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Counting of level crossings for inertial random processes: Generalization of the Rice formula
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We address the counting of level crossings for inertial stochastic processes. We review Rice’s approach to the
problem and generalize the classical Rice formula to include all Gaussian processes in their most general form.
We apply the results to some second-order (i.e., inertial) processes of physical interest, such as Brownian motion,
random acceleration and noisy harmonic oscillators. For all models we obtain the exact crossing intensities and
discuss their long- and short-time dependence. We illustrate these results with numerical simulations.
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I. INTRODUCTION

Level-crossing problems—and related issues such as hit-
ting, extreme-value, first-passage, and exit times problems,
among others—are not only of deep physical and theoretical
interest but also of considerable practical importance, with
countless applications ranging from chemical physics, meteo-
rology, seismology, reliability theory, structural and electrical
engineering, and even economics and finance, just to name
a few [1–6]. In a rather general form we may say that the
level-crossing problem consists in gathering information on
the interval between crossing points to some given level or
mark—usually critical—with the ultimate objective of ob-
taining the probability density of the time intervals between
consecutive crossings, a problem which, unfortunately, has no
known exact solution [7]. What is known, however (at least to
some extent), is the counting of level crossings.

The problem of level-crossing counting was first thor-
oughly discussed during the mid-1940s by S. O. Rice [8,9]
within statistical communication theory and it was restricted
to stationary Gaussian processes. The main result was the
classical Rice formula for the average number of occasions,
per unit time, that these processes cross a given level. While
Rice was primarily concerned with applications to electrical
and radio engineering, the matter has deep and far-reaching
effects on other fields of knowledge such as ocean and me-
chanical engineering, chemical physics, material sciences,
laser physics and optics, and many more (see the review in
Ref. [10]). After Rice the problem was first put on firmer
mathematical basis by Itô [11], Ylvisaker [12], and particu-
larly by the Scandinavian school of statistics led by Harald
Cramer and collaborators [3,10,13–16], among others (see
Refs. [17–19] for a small sample).

One of the main achievable goals in the theory of level
crossings is provided by the crossing intensity, or average
crossing frequency, which is the average number of times (per

*jaume.masoliver@ub.edu
†palassini@ub.edu

unit time) that a random process crosses some given level.
The inverse of such a quantity has dimensions of time and
is called the return period. In mechanical engineering this
is a key quantity since it measures the severity of the load
on a given structure. For instance, in ocean engineering, in
designing walls for the protection against high sea levels the
sea surface is generally modeled by stationary Gaussian fields
with random excursions from an average height [3].

As we will recall in the next section, in order to develop
Rice’s approach to a given stochastic process, it is neces-
sary to know the joint probability density of the process and
its time derivative, which in many cases is not known. For
example, first-order processes driven by white noise are not
differentiable, and thus this joint density does not exist. One
of the objectives of this work is to extend Rice theory and
obtain exact expressions of the crossing intensity for linear
second-order (i.e., inertial) random processes.

As far as we know, most applications and generalizations
of Rice theory are restricted to Gaussian processes and ex-
tensions thereof. This is, for instance, the case of the Slepian
model for Gaussian and stationary processes after crossings
of the average level [20]. Another extension is addressed to
quadratic sums of, again, Gaussian processes (the so-called
χ2 processes [3]), which are important in modeling the re-
sponse of a given structure to a wind load. In both extensions,
solutions are usually numerical and essentially focused on
engineering applications. Rice’s formula can also be derived
from the Kac counting formula [21] for the roots of func-
tions with continuous first derivative, and for this reason it is
sometimes called the Kac-Rice formula [22,23]. The formula
has been generalized to scalar-valued random fields [24] and
vector-valued random fields [22,23].

Rice’s theory has been widely studied in mathematics and
engineering but, to our knowledge, it seems to be less known
in physics. Our main goals here are to review the theory
using simple arguments and, as mentioned above, to apply
it to inertial random process which naturally arise in many
physical applications. Previous physical applications of Rice’s
theory include persistence and first-passage properties (see the
review in Ref. [25] and references therein). The number of
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crossings of the order parameter at a given level has been used
to analyze metastable states in the stochastic evolution of spin
systems [26,27], but in this case the evolution is not inertial.
Rice’s theory was also generalized to determine the number of
critical points in stochastic processes and random fields, such
as those arising in the statistical physics of disordered systems
[28–30].

The paper is organized as follows. In Sec. II we review the
classical Rice formula of the crossing intensity. In Sec. III we
obtain the most general expression of the crossing intensity
for any Gaussian process. In Sec. IV we apply the results
to some particular but relevant Gaussian inertial processes
such as Brownian motion and random acceleration process.
Section V is devoted to random oscillators, either damped or
undamped, with a thorough discussion of different timescales.
Concluding remarks are in Sec. VI and some technical details
in three appendices.

II. THE LEVEL-CROSSING PROBLEM
AND RICE FORMULA

Historically, the level-crossing problem stemmed from the
Rice zero-crossing problem [8,9], which in turn originated in
Kac’s search of the zeros of random polynomials [21]. Rice
studied the case in which the random process was given by
the explicit form X (t ) = f (a1, . . . , an; t ), where f (·) is any
given function and a1, . . . , an are random variables. He then
obtained an explicit expression for the average number of
zeros per unit time when X (t ) is a stationary Gaussian process.
The result was latter extended to wider classes of random pro-
cesses, including nonstationary ones [16]. We will next review
the general formula for the counting of level crossings using
intuitive arguments rather than a more rigorous mathematical
reasoning. We essentially follow Rice original approach [8]
as well as Blake and Lindsey excellent review [1] and refer
the interested reader to Lindgren’s textbook [16] for more
rigorous derivations.

A. Level-crossing intensity

Let X (t ) be a random process and denote by Y (t ) = Ẋ (t )
its time derivative (also called velocity) which is supposed
to exist, at least in the sense of generalized functions, and
let p(x, y, t ) be the joint probability density function (PDF)
of X (t ) and Y (t ). In a first step, the level-crossing problem
consists in counting the number of times that X (t ) attains a
certain level or mark u (which can be time dependent), that is,
in obtaining statistical information on the random quantity:

Nu(t0, t ) = no. of times X (τ ) = u, (t0 � τ � t ).

In some applications it is important to distinguish whether
the crossing of level u occurred while “going up” or “going
down,” and we thus have the number of upcrossings,

N (+)
u (t0, t ) = no. of times X (τ ) = u,

Ẋ (τ ) > 0, (t0 � τ � t ),

and we can analogously define the number of downcrossings
N (−)

u (t0, t ) in which Ẋ (τ ) < 0. These quantities are obviously
random variables depending on the particular realization of
the process X (t ).

FIG. 1. Illustration of an upcrossing event. The irregular (black)
line represents a simulated random trajectory X (t ), the straight
oblique (purple) line has slope Ẋ (t ). If �t is small enough, then X (t )
will cross the level u, represented by the horizontal solid (green) line
in the interval (t, t + �t ) if Ẋ (t ) > 0 and u − Ẋ (t )�t � X (t ) � u.

We will now obtain the probability of having a crossing
event to any level u during a time interval (t, t + �t ). Let
us first observe that the probability of having more than one
crossing during the interval is negligible as long as �t is
small. Therefore, during small time intervals, the probabil-
ity of having a crossing event equals the probability that
Nu(t, t + �t ) = 1. Let us also note that the crossing of any
level u for the process X (t ) during a small time interval
(t, t + �t ) will take place either (i) if X (t ) is between the
positions u − Y (t )�t and u while the velocity Y (t ) is positive
(upcrossing), as illustrated in Fig. 1, or (ii) if X (t ) is between
u and u + |Y (t )|�t while Y (t ) is negative (downcrossing).

Consequently, the probability of a crossing during (t, t +
�t ), either down or up, is

Prob{Nu(t, t + �t ) = 1}
= Prob{u − Y (t )�t � X (t ) � u,Y (t ) > 0}

+ Prob{u � X (t ) � u + |Y (t )|�t,Y (t ) < 0}
or, in terms of the joint PDF p(x, y, t ),

Prob{Nu(t, t + �t ) = 1}

=
∫ ∞

0
dy

∫ u

u−y�t
p(x, y, t )dx

+
∫ 0

−∞
dy

∫ u+|y|�t

u
p(x, y, t )dx

= �t

[ ∫ ∞

0
yp(u, y, t )dy +

∫ 0

−∞
|y|p(u, y, t )dy

]

+ O(�t2),

that is,

Prob{Nu(t, t + �t )= 1}= �t
∫ ∞

−∞
|y|p(u, y, t )dy + O(�t2).

