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Dynamic correlations in the conserved Manna sandpile
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We study dynamic correlations for current and mass, as well as the associated power spectra, in the one-
dimensional conserved Manna sandpile. We show that, in the thermodynamic limit, the variance of cumulative
bond current up to time T grows subdiffusively as T 1/2−μ with the exponent μ � 0 depending on the den-
sity regimes considered and, likewise, the power spectra of current and mass at low frequency f varies as
f 1/2+μ and f −3/2+μ, respectively. Our theory predicts that, far from criticality, μ = 0 and, near criticality,
μ = (β + 1)/2ν⊥z > 0 with β, ν⊥, and z being the order parameter, correlation length, and dynamic exponents,
respectively. The anomalous suppression of fluctuations near criticality signifies a “dynamic hyperuniformity,”
characterized by a set of fluctuation relations, in which current, mass, and tagged-particle displacement fluctua-
tions are shown to have a precise quantitative relationship with the density-dependent activity (or its derivative).
In particular, the relation, Ds(ρ̄) = a(ρ̄ )/ρ̄, between the self-diffusion coefficient Ds(ρ̄ ), activity a(ρ̄) and
density ρ̄ explains a previous simulation observation [Eur. Phys. J. B 72, 441 (2009)] that, near criticality, the
self-diffusion coefficient in the Manna sandpile has the same scaling behavior as the activity.
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I. INTRODUCTION

Long-ranged temporal correlations are ubiquitous in na-
ture [1]. They usually manifest as the so-called “1/ f ” or
the flicker noise, having a characteristic low-frequency power
spectra with a power-law form 1/ f ψ , where 0 < ψ < 2, over
a wide range of frequency f . In fact, the 1/ f noise has been
seen in a variety of seemingly unrelated systems, such as solar
flares [2,3], forest fires [4], electrical activities in brain [5,6],
stock-market fluctuations [7], water flow in rivers [1] and
resistance fluctuations in conductors [8], among others; for
details, see reviews [9,10]. However there is no general
theory explaining the relative abundance of 1/ f noise in
nature.

Bak, Tang, and Wiesenfeld (BTW) proposed sandpiles as
paradigmatic models of “self-organized criticality” (SOC) in
order to provide a generic mechanism for long-ranged corre-
lations in natural systems, and 1/ f noise in particular [11,12].
Sandpiles are spatially extended and threshold-activated sys-
tems, in which dynamical activities spread through cascades
of toppling events (initialed when a local threshold is crossed),
resulting in “avalanche-like” dynamical activities and long-
ranged correlations in the systems. They were envisaged as
model systems driven by slow addition of “energy,” or grains,
with local energy conservation in the bulk and dissipation at
the boundary. Due to an intriguing interplay between drive
and dissipation, the system evolves, apparently without fine-
tuning of any parameters, towards a nonequilibrium steady
state characterized through avalanches at all scales, i.e., a
scale-invariant critical state with power-law distributions con-
cerning various observables. Later, several variants, known
as the conserved or “fixed-energy” sandpiles, were proposed,
where there is no dissipation, but the total number of grains

(or total energy) remains conserved, thus allowing the critical
state to be reached by tuning the global density.

There have been numerous studies of sandpiles, and sig-
nificant progress has been made in characterizing the static
and dynamic properties of both critical and off-critical states
of the systems. However, apart from some exact [13–16] and
mathematically rigorous [17–19] results, the majority of the
studies have been carried out using simulations [20–22] and
phenomenological field-theoretical descriptions [23–25]. This
is primarily due to the fact that the steady-state measure of a
driven interacting-particle system such as sandpiles is in most
cases a priori unknown and, as a result, analytic calculations,
beginning with a microscopic dynamical description, prove
to be quite challenging [24,26,27]. Perhaps not surprisingly,
despite the fact that an explanation of 1/ f noise was the main
motivation for BTW’s introduction of sandpile models, a good
theoretical understanding of their time-dependent properties,
particularly the exact hydrodynamics and the related transport
coefficients governing the large-scale relaxations, remains
lacking [28–32]. Another fascinating aspect of sandpiles has
only recently been discovered. That is, the critical state of
sandpiles can be hyperuniform [33,34], meaning that the static
subsystem mass fluctuations scale with subsystem size in an
anomalously slow manner [35,36]. However, we currently
have a limited knowledge of hyperuniform states of matter,
and one can only speculate as to how such a state emerges
dynamically in the first place [37]. In fact, except for a few
exact results concerning static properties of the hyperuniform
state [38,39], there has been little theoretical progress in this
direction and a systematic approach for identifying the precise
microscopic dynamical origin of the anomalous fluctuations
remains elusive. In this scenario, a closer examination of the
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underlying dynamical mechanism that results in such a state
is desirable.

Here we address the above issues in the context of
conserved stochastic sandpiles and specifically focus on
a continuous-time variant of the celebrated Manna sand-
pile [21,40], which has drawn a lot of attention in the past [29].
The conserved Manna sandpile is a paradigm for systems
exhibiting a nonequilibrium absorbing phase transition from
a dynamically active state to an absorbing state having no
activities upon tuning the global density. In fact, through
several simulation studies in the recent past, it is known that
the critical state of the conserved Manna sandpile is indeed
hyperuniform [33]. In other recent studies, it has been shown
that the (near-)critical state is characterized by the singular
transport coefficients, leading to anomalous relaxation and
particle transport in the system [41,42].

Historically, time-dependent properties of sandpiles have
been studied in terms of power spectra of dynamical activity
such as instantaneous toppling events in the systems [43,44].
In the original slowly driven version of sandpiles, BTW re-
ported 1/ f ψ power-law behavior of the power spectrum for
the activity, with the exponent ψ < 2 [11], although their
claim was refuted when several simulation studies later found
the exponent ψ = 2 [43,45]. Subsequently, however, a more
careful scaling analysis of simulation data revealed a non-
trivial power spectra with the exponent ψ < 2 [44]. On the
theoretical front, a dynamic renormalization-group analysis
of phenomenological field-theoretical equations describing a
“running” sandpile (driven with nonzero rate of grain addi-
tion) allowed an analytical calculation of the exponents ψ ,
involving activity as well as output current, where 1/ f -type
noise was observed, with ψ = −1; quite interestingly, the
temporal correlations in the long-time regime were found to
be anticorrelated, with ψ = −1 < 0. This could well be the
earliest signature of “dynamic hyperuniformity” in sandpiles.
Recently, this particular aspect of dynamic hyperuniformity,
i.e., hyperuniformity in the temporal domain, was also ana-
lyzed in a variant of the slowly driven sandpiles, called the
Oslo rice pile [46]. Similar low-frequency behavior of the
activity power spectrum with ψ = −1 (i.e., anticorrelated)
was observed in Ref. [47] for a directed deterministic sandpile
on a ladder with a finite driving rate; in the slow-driving limit
though, Maslov et al. [48] previously showed that the model
exhibits a 1/ f ψ power spectrum, with ψ = 1, for the total
mass fluctuation. In a slightly different study [49] of a driven
sandpile, albeit on a periodic domain, the power-spectrum
of activity had been found to be 1/ f ψ with ψ = 1. In a
conserved deterministic lattice gas in two dimensions [50],
subsystem mass fluctuation was found to exhibit the power
spectrum SM ( f ) ∼ f −ψM , where ψ = 1.5 away from critical-
ity and ψ ≈ 1.8 near criticality.

In this paper, we theoretically investigate the time-
dependent correlations for current and mass in the (quasi-
)steady state of the one-dimensional conserved Manna
sandpile. We begin with a microscopic dynamical description
of the model and then introduce a new, albeit approximate,
closure scheme that allows us to analytically calculate the
time-dependent correlation functions for current and mass,
as well as the corresponding power spectra. We establish
a direct quantitative relationship between various static and

dynamic fluctuation properties in terms of the density-
dependent activity—the system’s “order parameter,” and its
derivative. The main results of our paper are summarized as
following.

(1) Time-integrated bond current fluctuation. We show
that, in the thermodynamic limit, with system size L → ∞
and density ρ̄ fixed, the variance of the local (bond) current
Q(T ) up to time T grows subdiffusively with time. That
is, we have 〈Q2(T )〉 ∼ T α , where, away from criticality (in
the time regime T 	 L2), the exponent α = 1/2 and, near
criticality (in the regime T 	 Lz), the current fluctuation is
further suppressed with the exponent α = 1/2 − μ, where
μ = (β + 1)/2ν⊥z > 0 and β, ν⊥, and z are the activity, cor-
relation length, and dynamic exponents, respectively; thus the
anomalous suppression of the current fluctuation near critical-
ity serves as the dynamic precursor to the hyperuniform state
formed at the critical point.

(2) Power spectrum of current. We find that the time-
dependent (two-point) correlation function for the instan-
taneous current is long-ranged (power-law) and negative,
resulting in the low-frequency behavior of the correspond-
ing power spectrum SJ ( f ) ∼ f ψJ , which vanishes at low
frequency where ψJ = 1/2 away from criticality (strictly
speaking, in the time regime 1/L2 	 f 	 1 for finite L) and
ψJ = 1/2 + μ near criticality (in the time regime 1/Lz 	
f 	 1).

(3) Power spectrum of mass. We show that the power spec-
trum SM ( f ) for subsystem-mass fluctuation on the other hand
diverges SM ( f ) ∼ f −ψM at low frequency, where ψM = 3/2
away from criticality (1/L2 	 f 	 1) and ψM = 3/2 − μ

near criticality (1/Lz 	 f 	 1). These two exponents are
not independent though and they are connected by a scaling
relation ψM = 2 − ψJ .

(4) Time-integrated subsystem current fluctuation. In the
opposite limit of T → ∞ (more specifically, T 
 L2), with
system size L finite (but, still large) and density ρ̄ fixed,
the scaled current fluctuation in the steady state is shown to
be proportional to the activity a(ρ̄) as limT →∞〈Q2(T )〉/T =
2a(ρ̄)/L. On the other hand, the steady-state fluctuation of the
subsystem current Q̄(l, T ), i.e., the cumulative (summed over
bonds) current in a subsystem of size l , in the thermodynamic
limit (L → ∞) interestingly depends on the order of the limits
taken. When the infinite-subsystem-size limit is taken first
and then the infinite-time limit, the scaled subsystem current
fluctuation σ 2

Q(ρ̄ ) ≡ liml→∞ limT →∞〈Q̄2(l, T )〉/lT = 2a(ρ̄)
converges to twice the activity.

(5) Subsystem mass fluctuation and a fluctuation relation.
We derive a nonequilibrium fluctuation relation, σ 2(ρ̄) =
σ 2

Q(ρ̄)/2D(ρ̄ ), which connects the (scaled) subsystem mass
fluctuation σ 2(ρ̄ ) = 〈M2

l 〉 − 〈Ml〉2, with Ml being mass in
a subsystem of size l and D(ρ̄) the density-dependent
bulk-diffusion coefficient, to the (scaled) subsystem current
fluctuation. Remarkably, the relation explains why the mass
fluctuation in the Manna sandpile must vanish upon approach-
ing criticality and thus helps characterize the dynamical origin
of hyperuniformity in the system.

(6) Self-diffusion coefficient of tagged particles. We also
study the steady-state mean-square displacements of tagged
particles, which are characterized by the self-diffusion coef-
ficient of the individual particle. We theoretically show that
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the self-diffusion coefficient Ds(ρ̄) is identically equal to the
ratio a(ρ̄)/ρ̄ of the activity to the global number density of
the system, i.e., Ds(ρ̄) = a(ρ̄)/ρ̄, a fluctuation relation, which
connects the (scaled) tagged-particle displacement fluctuation
to the density-dependent activity. This relation immediately
explains a previous simulation observation of Ref. [27] that,
upon approaching criticality, the self-diffusion coefficient in
the conserved Manna sandpile vanishes in the same fashion as
the activity. Our theoretical results are in a reasonably good
agreement with simulations.

The plan of the paper is as follows: In Sec. II A, we define
the conserved Manna sandpile and the various quantities of
interest. In Sec. II B, we present our calculation method where
we introduce an approximate truncation scheme, helping us
to calculate the dynamic correlations. Then in Sec. II C, we
study the dynamic properties of bond current fluctuations
in the system and provide a scaling argument to explain its
behavior near criticality, followed by the calculation of the
corresponding power spectrum in Sec. II D 1. We then pro-
ceed to calculate the variance of the cumulative subsystem
(i.e., space-time integrated) current and elucidate its relation-
ship with the particle mobility in Sec. II D 3. We study the
self-diffusion coefficient of tagged particles and the power
spectrum for subsystem mass fluctuation in Secs. II E and II F,
respectively. Finally, in Sec. III, we summarize with some
concluding remarks.

II. DYNAMIC CORRELATIONS IN THE STEADY STATE

A. Model and definitions

We consider the continuous-time variant [21] of the con-
served (“fixed energy”) Manna sandpile [40] on a ring of L
sites. Any site i, with i = 0, 1, . . ., L − 1, can have mi � 0
number of particles, with mi = 0, 1, . . ., N ; the total number
of particles

N =
L−1∑
i=0

mi (1)

remains conserved; in this paper we throughout denote the
global density as ρ̄ = N/L. The dynamical rules are as fol-
lows: An active site—a site with mi > 1—topples with rate 1
by randomly and independently transferring each of the two
particles to one of its nearest neighbors.

