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Periodic potential can enormously boost free-particle transport induced by active fluctuations
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Active fluctuations are detected in a growing number of systems due to self-propulsion mechanisms or
collisions with an active environment. They drive the system far from equilibrium and can induce phenomena
that are forbidden at equilibrium states by, e.g., fluctuation-dissipation relations and detailed balance symmetry.
Understanding their role in living matter is emerging as a challenge for physics. Here we demonstrate a
paradoxical effect in which a free-particle transport induced by active fluctuations can be boosted by many orders
of magnitude when the particle is additionally subjected to a periodic potential. In contrast, within the realm of
only thermal fluctuations, the velocity of a free particle exposed to a bias is reduced when the periodic potential
is switched on. The presented mechanism is significant for understanding nonequilibrium environments such as
living cells, where it can explain from a fundamental point of view why spatially periodic structures known as
microtubules are necessary to generate impressively effective intracellular transport. Our findings can be readily
corroborated experimentally, e.g., in a setup comprising a colloidal particle in an optically generated periodic
potential.
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I. INTRODUCTION

Microscopic systems are inherently immersed in a sea of
thermal fluctuations that may strongly influence their prop-
erties or even induce an entirely new phenomenology. Cel-
ebrated examples include stochastic [1,2] or coherence [3,4]
resonance, anomalous diffusion [5–7], ratchet effects [8–10],
negative mobility [11–14], or thermal noise-induced dynam-
ical localization [15,16], to name only a few. Nevertheless,
the impact of thermal equilibrium fluctuations is limited by
fundamental laws of nature, such as the fluctuation-dissipation
theorem [17,18] or detailed balance symmetry [19,20].

These restrictions are no longer true for a nonequilibrium
environment that keeps the system permanently out of thermal
equilibrium even in the absence of external perturbations.
A prototypical example are active fluctuations manifesting
themselves either in (i) active matter harvesting energy from
the environment into a self-propulsion drive [9,19,21–24], or
(ii) an active bath such as a suspension of active colloids or
swimming micro-organisms (e.g., Escherichia coli) pushing
around a passive system [24–28]. Their relevance in biolog-
ical systems is emerging as a hot topic that is a focus of
researchers across all branches of natural science [29]. For
instance, the latest experimental results make it clear that
active fluctuations in living cells, generated by using energy
derived from metabolic activities, are not just noise but are
utilized to promote various physiological processes. In partic-
ular, biological motors such as kinesin or dynein benefit from
active fluctuations and enhance their directional movement
[30,31].

Within the realm of thermal equilibrium fluctuations, the
directed velocity of a free particle exposed to a bias is usually
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reduced or at best conserved when an additional periodic po-
tential is switched on [32]. Similarly, the diffusion coefficient
D0 of a free Brownian particle subjected to a periodic force
is reduced to its effective diffusion constant D < D0 [33,34].
In this work, we demonstrate a striking case that is the exact
opposite, i.e., the particle can harness active nonequilibrium
fluctuations to exploit an unbiased periodic potential and en-
hance its directed velocity much larger than for free transport.
We identify its origin in the nature of active fluctuations,
which, unlike thermal fluctuations, are not constrained by the
equilibrium state, and therefore they may optimize themselves
to make use of a periodic potential.

Our results are significant for understanding nonequi-
librium environments and addressing important theoretical
questions concerning the thermodynamics of active systems
such as molecular motors inside living cells. They can be
corroborated experimentally in a setup comprising a colloidal
particle in an optically generated periodic potential [35,36]
or a tested for real biological motors [30,31]. Moreover, they
may open new avenues for designing ultrafast and efficient
microscale and nanoscale machines.

