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Time-translational symmetry in statistical dynamics dictates Einstein relation, Green-Kubo
formula, and their generalizations
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A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale
increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent,
components contributing to the overall fluctuations of the dynamics, representing the uncertainties in the past and
in the future. We show that fluctuation-dissipation relations of the two aforementioned components, such as the
Einstein relation and the Green-Kubo formula, can be formulated for any stochastic process with a steady state,
without additional supposition of the process being Markovian, reversible, or linear. Further, by considering the
adjoint process defined by the time reversal at the steady state, we show that reversibility in equilibrium leads
to an additional symmetry in the covariance between system’s state and drift. Potential directions of further
generalizing our results to processes without steady states is briefly discussed.
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I. INTRODUCTION

Each step, small or large, of a complex motion can be
represented by a “stochastic noise part” (noise) and a “de-
terministic average rate part” (drift) whose interplay gives
rise to the fluctuation-dissipation relation (FDR), a central
result in statistical physics. From a dynamical systems point
of view, the stochasticity of time evolution implies divergent
potential moves from a state in the state space (1-to-many with
probabilities) while a dissipative drift represents a contracting
vector field of average motions from various initial states
(many-to-1 mapping in discrete state space). When these two
“opposing” tendencies strike a balance and yield a stationary
process, the FDR appears.

There are at least two quantitative manifestations of the
above physical picture: On the one hand, the classic FDR
in linear response theory, following Onsager’s regression
hypothesis [1], is a set of relations between a system’s
relaxation-after-perturbation near an equilibrium and auto-
correlation of spontaneous equilibrium fluctuations [2-5].
Extensions of this result to nonequilibrium systems are dis-
cussed in recent works [6—8]. On the other hand, the Einstein
relation and the Green-Kubo formula (GKF) are between
components with different statistical characteristics, dissipa-
tive drift vs fluctuating noise, within a stationary process
without a perturbation [9,10]. To illustrate, using Langevin’s
equation for the velocity of a Brownian particle that follows

dv
m—— = —nV + /2kgTné (1), (1)
dl N N e’
drift noise
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&(t) being a standard white noise, one gets stationary

E[AV ()AV (1 4+ 1)) = (kgT /m)e"7/™, )
where [E[-] denotes expectation and AV(¢):=V(t)—
E[V (¢)]. Then,

kgT o
D=— = / E[AV(@#)AV (t + t)]dT, 3)
0

U

Einstein relation

Green-Kubo formula

in which V(¢) is a stationary process, and D is the long-time
limit of the mean square displacement of X (¢), the integration
of V(t): E[(X(t) — X(0))*] ~ 2Dt.

In this paper, we shall refer relations directly between the
diffusive noise and the dissipative drift as generalized Einstein
relation (GER) and relations involving time correlation func-
tion as the GKF. Extensions of these to the nonequilibrium
realm have also been explored: for an n-dimensional linear
irreversible Ornstein-Uhlenbeck process, GER takes the form
of the Lyapunov matrix equation, connecting to the theory of
linear stability and control [11,12],

2D = EB" + BE, 4)

where E, B, and D are matrices of the stationary covariance
between states, the linear relaxation, and the diffusion. A
nonlinear GKF for nonequilibrium steady states in continuous
time Markov processes was also established in Ref. [13,14]:

E[D(X,)] = fo E[b6(X)b(X;)]dr, 5)

where the stationary X; follows a nonlinear stochastic differ-
ential equation with drift b(X;) and diffusion D(X;).

In this paper, we show that “the fluctuating noise” and
“the dissipative drift”, where the latter being a conditional
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expectation, can be used as defining properties for a decom-
position of general stationary processes, without additional
supposition of the system being Markovian, reversible, linear,
etc. In terms of this decomposition, a GER can be formu-
lated. The formalism clearly illustrates, actually it defines,
the GER as the consequence of stationarity of a process in
which the stochasticity is balanced by dissipation. In the past,
the stationary Fokker-Planck equation for a Markov process
poses a mathematical relation among three: (i) the stationary
distribution, (ii) the dissipative drift, and (iii) the stochastic
noise strength [15]. For most of the applications, one solves
(1) based on (ii) and (iii) [14,16]. Alternatively, given (i) and
(iii), (ii) admits a general decomposition in terms of the other
two [17-19]. All these previous results are now encompassed
in the GER [Eq. (15) below] and the GKF in Eq. (20), broadly
generalizing Eq. (4) and Eq. (5), respectively.