The sytem violates detailed balance and eventually reaches
a nonequilibrium (quasi-)steady state, which is not described
by the familiar equilibrium Boltzmann-Gibbs distribution and
whose probability measure is a priori unknown. The steady
state of the system is usually characterized through a global
order parameter, called the activity a(ρ̄), defined as the den-
sity of active sites,

a(ρ̄) = 〈Na〉
L

, (2)

where Na is the total number of active sites in the system and
〈.〉 denotes the steady-state average. Interestingly the system
has a nontrivial spatiotemporal structure and, upon tuning
the global density ρ̄, undergoes an absorbing phase transi-
tion. That is, above a critical density ρc, there are dynamical
activities in the system, but, below the critical density, the
dynamical activities in the steady state cease and consequently

there are no movements of particles in the system. The ab-
sorbing phase transition in the conserved Manna sandpile has
been intensively studied in the past and can be characterized
by the following critical exponents—the order-parameter ex-
ponent β, the correlation-length exponent ν⊥, and the dynamic
exponent z: Upon approaching criticality from above, we
have the following scaling behavior of activity a(�) ∼ �β ,
correlation length ξ ∼ �−ν⊥ , and the relaxation time τr ∼ Lz

where relative density � = ρ̄ − ρc > 0 and we use the critical
density ρc ≈ 0.948 85, as estimated in Ref. [21], throughout
our paper.

One can write update rules in an infinitesimal time-interval
between time t and t + dt as given below,

mi(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

events probabilities

mi(t ) + 1 1
2 âi+1dt

mi(t ) + 1 1
2 âi−1dt

mi(t ) + 2 1
4 âi+1dt

mi(t ) + 2 1
4 âi−1dt

mi(t ) − 2 âidt
mi(t ) [1 − �dt],

(3)

where � = (3/4)(âi+1 + âi−1) + âi; here âi is an indicator
function with âi = 1 if the site is active and âi = 0 otherwise.
Using the above update rules (3), we can write the time evo-
lution equation of the first moment of local mass as

d

dt
〈mi(t )〉 = [〈âi−1(t ) − 2âi(t ) + âi+1(t )〉]. (4)

Denoting the local density ρi(t ) = 〈mi(t )〉, we can alterna-
tively write the above equation as

d

dt
ρi(t ) =

∑
k

�i,kak (t ), (5)

where �i,k is the discrete Laplacian and ak (t ) = 〈âk〉(t ) is the
average instantaneous activity. On the large spatiotemporal
scales and by taking the diffusive scaling limit i → x = i/L
and t → τ = t/L2, we can write the hydrodynamic time-
evolution equation for the local density field ρ(x, τ ) as in
Eq. (5) [41,42],

∂ρ(x, τ )

∂τ
= ∂2a(ρ)

∂x2
≡ ∂

∂x

(
D(ρ)

∂ρ

∂x

)
, (6)

where D(ρ) is the density-dependent bulk-diffusion coeffi-
cient. It has been previously demonstrated in Refs. [41,42],
the bulk-diffusion coefficient can be written in terms of the
derivative of the activity a(ρ) with respect to density ρ,

D(ρ) = da(ρ)

dρ
≡ a′(ρ). (7)

Indeed the relaxation processes occurring on a large (coarse-
grained) scale are primarily governed by the bulk-diffusion
coefficient—the fact that we later use to introduce a trunca-
tion scheme [see Eq. (23)] for analytically calculating various
time-dependent correlation functions, which would not have
been possible otherwise in a system with nontrivial corre-
lations as in sandpiles. Notably, one can recast the density
evolution equation (5) in a microscopic form of the continuity
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equation,

d

dt
ρi(t ) = 〈Ji(t ) − Ji+1(t )〉, (8)

where the microscopic instantaneous current Ji(t ) is defined
as the number of particles crossing a bond (i, i + 1) in an
infinitesimal time interval (t, t + dt ). It is useful to define a
related observable—the cumulative, or time-integrated, bond
current Qi(t ) up to time t , which is used to calculate various
other correlation functions, such as that involving mass and
activity, and is easily measured in simulations. At the micro-
scopic level, the time-integrated current Qi(t ) is defined as the
total number of particles transferred across the ith bond, con-
necting the nearest-neighbor pair of sites (i, i + 1) during a
time interval [0, t]. That is, the time-integrated current across
the ith bond during an infinitesimal time interval [t, t + dt] is
simply Ji(t )dt with

Ji(t ) = lim
�t→0

Qi(t + �t ) − Qi(t )

�t
≡ dQi(t )

dt
, (9)

and

Qi(T ) =
∫ T

0
dtJi(t ). (10)

On the average level, we therefore have

〈Ji(t )〉 =
〈

dQi(t )

dt

〉
= d〈Qi(t )〉

dt
. (11)

We now decompose the instantaneous current into two parts—
a diffusive component J (d )

i (t ) and a fluctuating component
J ( f l )

i (t ),

Ji(t ) = J (d )
i (t ) + J ( f l )

i (t ), (12)

where, motivated by Eq. (4), we identify the diffusive current
as

J (d )
i (t ) = âi(t ) − âi+1(t ). (13)

Indeed, as we see later, in that case only the diffusive-current
component possesses long-ranged temporal correlations,
varying slowly in time as a power law, and the fluctuating
component on the other hand is simply a delta-correlated one,
explaining the motivation behind the above decomposition.
Note that, due to the fact 〈Ji〉 = 〈J (d )

i 〉 = 〈âi〉 − 〈âi+1〉, we
must have 〈J ( f l )

i 〉 = 0. Indeed the fluctuating current com-
ponent can be related to the (conserved) noise term in an
appropriately coarse-grained fluctuating hydrodynamic the-
ory, which can be then used to study the large-scale fluctuation
properties of the system [51,52].

In the following sections, we study the fluctuation proper-
ties of various components of currents, instantaneous and the
fluctuating one as decomposed in Eq. (13). Throughout the
paper, we use the following notation for correlation function
CAB

r (t, t ′) involving any two local observables Ai(t ) and Bj (t ′)
with t � t ′:

CAB
r=|i− j|(t, t ′) = 〈Ai(t )Bj (t

′)〉 − 〈Ai(t )〉〈Bj (t
′)〉, (14)

where r = | j − i| is the relative distance. Furthermore, we
denote the spatial Fourier transform of the correlation function

CAB
r (t, t ′) as

C̃AB
q (t, t ′) =

L−1∑
r=0

CAB
r (t, t ′)eiqr, (15)

where q = 2πk/L and k = 0, 1, . . ., L − 1 and the inverse
Fourier transform is

CAB
r (t, t ′) = 1

L

∑
q

C̃AB
q (t, t ′)e−iqr . (16)

By introducing a truncation scheme as discussed below, we
can theoretically compute the statistics of different combi-
nations of various local currents Ji, J (d )

i , J ( f l )
i as well as

mass mi, essentially in terms of the following two correlation
functions: 〈Qi(t )Q j (t ′)〉 and 〈mi(t )Q j (t ′)〉.

B. Theory

For the conserved Manna sandpile, we write the stochastic
update equation of the integrated current Qi(t ) in an infinites-
imal time (continuous) interval [t, t + dt],

Qi(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

events probabilities

Qi(t ) + 1 1
2 âi(t )dt

Qi(t ) + 2 1
4 âi(t )dt

Qi(t ) − 1 1
2 âi+1(t )dt

Qi(t ) − 2 1
4 âi+1(t )dt

Qi(t ) 1 − �dt,

(17)

where � = [âi(t ) − âi+1(t )]. Using the above update rules,
the time-evolution equation for the first moment of the time-
integrated current Qi(t ) can be written as

d

dt
〈Qi(t )〉 = 〈âi(t )〉 − 〈âi+1(t )〉. (18)

Similarly, using Eq. (17), we find the time-evolution equa-
tion for the second moment 〈Qi(t )Qi+r (t ′)〉 = CQQ

r (t, t ′) of
the integrated current at two different times t and t ′, for t > t ′,
as given below (see Appendix C 1 for details),

d

dt
CQQ

r (t, t ′) = [
CâQ

r (t, t ′) − CâQ
r−1(t, t ′)

]
. (19)

The above equation, which is central to our study, is how-
ever difficult to solve exactly due to an infinite hierarchy of
correlation functions involved and so we employ below an
approximation scheme.

We note that the evolution of space and time-dependent
activity-current correlation function CâQ

r (t, t ′) appearing in
Eq. (19) contains higher-order correlation functions, involving
activity, current, and some other observables. The calculations
of the higher-order correlations would eventually result in a
rapidly growing complexity in the hierarchy of correlation
functions, which do not constitute a closed set of equations.
More specifically, one can start with the infinitesimal time
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update equation for âi itself,

âi(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

events probabilities

âi(t ) + 1 1
2 âi+1(t ) p̂i(t )δmi,1dt

âi(t ) + 1 1
2 âi−1(t ) p̂i(t )δmi,1dt

âi(t ) + 1 1
4 âi+1(t ) p̂i(t )dt

âi(t ) + 1 1
4 âi−1(t ) p̂i(t )dt

âi(t ) − 1 âi(t )(δmi,2 + δmi,3)dt

âi(t ) 1 − �dt,

(20)

where p̂i(t ) = [1 − âi(t )] and � = [ p̂i(t )/2](δmi,1 +
1/2)[âi+1 + âi−1] + âi(δmi,2 + δmi,3). From this update
equation, for t > t ′, we can write the evolution equation for
CaQ

r (t, t ′) as

d

dt
CaQ

r (t, t ′) ≡ d

dt
〈â0(t )Qr

(
t ′)〉c =

〈{
d

dt
â0(t )

}
Qr (t ′)

〉
c

,

(21)
where the observable inside the curly bracket evolves accord-
ing to the equation

d

dt
â0(t ) = −â0(t )(δm0,2 + δm0,3)

+ { p̂0(t )[â1(t ) + âL−1(t )]}
(

1

2
δm0,1 + 1

4

)
. (22)

Clearly, to solve for CaQ
r (t, t ′), one needs to calcu-

late the correlation functions 〈δm0,2â0(t )Qr (t ′)〉 and
〈δm0,1â0(t )â1(t )Qr (t ′)〉, which would in turn involve another
set of even higher-order correlation functions; of course, in
this way, one generates an infinite hierarchy of equations,
which is difficult to handle.

We bypass the difficulty by employing the following ap-
proximation scheme, which in fact truncates the otherwise
infinite hierarchy: To this end, we approximate the local dif-
fusive current, which is the gradient of the instantaneous local
activity and is written as

J (d )
i (t ) = [âi(t ) − âi+1(t )] ≡ D(ρ̄)[mi(t ) − mi+1(t )], (23)

where the bulk-diffusion coefficient is given by D(ρ̄) = a′(ρ̄)
as in Eq. (7) and can be treated as a constant. Essentially, we
have assumed in the above truncation scheme that fluctuations
around the global density ρ̄ are small and the local current (the
gradient of activity) relaxes diffusively via the gradient of lo-
cal mass. As demonstrated later, this approximation captures
relevant correlations quite well on the large (hydrodynamic)
timescales. More specifically, to compute correlations be-
tween any observable A(t ) (e.g., current or mass) and the
current observable J (d )

i (t ), we replace the diffusive-current
observable J (d )

i (t ) by its truncated form as given on the
right-hand side of Eq. (23), to obtain the following equality
(approximate):

〈A(t )J (d )
i

(
t ′)〉  a′(ρ̄)[A(t ){mi(t

′) − mi+1(t ′)}]. (24)

Now we can proceed further by first rewriting Eq. (19) as

d

dt
CQQ

r (t, t ′) = a′(ρ̄ )
[
CmQ

r (t, t ′) − CmQ
r−1 (t, t ′)

]
, (25)

and then expressing the time-evolution equation for the
mass-current correlations CmQ

r (t, t ′) = 〈mi(t )Qi+r (t ′)〉 −
〈mi(t )〉〈Qi+r (t ′)〉 as

d

dt
CmQ

r (t, t ′)  a′(ρ̄ )
∑

k

�r,kC
mQ
k (t, t ′), (26)

where have used Eq. (23) in the intermediate steps (see Ap-
pendix C 2). It is worth noting that, in Eq. (23) or in Eqs. (25)
and (26), the activity appears simply as a global density-
dependent constant prefactor a(ρ̄) and thus we obtain a closed
set of equations, involving only mass and current correlations.
Equations (25) and (26) can be solved, albeit in terms of
the activity a(ρ̄), which however remains undetermined in
our theory. Interestingly, it was previously possible to ex-
actly calculate the dynamic correlation functions in simple
exclusion processes [52] because, in that case, one already
gets a closed set of equations for mass and current correla-
tions and, furthermore, because the steady-state measure is a
product one, allowing one to calculate various static (time-
independent) quantities, which enter into the expression of the
current and mass fluctuations. Without an explicit knowledge
of the steady-state measure [53], the Manna sandpile, on the
other hand, is nontrivial due to the nonzero spatial correla-
tions present in the system, making explicit calculations of
the static quantities, such as the density-dependent activity,
quite difficult. Nevertheless, as shown below, by extending
the formalism developed in the context of simple exclusion
processes [52], one can calculate various dynamic correlations
in terms of activity and obtain fluctuation relations, which pre-
cisely quantify the underlying relationship between dynamic
and static fluctuations in the system.