The paper is organized as follows. In the next section we
discuss the details of the studied model. In Sec. III we present
the results. First, we show a paradoxical effect in which the pe-
riodic structure not only does not hinder the directed velocity
of the particle, but it is involved in inducing the giant trans-
port, which can be orders of magnitude greater than the ve-
locity of the free particle. Second, we outline the mechanism
of this phenomenon. Third, we discuss the role of symmetry
breaking of the periodic potential and active fluctuations sym-
metry. The last section provides a summary and conclusions.
In Appendix A we introduce the dimensionless units, while
in Appendix B we detail the parametrization of the amplitude
distribution of active fluctuations. In the final Appendix we
display exemplary realizations of active fluctuations.
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II. MODEL

We start our considerations with the overdamped motion
of a free particle subjected to both active nonequilibrium
fluctuations η(t ) and thermal noise ξ (t ),

ẋ = η(t ) +
√

2DT ξ (t ), (1)

where the dot denotes differentiation with respect to the time
t . Thermal fluctuations ξ (t ) of temperature DT are modeled
by Gaussian white noise of zero mean 〈ξ (t )〉 = 0 and the
correlation function 〈ξ (t )ξ (s)〉 = δ(t − s). Details of the scal-
ing procedure are presented in Appendix A. We assume that
〈η(t )〉 = v0 �= 0, and consequently active noise η(t ) induces
the directed transport of the Brownian particle. Then one
finds 〈ẋ〉 = v0. The essence of the proposed strategy for en-
hancement of the directed transport is to impose an unbiased
periodic potential U (x) = U (x + 2π ) on the system (1), i.e.,

ẋ = −εU ′(x) + η(t ) +
√

2DT ξ (t ), (2)

where ε is half of the potential barrier height, and the prime
denotes differentiation with respect to the position x of the
particle. First, we consider the simplest symmetric periodic
potential,

U (x) = sin x, (3)

in order to avoid the apparent ratchet effect. Ratchet potentials
that break the spatial symmetry should additionally enhance
the free-particle transport and will be analyzed subsequently.

We ask for which model of active fluctuations η(t ) can the
directed transport be enormously enhanced, i.e., 〈ẋ〉 � v0. As
a candidate for η(t ) we choose Poisson white noise [37–39],
which is a random sequence of δ-shaped pulses with random
amplitudes zi,

η(t ) =
n(t )∑
i=1

ziδ(t − ti ), (4)

where ti are the arrival times of the Poisson counting process
n(t ), i.e., the probability for the emergence of k impulses in
the time interval [0, t] is Pr{n(t ) = k} = (λt )k exp (−λt )/k!
[40]. The parameter λ is the mean number of δ-spikes per unit
time (the firing rate of the Poisson process). The amplitudes
{zi} of δ-kicks are statistically independent random variables
sampled from the common probability distribution ρ(z). The
process η(t ) presents white noise of a finite mean and a co-
variance given by

〈η(t )〉 = λ〈zi〉, 〈η(t )η(s)〉 − 〈η(t )〉〈η(s)〉 = 2DPδ(t − s),
(5)

where 〈zi〉 is an average over the amplitude distribution ρ(z),
and the noise intensity is DP = λ〈z2

i 〉/2. It is statistically
symmetric if the density ρ(z) is symmetric, i.e., when ρ(z) =
ρ(−z). In such a case, 〈η(t )〉 = 0. However, we have to
consider biased Poissonian noise for which 〈η(t )〉 = v0 �= 0.
Because there are infinitely many different statistics of the
amplitudes {zi} for which 〈η(t )〉 = v0, we pick one of the
most general forms of ρ(z), namely the skew-normal distri-
bution [41–44], which allows us to take into account both
positive and negative amplitudes zi as well as asymmetry
in the distribution ρ(z); cf. Appendix B. The skew-normal
distribution is characterized by three independent parameters:

FIG. 1. The average velocity 〈v〉 of the Brownian particle
dwelling in the symmetric potential U (x) = sin x and driven by
active fluctuations η(t ) vs the potential barrier height ε for selected
values of 〈η(t )〉 = v0. The parameters are as follows: the spiking rate
λ = 30, the variance and skewness of the amplitude distribution ρ(z)
are σ 2 = 3.1 and χ = 0.99, respectively, and the temperature is set
to DT = 0.01.

the mean value 〈zi〉 = ζ , variance σ 2, and asymmetry (skew-
ness) χ [45,46]. Active fluctuations η(t ) defined in this way
are represented by white noise of average 〈η(t )〉 = λζ . We
also assume that thermal and active fluctuations are uncorre-
lated, 〈ξ (t )η(s)〉 = 〈ξ (t )〉〈η(s)〉 = 0. Noise η(t ) is applied in
Ref. [47], and it can serve as a model for the stochastic release
of energy in chemical reactions such as ATP hydrolysis or
random collisions with complex and crowded environments.
In this sense, our model is appropriate for both an active parti-
cle self-propelling itself inside a passive medium or a passive
system immersed in an active bath formed as a suspension of
active particles [28].