(1)
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The average number of crossings in (t, t + �t ) is thus

〈Nu(t, t + �t )〉 = 1 × Prob{Nu(t, t + �t ) = 1}
+ 0 × Prob{Nu(t, t + �t ) = 0},

and by virtue of Eq. (1) we write

〈Nu(t, t + �t )〉 = �t
∫ ∞

−∞
|y|p(u, y, t )dy + O(�t2). (2)

We define the intensity (or frequency) of crossings, μu(t ),
as the expected number of crossings per unit time, that is,

μu(t ) ≡ lim
�t→0

〈Nu(t, t + �t )〉
�t

, (3)

and from Eq. (2) we obtain the generalized Rice formula:

μu(t ) =
∫ ∞

−∞
|y|p(u, y, t )dy, (4)

valid for general nonstationary random processes.1We also
see from Eqs. (2)–(4) that the average 〈Nu(t0, t )〉 of the total
number of crossings during a finite time interval (t0, t ) is

〈Nu(t0, t )〉 =
∫ t

t0

μu(t ′)dt ′ =
∫ t

t0

dt ′
∫ ∞

−∞
|y|p(u, y, t ′)dy.

(5)

Considering that the average of the total number cross-
ings is the sum of the average number of upcrossings plus
downcrossings, i.e., 〈Nu(t0, t )〉 = 〈N (+)

u (t0, t )〉 + 〈N (−)
u (t0, t )〉

(tangencies are supposed to be a set of zero measure [16]),
the expressions above can be easily modified to define the
intensity of upcrossings μ(+)

u (t ) or downcrossings μ(−)
u (t ) as

μ(+)
u (t ) =

∫ ∞

0
yp(u, y, t )dy, (6)

and

μ(−)
u (t ) =

∫ 0

−∞
|y|p(u, y, t )dy =

∫ ∞

0
yp(u,−y, t )dy. (7)

Obviously,

μu(t ) = μ(+)
u (t ) + μ(−)

u (t ). (8)

An alternative way to deduce the above results is via the
Kac counting formula [21]. In order to derive this formula,
following Ref. [31], let s1, s2, . . . , be the crossing times of the
Nu(t0, t ) crossings of level u in the interval [t0, t]. Consider
a sufficiently small interval Ii around the crossing time si, so
that no other crossings occur in this interval. Then, applying
the change of variables z = X (t ) to the identity

1 =
∫ ∞

−∞
δ(z − u)dz,

we obtain

1 =
∫

Ii

δ(X (t ) − u)|Ẋ (t )|dt,

1As we will see below [see Eq. (16)], the term “Rice formula”
is usually applied to the case when X (t ) and Y (t ) are independent
and stationary Gaussian processes with zero mean. In any case the
expression (4) is also termed as Rice formula.

and summing over all the crossings we obtain the celebrated
Kac counting formula [21] (in physicists’ notation):

Nu(t0, t ) =
∫ t

t0

δ(X (t ′) − u)|Ẋ (t ′)|dt ′.

The expectation value of Nu(t0, t ) is thus

〈Nu(t0, t )〉 =
∫ t

t0

dt ′
∫ ∞

−∞
dx

∫ ∞

−∞
dyp(x, y, t ′)δ(x − u)|y|

=
∫ t

t0

dt ′
∫ ∞

−∞
p(u, y, t ′)|y|dy.

For a rigorous derivation, we refer to Ref. [31] (p. 265). Gen-
eralizations of the Kac-Rice formula were later obtained for
scalar-valued random fields [X (t ) ∈ R and t ∈ Rd with d >

1] [24], as well as vector-valued random fields [X (t ) ∈ Rd ′

and t ∈ Rd , generally with d ′ < d]. Moreover, extensions to
the counting of critical points were also obtained. For rigorous
recent reviews of these developments, we refer to the books
[22,23]. In this work, we will only be concerned with one-
dimendional random processes (d = d ′ = 1). The extension
of our results to higher dimensions appears rather difficult due
to the increasing complexity of the geometry.

B. Stationary processes: Return time and maximum distribution

We now suppose that X (t ) is a stationary random process,
which means that it is time homogeneous and that there exists
a time-independent stationary distribution defined as [5]

pst (x, y) = lim
t→∞ p(x, y, t ).

This leads us to define the stationary intensity of crossings by

μu ≡ lim
t→∞ μu(t ).

Taking the limit t → ∞ in Eq. (4), Rice’s formula now reads

μu =
∫ ∞

−∞
|y|pst (u, y)dy, (9)

and the average for the total number of crossings over a finite
time interval �t = t − t0 is given by [cf. Eq. (5)]

〈Nu(t0, t0 + �t )〉 = μu�t = �t
∫ ∞

−∞
|y|pst (u, y)dy. (10)

These expressions can be trivially extended to upcrossings
and downcrossings. We thus have

μ(+)
u =

∫ ∞

0
ypst (u, y)dy, μ(−)

u =
∫ ∞

0
ypst (u,−y)dy.

Related to the stationary intensity of upcrossings is the return
period Tu to a level u, defined as

Tu = 1

μ
(+)
u

, (11)

which provides the mean time interval between successive
upcrossings of the level u.

Let us next briefly explain the connection between crossing
counting and the distribution of the maximum value taken by
a random process X (τ ) on a given time interval τ ∈ (t0, t ).
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We introduce such a connection through an engineering ex-
ample. The return period is a key quantity in engineering for
designing the maximal load that a mechanical structure can
withstand before suffering structural damage, as well as for
knowing its operative life [3]. Designers want to know the
probability that the structure will suffer a load surpassing the
design load u during a certain service time. Thus, if X (τ )
represents the load at time τ and

M(t0, t ) = max{X (τ ), t0 � τ � t}
is the maximum load within the service time, (t0, t ), then
we want to know Prob{M(t0, t ) > u}. There is a very
close relation between this probability and the probability
Prob{N (+)

u (t ) > 0} that there has been at least one upcrossing
to level u during the interval (t0, t ). Indeed, assuming that the
process starts below the critical value, X0(t0) = x0 < u, we
have

Prob{M(t0, t ) > u} = Prob{N (+)
u (t0, t ) > 0}, (12)

which connects two aspects of the level-crossing problem as
are extreme values and level-crossing counting.

Such a connection can be further enhanced in the following
way. Let us first note that

Prob{M(t0, t ) > u} = 1 − Prob{M(t0, t ) � u},
but Prob{M(t0, t ) � u} is the distribution function of the max-
imum, that is,

F (u, t |x0, t0) = Prob{M(t0, t ) � u|X (t0) = x0}.
However, F (u, t |x0, t0) is related to the survival (or nonhit-
ting) probability S at time t of the process X (τ ),

S(u, t |x0, t0) = Prob{X (τ ) 	= u; ∀τ ∈ (t0, t )| X (t0) = x0},
which is instrumental in first-passage problems. Indeed, as we
have shown (see, for instance, [5,32,33]),

F (u, t |x0, t0) = S(u, t |x0, t0)�(u − x0),

[�(·) is the Heaviside step function] and since we have as-
sumed that x0 < u we simply write

F (u, t |x0, t0) = S(u, t |x0, t0).

In other words

Prob{M(t0, t ) � u} = S(u, t |x0, t0),

and from Eq. (12) we write

Prob{N (+)
u (t0, t ) > 0} = 1 − S(u, t |x0, t0), (13)

which clearly shows the relationship between first-passage
(via survival probability) and level-crossing counting. For dif-
fusion processes the survival probability can be obtained by
solving the Fokker-Planck equation with initial and absorbing
boundary conditions [5] and this can provide a way of obtain-
ing the exact expression of the probability Prob{N (+)

u (t ) > 0},
which is, in general, rather difficult to get [3].

Let us finally obtain a practical bound for Prob{M(t0, t ) >

u} which may be relevant in applications. From the Markov
inequality we have

Prob{N (+)
u (t0, t ) > 0} � 〈N (+)

u (t0, t )〉
⇒ Prob{M(t0, t ) > u} � 〈N (+)

u (t0, t )〉,

and for stationary processes we write [cf. Eqs. (10)]

〈N (+)
u (t0, t )〉 = μ(+)

u �t ⇒ Prob{M(t0, t ) > u} � μ(+)
u �t

(�t = t − t0) and using Eq. (11) we have

Prob{M(t0, t ) > u} � �t

Tu
,

which is a useful bound for the probability that the maximum
load exceeds the critical level during the time interval �t .

C. The original Rice formula

As mentioned in the introduction, Rice’s formula for level
crossings was first obtained for stationary Gaussian processes,
assuming that the process X (t ) and its derivative Y (t ) = Ẋ (t )
are uncorrelated and, hence, independent.2 In such a case the
joint PDF will be given by p(x, y, t ) = p(x)p(y), that is,

p(x, y) = 1

2πσxσy
exp

(
− (x − mx )2

2σ 2
x

− (y − my)2

2σ 2
y

)
, (14)

where mx, my are the stationary averages and σ 2
x , σ 2

y the
stationary variances of X (t ) and Ẋ (t ), respectively.