At this stage, it is useful to introduce the Fourier repre-
sentation of the respective correlation functions as given in
Eq. (15), and we can then write Eqs. (25) and (26) in the
respective Fourier modes,

d

dt
C̃QQ

q (t, t ′) = a′(ρ̄)C̃mQ
q (t, t ′)[1 − eiq], (27)

and

d

dt
C̃mQ

q (t, t ′) = −a′(ρ̄)λqC̃mQ
q (t, t ′), (28)

where

λq = 2[1 − cos q]. (29)

Now, Eqs. (27) and (28) can be integrated to have

C̃QQ
q (t, t ′) =

∫ t

t ′
dt ′′a′(ρ̄)C̃mQ

q (t ′′, t ′)[1 − eiq]

+ C̃QQ
q (t ′, t ′), (30)

and

C̃mQ
q (t, t ′) = e−a′(ρ̄)λq (t−t ′ )C̃mQ

q (t ′, t ′). (31)

respectively. However, to fully solve for the unequal-time
correlation functions C̃QQ

q (t, t ′) and C̃mQ
q (t, t ′), we need to

calculate their respective equal-time counterparts as well.
First we obtain the evolution equation for the equal-time
mass-current correlation function CmQ

r (t ′, t ′) and then writ-
ing CmQ

r (t ′, t ′) in the Fourier space [using Eq. (C9); see
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Appendix C 4 for details], we get

d

dt ′ C̃
mQ
q (t ′, t ′) = −a′(ρ̄)λqC̃mQ

q (t ′, t ′) + f̃q(t ′), (32)

where the Fourier transform of the source term f̃q(t ′) in the
steady state is given by

f̃q = C̃mâ
q (1 − e−iq) − 2a(ρ̄)(1 − e−iq)

[
1 + λq

4

]
. (33)

Now Eq. (32) can be directly integrated to obtain

C̃mQ
q (t ′, t ′) =

∫ t ′

0
dt ′′e−a′(ρ̄ )λq (t ′−t ′′ ) f̃q(t ′′), (34)

substituting which into Eq. (31), we get the unequal-time
mass-current correlation function in terms of f̃q,

C̃mQ
q (t, t ′) =

∫ t ′

0
dt ′′e−a′(ρ̄ )λq (t−t ′′ ) f̃q(t ′′). (35)

To calculate the above correlation, we need to calculate
the activity-mass correlation as in Eq. (33). Importantly, as
shown below, we can calculate the static (time-independent)
activity-mass correlation function exactly in the steady
state (see Appendix C 5). Using the steady-state condition
dCmm

r (t, t )/dt = 0, we obtain

d

dt
Cmm

r (t, t ) =
∑

k

2〈m0�rk âk〉c + Br = 0, (36)

where Br is the source term having the form

Br (ρ̄ ) = 7a(ρ̄ )δ0,r − 4a(ρ̄ )(δ0,r+1 + δ0,r−1)

+ a(ρ̄)

2
(δ0,r+2 + δ0,r−2). (37)

Equation (36) can be solved by employing a generating func-
tion,

G(z) =
∞∑

r=0

Cmâ
r zr, (38)

for the equal-time mass-activity correlation; see Ap-
pendix (C 5). Here we directly provide the solution of the
generating function in terms of the static density-dependent
activity,

G(z) = 3a(ρ̄)

2
− a(ρ̄)

4
z, (39)

implying the mass-activity static correlation to be

Cmâ
r =

⎧⎪⎨
⎪⎩

3a(ρ̄ )
2 for r = 0

− a(ρ̄ )
4 for |r| = 1

0 otherwise,

(40)

which is in fact exact. Then, by writing the Fourier transform
of the above equation, we have

C̃mâ
q = a(ρ̄ ) + a(ρ̄ )

4
λq, (41)

and substituting the above in Eq. (33), we straightforwardly
obtain

f̃q = −a(ρ̄ )(1 − e−iq)

(
1 + λq

4

)
. (42)

C. Time-integrated current fluctuation

In this section, we calculate the time-integrated bond-
current fluctuation by using the theory developed in the
previous section. To this end, we substitute Eq. (42) into
Eq. (35) and get an explicit solution the first term on the
right-hand side of Eq. (30). Similarly, we can calculate the
second term on the right-hand side of Eq. (30) as given below:

CQQ
r (t, t ) 

∫ t

0
dt ′�r (t ′) + 1

L

∫ t

0
dt ′a′(ρ̄ )

×
L−1∑
q=0

C̃mQ
q (t ′, t ′)[1 − eiq](2 − λqr ), (43)

where λqr = 2[1 − cos(qr)]; see Appendix C 3 for de-
tails. Here the quantity �r (t ) is the strength of the
steady-state correlation function for the fluctuating cur-
rent 〈J ( f l )

0 (t )J ( f l )
r (t ′)〉 = �r (t )δ(t − t ′) as derived later in

Eq. (59). Since we are interested only in the steady-state
properties, the strength �r is replaced by its steady-state value,

�r (ρ̄ ) = 3a(ρ̄ )δ0,r − a(ρ̄)

2
(δ0,r+1 + δ0,r−1), (44)

which depends on global density ρ̄ through the density-
dependent activity a(ρ̄); for the detailed calculation of the
strength �r , see Sec. II D 1. Now the Fourier transform of
Eq. (43) leads to the second term of right-hand side of
Eq. (30). By using the inverse Fourier transform of Eq. (30),
we finally obtain the desired space- and time-dependent cur-
rent correlation function in the steady state:

CQQ
r (t, t ′) = t ′�r − a′(ρ̄ )a(ρ̄ )

1

L

∑
q

∫ t ′

0
dt ′′

∫ t ′′

0
dt ′′′e−a′(ρ̄ )λq (t ′′−t ′′′ )λq

(
1 + λq

4

)(
2 − λqr

)

− a′(ρ̄ )a(ρ̄ )
1

L

∑
q

∫ t

t ′
dt ′′

∫ t ′

0
dt ′′′e−a′(ρ̄ )λq (t ′′−t ′′′ )λq

(
1 + λq

4

)
e−iqr . (45)

The asymptotic behavior of the above equation can be straightforwardly obtained as given below (see Appendix B 1 for details):

〈Q2(T )〉 
{

2a(ρ̄ )√
πa′(ρ̄ )

T
1
2 for 1 	 T 	 L2

2a(ρ̄ )
L T for T 
 L2.

(46)
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FIG. 1. Scaled fluctuations of cumulative (time-integrated)
bond-current up to time T , obtained from simulations (solid lines),
is plotted as a function of scaled time T/L2 for different densities
ρ̄ = 2.0 (red), ρ̄ = 1.5 (blue), ρ̄ = 1.2 (green), ρ̄ = 1.0 (purple),
ρ̄ = 0.97 (orange), and for system size L = 1000, where the arrow
across the solid lines denotes the increasing order of ρ̄. Theory as
in Eq. (45) with r = 0, t = t ′ = T (black dashed line) is in excellent
agreement with the simulation for ρ̄ = 2.0. Three guiding dot-dashed
lines signify the initial-time subdiffusive growth 〈Q2(T )〉 ∼ T 1/2

[as in the first part of Eq. (46)] and the late-time diffusive growth
〈Q2(T )〉 ∼ T [as in the second part of Eq. (46)] away from critical-
ity, and the initial-time anomalously suppressed subdiffusive growth
〈Q2(T )〉 ∼ T 1/2−μ [as in Eq. (48)] near criticality.

In the simulation, we verify a special case of Eq. (45) by
putting r = 0 and t = t ′ ≡ T , i.e., the time-integrated bond
current fluctuation 〈Q2(T )〉 ≡ CQQ

0 (T, T ) (here average cur-
rent 〈Q(T )〉 = 0 for the steady-state measurement). In Fig. 1,
we plot 〈Q2(T )〉, obtained from the simulation (plotted in
solid lines), for various densities ρ̄ = 2.0 (red), ρ̄ = 1.5
(blue), ρ̄ = 1.2 (green), ρ̄ = 1.0 (purple), ρ̄ = 0.97 (orange)
as a function of T . The arrow across the solid lines in the Fig. 1
signifies the increasing order of global density ρ̄.

Indeed the dynamical behaviors as predicted by the
asymptotics in Eq. (46) are different in two different time
regimes: On smaller initial timescales 1 	 T 	 L2, the time-
integrated current grows subdiffusively as T 1/2 and, on larger
(hydrodynamic) timescales T 
 L2, grows linearly as T . We
compare the simulation result with that obtained from our
theory (45) with r = 0 and t = t ′ = T for ρ̄ = 2.0 (black
dashed line) and for system size L = 1000; one can see an
excellent agreement between simulation and theory.

As mentioned previously, our theory is expected to be
valid at hydrodynamic times (T 
 Lz) and the small-time
(T 	 Lz) behavior of current fluctuation, especially near
criticality, is not quite well captured by Eq. (45). How-
ever the small-time behavior near criticality can still be
obtained qualitatively by using the following standard scal-
ing analysis. Indeed, first resorting to a simple dimensional
analysis, we can see that the activity scales as a(�) ∼ �β ∼
T −β/ν⊥z, where the relative density � = ρ̄ − ρc 	 1 and we
use the following scaling relations: correlation length ξ ∼
T 1/z the relative density � ∼ ξ−1/ν⊥ ∼ T −1/ν⊥z, with z being
the dynamic exponent. Thus, by writing a(�)/[a′(�)]1/2 ∼

 0.1

 0.2

 0.3

 0.4

 0.5

10-5 10-4 10-3 10-2 10-1 100

T
-α

 <
Q

2 (T
)>

T/Lz

L=100

L=200

L=500

FIG. 2. The scaled variance T −α〈Q2(T )〉 of time-integrated bond
current Q(T ) up to time T , obtained from simulations, is plotted as a
function of scaled time T/Lz for system size L = 100 (solid magenta
line), L = 200 (green dashed line), and L = 500 (blue dotted line)
and for (near-critical) density ρ̄ = 0.95, where, to achieve the scaling
collapse, we use α ≈ 0.297 and z ≈ 1.66. The value of α ≈ 0.297
obtained from simulations is not far from α ≈ 0.26 obtained from
theory as in Eqs. (47) and (48) with β ≈ 0.42, ν⊥ ≈ 1.81 [21].

T −μ, we straightforwardly have, in the initial-time regime
1 	 T 	 Lz, the scaling behavior of the current fluctuation
〈Q2(T )〉 ∼ [a/(a′)1/2]T 1/2 ∼ T α , where the exponents

α = 1
2 − μ (47)

and

μ = β + 1

2ν⊥z
. (48)

More precisely, near criticality we expect the following scal-
ing form for the time-integrated bond-current fluctuation to
hold,

〈Q2(T )〉  LαzG
(

�L1/ν⊥ ,
T

Lz

)
= T αF

(
�L1/ν⊥ ,

T

Lz

)
,

(49)

where G and F are two scaling functions. To determine the
exponent α in Eq. (49) from simulations, we take density
value such that �L1/ν⊥ → 0 and then we plot in Fig. 2 the
scaled variance of time-integrated bond current T −α〈Q2(T )〉
as a function of the scaled time T/Lz for rather quite smaller
system sizes L = 100 (solid magenta line), L = 200 (green
dashed line), and L = 500 (blue dotted line), respectively, and
for ρ̄ = 0.95. We get a reasonably good scaling collapse of
simulation data, with the exponent estimated to be α ≈ 0.297;
our theoretical prediction of the exponent α ≈ 0.26, computed
from scaling relations Eqs. (47) and (48) by using β ≈ 0.42,
z ≈ 1.66, and ν⊥ ≈ 1.81 [21], slightly underestimates that
obtained from simulation though.

The variance of time-integrated bond current is known to
grow subdiffusively in the initial-time regime in diffusive sys-
tems, such as symmetric simple exclusion processes [52,54].
Now, away from criticality, the relaxation processes in sand-
piles are diffusive [41,42] and, therefore not surprisingly, the
current fluctuation exhibits a subdiffusive growth, as derived
in the first part of Eq. (46). Near-critical relaxation processes
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in the Manna sandpile, on the other hand, are anomalous and
we observe nontrivial scaling behavior. When compared with
a normal diffusive system, the Manna sandpile near criticality
exhibits strong suppression of current fluctuations and much
slower subdiffusive growth of temporal fluctuations due to
the lack of local activity, as described in Eq. (49); we call
it a “dynamic hyperuniformity,” which is quite analogous to
hyperuniformity studied in the spatial domain [33,35] and is
reminiscent of that identified in the context of temporal statis-
tics of avalanches in a particular version sandpile, called the
Oslo rice pile [46]. Of course, the dynamic hyperuniformity,
or the anomalously subdiffusive growth of temporal fluctua-
tions, can be equivalently characterized in terms of the current
and mass power spectra, or the respective dynamic correlation
functions, as discussed in the following sections.

