstrated to be able to estimate the steady state energy dissipation rate accurately because the cumulant
generating function covers higher-order statistics of the current, including rare and large fluctuations besides its
variance. Compared to the conventional TUR, the HTUR could give significantly improved estimation of energy
dissipation, which can work well even in the far from equilibrium regime. We also provide a strategy based on the
improved bound to estimate the entropy production from a moderate amount of trajectory data for experimental
feasibility.

DOI: 10.1103/PhysRevE.107.024112

I. INTRODUCTION

Active matter systems consist of self-propelled particles
which can perform persistent random motion through con-
suming energy from the environment and converting it into
a nonequilibrium drive [1–5]. In the past two decades, ac-
tive matter has attracted a surge of interest in the field of
statistical and biological physics, because it may appropri-
ately model living things like bacteria or flocking birds,
which are far from equilibrium [2–13]. See [1] for a good
review. The three most commonly used active matter mod-
els are the active Brownian particle (ABP) model [3,14,15],
the active Ornstein-Uhlenbeck particles (AOUP) model
[16,17], and the run-and-tumble particle (RTP) model [2,18].
ABP, AOUP, and RTP are all characterized by active forces
with exponential correlations imposed on them, and all ex-
hibit some nontrivial behaviors compared to their passive
counterparts consequently even at the single-particle level
[19]. For example, an active particle (ABP, AOUP, or RTP)
trapped in a confined potential can reach a non-Boltzmann
and non-Gaussian stationary state [16,20,21], and the prob-
ability density of a RTP or a AOUP confined in a box could
concentrate near the spatial boundaries [16,22].
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The entropy production plays a central role in active matter
systems, quantifying the heat dissipation to environment in a
steady state; in other words, quantifying the thermodynamic
cost to maintain a nonequilibrium steady state for some time.
However, measuring the entropy production of these systems
directly in experiments is quite challenging because the tem-
perature changes from dissipation are very small and usually
elusive in the noisy environment [23]. A possible solution to
this issue is the Harada-Sasa relation, which quantitatively
connects the entropy production rate with the violation of the
fluctuation-dissipation relation [24,25]. However, it is neces-
sary to measure the whole frequency spectrum of the focused
degree of freedom in order to use this relation, requiring a lot
of statistics.

Recently, a fundamental inequality called the thermo-
dynamic uncertainty relation (TUR) was built for general
stationary Markov processes, demonstrating a tradeoff re-
lation between precision of an arbitrary current jτ (ratio
between its squared mean and variance) and the total entropy
production rate �̇ [26–31]:

2kB〈 jτ 〉2

Var( jτ )
� �̇τ, (1)

where τ is the observation time of the current jτ (from now
on, we set kB = 1 for notation brevity, rendering entropy di-
mensionless). On top of that, TUR signifies that a lower bound
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for the steady state entropy production can be established in
terms of the first and second moments of any currents, which
has the potential to serve as a technique to estimate entropy
production only from a moderate amount of experimentally
accessible trajectory data [23,32–34]. Nonetheless, the esti-
mation from TUR is usually not accurate since the lower
bound is not guaranteed to be tight in general. For instance,
it has been demonstrated that TURs for general biochemical
oscillations are far from tight in several important models
like circadian clock and Brusselator [35]. For that reason, the
accurate estimation of entropy production from available data
in active matter systems is still an important open problem.

In the present work, we analytically study one of the
minimal models of active matter, the RTP model, providing
some useful strategies to estimate the entropy production rate
of a RTP only from trajectories data obtainable from direct
experimental observations. To begin, we built a finite-time
TUR for this model, showing that the lower bound of entropy
production given by the TUR serves as a good estimator
in the short observation time limit. Nevertheless, very high
temporal resolution is needed to keep the estimation robust
when the activity is large. To address this, we build a tighter
lower bound of entropy production as a new estimator by
incorporating the effect of large and rare fluctuations. This
new estimator is based on the recently proposed high-order
thermodynamic uncertainty relation (HTUR) [36–38], which
is robust when the RTP is arbitrarily far from equilibrium
and the observation time is not short. The key quantity of
the HTUR is the cumulant generating function (CGF) of the
current of interest. To exploit the HTUR, we provide a novel
approach to analytically calculate the CGF directly from the
Fokker-Planck equations of the system. In consequence, the
HTUR bound can be directly evaluated through our exact
expression of the CGF. We also propose an experimentally
practical strategy to get better estimation of entropy produc-
tion than conventional TUR since it may not be possible
to obtain the CGF in experiment. Our work provides some
insight on the HTUR, which may find further applications in
other active matter systems.

The rest of the paper is organized as follows. In Sec. II,
we introduce the asymmetric RTP model. In Sec. III, a finite-
time TUR is constructed analytically for this model, and the
transport efficiency which shows the TUR’s performance in
estimating entropy production is evaluated under different
observation times and activities. In Sec. IV, the HTUR for the
RTP is derived, which is utilized to significantly improve the
estimation of entropy production; this is followed by Sec. V
with conclusions and outlook.

II. MODEL

Throughout this work, we consider an asymmetric one-
dimensional RTP model with diffusion. In this model, the
position of a single RTP is described by the Langevin equa-
tion (the mobility μ is set to be 1)

dx

dt
= vσ (t ) +

√
2Dξ (t ), (2)

where D = T μ = T is the diffusion constant, v is a constant
drift velocity, ξ (t ) is the Gaussian white noise with zero

mean 〈ξ (t )〉 = 0 and delta-function correlation 〈ξ (t )ξ (s)〉 =
δ(t − s), and σ (t ) = ±1 refers to a dichotomous telegraphic
noise that switches from the run state to the tumble state at
rate γr and at rate γl conversely. Note that σ (t ) is a colored
noise whose stationary autocorrelation function is given by
(see Appendix A for proof)

〈σ (t )σ (s)〉 = 4γrγl

(γr + γl )2
e−(γr+γl )|t−s| +

(
γr − γl

γr + γl

)2

. (3)

The corresponding Fokker-Planck equation of Eq. (2) reads

∂ pr (x, t )

∂t
= −∂ jr (x, t )