In the original formulation it is also assumed that velocity
has zero mean, i.e., my = 0, then substituting Eq. (14) into
Eq. (4) we readily obtain the classical Rice formula for the
intensity of crossing the level u:

μu = σy

πσx
e−(u−mx )2/2σ 2

x . (15)

When we set u = mx—corresponding to the crossing of the
mean value—we get

μm = σy

πσx
, (16)

which agrees with the zero-crossing intensity originally de-
vised by Rice [8].

III. LEVEL-CROSSING COUNTING FOR GENERAL
GAUSSIAN PROCESSES

We have seen that Rice formula is usually written for sta-
tionary Gaussian processes X (t ) and when Ẋ (t ) has zero mean
and is independent of X (t ) [cf. Eq. (15)]. Before specifically
addressing inertial processes we will present Rice formula for
any general Gaussian process with no restrictions. Let us thus
suppose that X (t ) is a Gaussian process, then its derivative,
Ẋ (t ) = Y (t ), is also Gaussian since the derivative is a linear
operation on X (t ) and keeps the Gaussian character. In its

2Recall that stationarity means that the joint PDF, p(x, y, t ) =
p(x, y), does not depend of time, which in particular implies that the
averages 〈X (t )〉 = mx and 〈Y (t )〉 = my do not depend on time either
and that 〈X (t + τ )Ẋ (t )〉 = 〈X (τ )Ẋ (0)〉 for all τ and 〈X (t )Ẋ (t )〉 =
〈X (0)Ẋ (0)〉. On the other hand, if X (t ), Ẋ (t ) are uncorrelated, then
〈X (τ )Ẋ (0)〉 = 〈X (τ )〉〈Ẋ (0)〉 and, in particular, σ 2

xy = 〈X (0)Ẋ (0)〉 −
〈X (0)〉〈Ẋ (0)〉 = 0. Since Gaussian processes are determined by the
first two moments, if X (t ), Ẋ (t ) are uncorrelated they are also inde-
pendent.
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more general form the joint PDF of the bidimensional process
(X (t ),Y (t )) is explicitly given by the Gaussian function [5]

p(x, y, t ) = 1

2π�(t )
exp

(
− 1

2�2(t )

{
σ 2

y (t )[x − mx(t )]2

− 2σxy(t )[x − mx(t )][y − my(t )]

+ σ 2
x (t )[y − my(t )]2

})
, (17)

where

mx(t ) = 〈X (t )〉, my(t ) = 〈Y (t )〉, (18)

σ 2
x (t ) = 〈[X (t ) − mx(t )]2〉,

σxy(t ) = 〈[X (t ) − mx(t )][Y (t ) − my(t )]〉, (19)

σ 2
y (t ) = 〈[Y (t ) − my(t )]2〉,

are mean values and variances, and the discriminant �(t ) (not
to be confused with the time increment �t used earlier) is

�(t ) =
√

σ 2
x (t )σ 2

y (t ) − σ 2
xy(t ). (20)

The total crossing intensity μu(t ) will be given by Rice
formula after substituting Eq. (17) into Eq. (4). We will first
evaluate the intensities of upcrossings and downcrossings,
μ(+)

u (t ) and μ(−)
u (t ) respectively and then obtain the total

frequency μu(t ). From Eqs. (6) and (17) we write

μ(+)
u (t ) =

∫ ∞

0
yp(u, y, t )dy = 1

2π�
e−σ 2

y (u−mx )2/2�2
∫ ∞

0
y exp

(
− σ 2

x

2�2
(y − my)2 + σxy(u − mx )

�2
(y − my)

)
dy, (21)

which, after performing the Gaussian integral and simple manipulations, yields

μ(+)
u (t ) = �(t )

2πσ 2
x (t )

e−(u−mx (t ))2/2σ 2
x (t )[e−η2

u (t ) + √
πηu(t )Erfc(−ηu(t ))

]
, (22)

where

ηu(t ) ≡ my(t )σx(t )√
2�(t )

+ σxy(t )√
2�(t )σx(t )

[u − mx(t )], (23)

and

Erfc(z) = 2√
π

∫ ∞

z
e−t2

dt

is the complementary error function.
As to downcrossings, from Eqs. (7) and (17) we have

μ(−)
u (t ) =

∫ ∞

0
yp(x,−y, t )dy = 1

2π�
e−σ 2

y (u−mx )2/2�2
∫ ∞

0
y exp

(
− σ 2

x

2�2
(y + my)2 − σxy(u − mx )

�2
(y + my)

)
dy, (24)

and by comparing Eq. (21) with Eq. (24) we see that, knowing μ(+)
u (t ), we can recover μ(−)

u (t ) after making the replacements

my(t ) −→ −my(t ), σxy(t ) −→ −σxy(t ).

As a result, from Eq. (22) we get

μ(−)
u (t ) = �(t )

2πσ 2
x (t )

e−[u−mx (t )]2/2σ 2
x (t )

[
e−η2

u (t ) − √
πηu(t )Erfc(ηu(t ))

]
, (25)

with ηu(t ) given in Eq. (23).

The total number of crossings is given by the sum [cf.
Eq. (8)]

μu(t ) = μ(+)
u (t ) + μ(−)

u (t ).

Adding Eqs. (22) and (25) and taking into account that

Erfc(−z) − Erfc(z) = 2Erf(z),

where

Erf(z) = 2√
π

∫ z

0
e−x2

dx,

is the error function, we obtain

μu(t ) = �(t )

πσ 2
x (t )

e−[u−mx (t )]2/2σ 2
x (t )

× [
e−η2

u (t ) + √
πηu(t )Erf(ηu(t ))

]
. (26)

Equations (22), (25), and (26) constitute the most general
forms of Rice formula for any Gaussian process.

Let us finish this section by presenting two particular but
important cases.

(i) In the first case we suppose that X (t ) and Y (t ) are
independent, in which case

σxy(t ) = 0 ⇒ �(t ) = σx(t )σy(t )
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and Eq. (26) reads

μu(t ) = σy(t )

πσx(t )
e−[u−mx (t )]2/2σ 2

x (t )

[
e−m2

y (t )/2σ 2
y (t ) +

(
π

2

)1/2 my(t )

σy(t )
Erf

(
my(t )√
2σy(t )

)]
. (27)

If, in addition, my(t ) = 0, then we have

μu(t ) = σy(t )

πσx(t )
e−[u−mx (t )]2/2σ 2

x (t ), (28)

which coincides with the original Rice formula (15) in the stationary case when σx, σy, and mx are time independent.
(ii) A second and more relevant case consists in counting the crossing of the mean value of the process, regardless of whether

X (t ) and Ẋ (t ) are correlated. In such a case (which is, in fact, equivalent to the zero-crossing problem and will be referred to as
mean-crossing problem from now on) we have

u = mx(t ) ⇒ ηu(t ) = my(t )σx(t )√
2�(t )

and Eq. (26) reads

μm(t ) = �(t )

πσ 2
x (t )

[
e−m2

y (t )σ 2
x (t )/2�2(t ) +

(
π

2

)1/2 my(t )σx(t )

�(t )
Erf

(
my(t )σx(t )√

2�(t )

)]
, (29)

where we use the notation

μm(t ) = μmx (t )(t ), (30)

for the crossing of the mean value. Finally, if the average
velocity is zero, my(t ) = 0, then we get

μm(t ) = �(t )

πσ 2
x (t )

, (31)

or, more explicitly [cf. Eq. (20)],

μm(t ) = σy(t )

πσx(t )

√
1 − [σxy(t )/σx(t )σy(t )]2, (32)

which can be regarded as the generalization of the original
Rice formula (16) for the zero-crossing problem in the case
when X (t ) and Ẋ (t ) are correlated [i.e., σxy(t ) 	= 0].

IV. GAUSSIAN INERTIAL PROCESSES: FIRST EXAMPLES

In many physical applications one frequently runs into
random processes whose time evolution is given by a second-
order differential equation with the appearance of inertial
terms represented by second-order derivatives. For one-
dimensional processes X (t ) a rather general form is given by

Ẍ = F (t, X, Ẋ , ξ (t )), (33)

where F is an arbitrary function and ξ (t ) is the input noise, a
given random process which is usually modeled as Gaussian
white noise. The origin of such equations typically stems
from Newton’s second law of motion, where X (t ) represents
the position of a particle moving under the effects of deter-
ministic and random forces embodied by the function F . A
paradigmatic example is the “noisy oscillator,” a linear (or
nonlinear) oscillator perturbed by random influences, either
in the frequency (Kubo oscillator) or with an external random
force or even with a random damping [34]. A simpler, yet very
relevant case, is provided by the inertial Brownian motion
in which F is a linear function independent of t and X . An
even simpler but highly nontrivial case is given by the random

acceleration process where F = kξ (t ). By applying the results
of the previous section we will obtain exact expressions of
the crossing intensity for these linear inertial cases. In this
section we address the examples of Brownian motion and
random acceleration, while in the next section we deal with
the noisy oscillator.3

Before proceeding further let us note that all examples
studied are linear. That is, F is a linear function and the
evolution equation (33) can be written as

Ẍ + βẊ + αX + γ = kξ (t ), (34)

where α, β, γ , and k are usually constant parameters, although
they may be functions of time as in aging processes. In any
case when the input noise ξ (t ) is Gaussian, the linearity of
Eq. (34) ensures that the output process X (t ) is also Gaussian.