D. Current fluctuation and its power spectrum

1. Instantaneous current

In this section, we calculate in the steady-state the time-
dependent (unequal-time) current-current correlation function
CJJ

r (t ) ≡ CJJ
r (t, t ′ = 0) of the instantaneous bond current

by taking time derivative of time-integrated bond current cor-
relation as given below,

CJJ
r (t ) =

[
d

dt

d

dt ′ C
QQ
r (t, t ′)

]
t ′=0

, (50)

where t � t ′. Now, after differentiating Eq. (45), we can write
the time-dependent current correlation as

CJJ
r (t ) = �rδ(t )

− a′(ρ̄ )a(ρ̄ )

⎡
⎣ 1

L

∑
q

e−a′(ρ̄)λqtλq

(
1 + λq

4

)
e−iqr

⎤
⎦,

(51)

where �r is the strength of the fluctuating current J f l (t ) and
calculated below [see Eq. (59)]. We note that, as λq � 0 for
any q, the current correlation function is negative CJJ

r (t ) <

0 for any t > 0. Moreover, provided that we first take the
infinite-system-size limit L → ∞, the time-integrated bond
current correlation function CJJ

0 (t ) over a large time interval
[−T, T ] decays as a function of time T as given below,∫ T

−T
CJJ

0 (t )dt  a(ρ̄)√
πa′(ρ̄)

T − 1
2 . (52)

Finally, by taking the limit T → ∞, we obtain the following
identity: ∫ ∞

−∞
CJJ

0 (t )dt = 0, (53)

see Appendix B 2 for details. Indeed, the above result is a di-
rect consequence of the negative current correlation present in
the system and explains why the time-integrated bond current
fluctuation, as derived in Eq. (46), grows subdiffusively in the
initial-time regime 1 	 t 	 L2. The asymptotic form of the
time-dependent instantaneous current correlation function, for

t > 0, in the thermodynamic limit can be written as

CJJ
0 (t )  − a(ρ̄)

4
√

πa′(ρ̄ )
t− 3

2 , (54)

where the density-dependent term a(ρ̄ )/[a′(ρ̄)]1/2 in the pref-
actor is the same as that in Eq. (46) (see Appendix B 2).
Again, by employing the dimensional scaling argument used
in the previous section to derive Eq. (48), we obtain a modified
power-law decay of the instantaneous current correlation near
criticality,

CJJ
0 (t ) ∼ −t−( 3

2 +μ). (55)

Clearly the decay is faster than that away from criticality.
As discussed previously, the faster decay of the near-critical
current correlation function is due to the fact that the activity
is very small in the vicinity of criticality, thus resulting in the
anomalous suppression of fluctuations. Indeed the suppressed
fluctuation is characterized by the exponent μ > 0, whereas
μ = 0 signifies the subdiffusive growth of the time-integrated
current, expected in a normal diffusive system.

2. Fluctuating current

Now we discuss the dynamic properties of the fluctuating
part J ( f l )

i (t ) in the instantaneous bond current, which has
already been defined in Eq. (12) and whose strength appears
in the actual current correlation functions [e.g., see Eqs. (52)
and (50)]. Here we derive the general space and time de-
pendence of the correlation function CJ ( f l )J ( f l )

r (t, t ′) of the
fluctuating current J ( f l )

i (t ) by using the relation [obtained
from the definition in Eq. (12)]

CJ ( f l )J ( f l )

r (t, 0) = CJJ
r (t, 0) − CJJ (d )

r (t, 0) − CJ (d )J
r (t, 0)

+ CJ (d )J (d )

r (t, 0), (56)

and a second relation

CJJ (d )

r (t, 0) ≡ d

dt
CQJ (d )

r (t, 0) = CJ (d )J (d )

r (t, 0). (57)

We see that the second and the fourth terms of Eq. (56) cancel
each other. Again, by using the following relation, for t > t ′,

CJ (d )J
r (t, t ′) = d

dt ′ C
J (d )Q
r (t, t ′) = d

dt ′
d

dt
CQQ

r (t, t ′), (58)

in Eq. (56) along with t ′ = 0, we finally have the time-
dependent correlation function for the fluctuating current,

CJ ( f l )J ( f l )

r (t, t ′ = 0) ≡ CJ ( f l )J ( f l )

r (t ) = δ(t )�r (ρ̄), (59)

where �r (ρ̄) is the density-dependent strength of the fluctuat-
ing current J ( f l ).

The analytical expression of the strength �r as given in
Eq. (44) has some interesting properties, which are due to
the two-particle transfer rule in the Manna sandpile and are
noticeably different from that in the variant of sandpile with
one-particle transfer [55] and symmetric simple exclusion
processes studied in Ref. [52]. As in the simple exclusion
processes, the strength �r for the sandpile with one-particle
transfer rule can be shown to be simply delta correlated in
space, i.e., �r = 2a(ρ̄)δr,0 [56]; this is because both the mod-
els have a steady state with a product measure and therefore do
not have any spatial correlations. But, in the case of the Manna
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sandpile, there are nonzero spatial correlations, leading to the
spatially correlated fluctuating current, i.e., �r �= 0 for r �= 0,
as shown in Eq. (44). Indeed, as our calculation shows (for
details, see Appendix C 3), Eq. (44) is exact in the case of
Manna sandpile and we have

�0 = 3a(ρ̄ ), (60)

being the strength of the fluctuating current J ( f l )
i across a

single bond (i, i + 1). Moreover, we find that there exists a
sum rule ∑

r

�r = 2a(ρ̄ ), (61)

which, as shown later in Eq. (69), is directly related to the
scaled space-time integrated current fluctuations and therefore
related to another transport coefficient, called the mobil-
ity, or equivalently, the conductivity, defined as the ratio
between average current and an externally applied small bi-
asing force [41,51]. It has been derived in Ref. [41] that the
conductivity in the Manna sandpile is nothing but the density-
dependent activity a(ρ̄ ) itself. Remarkably, as shown in the
next section, here we show that one can indeed relate the
conductivity directly to the current fluctuation in the system.

To verify Eq. (59) in simulation, let us first define a cu-
mulative (space-time integrated) fluctuating current across a
subsystem of size l and up to time T ,

Q( f l )
l (T ) =

∫ T

0
dt

l−1∑
i=0

J ( f l )
i (t ). (62)

Then, using Eqs. (44) and(59) and after some algebraic ma-
nipulations, we obtain, for l < L, a fluctuation relation, which
immediately connects the scaled current fluctuation and the
density-dependent activity,

1

lT

〈(
Q( f l )

l (T )
)2〉 = 2a(ρ̄)

(
1 + 1

2l

)
. (63)

In Fig. 3 (top panel), we plot the left-hand side of Eq. (63)
as a function of the relative density � = ρ̄ − ρc for different
subsystem sizes l = 1 (solid red line), l = 2 (solid blue line),
l = 5 (solid green line), l = 10 (solid purple line); we take
system size L = 1000 and final time T = 100. The arrow
across the solid lines denotes the increasing order of the sub-
system size l . Note that the variance of subsystem fluctuating
current for subsystem size l = 1 is actually the strength �0

of the fluctuating bond current; the corresponding analytical
result �0 = 3a(ρ̄ ) (dashed black line) as in Eq. (60) shows an
excellent agreement with simulations. For comparison, in the
same Fig. 3 (top panel), we also plot 2a(�) as a function of �

(the brown dot-dashed line), to demonstrate that, as subsystem
size l increases, the scaled variance [left-hand side of Eq. (63)]
indeed converges towards 2a(ρ̄), as predicted in Eq. (63). To
show this convergence more quantitatively, in Fig. 3 (bottom
panel) we plot the scaled quantity 2l[〈(Q( f l )

l )2〉 − 2a] for var-
ious subsystem sizes l = 1 (red solid line), l = 2 (blue dashed
line), l = 5 (green dotted line), and l = 10 (purple dot-dashed
line); we see that all the curves collapse excellently onto each
other and the collapsed master curve matches excellently with
the analytically predicted value 2a(�) derived in Eq. (63).
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FIG. 3. (top panel) The scaled variance 〈[Q( f l )
l (T )]2〉/lT of

space-time-integrated fluctuating current Q( f l )
l (T ) up to time T [as

defined in Eq. (62)] obtained from simulations is plotted as a function
of relative density � for different subsystem sizes l = 1 (solid red
line), l = 2 (solid blue line), l = 5 (solid green line), l = 10 (solid
purple line), and the arrow across the solid line denotes the increasing
order of the subsystem size l; we have used system size L = 1000
and final time T = 1000. The theoretical prediction as in Eq. (63)
with l = 1 (black dashed line) is in excellent agreement with the cor-
responding simulation. Also, one can see that the variance for large
l converges quite rapidly to the theoretically predicted value 2a(ρ̄ )
[i.e., Eq. (63) for l 
 1] (brown dot-dashed line). (bottom panel)
A scaling collapse of the scaled variance of space-time-integrated
fluctuating current minus the asymptotic value 2a(ρ̄ ) for different
subsystem sizes is observed when plotted as a function of relative
density �, and it is in excellent agreement with theory [Eq. (63)].

3. Space-time integrated current

In this section we calculate the steady-state variance
〈Q̄2(l, T )〉 − 〈Q̄(l, T )〉2 of the cumulative (space-time inte-
grated) actual particle current Q̄(l, T ) = ∑l−1

i=0 Qi(T ) across a
subsystem of size l and up to time T , which can be written as

〈Q̄2(l, T )〉 − 〈Q̄(l, T )〉2 = 〈Q̄2(l, T )〉

= lCQQ
0 (T, T ) +

l−1∑
r=1

2(l − r)CQQ
r (T, T ), (64)
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FIG. 4. Scaled space-time-integrated current fluctuations as a
function of relative density. The simulation data for subsystem size
l = 2500 and T = 100 is plotted on top in a solid sky-blue line and
data for l = 100 and T = 105 is plotted at bottom in a solid magenta
line. We compared the analytical result Eq. (66) (corresponding
dashed black lines) with the simulation, which is in excellent agree-
ment. Simulation data have been taken for L = 5000 in both cases.
We note that the result for the larger subsystem size l and smaller
T (upper solid line) almost coincide with twice the local activity,
2a(�), as a function of � (red dot-dashed line). In the inset we
compare the scaled total current fluctuation and twice the activity
2a(ρ̄ ) as a function of �.

where we have used the fact that the average steady-state
current is zero, i.e., 〈Q̄(l, T )〉 = 0. Now, by using the
following identity:

l−1∑
r=1

2(l − r)(2 − λrn) = 2

(
λln − lλn

λn

)
, (65)

we can rewrite Eq. (64) as

〈
Q̄(l, T )2

〉 = 2a(ρ̄ )lT + a(ρ̄ )T (1 − δl,L ) − 2a(ρ̄)
a′(ρ̄ )

L

×
∑

q

a′(ρ̄)λqT − 1 + exp(−λqa′(ρ̄ )T )

(λqa′(ρ̄))2

× λq

(
1 + λq

4

)
λql

λq
. (66)

In Fig. 4, we plot the subsystem current fluctuation 〈Q̄2(l, T )〉
obtained from simulations as a function of relative density
� = ρ − ρc for various subsystem sizes l and final times T :
l = 2500, T = 100 (upper solid sky-blue line) and l = 100,
T = 105 (lower solid magenta line). In the same figure we
also compare the simulation results with theory Eq. (66):
l = 2500, T = 100 and l = 100, T = 105 (both in black
dashed line); we observe excellent agreement between
simulations and theory. Here we note that the results for
the larger subsystem size l and smaller T (upper solid line)
almost coincide with twice the local activity, 2a(�), as a
function of � (red dot-dashed line).

Importantly, the asymptotic expression of the variance of
the cumulative subsystem (space-time integrated) current as

in Eq. (66) depends on the order of limits of the two variables
T 
 1 and l 
 1, i.e.,

〈Q̄2(l, T )〉
lT


{ 2a(ρ̄ )√

πa′(ρ̄ )
l√
T

for T 
 1, l 
 1

2a(ρ̄ ) − 8a(ρ̄ )
√

a′(ρ̄ )
3
√

π

√
T
l for l 
 1, T 
 1,

(67)

see Appendix B 3 for details. The first expression in the above
equation has been obtained by taking the limit in the following
order, first T 
 1 and then the limit l 
 1. In this particular
order of limits, the scaled fluctuation 〈Q̄2(l, T )〉/lT decreases
as 1/

√
T and eventually vanishes in the limit of T → ∞.

On the other hand, if we take the limit in the opposite order,
l 
 1 first and then T 
 1, we obtain the second asymptotic
expression in Eq. (67). That is, in the limit l → ∞, the scaled
subsystem-current fluctuation 〈Q̄2(l, T )〉/lT tends to 2a(ρ̄) as
one increases T ,

σ 2
Q(ρ̄ ) ≡ lim

l→∞
lim

T →∞
〈Q̄2(l, T )〉

lT
= 2a(ρ̄ ), (68)

where the infinite-subsystem-size limit is taken first, and then
the infinite-time limit. Note that, in all the above cases, we
have taken the large system size limit L/l 
 1 at the very be-
ginning. In fact, one can immediately identify the right-hand
side of Eq. (68) as the mobility (equivalently, the conductivity)
for the Manna sandpile, as calculated in Ref. [41]. Indeed,
Eq. (68) can be thought of as a nonequilibrium version of the
celebrated Green-Kubo relations well known for equilibrium
systems [57].

Interestingly, if we take l = L 
 1, which corresponds to
the bond currents summed over the whole system, we have the
following identity:

lim
L→∞

〈Q̄2(L, T )〉
LT

= 2a(ρ) =
∑

r

�r . (69)

Notably, the above equality is valid for any finite time T .
This is because the sum of the diffusive currents over the
full system,

∑L
i=1 J

(d )
i , is zero by definition [see Eq. (13)].