A key mathematical insight contributing to our result is
a general decomposition of stochastic processes discovered
by Doob [15,20]: a stochastic step in the time evolution of
a process, infinitesimal or large, can always be written as the
sum of a “drift part” that captures the average increment and
a “noise part” that captures the stochasticity [21]. The latter
parts from all steps constitute a martingale [15], which is a
process that has no (conditional) gain or loss on average: a fair
game. In stochastic thermodynamics, the theory of martingale
has played an important role in studying stopping time statis-
tics [22-24]. Here, we discover that the martingale increment
is uncorrelated to the past, which leads to a clear cut of two
uncorrelated contributions to the fluctuations of the overall
stochastic dynamics, as shown in Eq. (13).

For Markov processes with detailed balance, our GER
leads to another characterization of equilibrium steady state:
by considering a process and its adjoint process, we show
that the covariance matrix between the state and its drift is
symmetric if the process is reversible. Various forms of the
GKEF, as corollaries, can be derived for the adjoint drift. The
1-to-many and many-to-1 features in the dynamics can also
be identified, representing uncertainties in the future and in
the past respectively, with the fluctuations of drift and adjoint
drift under Doob decompositions of a process and its adjoint.

All results point to the time stationarity being central to
FDR. The search for a similar relationship, between noise and
drift, in sweeping dynamics that does not reach stationarity
[12] naturally arises. We briefly discuss one class of sweeping
processes whose exponentiation becomes a martingale in the
Discussion.

II. DOOB DECOMPOSITION

We consider a general discrete time n-dimensional (n-D)
stochastic process, not necessarily Markovian, X, € R", t €
N. Continuous time processes can be discussed by consider-
ing the infinitesimal df and taking the continuous time limit.
We use Xy, to denote the entire stochastic trajectory from
time O to time 7. The change of the value of the state of the
system from time ¢ to ¢t + 1 has a natural decomposition by
the conditional expectation:

8X; = Xpp1 — Xi = 5A(Xoyr) + M (Xor41),  (6)

where
SA; = E[X;+11Xo0r] — X; @)
and
M, = X411 — E[X,111Xo,]. (8)

The first term §A, in the decomposition is the conditional av-
erage change of X, a function of entire, non-Markovian Xg,,
that captures the average dynamics of X;, E[§X;|X.] = JA;.
Hence, the increment §A; is referred as the drift of X;. The
second term 6M, captures the 1-to-many randomness in the
change of X, conditioned on one past trajectory X, there are
many possible next states X, diverging from the average.
The noise term 6M, has a zero (conditional) mean:

E[éM;|Xo;] = 0 and E[6M,] = 0. )

In this paper, expectation without conditioning represent aver-
aging over all random variables involved, e.g., over the whole
path Xy, for E[6M,]. The existence of this decomposition
of a general process in Eq. (6) into the sum of two processes
is known as the Doob decomposition theorem [15,20].

The decomposed process M, = Z;{;%) S8M;, satisfies

E[M, [Xo.] = M;, forall 0 < s < 1, (10)

due to the zero conditional gain in every increment. In the
theory of probability, such a process is called a martingale
[15,25]. Typical examples of martingales are an unbiased
random walk in discrete time and a Brownian motion in the
continuous time.

The zero (conditional) mean properties of the martingale
increment in Eq. (9) implies that M, is an increment uncor-
related to the past (but not necessarily independent): for an
arbitrary path scalar variable of Xy, f(Xoy, t), the covariance
between f and any component of §M;, say the ith one denoted
as SM,(’), is zero:

CoV[f(Xox, 1), 8M"] = 0. (11)

This leads to the following two important results. To present
them in a more concise way, we will use [u, w] to denote the
covariance matrix between two vector random variables u and
w in this paper. Specifically, the i, j component of [u, w] is
CoV[u;, w;]. Here and below, covariance is averaging over
the whole trajectory Xg,+;, a notation consistent with the
expectation (without conditioning) E[-] used throughout the
paper.