The main quantity of interest for the study of trans-
port properties is the directed velocity defined as 〈v〉 =
limt→∞〈x(t )〉/t , where 〈·〉 indicates the ensemble average. If
η(t ) = 0 in Eq. (2), then 〈v〉 = 0. In the presence of active
fluctuations with 〈η(t )〉 = v0, the free Brownian particle is
transported with the average velocity 〈v〉 = v0. If under the
identical experimental conditions the periodic potential U (x)
is turned on, one expects that the directed velocity will be
notably reduced, 〈v〉 < v0, in particular for U (x) with large
barrier height ε [32].

III. RESULTS

Unfortunately, the Fokker-Planck-Kolmogorov-Feller inte-
grodifferential equation corresponding to Eq. (2) cannot be
solved analytically in a closed form [37]. Therefore, we re-
sort to precise numerical simulations done by harvesting the
GPU supercomputer using the CUDA environment [48]. The
ensemble averaging was performed over Gaussian ξ (t ) and
Poissonian η(t ) noise realizations [49] as well as over the
initial conditions x(0) distributed uniformly over the spatial
period [0, 2π ] of the potential U (x).

In Fig. 1 we present an effect that contradicts common
intuition in which the periodic structure not only does not
hinder the directed velocity of the particle, but it is involved
in inducing the giant transport, which can be several orders
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FIG. 2. The average velocity 〈v〉 vs the spiking rate λ of active
fluctuations η(t ) for selected values of the potential barrier height ε

and fixed 〈η(t )〉 = v0 = 1. Solid lines correspond to the asymmetry
χ = 0.99, whereas dashed lines correspond to χ = −0.99. Other
parameters are the variance σ 2 = 3.1 and temperature DT = 0.01.

of magnitude greater than the velocity of the free particle,
i.e., 〈v〉 � v0. We note that when the barrier ε is increased,
the average velocity 〈v〉 can be remarkably enhanced. For
example, for 〈η(t )〉 = 0.01 and ε = 100 the particle velocity
reads 〈v〉 ≈ 10 � v0 = 0.01, i.e., three orders of magnitude
greater than for the free particle driven by the same active
fluctuations η(t ). This giant transport behavior 〈v〉 � v0 is
clearly induced by the additional presence of the symmetric
periodic potential U (x) = sin x with deep wells. In Fig. 1
we show that amplification of 〈v〉 depends on v0. For small
v0 
 1 the velocity 〈v〉 can be enormously boosted when the
system is additionally subjected to a periodic potential U (x).
In such a case, 〈v〉(ε) increases rapidly when ε grows. On
the other hand, if the free-particle transport is already large,
v0 � 1, then there is no gain by placing the system in a
periodic potential.

In many nonequilibrium systems, especially in living cells,
there are no substantial systematic gradients or forces that
could induce large transport. Instead one typically encounters
unbiased or weakly biased fluctuations of both thermal and
active (nonthermal) origin. Therefore, the presented mech-
anism might be crucial for a deep understanding of their
physics. In Sec. III B we show that this nontrivial effect is
heavily influenced by the statistics ρ(z) of amplitudes zi of
fluctuations η(t ). In particular, it is not observed when zi are
distributed according to the frequently applied and even more
asymmetric exponential probability density.