Consequently the right-hand side of Eq. (69) is equal to the
space-time integral of the fluctuating-current correlation func-
tion

∑∞
r=−∞

∫∞
−∞ dtCJ ( f l )J ( f l )

r (t, 0) = 2a(ρ̄), obtained using
Eqs. (44), (59), and (61). In the inset of Fig. 4, the scaled
variance 〈Q̄2(L, T )〉/LT (solid red line) and twice the local
activity 2a(�) (black dashed line) are plotted as a func-
tion of �, which is in excellent agreement with Eq. (69).
Clearly, below the critical point � < 0, the system goes into
an absorbing state and, as a result, the current fluctuation is
identically zero. Usually activity is considered to be the order
parameter in the sandpiles. Indeed, as the identity Eq. (69)
suggests, the space-time integrated current fluctuation can
serve as an order parameter and thus characterizes the dynam-
ical state of the system. Later we show that the self-diffusion
coefficient of tagged particles can be expressed in terms of
the activity and, as previously noted in Ref. [27], it can be
considered an alternative description of the system’s order
parameter.
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4. Power spectrum

The two-point time-dependent correlation function for in-
stantaneous bond current can be characterized also through
the power spectrum analysis, which we perform in this sec-
tion. From the Wiener-Khinchin theorem [58], the power
spectrum for the instantaneous bond current Ji(t ) is expressed
in terms of the Fourier transform of the time-correlation func-
tions,

SJ ( f ) =
∫ ∞

−∞
dtCJJ

0 (t, 0)e2π i f t . (70)

Setting r = 0 in Eq. (51), we perform the integration in the
right-hand side of the above equation, leading to the following
expression:

SJ ( f ) = 2a(ρ̄ )

L
+ 2a(ρ̄)

L

∑
q

(
1 + λq

4

)
4π2 f 2

λ2
qa′(ρ̄)2 + 4π2 f 2

.

(71)
Now, by subtracting the f = 0 mode

SJ (0) = lim
T →∞

〈Q2(T )〉
T

= 2a(ρ̄ )

L
(72)

from the left-hand side of Eq. (71), we rewrite Eq. (71)
in terms of the modified power spectrum S̃J ( f ) = SJ ( f ) −
SJ (0),

S̃J ( f ) = 2a(ρ̄ )

L

∑
q

(
1 + λq

4

)
4π2 f 2

λ2
qa′(ρ̄ )2 + 4π2 f 2

. (73)

We can now straightforwardly obtain the asymptotic form of
Eq. (73) for small frequency 1/L2 	 f 	 1. To do this, we
first replace the sum in Eq. (73) as an integral over the variable
x = q/2π ,

S̃J ( f )  4a(ρ̄ )
∫ 1/2

1/L
dx

1 + λ(x)
4

1 + λ2(x)a′2(ρ̄ )
4π2 f 2

, (74)

where λ(x)  4π2x2. Then, by performing the variable trans-
formation

y = λ2(x)a′2(ρ̄ )

4π2 f 2
, (75)

and doing some algebraic manipulations, we immediately ob-
tain the modified power spectrum of current,

S̃J ( f )  a(ρ̄ )

√
f

2πa′(ρ̄ )

∫ ∞

0
dy

y− 3
4

(1 + y)
=

√
πa(ρ̄ )√
a′(ρ̄ )

f
1
2 ,

(76)

see Appendix A for details. Again, by using the previous
dimensional scaling argument where a/(a′)1/2 ∼ f μ with μ

given in Eq. (48) (see Sec. II C), we obtain the desired scaling
behavior of the subtracted power spectrum near criticality,

S̃J ( f ) ∼ f ψJ , (77)

where ψJ = 1/2 + μ. Since μ > 0, with decreasing fre-
quency, the near-critical power spectrum in the above
equation (77) decays faster than that away from criticality
[given by Eq. (76)]. In simulations, we calculate the power
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FIG. 5. Power spectrum of instantaneous current computed from
simulations is plotted in solid lines as a function of frequency f for
various densities ρ = 2.0 (red line), ρ = 1.5 (blue line), ρ = 1.5
(green line), ρ = 1.0 (purple line), ρ = 0.97 (orange line), and for
system size L = 1000. The arrow across the solid lines signifies
the incremental order of the density ρ̄. The top and bottom dashed
guiding lines represent the asymptotic behavior, the f 1/2 (far from
criticality) and f 1/2+μ (near criticality) scaling, respectively, with
μ ≈ 0.24, obtained by using β ≈ 0.42, ν⊥ ≈ 1.81, and z ≈ 1.66
in Eq. (48). The dashed black line represents the theoretical result
Eq. (71) for ρ = 2.0 and is in excellent agreement with the corre-
sponding simulation (top red solid line).

spectrum by discretizing time over a small interval δt and
calculate the discrete Fourier transform

J̃n;T = δt
T −1∑
k=0

ei2π fnkJi(k), (78)

where fn = n/T with T being large. Then we define the power
spectrum of the bond current as

Sn = lim
T →∞

1

T
〈|J̃n;T |2〉. (79)

In Fig. 5, we plot the subtracted power spectrum S̃J ( f )
obtained from simulations in solid lines, for various densi-
ties ρ = 2.0 (red line), ρ = 1.5 (blue line), ρ = 1.5 (green
line), ρ = 1.0 (purple line), and ρ = 0.97 (orange line). The
arrow through the solid lines denotes the incremental order
of the density ρ̄. For ρ = 2.0, we also plot S̃J ( f ) obtained
from theory Eq. (73) (black dashed line), which shows an
excellent agreement with simulation; top-most guiding line is
f 1/2 [behavior away from criticality as in Eq. (76)] and the
bottom-most guiding line is f 1/2+μ [behavior near criticality
as in Eq. (77)].

E. Tagged-particle displacement fluctuation

In this section, we study the fluctuations in tagged particle
displacements as a function of time. We can relate the sum
of all individual time-integrated tagged particle displacement∑N

α=1 Xα (T ), where the net displacement Xα (T ) of the αth
particle in a time interval [0, T ], to the space-time integrated
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current by the following relation:

N∑
α=1

Xα (T ) =
L−1∑
i=0

Qi(T ) = Q̄(L, T ). (80)

In the limit of large T 
 L2, the self-diffusion coefficient
Ds(ρ̄) can be defined through the mean-square tagged particle
displacement of the αth particle as given below:〈

X 2
α (T )

〉  2Ds(ρ̄)T . (81)

To compute the left-hand side of the above equation, we write
the variance of the sum

∑N
α=1 Xα (T ) as〈[

N∑
α=1

Xα (T )

]2〉
=
∑
α,n

∑
α′,n′

〈δXα (tn)δXα′ (tn′ )〉 = 2a(ρ̄ )LT,

(82)

where δXα (t ) is the microscopic displacement of the αth par-
ticle in a small time interval (tn, tn + δt ):

Xα (T ) =
∑

n

δXα (tn), (83)

and we have used Eq. (69) in the last line of Eq. (82). Now
using 〈δXα (t )δXα′ (t ′)〉  0 for t �= t ′ and therefore 〈X 2

α (T )〉 =∑
n〈δX 2

α (tn)〉, we get〈[
N∑

α=1

Xα (T )

]2〉


N∑
α=1

〈
X 2

α (T )
〉 = N

〈
X 2

α (T )
〉
. (84)

Comparing Eqs. (82), (81), and (84), we obtain the following
relations,

Ds(ρ̄ ) = a(ρ̄)

ρ̄
= 1

ρ̄

[
lim

L,T →∞
〈Q̄2(L, T )〉

2LT

]
, (85)

which connects the self-diffusion coefficient, activity, and
the space-time integrated current fluctuation. Alternatively,
one can show the above relation using a slightly different
argument as follows: First we note that 〈X 2

α (T )〉 = 〈N (h)
α (T )〉,

where N (h)
α (T ) is the total number of hops, performed by the

αth particle up to time T [27]. Summing over all particles we
obtain ∑

α

〈
X 2

α (T )
〉 = ∑

α

〈N (h)
α (T )〉 = 2〈N (t p)(T )〉, (86)

where N (t p)(T ) is the total number of toppling in the whole
system up to time T and we have used the fact that∑

α N (h)
α (T ) = 2N (t p)(T ). Also in the limit of large T , we

have in the leading order of T ,

〈N (t p)(T )〉  a(ρ̄)T L, (87)

where a(ρ̄) is the activity at density ρ̄. By summing Eq. (81)
over all particles,∑

α

〈
X 2

α (T )
〉  2Ds(ρ̄ )T N, (88)

and then by using Eqs. (87) and (88) in Eq. (86), we obtain
the relation as given in Eq. (85). In Fig. 6 (top panel), we
plot typical trajectories of a particular tagged particle for
different densities ρ = 0.97 (violet square points), 1.5 (green
circular points), 2.0 (blue triangular points) as a function of
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FIG. 6. In the top panel, we display the typical space-time tra-
jectories for three tagged particles corresponding to the densities
ρ = 0.97 (violet square points), 1.5 (green circular points), 2.0 (blue
triangular points), respectively, with the scaled time axis. In the
bottom panel, we plot the mean-square fluctuation of tagged par-
ticle displacement up to time T (solid red line) as a function of
relative density �, where the double angular braces 〈〈X 2(T )〉〉 =∑

α〈X 2
α (T )〉/N denote the average over trajectories as well as parti-

cles. Simulations (solid red line) show excellent agreement with the
theoretically obtained self-diffusion coefficient Ds(ρ̄) (dashed black
line) as in Eq. (85). In the same panel, we also plot the bulk-diffusion
coefficient D(ρ̄ ) = a′(ρ̄) as a function of � = ρ̄ − ρc (dot-dashed
blue line), using Eq. (7) from simulation, which has a contrasting
behavior as compared with the self-diffusion coefficient Ds(ρ̄).

scaled time. In Fig. 6 (bottom panel), we plot the mean square
fluctuation of tagged particle displacement (solid red line)
up to time T , 〈〈X 2(T )〉〉/2T , as a function of � = ρ − ρc,
where the double angular braces 〈〈X 2(T )〉〉 = ∑

α〈X 2
α (T )〉/N

denote the average over trajectories as well as particles; in
simulations, during the particle transfer at any site i, two
particles are chosen randomly from a particular stack. Our
theoretical expression of the density dependent self-diffusion
coefficient Ds(ρ), as given in the equality Eq. (85), is also
plotted (dashed black line); one can see an excellent agree-
ment between the simulation and the theoretical prediction.
For comparison, we also plot the bulk-diffusion coefficient
D(ρ̄) (dot-dashed blue line), defined in Eq. (7). Here one
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should note that the self-diffusion coefficient Ds(ρ̄) and the
bulk-diffusion coefficient D(ρ̄ ) are, in principle, two different
quantities and strikingly they have quite contrasting behavior,
especially near criticality. Indeed, upon approaching critical-
ity where activity decays as a(ρ̄) ∼ (ρ̄ − ρc)β with β < 1, the
self-diffusion coefficient being the ratio of activity to den-
sity [see Eq. (85)] vanishes as Ds(ρ̄) ∼ (ρ̄ − ρc)β—exactly
in the same manner as the activity behaves near criticality,
but the bulk-diffusion coefficient being derivative of activity
with respect to the density [see Eq. (7)] diverges as D(ρ̄) ∼
1/(ρ̄ − ρc)1−β [41,42]. Moreover, far from criticality and in
the limit of large density ρ̄ 
 1, although the self-diffusion
coefficient and the bulk-diffusion coefficient both vanish, they
do so in different manners. In that case, as the activity is ex-
pected to behave as a(ρ̄)  1 − const./ρ̄, the self-diffusivity
decays as Ds(ρ̄) ∼ 1/ρ̄, but the bulk-diffusivity decays much
faster, D(ρ̄) ∼ 1/ρ̄2. Lastly, in the active phase, where ρ̄ >

ρc, while the bulk-diffusion coefficient D(ρ̄) is a monotoni-
cally decreasing function of density ρ̄ shown in Fig. 6, the
self-diffusion coefficient Ds(ρ̄) is however a nonmonotonic
function of ρ̄.

Importantly, unlike in the symmetric simple exclusion pro-
cess where both the time-integrated bond current and the
tagged particle displacement fluctuations grow subdiffusively
as T 1/2 [52,54], in the conserved Manna sandpile only the
current fluctuation grows subdiffusively, whereas the tagged
particle displacement fluctuation always grows linearly with
time. This is perhaps not surprising, given the fact that, in
the Manna sandpile, there are no restrictions in the particle
crossings, which are otherwise not allowed in the symmetric
exclusion process.