First, the martingale increments at different times are un-
correlated [§M;, 8M,]] = 0. This shows that a martingale has
an ever-increasing, additive fluctuation,

t—1

[M,, M,] = [sMy, SM,]. (12)
k=0
The scalar version of this, the variance of M, satisfying
VYIM,] = ;;B V[6M,], is a discrete-time analog of Itd isom-
etry [25] and is, in a sense, more general than It6 isometry:
the martingale in It6 isometry is the Brownian motion which
has independent increments whereas Eq. (12) doesn’t require
independency in the increments.
Second, the uncertainty of increment §X, actually has two
uncorrelated sources identified by the Doob decomposition in
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Eq. (6),
[6X,,8X,] = [8A;, 5A,] + [6M,, sM,]. (13)

The two sources of the uncertainty in §X; are rather disjoint
conceptually. Since §A, is a function of the past path X,
the fluctuation of §A; is really about the uncertainty of the
past. On the other hand, the uncertainty of §M, is about the
fluctuation in the conditional mapping from X, to X, ;. If
the conditional mapping is deterministic, then éM, = 0 but
[5A;, 8A;] could still be nonzero if there is uncertainty in the
initial condition and/or the past state.

These two results shown above are valid for general
processes. Assumptions such as Markovian, stationarity, or
detailed balance are not needed. In fact, the Doob decomposi-
tion can also be applied to an arbitrary path variable U/, (Xo. ).
The decomposition then becomes 8U; = 5Ay, + §My,, where
8Ay, = E[U111Xoy] — Us and My, = Uy — E[U111Xo].
The results presented above still hold.

We note here that two special classes of processes can be
identified with the Doob decomposition and are the natural
extension of a martingale. If the drift of a scalar process is al-
ways non-negative, then the process is called a submartingale.
If the drift of a scalar process is always nonpositive, then the
process is called a supermartingale. An important example
of submartingale in stochastic thermodynamics is the house-
keeping heat Qyy. In fact, the housekeeping heat Oy belongs
to a special class of submartingale where exp(— Q) becomes
a martingale [26-28]. Other types of entropy production in
stochastic thermodynamics has a non-negative average drift
but their drifts are not guaranteed to be non-negative before
expectation, and are in general not submartingale [28].

III. RESULTS
A. Generalized Einstein relation

If the process X, reaches a steady state, the probability
distribution of state no longer changes in time. For those
stationary X, all its cumulants will be fixed in time. The
average state of X; would be constant in time, meaning that
the average drift of the observable would be zero at the steady
state E,[§A,] = O where E,[-] means expectation for the sta-
tionary process. For the evolution of the covariance matrix, we
have

8IXe, Xo]) i= [Xigr, Xia ] — [Xi, X ] (14a)
= [6A,, X, ] + [6A, X,]" + [6X,, 8X,] (14b)

where T denotes the transpose of a matrix. This shows that the
covariance of states always have a source [§X;, §X,] given by
the fluctuation of transitions. Stationarity of X, is achieved
by the balance between the drift and the fluctuation such that
3[X;, X;] =0,

[8A,, X, ]w + [8A, X T = —[6X,, 86X, ].,  (15)

where [u, w], denotes covariance matrix of u and w when
the process is stationary. This shows that the symmetric part
of [§A;, X;]. is negative definite. In physics, the drift §A, in
a stable process is directly related to the dissipation of the
dynamics. Equation (15) is thus a generally valid FEinstein
relation (GER) implied by stationarity. In a scalar process,

trajectories

dissipative

probability drift §A
t

distribution dispersive

d M, noise

Xo:t Xitot

FIG. 1. Two trajectory realizations of the stochastic process are
depicted in black solid lines. The noise is dispersive in each step,
drawn as shaded area to represented all possibilities. The drift is
drawn as blue arrows, “dissipative” in the sense that it is on average
pointing inward: it dissipates the level of X;. Fluctuation-dissipation
relations emerge as the balance between the dissipative drift and the
dispersive noise necessary for a time-translational symmetry in the
probability distribution of state to form in stationary processes.

Eq. (15) reduces to 2CoV, (84;, X;) = —V,[§X;] which shows
that the drift §A,, on average, has an opposite sign of the
value of X; as a “dissipation” to X;. This negative covariance
implies that the dissipative drifts A, at different states are
on average pointing inward, as a contracting vector field in
continuous state space and many-to-1 mapping in discrete
state space. A demonstration of the concept discussed above
is shown in Fig. 1. In fact, the above result can be extended
to arbitrary observable of the process, U;(X,), e.g., the energy
of the system. The Doob decomposition of its dynamics be-
comes §U; = §Ay, + SMy,, where §Ay, = E[U;411Xo0+] — Uz
and §My, == U1 — E[U;411Xo;]. The GER then becomes

2CoV,(8Ay,, U)) = —V,[8U], (16)

which clearly portraits a relation between fluctuation V,[§U;]
and the energy dissipation §Ay,.