To explain the mechanism of this phenomenon, we first
fix the mean of active fluctuations 〈η(t )〉 = 1 and study how
the velocity 〈v〉 depends on the spiking rate λ. This char-
acteristic is depicted in Fig. 2. If λ → 0 or λ → ∞, then
〈v〉 → v0. Since the bias of nonequilibrium noise is fixed,
〈η(t )〉 = λζ = 1, the average amplitude ζ of δ-spikes goes to
infinity when λ → 0 and therefore the potential U (x) becomes
negligible. On the other hand, when λ → ∞ one stacks the
infinite number of δ-kicks with vanishing mean, but the fixed
variance σ 2 = 3.1 and the resultant movement mimics the free
particle. The most striking feature of this panel is that for
growing potential barrier ε there is the optimal spiking rate
λmax(ε) for which the velocity is maximal and significantly

FIG. 3. Exemplary Brownian particle trajectory is shown for the
potential barrier ε = 40. Other parameters are as follows: the spiking
rate λ = 30, the average bias 〈η(t )〉 = v0 = 1, the variance σ 2 = 3.1,
and the asymmetry χ = 0.99 of the amplitude distribution ρ(z).
Temperature is fixed at DT = 0.01.

greater than the free-particle velocity 〈v〉 > v0. We stress that
for smaller values of 〈η(t )〉 one observes the giant enhance-
ment 〈v〉 � v0; cf. Fig. 1. The effect of ε-increase is twofold.
First, it shifts the optimal λmax(ε) towards larger values, and
second, the magnitude of the velocity enhancement grows at
λ = λmax(ε).

In Fig. 2 one can also observe the impact of the asymmetry
χ of the amplitude distribution ρ(z); see Appendix B. At first
glance it may seem that the transport direction is completely
determined by the sign of the mean 〈η(t )〉 = λζ of active fluc-
tuations, which is controlled by the average value 〈zi〉 = ζ of
δ-spikes distributed according to the probability density ρ(z).
However, this is not true in general. In particular, even though
the statistical bias reads 〈η(t )〉 = v0 = 1, when χ is reversed
from the positive χ = 0.99 to the negative value χ = −0.99
the transport direction is also inverted, i.e., 〈v〉 < 0. There-
fore, we conclude that in the studied case the orientation of the
long tail in ρ(z) is responsible for determining the direction of
particle movement; cf. Appendix B. When the asymmetry is
negative, the transport enhancement over the velocity of free
particle 〈v〉 > v0 is still observed; however, its magnitude is a
little bit smaller than for the situation when χ is positive.

In Fig. 3 we present the exemplary Brownian particle tra-
jectory in the studied parameter regime with 〈η(t )〉 = 1 and
the large potential barrier ε = 40. Its careful inspection sug-
gests that the occurring transport process may be decomposed
onto two contributions. The first one is associated with the
arrival of δ-kick, which is why the particle overcomes the
potential barrier. In principle, in this way it can be carried
over its many spatial periods. However, the second one, which
is clearly missing for the free particle, is related to its re-
laxation towards the nearest potential minimum as it is, e.g.,
for t ≈ 2.6 or t ≈ 5.6. This contribution is at the root of the
giant transport effect. When the mean value 〈η(t )〉 = v0 of
active fluctuations is large, then regardless of the magnitude
of the potential barrier ε, the particle velocity attains its free
transport value 〈v〉 = v0; cf. Fig. 1. It is due to the fact that
in such a limit the contribution coming from the relaxation
is negligible. However, when 〈η(t )〉 = v0 is small [see, e.g.,
〈η(t )〉 = v0 = 0.01 in Fig. 1], the sliding towards the potential
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FIG. 4. The characteristic time 1/λmax(ε) between two succes-
sive δ-kicks of active fluctuations η(t ) and the estimated median time
τmedian(ε) of particle relaxation towards the potential U (x) minimum
both as a function of the barrier height ε. Other parameters are as
follows: the average value of active fluctuations 〈η(t )〉 = v0 = 1,
variance σ 2 = 3.1, skewness χ = 0.99 of the amplitude distribution
ρ(z), and temperature DT = 0.01.

minima plays an essential role, and the giant transport occurs
when the potential barrier ε is increased.