F. Mass fluctuation and power spectrum

In the previous sections, we studied various properties
of current fluctuations in detail. Similarly, in this section,
starting from the microscopic update rules combined with
the previously introduced truncation scheme, we shall de-
rive various dynamic properties of mass fluctuations. The
basic quantity is the two-point dynamic correlation func-
tion Cmm

r (t, t ′) = 〈m0(t )mr (t ′)〉 − 〈m0(t )〉〈mr (t ′)〉. By using
the microscopic update rules, we write the time evolution
equation for Cmm

r (t, 0) ≡ Cmm
r (t ) as

d

dt
Cmm

r (t ) =
∑

k

�0,k〈âk (t )mr (0)〉. (89)

Using the earlier truncation approximation Eq. (23), we write
the above equation as

d

dt
Cmm

r (t )  a′(ρ̄)
∑

k

�r,kC
mm
k (t ). (90)

The solution of Eq. (90) can be written by using the Fourier
representation as

C̃mm
q (t )  e−a′(ρ̄ )λqtC̃mm

q (0), (91)

where C̃mm
q is the Fourier transform of Cmm

r . The equal-time
mass correlation can be solved by using the approximation
Eq. (23) in Eq. (36) and we can write the time evolution of

Cmm
r (t, t ) in the steady state as

d

dt
Cmm

r (t, t )  2a′(ρ̄ )
∑

k

�0,k〈mkmr〉 + Br = 0. (92)

Similar to what was done earlier to solve Eq. (36), the above
equation can be solved exactly using a generating function,

G(z) = 1

a′(ρ̄ )

(
3a(ρ̄)

2
− a(ρ̄ )

4
z

)
. (93)

According to the above generating function, we have the
steady-state correlations Cmm

0 = 〈m2
0〉 − ρ̄2 = 3a/2a′, Cmm

1 =
〈m0m1〉 − ρ̄2 = −a/4a′ and all other correlations being zero.
Thus we immediately arrive at a relation between the scaled
subsystem-mass fluctuation and the activity,

σ 2(ρ) ≡ lim
l→∞

〈(�Ml )2〉
l

=
r=∞∑

r=−∞
Cmm

r = a(ρ̄)

a′(ρ̄ )
, (94)

where �Ml = Ml − 〈Ml〉. Now, by using Eqs. (7) and (68),
the above identity can be recast into a nonequilibrium version
of the Green-Kubo-like relation [41],

σ 2(ρ̄ ) = σ 2
Q(ρ̄ )

2D(ρ̄ )
, (95)

connecting the (scaled) subsystem-mass fluctuation σ 2(ρ̄), the
(scaled) subsystem-current fluctuation σ 2

Q(ρ̄ ), and the bulk-
diffusion coefficient D(ρ̄) (a slightly different form of the
above relation is usually referred as the Einstein relation in
the literature [41,51]). Remarkably, the fluctuation relation in
Eq. (94) implies that the scaled subsystem mass fluctuation
σ 2(ρ̄) varies linearly with the relative density �, i.e., σ 2(ρ̄) ∼
�1−δ with δ = 0 [41]; interestingly, such behavior was indeed
previously observed in simulations [59] in a variant of the
conserved Manna sandpile, which is believed to be in the same
universality class as that studied here.

Next we write the solution of Eq. (91) using the generating
function in Eq. (93) as

C̃mm
q (t )  e−a′(ρ̄ )λqt a(ρ̄ )

a′(ρ̄)

(
1 + λq

4

)
. (96)

Finally, using the inverse Fourier transformation, we get

Cmm
r (t )  1

L

∑
q

e−iqre−a′(ρ̄ )λqt a(ρ̄ )

a′(ρ̄)

(
1 + λq

4

)
. (97)

We now consider subsystem mass Ml (t ) = ∑l−1
r=0 mr (t ) for

l < L and calculate the equal-time correlation function for
mass CMl Ml (t, 0) ≡ CMl Ml (t ) by using the following expres-
sion:

CMl Ml (t ) = lCmm
0 (t ) +

l−1∑
r=1

(l − r)
[
Cmm

r (t ) + Cmm
−r (t )

]
. (98)

Then by substituting Eq. (97) in Eq. (98), we get the equal-
time correlation for subsystem mass,

CMl Ml (t )  1

L

∑
q

e−a′(ρ̄ )λqt a(ρ̄ )

a′(ρ̄ )

(
1 + λq

4

)
λlq

λq
. (99)
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FIG. 7. Power spectrum of subsystem mass fluctuations are
plotted for L = 1000 and l = 500. The solid lines represent the sim-
ulation data for the densities ρ̄ = 2.0 (red), 1.5 (blue), 1.2 (green),
1.0 (purple), 0.97 (orange), respectively. The top-most guiding line
represents the f −3/2 (away from criticality) behavior [Eq. (104)],
whereas the bottom-most guiding line represents f −�M (near critical-
ity) behavior [Eq. (105)] where �M = 3/2 − μ ≈ 1.26. The dashed
black line represents the theoretical result Eq. (103) for ρ = 2.0.
The arrow across the solid lines signifies the ascending order of
densities ρ̄.

For t = 0, the correlation function CMl Ml (0) is nothing but the
equal-time subsystem mass fluctuation, which can be written
in the large system size L → ∞ limit as given below:

CMl Ml (0) = 〈(Ml − 〈Ml〉)2〉 = a(ρ̄ )

a′(ρ̄)
l

[
1 + 1

2l

]
. (100)

Then, by taking the large subsystem size l → ∞ limit, where
1 	 l 	 L, we recover the Einstein relation, already derived
in Eq. (94). Moreover the asymptotic form of Eq. (99) can be
written as

CMl Ml (t ) − CMl Ml (0)  − 2a(ρ̄)√
πa′(ρ̄ )

t
1
2 (101)

for large time 1 	 t 	 L2; see Appendix B 4 for details.
Using the Fourier transform of Eq. (99), we write the power
spectrum of the subsystem mass fluctuation as

SM ( f ) = lim
T →∞

∫ T

−T
dtCMl Ml (t )e2π i f t , (102)

which can be written by using Eq. (99) as

SM ( f ) = 1

L

∑
q

a(ρ̄)

a′(ρ̄ )

(
1 + λq

4

)
2λqa′(ρ̄)

λ2
qa′(ρ̄)2 + 4π2 f 2

λlq

λq
.

(103)

In Fig. 7, we plot the power spectrum of the subsystem mass
fluctuation, obtained from simulation for L = 1000 and l =
500 in solid lines, for various densities ρ̄ = 2.0 (red line),
ρ̄ = 1.5 (blue line), ρ̄ = 1.2 (green line), ρ̄ = 1.0 (purple
line), ρ̄ = 0.97 (orange line), where the arrow across the
solid lines denotes the ascending order of the density ρ̄. We
compare the analytical expression (103) (dotted black line)

with the simulation result for ρ̄ = 2.0 (solid red line), which
is in excellent agreement with theory. The asymptotic expres-
sion of the power spectrum in Eq. (103) can be obtained by
simplifying the integral as given below:

SM ( f ) = 4a(ρ̄ )
∫ 1/2

1/L
dx

λ(lx)[1 + λ(x)/4]

λ2(x)a′2(ρ̄ ) + 4π2 f 2

 a(ρ̄ )

2
√

π3a′(ρ̄ )
f − 3

2 . (104)

Here, in the first step, we have replaced the sum in the right-
hand side of Eq. (103) as an integral (1/L)

∑
q → ∫ 2π

0 dq in
the limit L → ∞ and we used q = 2πx, λ(x) = 4π2x2, and
Eq. (75); see Appendix B 5 for details. The above asymp-
totic form of the power spectrum can be used to calculate
the behavior near criticality by using the dimensional scaling
argument as performed before in Eq. (47) where we write
a/(a′)1/2 ∼ f μ. In other words, near criticality, the decay
of the power spectrum SM ( f ) as a function of frequency f
becomes slower and is given by

SM ( f ) ∼ f −ψM , (105)

where ψM = 3/2 − μ. In Fig. 7, we plot SM ( f ) as a function
of frequency for densities ρ̄ = 2.0 (red), 1.5 (orange), 1.2
(blue), 1.0 (green), 0.97 (violet); we observe that, as one
approaches criticality, the decay of the power spectrum indeed
becomes slightly slower, in accordance with our theoreti-
cal prediction in Eq. (105). The slower decay of the power
spectrum up on approaching criticality can be physically un-
derstood from the current power spectrum as follows. Due
to the slower temporal growth of the time-integrated bond
current fluctuation [see Eq. (47)], the near-critical subsystem
mass correlation also decays slower as a function of time, i.e.,

CMl Ml (t ) − CMl Ml (0) ∼ −t1/2−μ, (106)

which is due to the fact that the time-integrated current grows
slower with time and consequently the subsystem tends to
retain a particular amount of mass for a much longer period.
Indeed, this phenomenon can be thought of as the hyper-
uniformity of mass fluctuations in the temporal domain—a
dynamic hyperuniformity of mass fluctuation, analogous to
that of current fluctuations as described previously in Eq. (47).

We note that the two exponents ψJ and ψM for the
current and mass power spectra defined in Eqs. (77)
and (105), respectively, are in fact related, due to the
mass conservation as expressed in the continuity equa-
tion (8). By using the Fourier transform of an observable
Ar (t ) = ∫∞

−∞ df
∑

q e−2π i f t e−iqrÃq( f ) we can write Eq. (8) as

−2π i fM̃q( f ) = J̃q( f )(eiq − 1). On a large scale q → 0, we
have

SM ( f ) ∼ f −2SJ ( f ), (107)

and therefore, from Eqs. (77) and (105), we obtain the scaling
relation

ψJ = 2 − ψM . (108)
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III. SUMMARY AND CONCLUSIONS

In this paper, we study the steady-state dynamical prop-
erties of current and mass in the active phase of the
one-dimensional conserved Manna sandpile, and we establish
a direct quantitative relationship between the system’s static
and dynamic properties. First starting with a microscopic dy-
namical description, we introduce a truncation scheme, that
is approximate and is expected to be valid only for long
(hydrodynamic) times but allows us to theoretically investi-
gate the time-dependent (two-point, unequal-time) correlation
functions for current and mass, as well as the associated power
spectra. In particular, we find that, in the thermodynamic limit,
the two-point time-dependent correlation function for the
(bond) current has a delta peak at time t = 0 and, for time t >

0, the correlation is negative and a long-ranged one, decaying
as t−(3/2+μ). Far from criticality, we show that the exponent
μ = 0, resulting in a subdiffusive T 1/2 growth of the variance
of the cumulative (time-integrated) current up to time T . This
type of subdiffusive growth of temporal fluctuation, which has
previously been obtained in symmetric simple exclusion pro-
cesses [52], is somewhat expected for diffusive systems with
normal fluctuation properties, such as sandpiles away from
criticality [42]. However, the scenario changes near the critical
point. Indeed, as one approaches criticality, the activity in the
system vanishes, contributing to an anomalous suppression of
the temporal current fluctuations and thus a positive value of
the exponent μ > 0, which has been expressed in terms of
the standard static exponents [see Eq. (48)]; likewise, near
criticality, the power spectrum of current at low frequency
f varies as f 1/2+μ. A similar argument can be made for the
temporal subsystem-mass fluctuation, which is induced by the
boundary currents and is also suppressed near criticality be-
cause the current fluctuation is suppressed. The anomalously
reduced mass fluctuation is manifested in the corresponding
power spectrum, which, at low frequency and near criticality,
varies as f −3/2+μ with μ > 0; on the other hand, far from
criticality, the exponent μ = 0, implying an f −3/2 power spec-
trum, expected in a normal diffusive system. We also derive,
within our theory, a nonequilibrium version of the Green-
Kubo-like fluctuation-response relation [see Eq. (95)], or the
Einstein relation [41,51], which connects dynamic and static
fluctuations in the system. Indeed our theoretical analysis sug-
gests that, with appropriate (diffusive) rescaling of space and
time, the fluctuation properties of the Manna sandpile should
be governed by a continuum fluctuating hydrodynamic de-
scription as formulated in the recently developed macroscopic
fluctuation theory for diffusive systems [41,51].

We finally investigate the mean-square displacement of
tagged particles and show that the self-diffusion coefficient for
an individual tagged particle is identically equal to the ratio
of the activity to density [see first equality in Eq. (85)]. The
identity readily explains a previous simulation observation
of Ref. [27] that the self-diffusion coefficient in the Manna
sandpile vanishes in precisely the same fashion as the activity
does upon approaching criticality. Notably, the near-critical
behavior of the self-diffusion coefficient differs markedly
from that of the bulk-diffusion coefficient, which was previ-
ously identified in Refs. [41,42] as the derivative a′(ρ̄ ) of the
activity with respect to density ρ̄ and clearly diverges near
criticality. Furthermore, while the bulk-diffusion coefficient is

a monotonic function of density, the self-diffusion coefficient
is a nonmonotonic one. Interestingly, the self-diffusion coeffi-
cient can be related to the current fluctuation in the system as
expressed in the second equality in Eq. (85).

Our findings are reminiscent of somewhat similar obser-
vations of dynamic hyperuniformity, where the existence of
anticorrelations in the temporal fluctuations in sandpiles were
pointed out [46,60]. However, until recently [41], the precise
relationship between dynamic and static fluctuations, such as
that between mass and current fluctuations, was unknown, and
is encoded in the Green-Kubo-like fluctuation relation as de-
rived here in Eq. (95). The relationship demonstrates that there
are indeed two mechanisms responsible for the vanishing of
mass fluctuation near criticality: Physically, the anomalously
suppressed current fluctuation, combined with the diverging
bulk-diffusion coefficient, near criticality result in the vanish-
ing, or hyperuniform, density fluctuation observed recently in
the conserved Manna sandpiles [33].