As is well known, in second-order equations inertial in-
fluences decay faster than damping effects, so that, as time
increases (βt 
 1), we have |Ẍ (t )| � |βẊ (t )| [35]. In the
asymptotic regime βt → ∞, Eq. (34) reduces to a first-order
equation,

βẊ = −αX − γ + kξ (t ), (35)

which is the well-known Ornstein-Uhlenbeck process. Let
us finally remark that Rice’s approach is not applicable to
first-order processes driven by white noise. Indeed, in such
a case the variance of ξ (t ) is infinite and restricting ourselves
to linear processes Eq. (35) implies that the variance of Ẋ (t )
is also infinite. As a result the joint density p(x, y, t ) does not
exists and Rice’s approach is meaningless.4

3We note that any random process X (t ) described by a second-order
differential equation such as Eq. (33) is necessarily non-Markovian
[5]. However, if we define Y (t ) = Ẋ (t ), then the two-dimensional
random process (X (t ),Y (t )) obeys a first-order equation [see for
example the discussion after Eq. (37)] and is thus Markovian.

4This can be directly seen below [cf. Eq. (48)] where the limit
β → ∞ results in an infinite crossing intensity, which is absurd.
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A. Brownian motion

Suppose that X (t ) represents the position of a Brownian
particle moving inside a medium of damping constant β > 0
and external random force ξ (t ), whose evolution equation is
given by

Ẍ + βẊ = kξ (t ), (36)

where ξ (t ) is zero-mean Gaussian white noise,

〈ξ (t )ξ (t ′)〉 = δ(t − t ′), (37)

and k > 0 is the noise intensity. The initial conditions are
X (0) = x0 and Ẋ (0) = y0.

The second-order equation (36) is equivalent to the first-
order system

Ẋ = Y

Ẏ = −βY + kξ (t ),

whose solution reads

X (t ) = x0 + y0

β
(1 − e−βt ) + k

β

∫ t

0
[1 − e−β(t−t ′ )]ξ (t ′)dt ′

(38)

Y (t ) = y0e−βt + k
∫ t

0
e−β(t−t ′ )ξ (t ′)dt ′, (39)

from which we see [using 〈ξ (t )〉 = 0] that

mx(t ) = 〈X (t )〉 = x0 + y0

β
(1 − e−βt ),

my(t ) = 〈Y (t )〉 = y0e−βt . (40)

Let us observe that the Gaussian character of the input
noise ξ (t ) and the linearity of Eqs. (38) and (39) [or, alter-
natively, the linearity of Eq. (36)] show that X (t ) and Y (t )
are Gaussian processes as well. Therefore, in order to obtain
the crossing intensity μu(t ) for the Brownian particle to cross
some position u, we may apply the results of the previous
section which, as we have seen, need the knowledge of the
variances σ 2

x (t ), σ 2
y (t ), and σxy(t ).

In Appendix A we obtain

σ 2
x (t ) = k2

β3

(
βt − 3

2
+ 2e−βt − 1

2
e−2βt

)
, (41)

σ 2
y (t ) = k2

2β
(1 − e−2βt ), (42)

and

σxy(t ) = k2

β2

(
1

2
− e−βt + 1

2
e−2βt

)
. (43)

The exact expression for the crossing intensity μu(t ) is
obtained by substituting Eqs. (40)–(43) into Eq. (26), along
with the expressions for �(t ) and ηu(t ) given by Eqs. (20)
and (23), respectively. This ends in a rather cumbersome ex-
pression which we will not write.

As t → ∞, specifically for βt 
 1, we see that

mx(t ) � x0 + y0

β
, my(t ) � 0, (44)

and

σ 2
x (t ) � k2t

β2
, σ 2

y (t ) � k2

2β
, σxy(t ) � k2

2β2
, (βt 
 1).

(45)

The fact that σ 2
x (t ) grows linearly with time clearly shows

the well-known fact that Brownian motion is not stationary. In
this asymptotic case we have

�(t ) � k2t1/2

√
2β3/2

,
�(t )

σ 2
x (t )

�
(

β

2t

)1/2

,

ηu(t ) � β1/2

4kt
(u − mx ),

and Eq. (26) becomes

μu(t ) � 1

π

(
β

2t

)1/2

e−β2(u−mx )2/2k2t

×
[

e−β(u−mx )2/(4kt )2 + √
π

β1/2

4kt
(u − mx )

× Erf
(β1/2

4kt
(u − mx )

)]
, (βt 
 1). (46)

Note that when u = mx(t ) the mean-crossing intensity is
simply given by [cf. Eq. (30)]

μm(t ) � 1

π

(
β

2t

)1/2

, (βt 
 1).

This asymptotic behavior is nonetheless extensible to any
crossing level. Indeed, recalling that [36]

Erf(z) = 2√
π

e−z2
[z + O(z2)], (47)

and expanding the exponentials in (46) as βt 
 1 we easily
see that

μu(t ) � 1

π

(
β

2t

)1/2

, (βt 
 1), (48)

which is valid for any crossing level u. Let us note that while
the crossing intensity decreases with time, the total number of
crossings actually increases with time. Indeed, from Eqs. (5)
and (48) we see that the average number of crossings within
the interval (t0, t ) is given by (t0 and t large)

〈Nu(t )〉 =
∫ t

t0

μu(t ′)dt ′ � 1

π
(2βt )1/2[1 −

√
t0/t]. (49)

We validate the analytical results presented above by
Monte Carlo simulation of the evolution equation (36). The
simulations are carried out using the algorithm of Ref. [37],
which we describe in Appendix B. Figure 2 shows ex-
amples of random trajectories with β = 1, k = 1 (see also
Appendix B for the definition of the units of the simulation
parameters) and x0 = y0 = 0. For each time interval [t, t + δt )
we measure μu(t ) by averaging over a large number (typically
106) of trajectories. Figure 3 shows the results corresponding
to the above choice of parameters, for different values of u, to-
gether with the analytical expression obtained by substituting
Eqs. (40)–(43) into Eq. (26).
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FIG. 2. Examples of random trajectories X (t ) for the Brownian
motion, with k = 1, β = 1, x0 = 0, and y0 = 0. Simulations are
performed with a variable time step dt = 0.01

√
t .

B. Random acceleration

Let X (t ) be the position of an unbounded particle subject
to a random acceleration represented by zero-mean Gaussian
white noise ξ (t ). The dynamical equation of the process is
now given by

Ẍ (t ) = kξ (t ). (50)

This apparently simple case represents nonetheless a nontriv-
ial example of a non-Markovian process and it has been the
object of research in the literature related to first-exit times
[38], polymers [39], maxima statistics [40], and resettings
[41] just to name a small sample.

Denoting again Y (t ) = Ẋ (t ), and assuming X (0) = x0 and
Ẋ (0) = y0, the process, after integrating Eq. (50), is explicitly

FIG. 3. Crossing intensity μu(t ) for the Brownian motion and for
different values of u obtained from simulation (noisy colored lines),
compared with the analytical prediction (smooth black lines). All
simulation parameters are the same as in Fig. 2. The values of u
correspond, from top to bottom, to the lines from top to bottom.

given by

X (t ) = x0 + y0t + k
∫ t

0
(t − t ′)ξ (t ′)dt ′, (51)

Y (t ) = y0 + k
∫ t

0
ξ (t ′)dt ′, (52)

and

mx(t ) = x0 + y0t, my(t ) = y0. (53)

The bidimensional process (X (t ),Y (t )) is evidently Gaus-
sian and, proceeding as in Appendix A, we can obtain the
variances. However, since this model is a particular case of
the Brownian motion after setting β → 0, we can also obtain
the variances by taking the limit β → 0 in Eqs. (41), (42), and
(43). In either way, we get

σ 2
x (t ) = 1

3 k2t3, σ 2
y (t ) = k2t, σxy(t ) = 1

2 k2t2, (54)

and [cf. Eqs. (20)]

�(t ) = 1

2
√

3
k2t2.