∂x
− γr pr (x, t ) + γl pl (x, t ), (4)

∂ pl (x, t )

∂t
= −∂ jl (x, t )

∂x
+ γr pr (x, t ) − γl pl (x, t ), (5)

where the probability currents jr,l (x, t ) are defined as

jr (x, t ) = [v − D∂x]pr (x, t ),

jl (x, t ) = [−v − D∂x]pl (x, t ),

and pr (x, t ) [pl (x, t )] denotes the probability of finding a
particle with velocity v (−v) at position x and time t . Without
loss of generality, we assume γl > γr � 0 so that the RTP
would move along the same direction as the drift velocity
v on average. To assure ergodicity, the RTP is set to be
confined in a one-dimensional ring whose circumference is
L, i.e., x ∈ [0, L), so that the stationary state distribution is
the uniform distribution pst (x) = limt→∞ p(x, t ) = 1/L. Fur-
ther, the stationary distributions of the particle being in run
state and tumble state are pst

r (x) = γl/(γl + γr )L and pst
l (x) =

γr/(γl + γr )L respectively. However, we claim that for nat-
ural boundary condition the scheme to estimate dissipation
in this paper still works in the large time limit. This can
be understood by noticing that the natural boundary condi-
tion is effectively the periodic boundary condition with L →
∞ for one-dimensional systems, and the entropy production
rate in the large time limit and its estimator in this work are
irrelevant to the system size L (see Appendix B). A schematic
illustration of our model is given in Fig. 1. Very recently, Ro
et al. experimentally studied the entropy production of a four-
state run-and-tumble particle jumping along a ring, which is
analogous to our model [39].

We would like to explain why we study the RTP with asym-
metric transition rates between the run state and the tumble
state. Molecular motors and Escherichia coli in nature usually
exhibit directed motion. To better model this directed motion,
one should consider asymmetric transition rates instead of
symmetric transition rates in which case γr = γl = γ . In the
symmetric case, the RTP will not display directed movement
because the mean displacement 〈x(τ )〉x0 − x0 always vanishes
in the large time limit whatever the initial position x0 is,
i.e., 〈x(τ )〉x0 = x0, just like the unbiased random walk. Here,
〈x(τ )〉x0 is the mean position of the particle at time t = τ with
the initial position at t = 0 being given by x0.

III. FINITE-TIME THERMODYNAMIC UNCERTAINTY
RELATION FOR A RUN-AND-TUMBLE PARTICLE

To start, we show the validity of the conventional TUR and
its limitation for the estimation of energy dissipation in our
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FIG. 1. An illustration of a run-and-tumble particle moving
along a one-dimensional ring whose circumference is L.

model. Below, we construct a TUR and use it to estimate the
steady state entropy production rate. To study the TUR, we
consider a fluctuating generalized current defined as

jτ =
∫ x(τ )

x(0)
w(x) ◦ ẋ(t )dt, (6)

where w(x) is a differentiable weight function and ◦ denotes
the Stratonovich product. We choose w(x) = 1 so that the
resulting current is a physically relevant quantity, i.e., the dis-
placement during the finite observation time τ . Note that the
choice of mean particle displacement as the focused current
is aimed to assure experimentally easy accessibility. In the
stationary state, the mean value of this current xτ ≡ x(τ ) −
x(0) = ∫ τ

0 ẋ(t )dt can be readily obtained as

〈xτ 〉 =
∫ τ

0
〈ẋ〉dt = v

∫ τ

0
〈σ (t )〉dt = γl − γr

γl + γr
vτ, (7)

and its variance in the steady state can also be computed as
(see Appendix B for derivations)

Var(xτ ) = Deffτ − 8γlγrv
2

(γl + γr )4
[1 − e−(γl +γr )τ ],

Deff ≡ 8γlγrv
2

(γl + γr )3
+ 2D. (8)

Note that the variance can be calculated via the noise correla-
tion (3), or through the moment equations method introduced
in Appendix B. Since the displacement is nothing but the
accumulation of instantaneous velocity during τ , x(τ ) in our
spatially periodic model is the same as its counterpart in the
model with natural boundary condition. Equipped with ex-
pressions of the mean and variance, an estimator of the steady
state mean entropy production during an observation interval

FIG. 2. The transport efficiency ητ from the TUR bound versus
the activity v with different observation times τ . The model parame-
ters are chosen as γl = 10, γr = 0.1, D = 1.0.

τ may be obtained according to the conventional TUR:

�τ
TUR = 2〈xτ 〉2

Var(xτ )

= 2
(
γ 2

l − γ 2
r

)2
v2τ

Deff(γl + γr )4 − 8γl γrv2[1−e−(γl +γr )τ ]
τ

� 〈�τ 〉, (9)

which provides a lower bound of the steady state entropy
production. Below, the steady state mean entropy production
is calculated exactly by stochastic thermodynamics [40], so
that Eq. (9) can be easily verified, i.e.,

〈�τ 〉 = τ

(∫ L

0

jst
r (x)2

Dpst
r (x)

dx +
∫ L

0

jst
l (x)2

Dpst
l (x)

dx

)

+ τ

∫ L

0
dx

[
γr pst

r (x) − γl pst
l (x)

]
ln

γr pst
r (x)

γl pst
l (x)

= v2τ

D

(
γl

γr + γl
+ γr

γr + γl

)
= v2τ

D
, (10)

where, in the second line, the relation γr pst
r (x) − γl pst

l (x) = 0
was used. The expression for the steady state entropy pro-
duction is the same as a diffusive particle with constant drift
v, because the RTP can be regarded as a diffusive particle
with drift v ceaselessly changing direction instantaneously,
and these instant changes of direction will not produce entropy
[41]. Thus, it is obvious from Eq. (10) that the TUR (9) is
validated. Then a transport efficiency

ητ ≡ �τ
TUR

〈�〉 =
(
γ 2

l − γ 2
r

)2

Deff
2D

(
γr+γl

γr−γl

)2 − 8γl γrv2[1−e−(γl +γr )τ ]