In Ornstein-Uhlenbeck (OU) processes described by
the stochastic differential equation dX, = —BX,dr + I'dW,
where W, is the n-D Brownian motion, we have SA;, =
—BX,dr and [dX;,dX,], = 2Dds, where D = I'T'/2 is the
diffusion matrix. Equation (15) then reduces to the Einstein
relation for linear systems given by the Lyapunov matrix
equation in Eq. (4) [12].

The GER in Eq. (15) is valid for any stationary processes.
Conditions such as Markovian or detailed balance are not
needed. It is a necessary condition for the stationarity of
fluctuation and covariance. We note that the stationarity of
X; actually requires all of its cumulants to be fixed in time.
Thus, any martingale, supermartingale, or submartingale will
not satisfy the GER since a martingale has an ever-increasing
variance and both supermartingale and submartingale have a
monotonic drift.
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B. Green-Kubo formula

Equations (14b) and (15) further allow us to derive a gen-
eral Green-Kubo formula (GKF) for a stationary processes
[4,13,14]. We note that for t > 0, we have

[8A:. 8A0] = [Xi41. 8Ac] — [X.. 8Aq]. (17)

Therefore,

> [6Ak. 8A0] = [Xoo. 5A0] — [Xo. 8Ac]).  (18)
k=0

Assuming that X, has a finite correlation time, the first term
on the right-hand side is zero. Then, by applying Eq. (15)
to the above equation, we get a general GKF that relates
autocorrelation of the dissipative drift §A; to the fluctuation
of M, at steady state,

o0

[6X,, 8X, ] = > {[6A«, 5Ac]. + [8As. 5A[L}.  (19)
k=0
which becomes
[8M,. 6M,], = > [8As. 5A]. (20)

k=—00

by using Eq. (13) and stationarity. Equation (20) shows that
the GKF is really a relation between the drift §A, and the
martingale increment §M,. The results for continuous time
processes derived in the past [13,14] lost this important insight
since the continuous time processes considered have §A, =
O(dr) and 8M, = O(+/dr), which makes the covariance of the
drift higher order.

C. Adjoint processes and adjoint drift

The Doob decomposition shown in Eq. (6) is with respect
to the forward probability measure P. In Markov processes
with steady states, we can consider the Doob decomposi-
tion given by the adjoint probability measure P' (i.e., the
decomposition in the adjoint process) where the transition
probability is given by

Pi{Xp =y X, =x} = w]P’{X,H =x|X, =y}, (2D

7(x)
where 7 is the invariant distribution. The adjont Doob decom-
position is then

8X, = 8A] + M, (22)
with AT =Ef[X,[X,]—X, and &M =X, —

E'[X,+1]X,]. Here, the conditional expectation in the adjoint
process is done with the transition probability in Eq. (21):

EXiX] = ) yP (X1 = yX,). (23)
y

The covariance between X, and SA; and the covariance be-
tween X; and <SA;r are only subject to a transpose at steady
state,

[X,8A]. = [X:, SAT]T. (24)

This gives us a neater expression of the GER in Eq. (15),
[X:, 8A; + 8A]. = —[6X;, 8X,].. (25)

This allows one to show that for reversible (detailed balanced)
systems where the forward and the adjoint processes are the
same, we have §A; = (SA,T and thus

[X:. 8A/ ] = —3[6X,, 6X ], (26)

telling us that the covariance matrix [X;, §A, ], is symmetric
and negative-definite. This gives yet another characterization
of detailed balance and is the generalization of BE being
symmetric for reversible OU processes [12].

We note here that the GKF also have two sibling expres-
sions in terms of the adjoint drift for continuous time Markov
chain [13]:

o
[6X:, 8X,]. = ) [8A, SAGL. + [8Ax, SAGIT (27
k=0

and
o0

[6X,. 86X, ] = > [SA]. 8AJ]. + [SAL. SAJT.  (28)
k=0

They can be derived from a similar approach.

D. Continuous Markov processes

Here we consider a continuous Markov process (diffusion
process) as another example. This gives the generalization
to the results in OU processes [11,12] and establishes an
interesting connection to the landscape cycle potentials theory
in stochastic thermodynamics [19].