In this case the exact expression for the crossing intensity,
Eq. (26), reads

μu(t ) =
√

3

2πt
e−3(u−mx (t ))2/2k2t3[

e−η2
u (t ) + √

πηu(t )Erf(ηu(t ))
]
,

(55)

where [cf. Eq. (23)]

ηu(t ) =
√

2

kt1/2

{
y0 + 3

2t
[u − mx(t )]

}
. (56)

The mean-crossing intensity, i.e., the crossing of the mean
value u = mx(t ) = x0 + y0t– is simpler and reads

μm(t ) =
√

3

2πt

[
e−2y2

o/(k2t ) +
√

2πy0

kt1/2
Erf

(√
2y0

kt1/2

)]
. (57)

When y0 = 0 we simply have

μm(t ) =
√

3

2πt
. (58)

Let us see next that the exact expression (58) for the mean-
crossing with zero initial velocity is precisely the asymptotic
expression as t → ∞ of the crossing intensity for any level u
and any y0. Indeed, from Eq. (56) we have

ηu(t ) =
√

2

kt1/2

[
y0 + O

(
1

t

)]
⇒ e−η2

u (t ) = 1 + O

(
1

t

)
.

Collecting results into Eq. (55), bearing in mind that

e−3(u−mx (t ))2/2k2t3 = 1 + O

(
1

t3

)
,

and recalling Eq. (47), we finally get

μu(t ) �
√

3

2πt
, (t → ∞), (59)

valid for any level u and any initial velocity. As in the Brow-
nian motion the crossing intensity also decreases with time,
although with a different law [cf. Eq. (48)], while the average
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number of crossings in a time interval (t0, t ) increases loga-
rithmically (t0 and t large),

〈Nu(t )〉 =
∫ t

t0

μu(t ′)dt ′ �
√

3

2π
ln(t/t0). (60)

C. Scaling and asymptotic regimes of
the mean-crossing intensity

We now analyze in more detail the different short- and
long-time limits of the mean-crossing intensity for both Brow-
nian motion and random acceleration. We can identify two
characteristic timescales in Brownian motion, namely

τ1 =
(

y0

k

)2

and τ2 = β−1, (61)

and depending on their relative value, we will obtain a differ-
ent short-time behavior.

1. Random acceleration

In this case β = 0 and τ2 = ∞, and therefore the only
relevant timescale is τ1, which is related to the initial velocity.
Hence, we see from Eq. (57) that in this case the following
scaling relation holds:

μm(t ) = 1

τ1
f (t/τ1), (62)

where the function f is given by

f (s) =
√

3

2πs

[
e−2/s +

√
2π

s
Erf(

√
2/s)

]
. (63)

The following asymptotic limits result:

f (s) ∼
⎧⎨
⎩

√
3

2π
s−3/2 s � 1

√
3

2π
s−1 s 
 1

. (64)

This scaling behavior is illustrated in Fig. 4, where, in order
to better appreciate the different asymptotic limits, we plot
tμm(t ), obtained from simulations at several values of y0,
as a function of s = t/τ1, together with the function s f (s)
and its asymptotic limits. The simulation data agree perfectly
with the analytical results. An enlarged view of the crossover
region at t/τ1 of order one is shown in Fig. 5.

2. Brownian motion

In this case β 	= 0 and we will distinguish the cases when
the initial velocity y0 is zero or different from zero.

(i) If y0 = 0, then we have τ1 = 0 and the only relevant
timescale is τ2. We thus see from Eqs. (29), (32), (41), (42),
and (43) that μm(t ) satisfies a different scaling relation,

μm(t ) = 1

τ2
g(t/τ2), (65)

where

g(s) = es

π

[
e2s

(
s
2 − 1

) + 2es − s
2 − 1

] 1
2

e2s
(
s − 3

2

) + 2es − 1
2

(66)

FIG. 4. Scaling plot of the mean-crossing intensity for random
acceleration (β = 0). The colored noisy lines correspond to simu-
lation results for k = 1 and y0 = 5, 1, 0.1 (corresponding to τ1 =
25, 1, 0.01), obtained with a time step dt = α

√
t with α = 0.001 for

t < 1 and α = 0.01 for t > 1, and averaged over 106 trajectories.
The nonmonotonic behavior at small time is an artifacts of the time
discretization, which disappears by decreasing the time step dt . The
solid (red) curved line corresponds to the analytical result in Eq. (63)
and is in perfect agreement with the simulations. The straight solid
and dashed (black) lines correspond, respectively, to the short-time
and long-time asymptotics in Eq. (64).

and the following asymptotic limits hold:

g(s) ∼
⎧⎨
⎩

√
3

2π
s−1 s � 1

1
π

√
2
s−1/2 s 
 1

. (67)

The scaling behavior is illustrated in Figs. 6 and 7, where we
plot (t/β )1/2μm(t ), with μm(t ) obtained from simulations at
several values of β and with y0 = 0, as a function of s = t/τ2,
together with the function

√
sg(s) and its asymptotic limits.

Also in this case the simulations agree perfectly with the
analytical results.

FIG. 5. Same as Fig. 4 but in linear scale and zooming in on the
crossover region between the short- and long-time limits.
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FIG. 6. Scaling plot of the mean-crossing intensity for β 	= 0 and
y0 = 0. The noisy colored lines represent simulations obtained with
β = 0.02, 0.1, 0.5, 1 (τ2 = 50, 10, 2, 1). See caption of Fig. 4 for
details on the simulations. The solid (red) curved line corresponds
to the analytical result in Eq. (66) and is in perfect agreement with
the simulations. The straight solid and dashed straight (black) lines
correspond, respectively, to the short-time and long-time asymptotics
in Eq. (67).

(ii) For a nonvanishing initial velocity, y0 	= 0, we have
the two timescales τ1 and τ2 defined in Eq. (61) and from
Eqs. (29), (32), (41), (42), and (43), we see that the crossing
intensity can be written as

μm(t ) = 1

τ2
h(t/τ2, τ2/τ1), (68)

where

h(s, r) = g(s)
2π√

3
r q(s) f (rq(s)), s = t/τ2, r = τ2/τ1

(69)

FIG. 7. Same as Fig. 6 but in linear scale and zooming in on the
crossover region between the short- and long-time limits.

Here f and g are the functions defined in Eqs. (63) and (66),
respectively, and q(s) is the function

q(s) = 2e2s(s − 2) + 8 es − 4 − 2s

2e−s − 1
2 e−2s + s − 3

2

. (70)

Equation (68) defines a family of scaling relations
parametrized by the ratio τ2/τ1. In the limits τ1 	= 0, τ2 → ∞
and τ1 → 0, 0 < τ2 < ∞, Eq. (68) reduces to, respectively,
the aforementioned cases of random acceleration and
Brownian motion with zero initial velocity [case (i)].

Using q(s) ∼ s for s → 0 and Eq. (64), we obtain

μm(t ) ∼
⎧⎨
⎩

√
3

2π
1
τ2

(
τ2
t

)3/2( τ1
τ2

)1/2
, t � τ2,

√
3

2πt1/2 t 
 (τ1, τ2)

or, equivalently,

h(s, r) ∼
⎧⎨
⎩

√
3

2π
r−1/2s−3/2 s → 0,

1
π

√
2
s−1/2 s → ∞.

(71)

In particular, for a given ratio τ2/τ1 and when t is small
enough we are in the “ballistic” regime μm(t ) ∼ t−3/2. Let
us note that the case τ2/τ1 = 2 is especially relevant since
it corresponds to choosing an initial velocity equal to the
asymptotic value of the mean-squared velocity. That is,

y2
0 = lim

t→∞〈Y 2(t )〉 = k2

2β
, (72)

where we have used Eq. (42). As we will see below this
is a natural choice for the initial velocity for the Brownian
motion of a particle.5 Figures 8, 9, and 10 show scaling plots
for τ2/τ1 = 2, 1/9, and 5000, respectively. Notice that if the
two timescales are amply separated (i.e., 1 � τ1 � τ2) we
will have three power-law regimes, namely ballistic, random-
acceleration, and diffusive:

μm(t ) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
3

2π

y0

kt3/2 1 � t � τ1
√

3
2πt τ1 � t � τ2

1
π

√
β

2t t 
 τ2

, (73)

as can be seen in Fig. 10.
It is interesting to interpret the above results in the case

of the Brownian motion of a particle of mass m under a
viscous drag. The movement of the particle in one dimension
is described by the equation

mẌ (t ) = −γ Ẋ (t ) + ζ (t ), (74)

where γ is the drag coefficient (for example, γ = 6πηr for
a spherical particle, where η is the fluid viscosity and r is

5Let us remark that with this choice the mean-squared displace-
ment 〈�2X (t )〉, where �X (t ) = X (t ) − X (0), scales as 〈�X 2(t )〉 �
k2t2/2β in the ballistic regime where t � τ2 [42]. This can be easily
checked using Eq. (38), and proceeding in the same way we obtained
Eq. (41). In the diffusive regime, t 
 τ2, we have the expected
diffusive behavior 〈�X 2(t )〉 = σ 2

x (t ) � k2t/β2.
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FIG. 8. Scaling plot of the mean-crossing intensity for τ2/τ1 = 2.
The noisy colored lines correspond to the simulation results for
different values of τ2. The curved (red) solid line corresponds to
the analytical result in Eq. (68). The straight solid and dashed
(black) lines correspond, respectively, to the short-time and long-
time asymptotic regimes in Eq. (71).

the particle radius) and ζ is zero-mean Gaussian white noise
satisfying the fluctuation-dissipation theorem,

〈ζ (t )ζ (t ′)〉 = 2γ kBT δ(t − t ′), (75)

where kB is the Boltzmann constant and T is the temperature.
By comparison with Eq. (36), we see that k = √

2γ kBT /m
and β = γ /m. Thus the duration of the ballistic regime is τ2 =
m/γ (a result obtained long ago by Einstein [43]), and

τ2

τ1
= kBT

my2
0/2

, (76)

which is the ratio between twice the thermal energy and
the initial kinetic energy. In an experiment tracking the
motion of an individual particle, it is natural to assume
that, when we start observing the particle, its velocity is
already thermalized, namely y2

0 = limt→∞〈Y 2(t )〉 = k2/2β.
Thus we have my2

0/2 = kBT/2 and τ2/τ1 = 2. Furthermore, as

FIG. 9. Same as Fig. 8 but for τ2/τ1 = 1/9.