2(γ 2
l −γ 2

r )2
Dτ

� 1 (11)

can be defined to evaluate the efficiency of estimation [31,42].
To illustrate the estimating effect of TUR, we plot the trans-
port efficiency from TUR with different observation time τ

and different activity v in Fig. 2.
From the above expression and plot we can draw some

conclusions. First, if the drift velocity v is very large, i.e., the
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RTP is far from equilibrium, and meanwhile the observation
time τ is large for experimental convenience, then the TUR
bound will become very loose and therefore cannot work well
for the entropy production estimation, whatever other system
details are. It has been reported that the TUR can be tight in
the linear-response regime, but generally it will be loose when
the system is far from equilibrium [26,27,37]. Physically, this
is because of the presence of excess fluctuations (quantified
by high-order cumulants) far from equilibrium [38]. In the
linear-response regime these fluctuations are negligible so that
the TUR can be tight. Second, in the short observation time
limit (τ → 0) the TUR estimator would work remarkably well
compared to the large observation time cases:

lim
τ→∞ ητ = 2D

Deff

(
γr − γl

γr + γl

)2

� lim
τ→0

ητ =
(

γr − γl

γr + γl

)2

� 1, (12)

whose estimating effect would be robust even in the far from
equilibrium region (v 
 1), since it is irrelevant to the drift
velocity v. The inequality saturates when γr = 0, i.e., the
particle won’t tumble, but always move forward with a con-
stant mean velocity. When γr = γl , TUR becomes trivial and
cannot gives any prediction, because the mean displacement
vanishes, making the TUR estimator vanish as well. The ro-
bustness under activity is in fact the advantage of the recently
found short-time TUR [34,43]. The short-time TUR is tight
even in the far from equilibrium regime, for the reason that
the short observation time kills excess fluctuations (interested
readers can refer to Supplemental Material of [34] for details).
However, experimental scientists may prefer large measure-
ment time TUR as an estimating method, due to the limitation
of time resolution of common tools. Here we would like to
address this issue utilizing the HTUR.

IV. HIGH-ORDER THERMODYNAMIC UNCERTAINTY
RELATION AND ITS APPLICATION TO ESTIMATE

ENTROPY PRODUCTION

Recently, Dechant and Sasa [36] constructed a HTUR from
their fluctuation-response inequality in both Langevin systems
and discrete-state Markov systems, which reads

〈xτ 〉2 sup
h

F (h) � 〈�τ 〉,

F (h) := h2

Kxτ
(h) − h〈xτ 〉 , (13)

where Kxτ
(h) ≡ ln〈ehxτ 〉 is the CGF of the current xτ (this

inequality works for generalized current jτ ; in this work we
only focus on xτ ). The conventional TUR can be readily
recovered from Eq. (13) by taking the h → 0 limit. It has been
demonstrated that, in a general jump-diffusion model [36],
Eq. (13) still works (see Appendix C for details). This type
of process can be described by the equation

ẋ(t ) = ak(t )[x(t )] + √
2Dk(t )ξ (t ), (14)

where the drift term ak(t )[x(t )] and diffusion coefficient Dk(t )

can jump between multiple discrete states k = 1, . . . , N . The

jumping dynamics is described by a Markov jump process
with transition rates Wi j from state j to state i. This model
covers our RTP as a specific case, thus the HTUR can be
applied to our model.

To enhance the estimation of entropy production on ac-
count of HTUR, we calculate the CGF of the current xτ below.
We define some quantities for later use:

〈ehx(τ )〉r ≡
∫

ehx pr (x, τ )dx, (15)

〈ehx(τ )〉l ≡
∫

ehx pl (x, τ )dx, (16)

so that

〈ehx(τ )〉 = 〈ehx(τ )〉r + 〈ehx(τ )〉l . (17)

It can be readily demonstrated that (see Appendix D for proof)

〈ehxτ 〉 = 〈ehx(τ )〉x(0)=0, (18)

which is in accordance with physical intuition since the initial
position x(0) is extracted from the uniform steady state distri-
bution (any two points in our stationary system are identical).
Then one can directly write down the evolution equations for
〈ehx(τ )〉r,l by multiplying ehx on both sides of the Fokker-
Planck equations (4) and (5) and integrating over the whole
range of x, i.e.,

d〈ehx(τ )〉r

dτ
= (Dh2 + vh − γr )〈ehx(τ )〉r + γl〈ehx(τ )〉l , (19)

d〈ehx(τ )〉l

dτ
= (Dh2 − vh − γl )〈ehx(τ )〉l + γr〈ehx(τ )〉r . (20)

The above equations can be rewritten in a compact vector
form

d �φ(τ )

dτ
= L �φ(τ ), (21)

where

�φ(τ ) ≡ (〈ehx(τ )〉r, 〈ehx(τ )〉l )
T

and

L =
(

Dh2 + vh − γr γl

γr Dh2 − vh − γl

)
.

Equation (21) is linear, thus its solution can be formally
written as

�φ(τ ) = eLτ �φ(0), (22)

with the initial condition being [x(0) = 0]

�φ(0) =
(

γl

γl + γr
,

γr

γl + γr

)T

.

Then the closed form of Kxτ
(h) can be obtained by

Kxτ
(h) = ln(〈ehx(τ )〉r + 〈ehx(τ )〉l ), (23)

which is too lengthy to show here. We include the detailed
form of it in Appendix D for completeness. However, in the
short observation time limit τ → 0, the expression of the
CGF is brief (high-order terms may be dropped due to their
negligible effects in the maximization problem):

Kxτ
(h) = 〈xτ 〉h + Dh2τ + O(τ 2), (24)
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resulting in the same lower bound as the short-time TUR:

�τ→0
HTUR =

(
γr − γl

γr + γl

)2
v2

D
τ = 〈xτ 〉2

Dτ
. (25)

Additionally, the leading contribution Klead(h) of Kxτ
(h) in the

large τ limit could be identified as

2Dh2 +
√

(γl + γr )2 − 4hv(γl − γr ) + 4h2v2 − γl − γr

2
τ.