To illustrate this fact, we ask about the physical inter-
pretation of the optimal spiking rate λmax(ε) for which the
rescaled particle velocity 〈v〉/v0 assumes its maximal value
when 〈η(t )〉 = v0 is fixed. In Fig. 4 we present the inverse
of this characteristics 1/λmax(ε) and the estimated median
time τmedian(ε) of particle relaxation towards the potential
minimum both versus the barrier height ε. In the absence of
all fluctuations, the latter relaxation for the potential U (x) =
sin(x) with the barrier height ε is determined by the equation

ẋ = −εU ′(x) = −ε cos x. (6)

The time τAB at which the particle needs to move from point
xA to point xB reads

τAB = −1

ε

∫ xB

xA

dx

cos x
= − 1

2ε
ln

∣∣∣∣1 + sin x

1 − sin x

∣∣∣∣
∣∣∣∣∣
xB

xA

. (7)

After the arrival of the δ-spike, the particle can land at any
random position xA, and then during the time interval τAB it
is relaxing towards the nearest potential minimum. This pro-
cess ends at the random position xB where another δ-spike of
active nonequilibrium noise η(t ) emerges. As the potential is
periodic, we restrict ourselves to the interval xA, xB ∈ ( π

2 , 3π
2 ).

Note that both the minimum and maximum are excluded
because the time required to leave the maximum or reach
the minimum is infinite, and Eq. (7) does not converge for
these values. In Fig. 5 we present the relaxation time |τAB| for
every pair of the starting and ending points taken from the
considered interval xA, xB ∈ ( π

2 , 3π
2 ). From this characteristic,

the mean τmean(ε) ≈ 1.72/ε and median τmedian(ε) ≈ 1.35/ε

of the relaxation time are evaluated.
In Fig. 4 one can clearly see that the initial discrepancy

between these two characteristic timescales quickly dies out
as ε is increased, and they become equivalent when the giant
transport is detected. Such resonancelike behavior explains
the mechanism of this counterintuitive effect. It means that the

FIG. 5. Absolute value of the relaxation time |τAB| from the po-
sition xA to xB calculated according to Eq. (7).

enhancement of particle velocity over free transport is maxi-
mal when the average time 1/λmax(ε) between two successive
δ-kicks of active fluctuations matches the interval τmedian(ε)
needed for the particle to exploit the process of relaxation
towards the potential minimum. The resulting motion is syn-
chronized: the particle is δ-kicked and falls on one of the
potential slopes, in the next time interval statistically there are
no other δ-spikes and it relaxes to a neighboring minimum of
the potential, and this scenario repeats over and over again.
We now demonstrate that this mechanism is nontrivial and
does not emerge, e.g., for the exponential distribution ρ(z) of
amplitudes zi, which is even more asymmetric than the skew-
normal distribution and arises in numerous different contexts.

A. Role of ratchet potentials

The next factor that can additionally boost the particle
velocity is related to the potential symmetry. This issue is
presented in Fig. 6 for three forms of the periodic potential:
U (x) is symmetric, whereas both U+(x) and U−(x) depict the
asymmetric ratchet [50], and they read

U+(x) = 0.908[sin x + 0.25 sin (2x)], (8a)

U−(x) = 0.908[sin x − 0.25 sin (2x)]. (8b)

FIG. 6. Illustration of the role of potential symmetry on enhance-
ment of free-particle transport. The potential barrier is ε = 40. The
average bias 〈η(t )〉 = v0 = 1. Solid lines correspond to the asymme-
try χ = 0.99, whereas dashed lines correspond to χ = −0.99. Other
parameters are as follows: the variance σ 2 = 3.1, and temperature is
fixed to DT = 0.01.
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FIG. 7. The average velocity 〈v〉 vs the spiking rate λ of active
fluctuations η(t ) depicted for three amplitude distributions and fixed
〈η(t )〉 = v0 = λζ = 1, i.e., ζ = 1/λ. ρ(z) corresponds to the skew-
normal statistics with σ 2 = 3.1 and χ = 0.99; ρG(z) indicates the
Gaussian density with σ 2 = 3.1; ρe(z) is the exponential distribution.
The potential barrier height reads ε = 40, and temperature is fixed at
DT = 0.01. The upper panel corresponds to the symmetric potential
U (x), whereas in the bottom panel it is asymmetric, U+(x).