Our results are in fact a consequence of mass conservation
as reflected in the scaling relation (108) and are thus expected
to be applicable in a broad class of conserved sandpiles. As
our analysis suggests, the anomalous suppression of current
fluctuations near criticality could be a generic feature of the
hyperuniform state of matter and should serve as the dynam-
ical signature of such states, which have been observed in
similar other systems in the recent past [59,61]. In particular,
our findings could help in determining the precise dynamical
nature of the off- and near-critical states in sandpiles by shed-
ding light on the microscopic dynamical origin of long-ranged
temporal correlations in these systems.
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APPENDIX A: SOME ALGEBRAIC IDENTITIES
AND SPECIAL INTEGRALS

We can deduce several algebraic properties of λn, which
are the following:

L−1∑
n=1

λnl

λ2
n

= 1

12
l (l − L)(l2 − lL − 2), (A1)

L−1∑
n=1

1

λn
= L2 − 1

12
, (A2)

L−1∑
n=1

λnr

λn
= r(L − r), (A3)
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l−1∑
r=1

2(l − r)(2 − λrn) = 2

(
λln − lλn

λn

)
, (A4)

L−1∑
n=1

λnl = 2L, for l = 1, 2, . . . . (A5)

Equation (A2) is a special case of Eq. (A1) for l = 1.
The integrals that appear in the context of asymptotic anal-

ysis, i.e., in Eq. (76) and later in Eq. (B23), have very generic
solutions in terms of hypergeometric functions. Generically,
we can write these integrals in the following form:

I (y) =
∫ y

0
dz

z−k

1 + z
= y1−k

2F1(1, 1 − k; 2 − k; −y)

1 − k
, (A6)

where 2F1 is the hypergeometric function [62], defined as

2F1(a, b; c; z) = �(c)

�(b)�(c − b)

×
∫ 1

0
dttb−1(1 − t )c−b−1(1 − tz)−a. (A7)

In the limit of y → ∞, we have

lim
y→∞ I (y) =

√
2π for k = 1

4 , 3
4 . (A8)

We have used the above result in Eqs. (76) and (B23) to
obtain the asymptotic of the power spectrum of current and
subsystem mass, respectively.

APPENDIX B: ASYMPTOTIC ANALYSIS

In this section, we provide the calculation details of the results of Eqs. (46), (52), (54), (67), and (101) presented in the main
text.

1. Time-integrated bond current fluctuation

We now derive the asymptotic approximation of the time-integrated bond current correlation using Eq. (46). We can write the
unequal-time time-integrated bond current correlation as

CQQ
0 (t, t ′) = 2a(ρ̄ )

L
t ′ + 2a(ρ̄)a′(ρ̄ )

1

L

∑
q

1 − e−λqa′(ρ̄ )t ′

λ2
qa′2 λq

(
1 + λq

4

)

− a(ρ̄ )a′(ρ̄ )
1

L

∑
q

1 − e−λqa′(ρ̄)t ′ + e−λqa′(ρ̄ )t − e−λqa′(ρ̄ )(t−t ′ )

λ2
qa′2 λq

(
1 + λq

4

)
. (B1)

In the infinite system size limit L → ∞, we write the above sum in the following integral form:

CQQ
0 (t, t ′)  4a′(ρ̄ )a(ρ̄ )

∫ 1/2

0
dx

1 − e−λ(x)a′(ρ̄ )t ′

λ(x)2a′(ρ̄ )2 λ(x)

(
1 + λ(x)

4

)

− 2a′(ρ̄ )a(ρ̄)
∫ 1/2

0
dx

1 − e−λ(x)a′(ρ̄ )t ′ + e−λ(x)a′(ρ̄ )t − e−λ(x)a′(ρ̄ )(t−t ′ )

λ2(x)a′2(ρ̄ )
λ(x)

(
1 + λ(x)

4

)
. (B2)

Note that the integral in the above equation can be expressed in terms of an integral of the form as given below:

a(ρ̄)a′(ρ̄ )
∫ 1/2

0
dx

1 − e−λ(x)a′(ρ̄ )t ′

λ2(x)a′2(ρ̄ )
λ(x)

(
1 + λ(x)

4

)
 a(ρ̄ )

√
t ′

2
√

πa′(ρ̄ )
, (B3)

where, for t 
 1, we have defined x = [y/4π2a′(ρ̄)t ′]1/2 and used λ(x)  4π2x2 and
∫∞

0 dyy−3/2(1 − e−y) = 2
√

π to explicitly
calculate the integral. Using Eq. (B3) in each of the relevant terms of the right-hand side in Eq. (B2) and then after some
straightforward algebraic manipulations, we obtain the following asymptotic form of the time-dependent integrated bond-current
correlation:

CQQ
0 (t, t ′)  a(ρ̄ )√

πa′(ρ̄ )
(
√

t +
√

t ′ −
√

|t − t ′|). (B4)

Now, by putting t ′ = t ≡ T , the above asymptotic leads to the first part (i.e., corresponding to the limit 1 	 T 	 L2) of Eq. (46)
in the main text.

2. Time-dependent instantaneous current correlation

The steady-state unequal-time correlation of instantaneous bond current CJJ
0 (t, 0) = 〈J0(0)Jr (t )〉 − 〈J0(0)〉〈Jr (0)〉, for

t � 0, is given by the following expression as derived in main text [see Eq. (51)]:

CJJ
0 (t, 0) = δ(t )3a(ρ̄ ) − a′(ρ̄ )a(ρ̄ )

1

L

∑
q

e−a′(ρ̄)λqtλq

(
1 + λq

4

)
. (B5)
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First, we perform the time integral in a finite time domain [−T, T ] as given below,∫ T

−T
CJJ

0 (t, 0)dt = �0(ρ̄ ) − 2a(ρ̄)

L

∑
q

(
1 + λq

4

)
+ 2a(ρ̄ )

⎡
⎣ 1

L

∑
q

e−λqa′(ρ̄ )T

(
1 + λq

4

)⎤⎦, (B6)

which, using the relations Eq. (A5) and �0(ρ̄) = 3a(ρ̄ ) as in the main text in Eq. (60), we simplify the above sum as∫ T

−T
CJJ

0 (t, 0)dt = 2a(ρ̄ )

L
+ 2a(ρ̄ )

⎡
⎣ 1

L

∑
q

e−λqa′(ρ̄ )T

(
1 + λq

4

)⎤⎦. (B7)

Now, first taking the infinite-system size limit, i.e., the limit L → ∞, we can further write the sum as an integral,

lim
L→∞

∫ T

−T
CJJ

0 (t, 0)dt = 4a(ρ̄)
∫ 1/2

0
dxe−λ(x)a′(ρ̄ )T

(
1 + λ(x)

4

)
, (B8)

where q = 2πx. Now using λ(x)  4π2x2,
∫∞

0 dye−yy−1/2 = √
π , and a variable transformation x = y1/2/2π [a′(ρ̄)T ]1/2, we

can explicitly calculate the integral as in Eq. (B8) as

lim
L→∞

∫ T

−T
CJJ

0 (t, 0)dt  a(ρ̄ )

π
√

a′(ρ̄ )T

∫ ∞

0
dye−yy−1/2 = a(ρ̄ )√

πa′(ρ̄ )
T −1/2, (B9)

which is the result in the main text in Eq. (52). Finally, by taking the limit T → ∞, we get∫ ∞

−∞
CJJ

0 (t, 0)dt = 0, (B10)

which is the result presented in main text in Eq. (53).
Similarly, we can find the asymptotic form of cJJ

0 (t, 0) presented in main text in Eq. (54). In the limit L → ∞, the temporal
current correlation cJJ

0 (t, 0) for t > 0 can be written as an integral, as given below:

cJJ
0 (t, 0)  −2a′(ρ̄ )a(ρ̄)

∫ 1/2

0
dxe−a′(ρ̄ )λ(x)tλ(x)

(
1 + λ(x)

4

)
. (B11)

Now, again using λ(x)  4π2x2 and a variable transformation x = y1/2/2π [a′(ρ̄)T ]1/2, we calculate the above integral as

cJJ
0 (t, 0)  − a(ρ̄)√

4π2a′(ρ̄ )
t−3/2

∫ ∞

0
dy

√
ye−y, (B12)

where we have ignored the subleading term O(t−5/2). Finally, using
∫∞

0 dy
√

ye−y = √
π/2, we get the result presented in main

text in Eq. (54),

cJJ
0 (t, 0)  − a(ρ̄ )

4
√

πa′(ρ̄ )
t−3/2. (B13)

3. Spacetime-integrated current fluctuation

Here we derive the asymptotic dependence of Eq. (66) on subsystem size l and time T [see Eq. (67)]; first by taking the limit
T 
 1 and l 
 1 and then followed by the reverse order of limit l 
 1 and T 
 1. In both cases, we take infinite system size
limit L → ∞, therefore l/L → 0 is always satisfy.

a. Case I: T � 1, l � 1

In this case, we write Eq. (66) in the following simplified form:

〈Q̄2(l, T )〉 = 2a(ρ̄)T l2

L
+ 2a(ρ̄ )a′(ρ̄ )

1

L

∑
q

1 − e−a′(ρ̄ )λqT

λ2
qa′2

(
1 + λq

4

)
λql . (B14)

In the limit L → ∞, the sum in the above equation can be converted in to the following integral:

〈Q̄2(l, T )〉  4a(ρ̄ )a′(ρ̄ )
∫ 1/2

0
dx

1 − e−a′(ρ̄ )λ(x)T

λ2(x)a′2

(
1 + λ(x)

4

)
λ(lx). (B15)

Using the approximation λ(lx)  4π2l2x2 for finite subsystem size l and a variable transformation x = y1/2/2π [a′(ρ̄)T ]1/2, we
get

1

lT
〈Q̄2(l, T )〉  a(ρ̄)

π
√

a′(ρ̄ )

l√
T

∫ ∞

0
dy(1 − e−y)y−3/2 = 2a(ρ̄ )√

πa′(ρ̄ )

l√
T

, (B16)

where we use
∫∞

0 dy(1 − e−y)y−3/2 = 2
√

π . This result appears in Eq. (67) of the main text.
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b. Case II: l � 1, T � 1

To compute the asymptotic form in this limit, we use the approximation λ(lx)  2 to write Eq. (66) in the following form:

1

lT
〈Q̄2(l, T )〉c  2a(ρ̄) + a(ρ̄ )

l
− 8a(ρ̄ )a′(ρ̄)

lT

∫ 1/2

0

a′(ρ̄ )λ(x)T − 1 + exp [−λ(x)a′(ρ̄ )T ]

λ2(x)a′2(ρ̄)

(
1 + λ(x)

4

)
. (B17)

Again using the variable transform x = y1/2/2π [a′(ρ̄)T ]1/2 and
∫∞

0 dy(y − 1 + e−y)y−5/2 = 4
√

π/3, we get

1

lT
〈Q̄2(l, T )〉c  2a(ρ̄ ) + a(ρ̄ )

l
− 2a(ρ̄ )a′(ρ̄ )

lT

∫ ∞

0
dy(y − 1 + e−y)y−5/2 T 3/2

π
√

a′(ρ̄ )

= 2a(ρ̄ ) + a(ρ̄ )

l
− 8a(ρ̄)

3

√
a′(ρ̄)

π

√
T

l
, (B18)

which also appears in Eq. (67).

4. Temporal correlation of subsystem mass

The asymptotic form of subsystem mass temporal correlation CMl Ml (t, 0) that appears in Eq. (101) is derived here. At t = 0,
CMl Ml (t, 0) is a maximum and, after that, it decays as a function of time t . So, in order to extract the temporal dependence of
CMl Ml (t, 0), we write Eq. (99) as

CMl Ml (0, 0) − CMl Ml (t, 0) = 1

L

∑
q

(1 − e−λqa′(ρ̄)t )

(
1 + λq

4

)
λlq

λq
, (B19)

which, in the limit L → ∞, l 
 1, can be written as

CMl Ml (0, 0) − CMl Ml (t, 0)  4
∫ 1/2

0
dx

a(ρ̄ )

a′(ρ̄)
(1 − e−λ(x)a′t )

(
1 + λ(x)

4

)
1

λ(x)
. (B20)

The above equation can be further simplified using the approximation and exact results of the previous section B 3 a and we get

CMl Ml (0, 0) − CMl Ml (t, 0) = a(ρ̄ )√
a′(ρ̄ )π2

t
1
2

∫ ∞

0
dyy− 3

2 (1 − e−y) = 2a(ρ̄ )√
πa′(ρ̄ )

t
1
2 . (B21)

Thus, we derived Eq. (101) of the main text.

5. Power spectrum of subsystem mass fluctuation

To find the asymptotic form of the power spectrum of subsystem mass fluctuation SMl ( f ), in the limit L → ∞ and l 
 1, we
write Eq. (103) as

SMl ( f )  8a(ρ̄ )

a′(ρ̄ )

∫ 1/2

0

λ(x)a′(ρ̄)

λ2(x)a′2(ρ̄ ) + 4π2 f 2

(
1 + λ(x)

4

)
1

λ(x)
. (B22)

Using the variable transform defined in Eq. (75) and λ(x) = 4π2x2, the above equation can be written in the following simplified
form:

S̃Ml ( f )  a

2π2
√

2πa′(ρ̄ )
f −3/2

∫ ∞

0

y−3/4

1 + y
dy = a

2
√

π3a′(ρ̄ )
f −3/2, (B23)

where we used Eq. (A8) and ignored the term of O( f 1/2). Thus we derive Eq. (103), which appears in the main text.

APPENDIX C: EVOLUTION EQUATIONS OF CORRELATION FUNCTIONS

1. Different-time current-current correlation

The stochastic update rules for the different-time and different-space product function of currents Qi(t )Q j (t ′) can be written
for t > t ′ as

Qi(t + dt )Q j (t
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

events probabilities

[Qi(t ) + 1]Q j (t ′) 1
2 âi(t )dt

[Qi(t ) + 2]Q j (t ′) 1
4 âi(t )dt

[Qi(t ) − 1]Q j (t ′) 1
2 âi+1(t )dt

[Qi(t ) − 2]Q j (t ′) 1
4 âi+1(t )dt

Qi(t )Q j (t ′) 1 − �dt,

(C1)
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where � = 3[âi(t ) + âi+1(t )]/4. Using these rules, we write the evolution equation of the two-point current-current correlation
function as

∂

∂t
CQQ

r (t, t ′) = 〈[â0(t ) − â1(t )]Qr (t ′)〉 = [
CâQ

r (t, t ′) − CâQ
r−1(t, t ′)

]
, (C2)

which appears in Eq. (19) in the main text.