(26)

Then maximizing

h2

Klead(h) − h〈xτ 〉 (27)

over the whole range of h remarkably gives rise to 1/Dτ ,
when h → ∞. This still leads to the tight bound (25) as in the
small τ limit. In other cases with 0 < τ < ∞ the optimization
problem suph F (h) from HTUR might not be solved generally
when parameters are not fixed. In spite of this, we discover
that for any τ the h → ∞ limit for F (h) can be obtained as
(see Appendix D for details):

lim
h→∞

F (h) = 1

Dτ
, (28)

which means that the lower bound �τ
HTUR given by HTUR

cannot be smaller than 1
Dτ

, because the lower bound is given
by the maximal value of F (h). That is, we have

〈�τ 〉 � �τ
HTUR = 〈xτ 〉2 sup

h
F (h) � 〈xτ 〉2

Dτ
. (29)

After numerically exploring a large amount of values over
the parameter space (γl , γr, v, D, τ ), we claim that F (h) =

h2

Kxτ (h)−h〈xτ 〉 is an increasing function of h when h > 0, and
when h < 0 the function F (h) < F (−h) (see Appendix E for
numerical evidence). Based on the above findings, we con-
jecture that a new lower bound for entropy production from
HTUR for any observation time τ is given by

�τ
HTUR = 〈xτ 〉2

Dτ
, (30)

which is our main result.
Some remarks on this result can be made. First, the es-

timation of entropy production rate from Eq. (30) would
not be affected by the variation in observation time τ , and
would be robust even in the far from equilibrium region, in
stark contrast to the conventional TUR. Second, when the
diffusion constant D (or the friction coefficient) is known,
the energy dissipation during τ can be estimated experimen-
tally only by readily measuring the mean displacement 〈xτ 〉
during that time interval. Therefore, the HTUR estimator
may find potential application in many active matter systems,
since the amount of trajectory data needed for is pretty small
compared to other methods. However, because the system
details are usually unknown, one would prefer to measure
the dissipation only through the trajectory information, in
which case the CGF should be measured to obtain our tighter
bound. Notwithstanding that the CGF—which contains the
information of infinite higher-order cumulants—may not be

FIG. 3. The transport efficiency ητ = �τ
h=a/〈�τ 〉 from the TUR

bound and from the improved bound vs the activity v with different
h. The model parameters are chosen as γl = 10, γr = 0.1, D =
1.0, τ = 1.0

experimentally feasible, we show in Fig. 3 that when the factor
h is fixed the left-hand-side of Eq. (13) can still serve as a
pretty good estimator for entropy production, i.e.,

�τ
h=a ≡ a2〈xτ 〉2

ln〈eaxτ 〉 − a〈xτ 〉 � 〈�τ 〉. (31)

And when h is fixed, the resulting estimator could be exper-
imentally obtained from the time series data of trajectories,
without prior knowledge of the model details. Strikingly, as
shown in Fig. 3, even the estimator

�τ
h=1 = 〈xτ 〉2

ln〈exτ 〉 − 〈xτ 〉 (32)

in the h = 1 case would greatly improve the estimation of
entropy production compared to the conventional TUR, be-
having much better in the far from equilibrium regime. When
the chosen values of h are increasing, the resulting estimators
become better and better, and asymptotically converge to the
best one �τ

HTUR.

V. DISCUSSION

In this paper, we explore the stochastic thermodynamics
of an asymmetric run-and-tumble particle, which may model
behaviors of molecular motors or chemotaxis motions of some
active bacteria. We first explore the finite-time TUR in our
system, revealing that the short observation time strategy
is beneficial for the estimation of entropy production. Most
importantly, resorting to the HTUR, we have shown that an
improved estimation of energy dissipation only from experi-
mentally feasible trajectory data can be realized. The HTUR
estimating strategy is robust when the RTP is arbitrarily far
from equilibrium, and its effect will not be affected by the ob-
servation time τ , forming a sharp contrast to the conventional
TUR. Based on the HTUR, we further propose an exper-
imentally viable estimating strategy for entropy production
rate, and check its effect through the analytical expression of
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CGF, showing that the strategy still significantly outperform
the conventional TUR strategy. We would like to emphasize
the advantage of our estimating strategy based on TUR or
HTUR. The chosen current observable can be measured on a
very coarse-grained level, so that only a moderate amount of
trajectory data is required. To apply our strategy, there is even
no need to track the whole trajectory of the position x. For
each experiment, measurements of the number of cycles the
particle goes through during the observation time, the initial
position, and the final position of the particle at time τ are
enough for estimation, with detecting the current state of the
particle (run state or tumble state) being unnecessary. To apply
our estimating method, the requirement for the spatial and
temporal resolution of experimental equipment is relatively
low. Therefore, we reveal the potential strength of HTUR in
the estimation of entropy production in active matter systems.

There are still some limitations of our work. The asymme-
try of the hopping rate between run state and tumble state is
necessary for our estimators both from conventional TUR and
HTUR, due to the choice of displacement as the current to
use. If one chooses the entropy production itself as a current,
the TUR and HTUR bound can be saturated even in the sym-
metric case γl = γr [27,34,43], in which our bound cannot be
applied. Nevertheless, our aim is to estimate the entropy pro-
duction of RTP; once the entropy production itself is known,
there is no need to do any more estimation. Therefore, whether
there is a good estimator in the symmetric case γl = γr still
remains an open problem, which we leave for future work.
Further, when the RTP is trapped in a confined potential (see
Appendix B for an example), the mean displacement vanishes
in the stationary state, in which case also our estimator cannot
take effect. Besides, the generalization of our method to two-
dimensional RTP is nontrivial and deserves further study.
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APPENDIX A: A SIMPLE DERIVATION OF Eq. (3)

From the definition of stationary average, we directly write
down

〈σ (t )σ (s)〉 =
∑

σ1,σ2=±1

σ1σ2 p(σ2, t |σ1, s)pst (σ1) (A1)

=
∑
σ1

〈σ (t )〉σ1,sσ1 pst (σ1), (A2)

where 〈σ (t )〉σ1,s is the conditional average with the initial
condition being σ (s) = σ1. From the Fokker-Planck equa-
tion, which p(σ, t |σ1, s) obeys, and the initial condition
p(σ, s|σ1, s) = δσ,σ2 , one can solve that

p(σ = 1, t |σ1, s) = γl

γl + γr
+ e−(γl +γr )(t−s)

×
(

γr

γl + γr
δ1,σ1 − γl

γl + γr
δ−1,σ1

)
,

(A3)

p(σ = −1, t |σ1, s) = γr

γl + γr
− e−(γl +γr )(t−s)

×
(

γr

γl + γr
δ1,σ1 − γl

γl + γr
δ−1,σ1

)
.