The prefactor 0.908 in U+(x) and U−(x) ensures that they
possess the same barrier height as U (x). The most important
conclusion is that the giant increase of free transport depends
on the particular realization of periodic substrates, and for an
appropriate choice it can be amplified even further. For exam-
ple, for the ratchet U+(x) the velocity 〈v〉 is noticeably larger
than for the symmetric potential U (x). By comparing these
three potentials, one can notice that the distance between their
maxima xmax and subsequent minima xmin > xmax is greater
for the ratchet U+(x) than for U (x). Conversely, for U−(x) it is
smaller than for U (x). It is more likely that active fluctuations
η(t ) will kick out the particle on the longer slope of the
potential. Therefore, if χ = 0.99 and the transport occurs in
the positive direction, the velocity 〈v〉 for U (x) is greater than
for U−(x) and smaller than for U+(x). As we just explained,
when χ = −0.99 the particle moves in the negative direction
and the situation is reversed.

B. Other statistics of amplitudes zi

In Fig. 7 we present the average velocity 〈v〉 versus the
spiking rate λ of active fluctuations η(t ) depicted for differ-
ent amplitude distributions and fixed 〈η(t )〉 = v0 = λζ = 1.
We compare results obtained for active noise with the skew-

normal statistics ρ(z) to the case of Gaussian density ρG(z)
and the exponential distribution ρe(z), namely

ρG(z) = 1√
2πσ 2

e−(z−ζ )2/2σ 2
, ρe(z) = θ (z)ζ−1e−z/ζ , (9)

where θ (z) is the Heaviside step function. ρG(z) is the sym-
metric distribution for which skewness reads χ = 0, whereas
the exponential statistics ρe(z) with χ = 2 is in fact even
more asymmetric than the skew-normal density ρ(z) with χ ∈
(−1, 1). In the upper panel of Fig. 7 we present the average
velocity 〈v〉 as a function of spiking rate λ for the symmetric
potential U (x). In the bottom one the same characteristics
is depicted but for the asymmetric (ratchet) substrate U+(x).
Comparison of these two plots illustrates that potential asym-
metry can additionally boost the free-particle transport. This
result is in agreement with the insights presented in Fig. 6.

We can observe that the enormous boost for the free-
particle transport induced by the periodic potential detected
for λ = λmax ∼ ε is not rooted solely in the asymmetry
(nonzero skewness) of active noise amplitude distribution
since in both panels this effect is not present for the expo-
nential statistics ρe(z). In particular, the particle velocity 〈v〉
either tends to unity when λ → 0 or vanishes if λ → ∞.
Moreover, when the periodic potential is asymmetric, cf. the
bottom panel with U+(x), the transport enhancement 〈v〉 > v0

is discovered even for active noise with amplitudes distributed
according to the symmetric Gaussian density ρG(z). On the
other hand, if the potential is symmetric, see the upper plot
with U (x), only active fluctuations with amplitudes drawn
from the skew-normal distribution ρ(z) result in the velocity
amplification 〈v〉 > v0. The question about general constraints
on the probability density for δ-spike amplitudes that allow
for the emergence of the studied effect is complex and beyond
the scope of the current paper. Here we only point out the im-
portant difference between the exponential and skew-normal
statistics. In the former, all moments disappear when the mean
vanishes ζ → 0, whereas in the latter, mean ζ , variance σ 2,
and skewness are independent parameters. This means that
even though ζ → 0, the variance and skewness can still be
finite and fixed.

Our results reveal that periodic potentials can boost the
free-particle transport driven by white Poissonian noise pro-
vided that (i) its amplitude distribution allows for both positive
and negative δ-spikes, and (ii) the amplitude statistics pos-
sesses nonzero skewness or the reflection symmetry of the
potential is broken. These are nontrivial conditions for the
occurrence of this effect. The fact that active noise with fixed
mean and both positive and negative amplitudes can induce
significantly greater directed transport than for active noise of
equal average but with only positive δ-spikes is in addition
highly counterintuitive.

IV. DISCUSSION

The proposed strategy for the giant boost of free transport
allows us to understand why sometimes the existence of pe-
riodic structures is beneficial for transport efficiency. Many
transport processes in biological cells are driven by diffusion,
and consequently their effectiveness is low. Therefore, cells
have developed another mechanism of movement via micro-
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tubules that are asymmetric periodic structures that provide
platforms for intracellular transport mediated by molecular
motors. These platforms can be formed rapidly in response to
cellular needs. They have a half-life of 5–10 min [51] and typ-
ically are nucleated and organized by microtubule-organizing
centers. The polarized structure of microtubules provides the
navigational information necessary to direct cargo to the
proper destination in the cell. A biological motor such as a
conventional kinesin moves along a microtubule of period
8 nm with a directed velocity 1800 nm/s. Our conclusion is
that as nature teaches us, transport within periodic structures
can be many orders of magnitude more efficient than with-
out it. Whether nature takes advantage of this possibility is
another matter, of course.