FIG. 10. Same as Fig. 8 but for τ2/τ1 = 5000.

discussed in footnote 5, the mean-squared displacement be-
haves as 〈�X 2(t )〉 � (kBT/m)t2 in the ballistic regime t �
m/γ and 〈�X 2(t )〉 � (2kBT/γ )t in the diffusive regime t 

m/γ . The crossover between the two regimes, albeit more
complex due to hydrodynamic interactions, has been observed
experimentally [44].

V. NOISY OSCILLATORS

We now apply the results of Sec. III to harmonic oscillators
driven by Gaussian white noise. The linearity of such systems
ensures the Gaussian character of the oscillator response. We
first focus on the damped case, which is stationary, and lat-
ter address the undamped oscillator, a nonstationary process
presenting some distinctive and interesting features.

A. Noisy oscillators with damping

We consider a linear oscillator subject to damping and
driven by an external force assumed to be zero-mean Gaussian
white noise. The time evolution is given by the second-order
linear equation

Ẍ + βẊ + ω2
0X = kξ (t ), (77)

where β > 0 is the damping constant, ω0 is the natural fre-
quency of the deterministic oscillator without damping, and
ξ (t ) is Gaussian white noise with 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 =
δ(t − t ′). Again, due to the linearity of Eq. (77), both X (t ) and
Ẋ (t ) are Gaussian processes.

As we can see by direct substitution, the solution to
Eq. (77) is

X (t ) = Ae−β(t−t0 )/2 cos[ω(t − t0) + δ]

+ k

ω

∫ t

t0

e−β(t−t ′ )/2 sin[ω(t − t ′)]ξ (t ′)dt ′. (78)

Hence

Y (t ) = Ẋ (t ) = −β

2
X (t ) − Aωe−β(t−t0 )/2 sin[ω(t − t0) + δ]

+ k
∫ t

t0

e−β(t−t ′ )/2 cos[ω(t − t ′)]ξ (t ′)dt ′, (79)
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where

ω =
√

ω2
0 − β2/4. (80)

In what follows we will assume that the oscillator works
within the underdamped regime, i.e., β < 2ω0, so that ω is
real. The constants A and δ are related to the initial conditions,
X (t0) = x0 and Ẋ (t0) = y0, by

A =
√

x2
0 + 1

ω2
(y0 + βx0/2)2,

δ = − arctan

[
1

ω

(
y0

x0
+ β

2

)]
. (81)

From Eqs. (78) and (79) we see that the average values of
position and velocity are

mx(t ) = Ae−β(t−t0 )/2 cos[ω(t − t0) + δ],

my(t ) = −β

2
mx(t ) − Aωe−β(t−t0 )/2 sin[ω(t − t0) + δ]. (82)

Let us incidentally note that these average values correspond
to the response of the deterministic oscillator.

In Appendix C we show that the variances are

σ 2
x (t ) = k2

ω2(β2 + 4ω2)

{
2ω2

β
− e−β(t−t0 )

×
[
β sin2 ω(t − t0) + ω sin 2ω(t − t0) + 2ω2

β

]}
,

(83)

σ 2
y (t ) = k2

β2 + 4ω2

{
1

β
(β2 + 2ω2) − e−β(t−t0 )

×
[
β cos2 ω(t − t0) − ω sin 2ω(t − t0) + 2ω2

β

]}
,

(84)

and

σxy(t ) = k2

2ω(β2 + 4ω2)
{2ω − e−β(t−t0 )

× [β sin 2ω(t − t0) + 2ω cos 2ω(t − t0)]}. (85)

Knowing mean values and variances the exact expression
for the crossing intensity of the oscillator to any level u is
attained from Eq. (26) after using Eqs. (20) and (23). As in
Brownian motion the resulting expression is clumsy and we
will not write it explicitly. In any case the exact expression
is mostly useful when the oscillator is in the transient state
which may be useful in some specific applications. However,
the behavior of the oscillator at longer times, when it enters
into the stationary regime turns out to be more relevant.

Contrary to the two cases developed in the previous sec-
tion which are not stationary, the noisy oscillator (77) achieves
the stationary regime at long times which exclude transient

effects depending on the initial conditions. This is easily seen
by taking the limit t0 → −∞ in Eqs. (78) and (79), that is6

X (t ) = k

ω

∫ t

−∞
e−β(t−t ′ )/2 sin[ω(t − t ′)]ξ (t ′)dt ′, (86)

Y (t ) = k

ω

∫ t

−∞
e−β(t−t ′ )/2[−(β/2) sin ω(t − t ′)

+ω cos ω(t − t ′)]ξ (t ′)dt ′. (87)

In this regime [cf. Eq. (82)]

mx(t ) = my(t ) = 0, (88)

and taking the limit t − t0 → ∞ in Eqs. (83)–(85) we get the
stationary variances

σ 2
x = 2k2

β(β2 + 4ω2)
, σ 2

y = k2(β2 + 2ω2)

β(β2 + 4ω2)
,

σxy = k2

β2 + 4ω2
,

which, in terms of the natural frequency ω0 [cf. Eq. (80)], can
be written as

σ 2
x = k2

2βω2
0

, σ 2
y = k2

(
β2/2 + 2ω2

0

)
4βω2

0

,

(89)

σxy = k2

4ω2
0

,

so that [cf. Eq. (20)]

� = k2

2βω0
. (90)

Substituting Eqs. (88), (89), and (90) into Eqs. (23) and
(26), after simple manipulations, results in the stationary
crossing intensity of the noisy oscillator:

μu = ω0

π
e−βω2

0u2/k2

[
e−β3u2/4k2 + √

π
β3/2u

2k
Erf

(
β3/2u

2k

)]
.

(91)

Note that in this case crossing the mean value corresponds to
setting u = 0, which gives

μm = ω0

π
, (92)

and we see that this crossing frequency (i.e., intensity) doubles
the natural frequency of the deterministic oscillator.

Following the same procedure for the upcrossing and
downcrossing intensities given in Eqs. (22) and (25) we easily
find

μ(±)
u = ω0

2π
e−βω2

0u2/k2

×
[

e−β3u2/4k2 ± √
π

β3/2u

2k
Erfc

(
∓ β3/2u

2k

)]
. (93)

6Let us recall that the stationary state is achieved when t − t0 →
∞. Such a limit may be taken by two different but equivalent ways:
(i) either t0 is finite (for instance t0 = 0) and t → ∞ or (ii) t is
finite but the process started in the infinite past, so that t0 → −∞. In
writing Eqs. (86) and (87) we have taken the second interpretation.
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For the mean-crossing problem u = mx = 0 and both intensi-
ties are equal,

μ(+)
m = μ(−)

m = μm/2,

and the frequencies of up- and downcrossings equal the natu-
ral frequency of the deterministic oscillator ω0/2π .

B. The undamped oscillator

When no damping is present, the evolution equation of the
noisy linear oscillator is simply given by

Ẍ + ω2
0X = kξ (t ). (94)

The formal solution to this equation with the initial conditions
X (0) = x0 and Ẋ (0) = y0 reads [see Eqs. (78) and (79)]

X (t ) = A cos(ω0t + δ) + k

ω0

∫ t

0
sin ω0(t − t ′)ξ (t ′)dt ′,

(95)

and

Y (t ) = −Aω0 sin(ω0t + δ) + k
∫ t

0
cos ω0(t − t ′)ξ (t ′)dt ′,

(96)

where

A =
√

x2
0 + y2

0/ω
2
0, δ = − arctan

(
y0

ωx0

)
, (97)

and we have set t0 = 0 without loss of generality because
the process is time homogeneous, although not stationary, but
obviously Gaussian.