Before delving into continuous Markov processes, we first
note that the covariance matrix between the system’s state and
its drift [X;, §A;]«, as an matrix, can always be decomposed
to a symmetric part and an antisymmetric part:

[X;, 3A;]« = [symmetric] + [anti-symmetric]. (29)

Our discussion above tells us two things: (1) the symmetric
part is related to the fluctuation of the process as shown by
our GER in Eq. (15); (2) the antisymmetric part only exists in
nonequilibrium systems, i.e., it characterizes the nonequilib-
rium driving force. We show here that this antisymmetric part
as nonequilibrium driving force actually have been identified
in diffusion [19].

A continuous process can be described either by stochastic
differential equations,

dX; = [b(X;) + V - D(X;)]dr 4+ I'(X;)dW,, (30)

where D = I'T" /2 is the diffusion matrix and W, is the Brow-
nian motion, or by the Fokker-Planck equation

dpx, 1) = =V - [bX)pKx,1) —DX)Vp(x,1)].  (3l)

In an infinitesimal time step, the drift and noise are then §A, =
(b + V -D)dr and M, = I'dW,. Treating the Fokker-Planck
equation as an equation for continuity equation for probability,
the term J(x,7) := bp(x,1) — DVp(x, t) can be identified as
the probability flux of the system. At the steady state, the sys-
tem is described by the stationary probability density 7 (x) and
the probability flux J*(x) = b(x)7 (x) — D(x)Vr (x), which
is divergence-free.

Using the divergence-free property, the bivector potential
A(x) of the stationary probability flux can be identified by
J* = V x A and can be understood as a cyclic probability flux
[29]. Further, by defining the cyclic probability velocity Q =
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A/m and the scalar potential landscape ®(x) := —Inm(x), a
general vector field decomposition
b=-DV®d-QVd+V xQ (32)

can be derived [19]. Now, quantities defined on the bivectorial
cycles in diffusion, e.g., A and Q, are represented by antisym-
metric matrices [29]. By using integration by part, Q = —Q"
and D = DT, the covariance [X,, 8A;], = [X;, b+ V - D], dt
can be further rewritten as

[[X;, SAI]]* = E*[Q — D]dr. (33)
This shows that
[X:, A ]« + [X:, (SA,]]I = —2E,.[D]d¢, (34)

which is exactly the continuous-time version of Eq. (19).

Note that Eq. (33) is exactly the diffusion version of the
symmetric-antisymmetric decomposition of the covarariance
matrix discussed above at Eq. (29). With Q understood as the
cycle velocity in continuous processes [19,29], E,[Q] in fact
characterizes the nonequilibrium driving force in the system.
Q = 0 corresponds to detailed balanced systems, implying
that the covariance [X;, 5A,]s is a symmetric and negative-
definite matrix in detailed balanced systems. This echoes the
central result in stochastic thermodynamics: a dynamic object,
such as the covariance between the system’s state and its
drift shown here, can be decomposed into its underlying equi-
librium part and a nonequilibrium cyclic driving force part.
Such decomposition fundamentally originates from the irre-
versibility decomposition of stochastic dynamics in stochastic
thermodynamics, as summarized in Ref. [19].

Let us now remark on some practical values of the FDR we
derived at Eq. (33). The vector field decomposition in Eq. (32)
has shown us that a diffusion process has an equilibrium com-
ponent —DV® and a cyclic component —QV® + V x Q,
with a scalar potential ®, a symmetric matrix potential D,
and an antisymmetric bivector potential Q [19]. However, it is
challenging to get the functional form of Q analytically: one
needs to solve A from J* = V x A and the invariant probabil-
ity density . The FDR of diffusion processes we derived here
thus have at least two practical values. On the one hand, the
covariance matrix [X;, §A;]« = [X;, Xr4ar — X;]«d? can be
rather easily computed from trajectory data from experiments.
The FDR shown in Eq. (33) thus gives us a practical way
to compute the average D and average Q at the steady state
from trajectory data. On the other hand, we know from our
FDR that the process is nondetailed balanced if the [X,, §A,]
is not symmetric. Compared to the standard probability flux
calculation, this is a much simpler way to determine whether a
process X, is reversible or not. The level of the antisymmetric
part E,[Q] further indicates how nonequilibrium the process
is.

IV. DISCUSSIONS

A. Reversed decomposition

The Doob decomposition decomposes the dynamics §X;
into a drift part §A, and a martingale part §M,. One of our key
results is that the uncertainty of the dynamics has a resulting
uncorrelated decomposition into the fluctuation of the past and
the fluctuation of the 1-to-many mapping marching toward the

future as shown in Eq. (13). Here, we show another decompo-
sition that relates explicitly the fluctuation of the dynamics to
the many-to-1 uncertainty in the dynamics.