(A4)

Then the conditional average can be computed as

〈σ (t )〉σ1,s =
∑

σ=±1

σ (t )p(σ, t |σ1, s)

= γl − γr

γl + γr
+ e−(γl +γr )(t−s)

(
σ1 − γl − γr

γl + γr

)
. (A5)

Plugging Eq. (A5) into Eq. (A2) and using

pst (σ = 1) = γl

γl + γr
,

pst (σ = −1) = γr

γl + γr

one obtains that

〈σ (t )σ (s)〉 = 4γrγl

(γr + γl )2
e−(γr+γl )|t−s| +

(
γr − γl

γr + γl

)2

, (A6)

which is just Eq. (3) in the main text.

APPENDIX B: MOMENT EQUATIONS
OF THE RUN-AND-TUMBLE PARTICLE

IN ONE DIMENSION

In this Appendix, we introduce the moment equa-
tions method and give some applications.

Calculation of variance of the current xτ

In this subsection, we use the moment equations method
to obtain the variance for the one-dimensional RTP, which is
useful in the main text. First we define some useful quanti-
ties. The nth right moment, left moment, and moment of the
position at time t are respectively given by

〈xn〉r ≡
∫

x(t )n pr (x, t )dx,

〈xn〉l ≡
∫

x(t )n pl (x, t )dx,

〈xn〉 = 〈xn〉r + 〈xn〉l =
∫

x(t )n p(x, t )dx. (B1)

Multiplying xn on both sides of Eqs. (4) and (5), one obtains
the evolution equations for the nth right moment and left
moment as

d〈xn〉r

dt
= θn,1nv〈xn−1〉r + θn,2Dn(n − 1)〈xn−2〉r

− γr〈xn〉r + γl〈xn〉l , (B2)

d〈xn〉l

dt
= −θn,1nv〈xn−1〉l + θn,2Dn(n − 1)〈xn−2〉r

+ γr〈xn〉r − γl〈xn〉l , (B3)
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where θn,c equals 1 for n � c and 0 for n < c. When n = 0,
the above equations reduce to

d〈x0〉r

dt
= −γr〈x0〉r + γl〈x0〉l , (B4)

d〈x0〉l

dt
= γr〈x0〉r − γl〈x0〉l . (B5)

In the large time limit that we are interested in, combining
Eq. (B4) and (B5) with the conservation of probability 〈x0〉r +
〈x0〉l = 1 gives rise to 〈x0〉r = γl/(γl + γr ) and 〈x0〉l =
γr/(γl + γr ). When n = 1, the first-order moment equa-
tions are

d〈x〉r

dt
= v

γl

γl + γr
− γr〈x〉r + γl〈x〉l , (B6)

d〈x〉l

dt
= −v

γr

γl + γr
+ γr〈x〉r − γl〈x〉l , (B7)

which leads to

d〈x〉
dt

= d〈x〉r

dt
+ d〈x〉l

dt
= v

γl − γr

γl + γr
. (B8)

From the initial condition 〈x(0)〉 = 〈x〉st = L/2, the first mo-
ment at time τ is yielded:

〈x(τ )〉 = 〈x〉r + 〈x〉l = v
γl − γr

γl + γr
τ + L

2
, (B9)

Combining Eq. (B9) with the first-order equations, the first
left and right moments at time τ can also be expressed as

〈x〉r = γlL

2(γl + γr )
+ γl

[(
γ 2

l − γ 2
r

)
τ + 2γr

]
v

(γl + γr )3

− 2γlγrve−(γl +γr )τ

(γl + γr )3
, (B10)

〈x〉l = γrL

2(γl + γr )
+ γr

[(
γ 2

l − γ 2
r

)
τ − 2γl

]
v

(γl + γr )3

+ 2γlγrve−(γl +γr )τ

(γl + γr )3
, (B11)

having taken the initial conditions (steady state)

〈x0〉r = L

2

γl

γl + γr
, 〈x0〉l = L

2

γr

γl + γr
(B12)

into account. Then from the second-order moment equa-
tions (n = 2), one can figure out the variance of x(τ ), which
reads

d〈x2〉r

dt
= 2v〈x〉r + 2D〈x0〉r − γr〈x2〉r + γl〈x2〉l , (B13)

d〈x2〉l

dt
= −2v〈x〉l + 2D〈x0〉l + γr〈x2〉r − γl〈x2〉l . (B14)

Thus the second moment of x(τ ) arises from the equation

d〈x2〉
dt

= 2v(〈x〉r − 〈x〉l ) + 2D, (B15)

whose solution is

〈x(τ )2〉 =
(

〈x(τ )〉2 − L2

4

)
+ Deffτ

− 8γlγrv
2

(γl + γr )4
[1 − e−(γl +γr )τ ] + L2

3
(B16)

with the initial condition being 〈x(0)2〉 = L2/3 and using
Eqs. (B10) and (B11). Here, the effective diffusion coefficient
has been defined in Eq. (8) of main text as

Deff = 8γlγrv
2

(γl + γr )3
+ 2D.

So the variance of x(τ ) is simply

Var(x(τ )) = 〈x(τ )2〉 − 〈x(τ )〉2

= Deffτ − 8γlγrv
2

(γl + γr )4
[1 − e−(γl +γr )τ ] + L2

12
.