The average values are

mx(t ) = A cos(ω0t + δ), my(t ) = −Aω0 sin(ω0t + δ),
(98)

and variances are now given by (cf. Appendix C)

σ 2
x (t ) = k2t

2ω2
0

(
1 − 1

2ω0t
sin 2ω0t

)
,

σ 2
y (t ) = k2t

2

(
1 + 1

2ω0t
sin 2ω0t

)
, (99)

σxy(t ) = k2

4ω2
0

(1 − cos 2ω0t ),

and [cf. Eq. (20)]

�(t ) = k2t

2ω0

√
1 −

(
sin ω0t

ω0t

)2

. (100)

Substituting these expressions into Eqs. (23) and (26) we
get the exact expression of the crossing intensity μu(t ) for
the undamped linear oscillator. Let us, however, focus on the
behavior for large times—specifically when several periods,
T0 = 2π/ω0, of the deterministic oscillator have elapsed—
that is, when ω0t 
 1. In such a case one can easily check
that

�(t )

σ 2
x (t )

= ω0

√
1 − sin2 ω0t/ω2

0t2

1 − sin 2ω0t/2ω0t
= ω0

[
1 + O

(
1

ω0t

)]
,

(101)

and

ηu(t ) = 1

kt1/2

{
my(t ) + 1

2t
[u − mx(t )(1 − cos 2ω0t )]

}

×
[

1 + O

(
1

ω0t

)]
. (102)

Let us incidentally note that within the same degree of ap-
proximation the function ηu(t ) is independent of the crossing
level u for sufficiently large values of t . Indeed, from the above
expression we see that

ηu(t ) = my(t )

kt1/2

[
1 + O

(
1

ω0t

)]
, (103)

which is valid for all finite values of the crossing level u.
Finally, substituting (101) and (103) into (26) and taking into
account [cf. Eq. (99)] that

σ 2
x (t ) = k2t

2ω2
0

[
1 + O

(
1

ω0t

)]
,

we have

μu(t ) = ω0

π
e−ω2

0[u−mx (t )]2/k2t

×
[

e−m2
y (t )/k2t + √

π
my(t )

kt1/2
Erf

(
my(t )

kt1/2

)
+ O

(
1

ω0t

)]
.

Recalling the asymptotic expression (47)

Erf(z) = 2z√
π

e−z2
[1 + O(z2)],

we obtain for sufficiently long times7

μu(t ) � ω0

π
exp

(−{
ω2

0[u − mx(t )]2 + m2
y (t )

}
/k2t

)
. (104)

Let us finally point out that, although the undamped noisy os-
cillator is not stationary, its crossing intensity tends as t → ∞
to a finite value independent of any finite crossing level u,

lim
t→∞ μu(t ) = ω0

π
, (105)

a crossing frequency which doubles the natural frequency of
the deterministic oscillator.

C. Simulation results

We have simulated Eq. (77) for β 	= 0 and β = 0 using
the algorithm described in Appendix B. Examples of random
trajectories for different values of β are shown in Fig. 11,
together with the average mx(t ) = 〈X (t )〉.

The mean crossing intensities μ(±)
m (t ) and μm(t ) as a func-

tion of t are shown in Fig. 12 (β = 0) and Fig. 13 (β 	= 0).
Note that at large times μ(±)

m (t ) tend to ω0/(2π ) and μm(t )
tends to ω0/π . In these figures, as well as in the subsequent
ones, the smooth black lines show the analytical results which,
as they should, are in all cases in perfect agreement with the
simulation results.

7Specifically for t 
 ω−1
0 and t 
 m2

y (t )/k2. Note that by virtue of
Eqs. (97) and (98) m2

y (t )/k2 = O(y2
0/k2).

024111-13



JAUME MASOLIVER AND MATTEO PALASSINI PHYSICAL REVIEW E 107, 024111 (2023)

FIG. 11. Example of random trajectories X (t ) for the noisy os-
cillators with k = 1, ω0 = 1, x0 = 0, and y0 = 1, shown by the thin
(black) lines. From top to bottom, β = 0.5, β = 0.1, and β = 0.
Data for β = 0.5 and β = 0.1 have been shifted upwards by 20 and
10, respectively, for better viewing. Simulations are performed with
a fixed time step dt = 0.01. The thick (green) lines represent the
average value 〈X (t )〉 given in Eq. (82).

In comparison with the Brownian motion and random ac-
celeration cases, the noisy oscillator presents an additional
timescale ω−1 (or ω−1

0 in the undamped case). When this
is much larger than the scales β−1 and (y0/k)2, the short-
time behavior of μm(t ) is the same as that of the Brownian
motion. In particular, if y0 = 0, then μm(t ) ∼ √

3/(2πt ) as
(βt, ωt ) � 1, and if y0 	= 0, then μm ∼ (y0

√
3/2πk)t−3/2 as

t → 0. These limits are well verified in the numerical sim-
ulations, and scaling plots similar to those for the Brownian

FIG. 12. The mean-crossing intensity for the damped oscillator
with β = 0.1, k = 1, ω0 = 1, x0 = 0, y0 = 1, and dt = 0.01. The
noisy colored lines show the simulations results for upcrossing,
downcrossing, and total crossing intensities, obtained by averaging
over 106 trajectories. The smooth (black) curves are the analyt-
ical results, obtained substituting Eqs. (82), (83), (84), and (85)
into Eqs. (22), (25), and (26) for upcrossing, downcrossing, and
total intensities, respectively. The horizontal (black) lines show the
asymptotic limit for large times.

FIG. 13. The mean-crossing intensity for the undamped oscil-
lator (β = 0) with k = 1, ω0 = 1, x0 = 0, y0 = 1, and dt = 0.01.
The noisy colored lines show the simulations results for upcrossing,
downcrossing, and total crossing intensities, obtained by averaging
over 106 trajectories. The smooth (black) curves are the analytical
results, obtained substituting Eqs. (98), (99), and (100) into Eqs. (22),
(25), and (26) for upcrossing, downcrossing, and total intensities,
respectively. The horizontal (black) lines show the asymptotic limit
for large times.

motion and random acceleration are obtained (although we do
not show them here).

For applications, it is more interesting to examine the be-
havior of the crossing intensity at a fixed level u. This is
shown in Figs. 14 and 15 for β 	= 0 and β = 0, respectively. In
both cases we choose zero initial velocity y0 = 0, so that the
symmetry μu(t ) = μ−u(t ) holds. Note that in the undamped
case μu(t ) becomes independent of u at large-enough times,
as predicted analytically. A detailed view of the behavior at
short times for β = 0 is shown in Fig. 16 in linear scale.

FIG. 14. Total crossing intensity μu(t ) for the damped oscillator
with β = 0.1, k = 1, ω0 = 1, x0 = 0, y0 = 0, and dt = 0.01, for dif-
ferent levels u. The noisy colored lines show the simulations results
averaged over 106 trajectories (labels for different u are, from top to
bottom, in the same order as the lines). The smooth (black) curves
are the analytical results, obtained substituting Eqs. (82), (83), (84),
and (85) into Eq. (26).
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FIG. 15. Total crossing intensity μu(t ) for the undamped oscil-
lator (β = 0) with k = 1, ω0 = 1, x0 = 0, y0 = 0, and dt = 0.01,
for different levels u. The colored lines show the simulations results
averaged over 106 trajectories (labels for different u are, from top to
bottom, in the same order as the lines). The smooth (black) curves
are the analytical results, obtained substituting Eqs. (98), (99), and
(100) into Eq. (26).

Analogous plots for y0 	= 0 show a qualitatively similar
behavior, except that the symmetry in u is lost at short times.

VI. CONCLUDING REMARKS

We have analyzed the counting of crossing events to some
preassigned level carried out by inertial random processes.
The models studied are described by linear stochastic differ-
ential equations of second order driven by Gaussian white
noise. The linearity of the equations of motion along with
the Gaussian character of the input noise ensure that output
processes are Gaussian as well.

We have first reviewed the Rice formula for the crossing
intensity and generalized it to embrace the most comprehen-
sive kind of Gaussian process. The crossing intensity is an
important quantity in many applications. In particular, as we
discussed in Sec. II, its inverse is the return period, which

FIG. 16. Same as Fig. 15 but in linear scale and short times.

in turn provides an upper bound on the distribution of the
maximum of a stochastic process over a given time interval.
One key result is the exact expression (26) of the crossing
intensity for Gaussian processes in their most general form
and the simpler version (32) for the zero crossing, that is, the
crossing of the mean value:

μm(t ) = σy(t )

πσx(t )

√
1 − [σxy(t )/σx(t )σy(t )]2.

We have next specialized on some particular cases of phys-
ical interest whose dynamical evolution is described by linear
stochastic equations of second order. In all cases studied we
have been able to obtain the exact form for the intensity of
up-, down-, and total crossings.