We can decompose §X; by conditioning on the state one
step in the future,

58X, = 6R; + 8N, (3%

where
R, = Xi1 — E[X X 41] (36a)
SN, = E[X, X211 — X,. (36b)

This is also an uncorrelated decomposition, [§R,, SN;] = 0,
which leads us to another fluctuation decomposition,

[6X;, 8X;] = [0R;, SR,] + [8N;, N;]. (37)
0R; can be thought of as the backward drift and 8N; is a
quantification of the many-to-1 uncertainty in the dynamics.
Therefore, Eq. (37) and Eq. (13) together link the many-to-1

uncertainty and 1-to-many uncertainty with forward and back-
ward drift,

[6X,, 8X,] = [5A,, $A,] + [6M,, sM,]
== [[SRI, SR[H + [[8N[, SNI]].

(38a)
(38b)

For Markov processes, the backward drift becomes the
adjoint drift at steady state 6R, = —SA[T. In fact, the decom-
position in Eq. (35) is actually from the Doob decomposition
of the reversed process Z; = X_,. The past and the future
is conditionally independent if conditioned on the present in
Markov processes:

Pxo, 1%, 4100 X0 X 41:00) = Pxoy (X0 X0z [Xe41). (39)

This means that the conditional expectation E[X;|X;,] in
Eq. (35) is the same as conditioning the whole future
E[X/|X/+1:00]. The decomposed process is thus

t—1

t—1
N =) Ne =) (EIX(Xij1ol = X,),  (40)
k=0 k=0

areversed martingale, or called backward martingale in math-
ematics [15], for Markov processes.

B. Exponential martingale and worklike observable

The GER discussed above is for general stationary pro-
cesses. It, however, excludes any sweeping dynamics such
as martingale, submartingale, and supermartingale. Here, we
present that a specific type of submartingale in continuous
processes actually have a fluctuation-drift relation. We con-
sider a process & whose exponentiation e~¢ becomes a
martingale. Stochastic calculus tells us that the drift i, and the
fluctuation level o, in the stochastic differential equation of &,
d& = p,dt + o,dW, is related by

2, = of. 41)

This shows that the process & is a submartingale and has a
fluctuation-drift relation induced by the requirement of being
a martingale after exponentiation. A famous example for &
in stochastic thermodynamics is the housekeeping heat Oy
[26,27].
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Here, we consider the process &, is worklike if its infinites-
imal difference d&; can be expressed as

FX)odX, = f(X, + 1dX,) - dX,
= f(X)) - dX; + D - (Vf)dr,

(42a)
(42b)

where the empty circle o denotes Stratonovich midpoint in-
tegration (with an inner product involved) and the solid dot
- denotes the standard inner product. The process & then
satisfies a Cauchy-Schwarz inequality given the inner product
(u,w) :=E[u-D 'w],

d& 1\ dSe ] VId
E ﬁ <E Stot [ gt]’ (43)

dr dr 2dt
which is an instantaneous version of the recently-celebrated
thermodynamic uncertainty relation [30,31]. The proof of this
follows quite directly from Refs. [32,33]. A key step is to

recognize that V[d& ] = 2E[f - Df]dt. Further, by Eq. (41)
and time integration, one gets

E[&] < E[Sol- (44)

The total entropy production is the upper bound of any
worklike & process. The force f should satisfy f-Df =
b-f+ V. (Df) for a worklike process to be a martingale
after exponentiation. Examples for such a process &, include
the housekeeping heat Oy [26,27] and the heat dissipation

Q := Db o dX, in diffusion processes if the vector field b is
divergence-free.

C. Summary

In this paper, we summarize and extend the Einstein
relation and the Green-Kubo formula to nonequilibrium,
nonlinear and non-Markovian systems in a covariance formal-
ism. Two underlying components contributing to a stochastic
change of a system’s state were identified: a “determinis-
tic” drift summarizing the past and a noise representing the
stochasticity of one step toward the future. Stationarity of the
process requires a dissipative drift to balance out the fluctu-
ation generated by noise, which is the origin of our general
fluctuation-dissipation relations. Reversibility and Markovian
property are not needed but can impose a further symmetry
in the covariance between the state and the drift. General
relations between the fluctuation and the drift of sweeping
dynamics remains to be investigated. Generally speaking, a
symmetry is needed to dictate a fluctuation-drift relation.
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