(B17)

In the stationary state, the variance of the current xτ with
observation time τ is connected to the variance of x(τ ) as

Var(xτ ) = 〈[x(τ ) − x(0)]2〉 − [〈x(τ )〉 − 〈x(0)〉]2

= 〈x(τ )2〉 + 〈x(0)2〉 − 2〈x(τ )x(0)〉 − 〈x(τ )〉2

− 〈x(0)〉2 + 2〈x(τ )〉〈x(0)〉
= Var[x(τ )] + L2/12 − 2Cov[x(τ ), x(0)], (B18)

where Var[x(0)] = L2/3 − (L/2)2 = L2/12 was used. Now
we compute the quantity Cov[x(τ ), x(0)] = 〈x(τ )x(0)〉 −
〈x(τ )〉〈x(0)〉. Note that

〈x(τ )x(0)〉 =
∫

dx
∫ L

0
dx0x(τ )x0 p(x, τ |x0, 0)pst (x0)dx dx0

(B19)

= 1

L

∫ L

0
〈x(τ )〉x0 x0dx0, (B20)

with 〈x(τ )〉x0 ≡ ∫
x(τ )p(x, τ |x0, 0)dx. According to Eq. (B8),

〈x(τ )〉x0 = v
γl − γr

γl + γr
τ + x0, (B21)

so that

〈x(τ )x(0)〉 − 〈x(τ )〉〈x(0)〉 = 1

L

∫ L

0
〈x(τ )〉x0 x0dx0

− vτL

2

γl − γr

γl + γr
− L2

4

= L2

12
. (B22)

Therefore, the variance of the current xτ is finally obtained as

Var(xτ ) = Var[x(τ )] + L2/12 − 2Cov[x(τ ), x(0)]

= Var[x(τ )] − L2

12

= Deffτ − 8γlγrv
2

(γl + γr )4
[1 − e−(γl +γr )τ ], (B23)
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which is just Eq. (8) of the main text. Note that the expression
of moments of xτ is irrelevant to the system size L, thus it
can also be applied to the natural boundary condition case.
It should be mentioned that this result can also be directly
derived from the two-time correlation function of the velocity
ẋ(t ) = vσ (t ) + √

2Dξ (t ), using the celebrated Green-Kubo
(G-K) formula. We sketch the derivation using the G-K for-
mula below. Since〈

x2
τ

〉 =
〈∫ τ

0

∫ τ

0
ẋ(t )ẋ(s)dsdt

〉
=

∫ τ

0

∫ τ

0
〈ẋ(t )ẋ(s)〉ds dt,

(B24)

what we need to compute is the two-time correlation function

C(t − s) ≡ 〈ẋ(t )ẋ(s)〉 = v2〈σ (t )σ (s)〉 + 2D〈ξ (t )ξ (s)〉

= v2

[
4γrγl

(γr + γl )2
e−(γr+γl )|t−s| +

(
γr − γl

γr + γl

)2]

+ 2Dδ(t − s). (B25)

Then, according to the G-K formula,〈
x2
τ

〉 =
∫ τ

0

∫ τ

0
C(t − s)ds dt = 2

∫ τ

0
C(t )(τ − t )dt

= Deffτ − 8γlγrv
2

(γl + γr )4
[1 − e−(γl +γr )τ ] + 〈xτ 〉2, (B26)

so that

Var(xτ ) = Deffτ − 8γlγrv
2

(γl + γr )4
[1 − e−(γl +γr )τ ].

Note that the integration of the delta function
∫ τ

0 δ(t )dt = 1/2
here because the Stratonovich convention is taken.

Energy dissipation rate of a RTP in a harmonic potential well

Here, we discuss another application of the moment equa-
tions method, calculating the entropy production rate of a RTP
confined in a harmonic potential U (x) = 1

2 kx2. The result is a
slight generalization of what was obtained in Ref. [44], where
the entropy production rate of a symmetric RTP in a har-
monic potential was calculated through the field-theoretical
method. The corresponding Langevin equation and Fokker-
Planck equations are

ẋ(t ) = −kx + vσ (t ) +
√

2Dξ (t ) (B27)

and

∂ pr (x, t )

∂t
= ∂x[kx − v0 + D∂x]pr (x, t )

− γr pr (x, t ) + γl pl (x, t ), (B28)

∂ pl (x, t )

∂t
= ∂x[kx + v0 + D∂x]pl (x, t )

+ γr pr (x, t ) − γl pl (x, t ). (B29)

In this case, the RTP will finally converge to a nonequilib-
rium stationary state (NESS). The moment equations at this
stationary state are obtained as

nk〈xn〉r = θn,1nv〈xn−1〉r + θn,2Dn(n − 1)〈xn−2〉r

− γr〈xn〉r + γl〈xn〉l , (B30)

nk〈xn〉l = −θn,1nv〈xn−1〉l + θn,2Dn(n − 1)〈xn−2〉r

+ γr〈xn〉r − γl〈xn〉l , (B31)

where 〈·〉r,l = ∫
dx(·)pst

r,l (x) is the stationary state average.
Note that the energy dissipation rate at the NESS is only
contributed by the switching between run state and tumble
state, which can be regarded as a potential switching process
[25] between the left potential Vl (x) ≡ U (x) + vx and the
right potential Vr (x) ≡ U (x) − vx. Consequently, the energy
dissipation rate can be readily computed by

W =
∫

dx γr pst
r (x)�V +

∫
dx γl pst

l (x)(−�V )

=
∫

dx
[
γr pst

r (x) − γl pst
l (x)

]
[Vl (x) − Vr (x)]

= 2v

∫
dx

[
γr pst

r (x) − γl pst
l (x)

]
x

= 2v[γr〈x〉r − γl〈x〉l ], (B32)

with �V ≡ Vl (x) − Vr (x) = 2vx. This is because, in the pres-
ence of a confined potential, the contribution from the drift
vanishes in the stationary state (effective equilibrium). From
the conservation of probability 〈x0〉r + 〈x0〉l = 1 we still have
〈x0〉r = γl/(γl + γr ) and 〈x0〉l = γr/(γl + γr ); then taking
n = 1 in the above stationary state moment equations brings
about

k〈x〉r = vγl

γl + γr
− γr〈x〉r + γl〈x〉l , (B33)

k〈x〉l = −vγr

γl + γr
+ γr〈x〉r − γl〈x〉l . (B34)