In summary, we demonstrated a paradoxical effect in which
the velocity of a free Brownian particle exposed to active fluc-
tuations might be enormously accelerated when it is placed in
a periodic potential. Its origin lies in the versatile nature of
active nonequilibrium fluctuations, which allow them to fine-
tune to the given substrate and transport the particle across
the potential barrier, where it is able to effortlessly exploit
its steepness. This phenomenon should be contrasted with
the celebrated giant diffusion effect [52–55] in which ther-
mal equilibrium fluctuations cooperate with a tilted periodic
potential to accelerate diffusion of a particle by many orders
of magnitude as compared to free thermal diffusion.

We considered a paradigmatic model of nonequilibrium
statistical physics that comprises numerous realizations [32],
and therefore we expect that our results will inspire vibrant
follow-up work. Moreover, the findings may be corroborated
experimentally in a dissipative optical environment in which
the potential barrier can be easily tuned [35,36]. Our re-
sults carry impactful consequences not only for microscopic
physical systems, but also biological ones such as molecular
motors, which are in situ immersed in an unavoidable sea of
thermal and active fluctuations. Finally, our results may open
new avenues for designing ultrafast and efficient microscale
and nanoscale machines.
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APPENDIX A: DIMENSIONLESS UNITS

Transforming the equation describing the model into its
dimensionless form allows us to simplify the analysis because
it can reduce the number of parameters appearing before such
a procedure. Moreover, the resulting representation is inde-
pendent of a specific experimental setup allowing us to choose
the best platform for corroborating theoretical predictions. We
start with the Langevin equation for an overdamped Brownian
particle in a periodic potential U (x) immersed in both an
active η(t ) and a thermal ξ (t ) bath,

�ẋ = −E U ′(x) + η(t ) +
√

2�kBT ξ (t ), (A1)

where � is the friction coefficient, E is half of the potential
barrier height, kB is the Boltzmann constant, and T denotes
thermostat temperature. The potential is assumed in the peri-

FIG. 8. The probability distribution ρ(z) of amplitudes zi of ac-
tive nonequilibrium fluctuations η(t ) is presented in panel (a) for
fixed mean ζ = 1/30, variance σ 2 = 3.1, and different values of
skewness χ , and in panel (b) for various mean ζ with skewness
χ = 0.99.

odic form

U (x) = U (x + L). (A2)

We rescale the position and time in the following way:

x̂ = 2π
x

L
, t̂ = t

τ0
,

τ0 = L

100vD0

= L

100D0/L
= L2

100kBT/�
, (A3)

where vD0 is the characteristic velocity corresponding to free
thermal diffusion, D0 = kBT/�. The additional multiplier 100
is introduced in the denominator due to technical reasons
outlined below. Under such a choice of the scales, Eq. (A1)
becomes

˙̂x = −εÛ ′(x̂) + η̂(t̂ ) +
√

2DT ξ̂ (t̂ ), (A4)

where the dimensionless barrier height is ε = E/(100kBT ).
The rescaled potential reads

Û (x̂) = U

(
L

2π
x̂

)
. (A5)

For example, if U (x) = sin (2πx/L), then Û (x̂) = sin x̂ pos-
sesses the spatial period 2π . The scaling procedure allows us
to reduce a number of free parameters by

γ = 1, DT = 0.01. (A6)

024107-6



PERIODIC POTENTIAL CAN ENORMOUSLY BOOST … PHYSICAL REVIEW E 107, 024107 (2023)

FIG. 9. Three exemplary realizations of active nonequilibrium
noise η(t ) for different parameters: (a) λ = 30, ζ = 1/30, σ 2 =
3.1, and χ = 0.99; (b) λ = 6, ζ = 1/6, σ 2 = 3.1, and χ = 0.99;
(c) λ = 30, ζ = 1/30, σ 2 = 3.1, and χ = −0.99. The solid red line
corresponds to the average 〈η(t )〉 = 1.