2. Different-time mass-current correlation

The stochastic update rules for the different-time and different-space product function of mass and current mi(t )Q j (t ′) can be
written for t > t ′ as

mi(t + dt )Q j (t
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

events probabilities

[mi(t ) + 1]Q j (t ′) 1
2 âi+1(t )dt

[mi(t ) + 1]Q j (t ′) 1
2 âi−1(t )dt

[mi(t ) + 1]Q j (t ′) 1
4 âi+1(t )dt

[mi(t ) + 2]Q j (t ′) 1
4 âi−1(t )dt

[mi(t ) − 2]Q j (t ′) âi(t )dt

mi(t )Q j (t ′) [1 − �dt],

(C3)

where � = 3[âi(t ) + âi+1(t )]/4 + âi(t ). Using these rules, we write the evolution equation of the two-point mass-current
correlation function as

∂

∂t
CmQ

r (t, t ′) = 〈[âL−1(t ) − 2â0(t ) + â1(t )]Qr (t ′)〉  a′(ρ̄ )
∑

k

�r,kC
mQ
k (t, t ′), (C4)

which appears in Eq. (26).

3. Equal-time current-current correlation

In the Manna sandpile, during each toppling two particles can hop to each neighboring site independently and it may
simultaneously create current at two neighboring bonds. In the following, we write the update equation of the two point product
function of integrated current:

Qi(t + dt )Q j (t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

events probabilities

[Qi(t ) − 1][Q j (t ) + 1] 1
2 âi+1δi+1, jdt

[Qi(t ) − 1][Q j (t ) − 1] 1
2 âi+1δi, jdt

[Qi(t ) + 1][Q j (t ) + 1] 1
2 âiδi, jdt

[Qi(t ) + 1][Q j (t ) − 1] 1
2 âiδi−1, jdt

[Qi(t ) − 1]Q j (t ) 1
2 âi+1(1 − δi+1, j − δi, j )dt

[Qi(t ) + 1]Q j (t ) 1
2 âi(1 − δi−1, j − δi, j )dt

Qi(t )[Q j (t ) − 1] 1
2 â j+1(1 − δi−1, j − δi, j )dt

Qi(t )[Q j (t ) + 1] 1
2 â j (1 − δi+1, j − δi, j )dt

[Qi(t ) + 2][Q j (t ) + 2] 1
4 âiδi, jdt

[Qi(t ) − 2][Q j (t ) − 2] 1
4 âi+1δi, jdt

[Qi(t ) + 2]Q j (t ) 1
4 âi(1 − δi, j )dt

Qi(t )[Q j (t ) + 2] 1
4 â j (1 − δi, j )dt

[Qi(t ) − 2]Q j (t ) 1
4 âi+1(1 − δi, j )dt

Qi(t )[Q j (t ) − 2] 1
4 â j+1(1 − δi, j )dt

Qi(t )Q j (t ) (1 − �dt ),

(C5)
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where �dt is the probability of all events happening, as mentioned in the update rules in the time interval t and t + dt . Using
these update rules and Eq. (23), we can write the evolution equation of the equal-time correlation function of current as

d

dt
CQQ

r (t, t ) = �r (t ) + 〈[â0(t ) − â1(t )]Qr (t )〉c + 〈Q0[âr − âr+1]〉c

 �r (t ) + a′[cmQ
r (t, t ) − cmQ

r−1(t, t )
]+ a′[cmQ

L−r (t, t ) − cmQ
L−r−1(t, t )

]
, (C6)

where

�r ≡ �i, j = 3
2δi, j〈âi+1 + âi〉 − 1

2δi+1, j〈âi+1〉 − 1
2δi−1, j〈âi〉. (C7)

The solution of Eq. (C6) appears in Eq. (43) in the main text.

4. Mass and integrated current correlation

The update rules of the temporal evolution equation of the product function of mass and integrated current are given as

mi(t + dt )Q j (t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

events probabilities

[mi(t ) + 1][Q j (t ) − 1] 1
2 âi+1δi, jdt

[mi(t ) + 1][Q j (t ) + 1] 1
2 âi+1δi+1, jdt

[mi(t ) − 2][Q j (t ) − 1] 1
2 âiδi−1, jdt

[mi(t ) − 2][Q j (t ) + 1] 1
2 âiδi, jdt

[mi(t ) + 1][Q j (t ) − 1] 1
2 âi−1δi−2, jdt

[mi(t ) + 1][Q j (t ) + 1] 1
2 âi−1δi−1, jdt

[mi(t ) − 2][Q j (t ) + 2] 1
4 âiδi, jdt

[mi(t ) + 2][Q j (t ) + 2] 1
4 âi−1δi−1, jdt

[mi(t ) + 2][Q j (t ) − 2] 1
4 âi+1δi, jdt

[mi(t ) − 2][Q j (t ) − 2] 1
4 âiδi−1, jdt

[mi(t ) + 1]Q j (t ) 1
2 âi+1(1 − δi, j − δi+1, j )dt

[mi(t ) + 1]Q j (t ) 1
2 âi−1(1 − δi−1, j − δi−2, j )dt

[mi(t ) − 2]Q j (t ) 1
2 âi(1 − δi, j − δi−1, j )dt

[mi(t ) + 2]Q j (t ) 1
4 âi+1(1 − δi, j )dt

[mi(t ) − 2]Q j (t ) 1
4 âi(1 − δi−1, j )dt

[mi(t ) − 2]Q j (t ) 1
4 âi(1 − δi, j )dt

[mi(t ) + 2]Q j (t ) 1
4 âi−1(1 − δi−1, j )dt

mi(t )[Q j (t ) + 1] 1
2 â j (1 − δi, j − δi, j−1 − δi, j+1)dt

mi(t )[Q j (t ) − 1] 1
2 â j+1(1 − δi, j − δi, j+1 − δi, j+2)dt

mi(t )[Q j (t ) + 2] 1
4 â j (1 − δi, j − δi, j+1)dt

mi(t )[Q j (t ) − 2] 1
4 â j+1(1 − δi, j − δi, j+1)dt .

(C8)

Clearly, nothing happens with probability 1 − �dt , where �dt is the sum of the probabilities of all the above events. Using
these rules, we write the evolution equation of the two point mass and integrated current correlation as

d

dt
CmQ

r (t, t ) = fr (t ) +
∑

k

�r,kC
âQ
k (t, t ), (C9)

where fr (t ), the source term of the equal-time mass-integrated current correlation, which, in the steady state, can be written as

fr (t ) = [
Cmâ

r (t, t ) − Cmâ
r+1(t, t )

]+ 7a(ρ̄ )

2
δ0,r+1 − 7a(ρ̄ )

2
δ0,r + a(ρ̄)

2
(δ0,r−1 − δ0,r+2). (C10)

The Fourier transform of Eq. (C9) is used to get Eq. (32) in the main text.
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5. Mass-mass correlation function

The equal-time mass-mass correlation function is important to calculate the mass-activity correlation function and the power
spectrum of the subsystem mass. The update rules are the following:

mi(t + dt )mj (t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

events probabilities

[mi(t ) + 1][mj (t ) + 1] 1
2 âi+1δi, jdt

[mi(t ) + 1][mj (t ) − 2] 1
2 âi+1δi+1, jdt

[mi(t ) + 1][mj (t ) + 1] 1
2 âi+1δi+2, jdt

[mi(t ) − 2][mj (t ) + 1] 1
2 âiδi−1, jdt

[mi(t ) − 2][mj (t ) − 2] 1
2 âiδi, jdt

[mi(t ) − 2][mj (t ) + 1] 1
2 âiδi+1, jdt

[mi(t ) + 1][mj (t ) + 1] 1
2 âi−1δi−2, jdt

[mi(t ) + 1][mj (t ) − 2] 1
2 âi−1δi−1, jdt

[mi(t ) + 1][mj (t ) + 1] 1
2 âi−1δi, jdt

[mi(t ) + 1]mj (t ) 1
2 âi+1

(
1 − δi, j − δi+1, j − δi+2, j

)
dt

[mi(t ) − 2]mj (t ) 1
2 âi(1 − δi−1, j − δi, j − δi+1, j )dt

[mi(t ) + 1]mj (t ) 1
2 âi−1(1 − δi−2, j − δi−1, j − δi, j )dt

mi(t )[mj (t ) + 1] 1
2 â j+1(1 − δi, j − δi, j+1 − δi, j+2)dt

mi(t )[mj (t ) − 2] 1
2 â j (1 − δi, j−1 − δi, j − δi, j+1)dt

mi(t )[mj (t ) + 1] 1
2 â j−1(1 − δi, j−2 − δi, j−1 − δi, j )dt

[mi(t ) + 2][mj (t ) + 2] 1
4 âi+1δi, jdt

[mi(t ) + 2][mj (t ) − 2] 1
4 âi+1δi+1, jdt

[mi(t ) − 2][mj (t ) + 2] 1
4 âiδi−1, jdt

[mi(t ) − 2][mj (t ) − 2] 1
4 âiδi, jdt

[mi(t ) + 2]mj (t ) 1
4 âi+1(1 − δi, j − δi+1, j )dt

[mi(t ) − 2]mj (t ) 1
4 âi(1 − δi−1, j − δi, j )dt

mi(t )[mj (t ) + 2] 1
4 â j+1(1 − δi, j − δi, j+1)dt

mi(t )[mj (t ) − 2] 1
4 â j (1 − δi, j−1 − δi, j )dt

[mi(t ) − 2][mj (t ) − 2] 1
4 âiδi, jdt

[mi(t ) − 2][mj (t ) + 2] 1
4 âiδi+1, jdt

[mi(t ) + 2][mj (t ) − 2] 1
4 âi−1δi−1, jdt

[mi(t ) + 2][mj (t ) + 2] 1
4 âi−1δi, jdt

[mi(t ) − 2]mj (t ) 1
4 âi(1 − δi, j − δi+1, j )dt

[mi(t ) + 2]mj (t ) 1
4 âi−1(1 − δi−1, j − δi, j )dt

mi(t )[mj (t ) + 2] 1
4 â j−1(1 − δi, j − δi, j−1)dt

mi(t )[mj (t ) − 2] 1
4 â j (1 − δi, j+1 − δi, j )dt .

(C11)

Clearly, nothing happens with probability 1 − �dt , where �dt is the sum of the probabilities of all the above events. From these
update rules, we can write the evolution equation of Cmm

r (t, t ) as

d

dt
〈mi(t )mj (t )〉 =

∑
k

〈mi� j,k âk + �i,k âkmj〉c + Bi, j, (C12)

where

Bi, j = 1
2 〈3âi−1 + 8âi + 3âi+1〉δi, j − 1

2 〈4âi+1 + 4âi〉δi+1, j − 1
2 〈4âi−1 + 4âi〉δi+1, j + 1

2 〈âi+1〉δi+2, j + 1
2 〈âi−1〉δi−2, j (C13)

is the source of the equal-time mass correlation. In the steady state, where 〈âi(t )〉 = a(ρ̄), we can write Bi, j as a translationally
invariant form, Bi, j ≡ Br , as

Br = 7a(ρ̄ )δ0,r − 4a(ρ̄ )(δ0,r+1 + δ0,r−1) + a(ρ̄)

2
(δ0,r+2 + δ0,r−2). (C14)

Equation (C12) appears in Eq. (36) in the main text. Using the steady-state condition, we must have d〈mimj〉c/dt = 0, which
implies

2
[
Cmâ

r−1 − 2Cmâ
r + Cmâ

r+1

]+ Br = 0. (C15)
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Equation (C15) can be solved by considering the following generating function:

G(z) =
∞∑

r=0

Cmâ
r zr . (C16)

We multiply both side of Eq. (C15) with zr and sum over r to get

G(z) = 4Cmâ
0 − 4zCmâ

1 − za[(z − 8)z + 14]

4(1 − z)2 , (C17)

where we use the identities
∞∑

r=0

Cmâ
r−1zr = Cmâ

1 + zG(z),
∞∑

r=0

Cmâ
r+1zr = G(z) − Cmâ

0

z
. (C18)

As we are dealing with truncated correlation functions, in the limit z → 1, we must have limz→1 G(z) < ∞. Using a new variable
w → 1 − z, we write Eq. (C17) as

G(w) = 1

4w2

{
a(ρ̄)w3 + 5a(ρ̄ )w2 + [

a(ρ̄) + 4Cmâ
1

]
w + −7a(ρ̄ ) + 4Cmâ

0 − 4Cmâ
1

}
. (C19)

For the convergence of G(w) in the limit w → 0, we set

a(ρ̄ ) + 4Cmâ
1 = 0, −7a(ρ̄ ) + 4Cmâ

0 − 4Cmâ
1 = 0, (C20)

leading to the following exact relations:

Cmâ
0 = 3a(ρ̄)

2
, (C21)

Cmâ
1 = −a(ρ̄)

4
. (C22)

Finally, putting Eq. (C21) in Eq. (C17) we get the generating function

G(z) = 3a(ρ̄ )

2
− a(ρ̄)

4
z. (C23)
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