These two equations directly lead to

〈x〉 = 〈x〉r + 〈x〉l = γl − γr

γl + γr

v

k
,

〈x〉r = γl

γl + γr + k

(
〈x〉 + v

γl + γr

)
,

〈x〉l = γr

γl + γr + k

(
〈x〉 − v

γl + γr

)
. (B35)

As a result, the steady state energy dissipation rate is

W = 2v[γr〈x〉r − γl〈x〉l ] = 4v2γrγl

(γl + γr + k)(γl + γr )
(B36)

and the entropy production rate is (D = T )

�̇ = W

D
= 4v2γrγl

D(γl + γr + k)(γl + γr )
, (B37)

reducing to the main result in Ref. [44],

�̇sym = v2α

D(k + α)
(B38)

when γl = γr = α
2 . In the k → 0 limit,

lim
k→0

�̇ = 4v2γrγl

D(γl + γr )2
, (B39)

which seems to deviate from the real entropy production rate
v2

D when there is no confined potential (i.e., when k rigorously
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equals zero). Actually, there is a part of entropy production
rate which is contributed by the nonzero steady state mean
velocity (v̄ = γl −γr

γl +γr
v):

�̇v = (
pst

r Fr · v̄ + pst
l Fl · v̄

) 1

D

= γl − γr

γl + γr

v

D

(
γlv

γl + γr
+ γr (−v)

γl + γr

)

=
(

γl − γr

γl + γr

)2
v2

D
, (B40)

where Fr ≡ v and Fl = −v are two constant forces applied
to the RTP with opposite directions. Only when no confined
potential exists will this part of the contribution emerge. When
k is not exactly equal to zero, the particle will still be confined
in a harmonic potential so that v̄ = 0 and the contribution �̇v

vanishes. Adding this contribution to Eq. (B39), the real en-
tropy production rate without confined potential is recovered:

�̇ = v2

D

[
4γrγl

(γl + γr )2
+

(
γl − γr

γl + γr

)2
]

= v2

D
. (B41)

In contrast, no matter how small the value of k is (no matter
how soft the confined potential is), the mean velocity of the
RTP in the stationary state vanishes once there is a confined
potential. From the above analysis, we can identify the term

�̇sw ≡ 4v2γrγl

D(γl + γr )2
(B42)

as the part of entropy production rate originating from state
switching, which may not be experimentally estimated by tra-
jectory data using TUR or HTUR. That is, though the entropy
production rate can be calculated exactly, it may be difficult to
measure it experimentally without knowing the model details.
Therefore, it is still an open problem to find an experimentally
feasible strategy to estimate the entropy production of a RTP
in a confined potential.

APPENDIX C: HIGH-ORDER TUR
IN THE JUMP-DIFFUSION MODEL

In this Appendix, we derive the inequality (13) for
the jump-diffusion model (14) for completeness, following
Ref. [36,38]. Note that throughout this Appendix we are only
focused on steady states. First, one needs to introduce a family
of dynamics denoted by a parameter θ :

ẋ(t ) = aθ
k(t )[x(t )] + √

2Dk(t )ξ (t ) (C1)

with

aθ
k(t )[x(t )] = θvst (x) + Dk(t )∂x ln pst (x). (C2)

The θ ∈ [−1, 1] is called the continuous time-reversal param-
eter, affecting the mean current as

〈Jτ 〉θ = θ〈Jτ 〉, (C3)

where Jτ is the generalized current defined in Eq. (6) of the
main text, and 〈·〉θ = ∫

dx(·)pθ (x). Furthermore, the station-
ary state distribution pst (x) always remains unchanged when
the value of θ changes. Considering two (path) probability

densities pθ1 (x) and pθ2 (x) from different dynamics (here x
may denote a fluctuating trajectory {x(t )}t∈[0,τ ] from 0 to τ or
simply a state variable), one has

Kθ1
Jτ

(h) = ln

(∫
dx ehJτ (x) pθ1 (x)

)

= ln

(∫
dx ehJτ (x) pθ1 (x)

pθ2 (x)
pθ2 (x)

)
. (C4)

Then from the concavity of the logarithm, the Jensen inequal-
ity tells us that

Kθ1
Jτ

(h) �
∫

dx ln

(
ehJτ (x) pθ1 (x)

pθ2 (x)

)
pθ2 (x)

= h〈Jτ 〉θ2 − DKL(pθ2 ||pθ1 ), (C5)

with the Kullback-Leibler (KL) divergence being defined as

DKL(pθ2 ||pθ1 ) =
∫

dx pθ2 (x) ln
pθ2 (x)

pθ1 (x)
. (C6)

Since inequality (C5) holds for any real value of h, it can be
rewritten as a lower bound for KL divergence, which reads

DKL(pθ2 ||pθ1 ) � sup
h

[
h〈Jτ 〉θ2 − Kθ1

Jτ
(h)

]
. (C7)

For the jump-diffusion dynamics, the KL divergence between
the distributions of two dynamics can be decomposed as

DKL(pθ2 ||pθ1 ) = Ddiff
KL (pθ2 ||pθ1 ) + Djump

KL (pθ2 ||pθ1 )

+ Dini
KL(pθ2

0 ||pθ1
0 ), (C8)

where the first term is the contribution from the diffusion
part, the second term is from jump part, and the last term is
from the difference in two initial distributions. Because we
are considering the steady state, which is not affected by θ , the
last term vanishes. It has been shown that, for path probability
densities,

Ddiff
KL (pθ2 ||pθ1 ) = (θ1 − θ2)2

4

〈
�diff

τ

〉
, (C9)

Djump
KL (pθ2 ||pθ1 ) � (θ1 − θ2)2

4

〈
�jump

τ

〉
. (C10)

As a consequence, one has

DKL(pθ2 ||pθ1 ) � (θ1 − θ2)2

4

(〈
�diff

τ

〉 + 〈
�jump

τ

〉)
= (θ1 − θ2)2

4
〈�τ 〉. (C11)

Combining Eqs. (C5) and (C11) gives rise to

Kθ1
Jτ

(h) � hθ2〈Jτ 〉 − (θ1 − θ2)2

4
〈�τ 〉. (C12)

Then we maximize the right-hand side with respect to θ2

resulting in a quadratic bound under any θ1:

Kθ1
Jτ

(h) � hθ1〈Jτ 〉 + h2〈Jτ 〉2

〈�τ 〉 . (C13)
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Rearranging this, setting θ = 1 and maximizing over the
whole range of h, one obtains the HTUR (13)

〈�τ 〉 � 〈Jτ 〉2 sup
h

h2

KJτ
(h) − h〈Jτ 〉 . (C14)

APPENDIX D: CALCULATION OF Kxτ (h) AND limh→∞ F(h)

In this Appendix, we analytically calculate the cumulant
generating function Kxτ

(h) = ln〈ehxτ 〉 of the current xτ . First
we prove the equality (18) in the main text. Denoting x(0) =
x0, the left-hand side of it is

〈ehxτ 〉 = 〈eh[x(τ )−x0]〉

=
∫

dx
∫ L

0
dx0eh[x(τ )−x0] p(x, τ |x0, 0)p(x0) (D1)

=
∫

dx ehx(τ ) p(x, τ |x0, 0)
∫ L

0
e−hx0 dx0/L (D2)

≡ 1

L

∫ L

0
〈ehx(τ )〉x0 e−hx0 dx0. (D3)

From the main text we get

〈ehx(τ )〉x0 = eLτ ehx0φ(0) = ehx0 [eLτ φ(0)]

= ehx0〈ehx(τ )〉x0=0, (D4)

so that

〈ehxτ 〉 = 1

L

∫ L

0
〈ehx(τ )〉x0 e−hx0 dx0

= 〈ehx(τ )〉x0=0

(
1

L

∫ L

0
dx0

)

= 〈ehx(τ )〉x0=0, (D5)

which is just the equality (18) of the main text. Then us-
ing Eq. (22) we are able to figure out Kxτ

(h). The matrix
L can always be diagonalized as L = X�X −1, where � =
diag(λ1, λ2) and X is composed of its eigenvectors, since it
has two different eigenvalues

λ1 = a + b −
√

(a − b)2 + 4γlγr

2
,

λ2 = a + b +
√

(a − b)2 + 4γlγr

2
,

where a ≡ Dh2 + vh − γr and b ≡ Dh2 − vh − γl . As a re-
sult, the exponential of matrix L can be computed using

eLτ = Xe�τ X −1 = X

(
eλ1τ 0

0 eλ2τ

)
X −1, (D6)

leading to the final expression of Kxτ
(h):

Kxτ
(h) = a + b

2
τ + ln

[
cosh

(
f

2
τ

)
+ C sinh

(
f

2
τ

)]
,

(D7)

with

f ≡
√

(a − b)2 + 4γlγr

2

and

C ≡ (a − b)(γl − γr ) + 4γlγr

f (γl + γr )
.

From the above expression, it is clear that the CGF is an
increasing function of |h|. We have checked the validity of
Eq. (D7) by generating the first and second cumulants of xτ

utilizing

∂Kxτ
(h)

∂h
|h=0 = 〈xτ 〉 (D8)

and

∂2Kxτ
(h)

∂h2
|h=0 = Var(xτ ), (D9)

which are equal to their true forms (7) and (8) in the main text.
In what follows we calculate limh→∞ F (h). From the defi-

nition of f and C, it is clear that in the large-h limit

f ∼ h, C ∼ O(1)

⇒ ln

[
cosh

(
f

2
τ

)
+ C sinh

(
f

2
τ

)]
∼ h

so that from the expression of Kxτ
(h) one can obtain

Kxτ
(h) = Dτh2 + O(h) + constant, (D10)

with O(h) being some function of the order of h. Then one can
readily compute lim|h|→∞ F (h) as

lim
|h|→∞

F (h) = lim
|h|→∞

h2

Kxτ
(h) − h〈xτ 〉

= lim
|h|→∞

1

Kxτ
(h)/h2 − 〈xτ 〉/h

= lim
|h|→∞

1

Dτ + O(|h|−1)

= 1

Dτ
. (D11)

APPENDIX E: NUMERICAL EVIDENCE
OF suphF(h) = 1/(Dτ )

The transport efficiency for the entropy production estima-
tor h2〈xτ 〉2

ln〈ehxτ 〉−h〈xτ 〉 is given by

η(τ, h) = 〈xτ 〉2

〈�τ 〉 F (h) = Dτ

(
γl − γr

γl + γr

)2

F (h), (E1)

thus F (h) ∝ η(τ, h). As a result, to test the monotonicity
of F (h) one could focus on η(τ, h). We give the three-
dimensional plots of η(τ, h) versus τ and h with different v,
γl,r and D, where the vertical axis denotes η(τ, h). The plots,
Figs. 4 and 5, show the behaviors of η(τ, h) versus h and τ

when γl = 10 and γr = 0.1. Below we explore another case
when γl = 5 and γr = 1. Note that in the gray areas of the
plots the value of η(τ, h) is very close to zero compared to the
values of points in other areas. With this numerical evidence,
we can claim that F (h) is an increasing function of h when
h > 0, and F (h) � F (−h) when h < 0 for any observation
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FIG. 4. The transport efficiency η(τ, h) vs h and τ with different D and v; transition rates are γl = 10, γr = 0.1 for this figure. For
(a), (b), and (c) the parameters are chosen as D = 1.0, v = 0.1, 1.0, 100, respectively. For (d), (e), and (f) the parameters are chosen as
D = 0.1, v = 0.1, 1.0, 100, respectively.

time τ , leading to the wanted result

sup
h

F (h) = lim
h→∞

F (h) = 1

Dτ
. (E2)

Note that when γl = γr , F (h) becomes a even function
and F (h) = F (−h); when γl > γr we observe that F (h) >

F (−h).
We also check other cases when these parameters take

other values, and no counterexample has been found.

FIG. 5. The transport efficiency η(τ, h) vs h and τ with different D and v; transition rates are γl = 5, γr = 1 for this figure. For (a), (b),
and (c) the parameters are chosen as D = 1.0, v = 0.1, 1.0, 100, respectively. For (d), (e), and (f) the parameters are chosen as D = 0.1, v =
0.1, 1.0, 100, respectively.
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