Dimensionless thermal noise

ξ̂ (t̂ ) = L

2π

1

100kBT
ξ (τ0t̂ ). (A7)

exhibits the same statistical properties as the dimensional one,
i.e., it has the same vanishing mean and correlation function.
The rescaled Poissonian shot noise becomes

η̂(t̂ ) = L

2π

1

100kBT
η(τ0t̂ ), (A8)

and it is characterized by the dimensionless spiking rate

λ̂ = τ0λ. (A9)

The error of the numerical integration scheme to solve
stochastic differential equations driven by Poissonian white

shot noise as well as the computation time increases signifi-
cantly when the frequency λ̂ of δ-kicks grows [56]. To reduce
this drawback, we introduced the additional multiplier 100 in
the definition of the characteristic timescale τ0, which allows
us to limit the range of spiking rate λ̂ needed in this study.
Because only dimensionless quantities are used in the main
text, we omit the hat notation there.

APPENDIX B: PARAMETRIZATION OF AMPLITUDE
DISTRIBUTION ρ(z)

The skew-normal distribution [42] is usually defined in
terms of a location μ representing the shift, a scale ω propor-
tional to the variance, and a parameter α describing the shape.
The probability density function then reads

ρ(z) = 2√
2πω2

e− (z−μ)2

2ω2

∫ α[(z−μ)/ω]

−∞
ds

1

2π
e− s2

2 . (B1)

The quantities μ, ω, and α can be represented by more in-
tuitive parameters, namely the mean μ → ζ = 〈zi〉, variance
ω → σ 2 = 〈(zi − 〈zi〉)2〉, and skewness α → χ = 〈[(zi −
〈zi〉)/σ ]3〉 of the distribution ρ(z). The average amplitude ζ

allows for direct control of mean bias 〈η(t )〉 = v0 = λζ of
nonequilibrium noise, the variance σ 2 describes the mean-
square deviation of δ-spikes, and skewness χ measures the
asymmetry of skew-normal distribution. Expressions for the
location μ, scale ω, and shape α in terms of these parameters
are as follows [45,46]:

α = δ√
1 − δ2

, (B2a)

ω =
√

σ 2

1 − 2δ2/π
, (B2b)

μ = ζ − δ

√
2σ 2

π (1 − 2δ2/π )
, (B2c)

where δ is defined as

δ = sgn(χ )

√
|χ |2/3

(2/π ){[(4 − π )/2]2/3 + |χ |2/3} . (B3)

In Fig. 8 we present the probability density function ρ(z) for
amplitudes of active nonequilibrium noise η(t ) as a function
of its parameters, i.e., mean ζ , variance σ 2, and skewness χ .
In panel (a) the impact of skewness χ for the fixed mean
ζ = 1/30 is shown, whereas in (b) the influence of mean ζ

is illustrated for χ = 0.99.

APPENDIX C: REALIZATIONS OF ACTIVE
FLUCTUATIONS η(t )

In Fig. 9 we demonstrate three exemplary realizations of
active nonequilibrium noise η(t ) for different values of its
parameters. For all the presented cases the statistical bias is
fixed to 〈η(t )〉 = v0 = 1. Panel (a) corresponds to the regime
of optimal transport 〈v〉 for the potential barrier height ε =
40 (see Fig. 2 in the main text), the spiking rate λ = 30,
mean amplitude ζ = 1/30, variance σ 2 = 3.1, and skewness
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χ = 0.99. In panel (b) the frequency is five times smaller,
λ = 6, and therefore ζ = 1/λ = 1/6 to satisfy the condition
〈η(t )〉 = λζ = v0 = 1. The reader can indeed infer that the
parameter λ describes the frequency of δ-spikes, whereas an
increase of ζ has a twofold effect: (i) the positive amplitudes

zi > 0 grow, and (ii) the negative ones zi < 0 are reduced.
Finally, in panel (c) we present the impact of skewness in-
version χ → −χ . As it is visualized in this plot, such an
operation corresponds to reflection of the realization about the
axis η(t ) = ζ .
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