The simplest example is provided by the random acceler-
ation process, a nonstationary process for which the crossing
intensity is time dependent. At long times the crossing inten-
sity to any level u decreases with time as

μu(t ) ∼ t−1, (t → ∞),

and thus the average number of crossings increases as

〈Nu(t )〉 ∼ ln t, (t → ∞).

At short times we find

μu(t ) ∼ t−3/2, 〈Nu(t )〉 ∼ t−1/2, (t → 0).

The next example is Brownian motion, which is also not
stationary. In this case, at long times (i.e., in the diffusive
regime) we obtain a slower decay than that of random accel-
eration:

μu(t ) ∼ t−1/2, 〈Nu(t )〉 ∼ t1/2, (t → ∞).

For short times (i.e., in the ballistic regime), if the initial
velocity is zero (y0 = 0), then we have

μu(t ) ∼ t−1, 〈Nu(t )〉 ∼ ln t, (t → 0),

which is the same scaling as in random acceleration at long
times.

The most general case is Brownian motion with nonzero
initial velocity (y0 	= 0). This has a more complex time struc-
ture since there are now two characteristic timescales. When
these scales are well separated we observe three regimes:
μu(t ) ∼ t−3/2 at short times (random acceleration regime), t−1

at intermediate times (ballistic regime), and t−1/2 at long times
(diffusive regime).

The third process studied has been the damped linear os-
cillator driven by Gaussian white noise. Due to damping, the
oscillator reaches a stationary state as time increases, which
implies a time-independent crossing intensity that for the
mean-crossing problem has the simple expression:

μm = ω0

π
,

which doubles the natural frequency of the deterministic os-
cillator. Let us note that in the stationary state, when transient
effects have faded away, the average number of mean cross-
ings during a time interval �t follows the linear law:

〈Nm(�t )〉 = ω0

π
�t .

024111-15



JAUME MASOLIVER AND MATTEO PALASSINI PHYSICAL REVIEW E 107, 024111 (2023)

The last example addressed has been the undamped oscil-
lator. This case is not stationary and the crossing intensity
depends on time but tends to a finite and nonzero value as
t → ∞ that is independent of the crossing level:

lim
t→∞ μu(t ) = ω0

π
,

which again doubles the frequency of the deterministic oscil-
lator.

Let us finally remark that Rice’s approach can be extended
to include random processes (whether inertial or not) driven
by colored noise as well as to study the counting of maxima
and minima. These works are under present investigation and
some results will be presented soon.
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APPENDIX A: VARIANCES OF THE BROWNIAN MOTION

From Eqs. (37)–(40) we have

σ 2
x (t ) = 〈[X (t ) − mx(t )]2〉

= k2β2
∫ t

0
dt1

∫ t

0
[1 − e−β(t−t1 )][1 − e−β(t−t2 )]

× δ(t1 − t2)dt2

= k2β2
∫ t

0
[1 − e−β(t−t1 )]2dt1,

and hence

σ 2
x (t ) = k2

β3

(
βt − 3

2
+ 2e−βt − 1

2
e−2βt

)
,

which agrees with Eq. (41). Proceeding in an analogous way,
we have

σ 2
y (t ) = 〈[Y (t ) − my(t )]2〉

= k2
∫ t

0
dt1

∫ t

0
e−β(t−t1 )e−β(t−t2 )δ(t1 − t2)dt2

= k2
∫ t

0
e−2β(t−t1 )dt1,

and we obtain Eq. (42):

σ 2
y (t ) = k2

2β
(1 − e−2βt ).

Finally,

σxy(t ) = 〈[X (t ) − mx(t )][Y (t ) − my(t )]〉

= k2

β

∫ t

0
dt1

∫ t

0
e−β(t−t1 )[1 − e−β(t−t2 )]δ(t1 − t2)dt2

= k2

β

∫ t

0
e−β(t−t1 )[1 − e−β(t−t1 )]dt1,

that is,

σxy(t ) = k2

β2

(
1

2
− e−βt + 1

2
e−2βt

)
.

which is Eq. (43).

APPENDIX B: SIMULATION METHOD

We use the algorithm presented in Ref. [37] to simulate the
Langevin equation

Ẍ + βẊ = F (X, t ) + kξ (t ),

where ξ (t ) is Gaussian white noise satisfying 〈ξ (t )ξ (t ′)〉 =
δ(t − t ′) and F (X (t ), t ) is a deterministic force.

Discretizing time as tn+1 = tn + dt , a random trajectory
(tn, Xn), starting from the initial condition X0 = x0, Y0 = y0,
where Y = Ẋ , is generated by iterating the following recursive
equations (in our notation):

Xn+1 = Xn + bdtYn + b

2
(dt )2Fn + b

2
k(dt )3/2gn+1, (B1)

Yn+1 =Yn + b

2
dt (Fn + Fn+1) − β(Xn+1 − Xn)

+ k(dt )1/2gn+1, (B2)

where Fn = F (Xn, tn), b = (1 + β/2)−1, and the gn are inde-
pendent and identically distributed Gaussian random variables
with 〈gn〉 = 0, 〈g2

n〉 = 1.
Averaging over R trajectories, we measure the up- and

downcrossing intensities μ+
u (tn), μ−

u (tn) at each tn, where for
example μ+

u is total number of upcrossings taking place in
(tn, tn+1) (we say an upcrossing has taken place if Xn < u
and Xn+1 > u) divided by R tn. The total crossing intensity is
μu(tn) = μ+

u (tn) + μ−
u (tn).

In our numerical results, X and t are in arbitrary units.
It is helpful to think of X as a length expressed in meters
and t expressed in seconds. Then the units of the parameters
are as follows: [β] = s−1, [k] = m s−3/2, [y0] = m s−1, and
[ω0, ω] = s−1. For Brownian motion and random accelera-
tion, we typically use a time step dt = α

√
t with α = 10−3

for t < 1 and α = 10−2 for t > 1, except for large β for which
we choose α to be 10 times smaller.

In all cases, we set R = 106.

APPENDIX C: VARIANCES OF THE NOISY OSCILLATOR

From Eqs. (78), (79), and (82), we have

σ 2
x (t ) = 〈[X (t ) − mx(t )]2〉

= k2

ω2
e−βt

∫ t

t0

dt1

∫ t

t0

eβ(t1+t2 )/2

× sin ω(t − t1) sin ω(t − t2)δ(t1 − t2)dt2

= k2

ω2
e−βt

∫ t

t0

eβt1 sin2 ω(t − t1)dt1

= k2

ω2

∫ t−t0

0
e−βt ′

sin2 ωt ′dt ′,
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hence

σ 2
x (t ) = k2

ω2(β2 + 4ω2)

{
2ω2

β
− e−β(t−t0 )

[
β sin2 ω(t − t0) + ω sin 2ω(t − t0) + 2ω2

β

]}
,

which is Eq. (83). Proceeding in an analogous way, we have

σ 2
y (t ) = 〈[Y (t ) − my(t )]2〉 = k2e−βt

∫ t

t0

dt1

∫ t

t0

eβ(t1+t2 )/2 cos ω(t − t1) cos ω(t − t2)δ(t1 − t2)dt2

= k2
∫ t−t0

0
e−βt ′

cos2 ωt ′dt ′,

and

σ 2
y (t ) = k2

β2 + 4ω2

{
1

β
(β2 + 2ω2) − e−β(t−t0 )

[
β cos2 ω(t − t0) − ω sin 2ω(t − t0) + 2ω2

β

]}
,

which agrees with Eq. (84). Finally,

σxy(t ) = 〈[X (t ) − mx(t )][Y (t ) − my(t )]〉 = k2

ω
e−βt

∫ t

t0

dt1

∫ t

t0

eβ(t1+t2 )/2 sin ω(t − t1) cos ω(t − t2)δ(t1 − t2)dt2

= k2

2ω
e−βt

∫ t

t0

eβt1 sin 2ω(t − t1)dt1 = k2

2ω

∫ t−t0

0
e−βt ′

sin 2ωt ′dt ′,

that is,

σxy(t ) = k2

2ω(β2 + 4ω2)
{2ω − e−β(t−t0 )[β sin 2ω(t − t0) + 2ω cos 2ω(t − t0)]},

which is Eq. (85).
For the undamped oscillator β = 0 and from the above equations we have (recall we have set t0 = 0)

σ 2
x (t ) = k2

ω2
0

∫ t

0
sin2 ω0t ′dt ′ = k2t

2ω2
0

(
1 − 1

2ω0t
sin 2ω0t

)
,

σ 2
y (t ) = k2

∫ t

0
cos2 ω0t ′dt ′ = k2t

2

(
1 + 1

2ω0t
sin 2ω0t

)
,

σxy(t ) = k2

2ω0

∫ t

0
sin 2ω0t ′dt ′ = k2

4ω2
0

(1 − cos 2ω0t ),

which agree with Eq. (99).
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