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Anomalous diffusion and long-range memory in the scaled voter model
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We analyze the scaled voter model, which is a generalization of the noisy voter model with time-dependent
herding behavior. We consider the case when the intensity of herding behavior grows as a power-law function
of time. In this case, the scaled voter model reduces to the usual noisy voter model, but it is driven by the scaled
Brownian motion. We derive analytical expressions for the time evolution of the first and second moments
of the scaled voter model. In addition, we have derived an analytical approximation of the first passage time
distribution. By numerical simulation, we confirm our analytical results as well as showing that the model
exhibits long-range memory indicators despite being a Markov model. The proposed model has steady-state
distribution consistent with the bounded fractional Brownian motion, thus we expect it to be a good substitute
model for the bounded fractional Brownian motion.

DOI: 10.1103/PhysRevE.107.024106

I. INTRODUCTION

In recent years, methods of statistical physics have been
increasingly applied to describe complex social phenomena
using tools common to physics, such as stochastic differen-
tial equations (SDEs), or recently developed ones, such as
agent-based models (ABMs) [1]. This emerging area where
physicists use statistical physics techniques to solve finan-
cial and economic problems is called econophysics. Analysis
of the empirical data from various economic and financial
systems has shown that, despite the abundance of proposed
models, there is still a lack of models that accurately repro-
duce and explain the emergence of empirically observable
statistical properties [2]. It remains unclear what behavioral
characteristics of the individual system components can re-
produce the empirical properties inherent to such processes
and fundamentally explain their origin [3].

One of the aforementioned problems is the nature of the
observable long-range memory. Numerous empirical long-
range memory indicators are well established and widely
used: power-law power spectral density (PSD) or power-
law autocorrelation function and power-law scaling of the
mean squared displacement (MSD) over time [4]. Also, long-
range memory can be identified by using the rescaled range
method, detrended fluctuation analysis, and other methods
[5]. However, it is often difficult to determine from any
single aforementioned statistical property which process is
responsible for the emergence of long-range memory, and em-
pirical methods often yield contradicting results. For example,
power-law PSD can be observed in a variety of stochastic
processes: nonlinear transformations of the Markov process
[6], Brownian motion subordinated to the Lévy noise [7], or
the fractional Brownian motion (fBm). The aforementioned
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models also exhibit other indicators of long-range mem-
ory such as power-law scaling of MSD, i.e., the anomalous
diffusion. Therefore is not clear which model is more appro-
priate and justifiable for describing the relevant empirical time
series [4,8].

Various attempts to solve this problem have been made.
In Refs. [8,9], it has been shown that the “true” long-range
memory process, one with correlated time increments, such
as fBm, can be distinguished from other Markov processes
by studying their first passage time distributions (FPTDs). In
the case of fBm, both FPTD and PSD power-law exponents
depend on the Hurst parameter and for nonlinear Markov
processes, the FPTD power-law exponent remains constant
(−3/2) regardless of the PSD power-law exponent value.
However, this method also has drawbacks. So far, this method
has only been applied to one-dimensional processes, i.e., it
was assumed that the statistical properties of the time series
could be replicated using a single-variable SDE. It has been
observed that a two-variable SDE system can generate a time
series with unique properties. For example, a single nonlinear
SDE can generate signals having power-law PSD only if the
stationary distribution of the signal itself is also a power-law
function. However, the system of two nonlinear SDEs can
generate signals with power-law PSDs, with arbitrary station-
ary distribution [10]. Therefore, it would be desirable to refine
this method and apply it to long-range memory identification
in more complex systems, which are described by a system of
coupled SDEs derived from multistate ABMs [11–13].

Knowing of FPTD and other statistical properties lets us
discern various long-range memory processes. For example,
fBm and Lévy walks both exhibit anomalous diffusion and
power-law FPTD. However, fBm and Lévy walks exhibit
power-law FPTDs with different exponents [14]. So we chose
to test whether these aforementioned properties enable us to
differentiate noisy voter models from other long-range mem-
ory processes. In comparison to previous works [11,15,16],
here we have assumed that the intensity of herding behavior
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is not a model parameter (constant in time) but a function
of time. We chose herding dependence in the form of a
power-law function because such an introduction leads to very
similar behavior compared to the scaled Brownian motion
(SBM) for the small times. SBM has similar statistical prop-
erties as fBm except for PSD. fBm has power-law PSDs with
an exponent dependent on the Hurst parameter while PSD of
SBM is always inversely proportional to a frequency square
(1/ f 2), as in the case of the classical Brownian motion [17].

The assumption that the intensity of herding behavior is
time dependent is quite common in the literature [18–21].
Yet often it is assumed to be a stochastic process, while
here we assume that herding behavior follows a deterministic
power-law function. While our choice appears to be great
oversimplification, it still might be correct close to the critical
moments of high uncertainty. In Ref. [22], it was shown that
trading volume exhibits scale-free (power-law) behavior close
to the trend-switching points. Also, in Ref. [23], an issue is
raised that many models in sociophysics and econophysics
are Poissonian, with inter-event times being exponentially dis-
tributed, however, the empirical data indicates that inter-event
time distributions ought to be power laws. To achieve this in
Poissonian models, one would need to have event rates be time
dependent and power-law distributed.

This paper is organized as follows. In Sec. II, we briefly
introduce the noisy voter model and SBM and their relevant
statistical properties such as time dependence of MSD and
FPTD. In Sec. III, we show that the one-dimensional noisy
voter model with a time-dependent herding intensity for small
times can be approximated by the Cox–Ingersoll–Ross (CIR)
process [24] with time-dependent coefficients [25]. Addition-
ally, general expressions for first and second moments and
variance have been obtained. In the special case when the
herding intensity is a power-law function of time, the exact
expressions for the moments have been derived. In Sec. IV, we
show that the considered model is a nonlinear transformation
of SBM in an external potential and its FPTD has the same
power-law tail as SBM. In Sec. V, we provide some remarks
on how the proposed model relates to the other ABMs.

II. NOISY VOTER MODEL AND SCALED BROWNIAN
MOTION

The voter model is one of the key models in sociophysics
[2,26]. It and its numerous variations are still explored from
various theoretical and empirical points of view [27,28]. Our
earlier research on the voter model [5] focused on the noisy
voter model. We have shown that it can exhibit long-range
memory phenomenon [29,30] as well as be applied to explain
spatial heterogeneity of electoral [31] and census data [32].
Similar observations on the applicability of the noisy voter
model were also made by other groups [33–36]. Recently,
we have analyzed diffusive regimes present in the nonlinear
transformations of the noisy voter model [16] as well as dif-
fusive properties of individual agent trajectories in the context
of parliamentary attendance [37].

The noisy voter model can be formulated as a birth-death
process with the following transition rates:

π+ = (N − X )(r1 + hX ), π− = X (r2 + h[N − X ]), (1)

where in the equation above π+ stands for the birth rate
(increment of the system state X ) and π− stands for the death
rate (decrement of the system state). Note that system state
variable X is confined in the [0, N] interval. Therefore, one
could see these transition rates not as generation and recom-
bination but instead as N particles (agents) switching between
two states (e.g., active and passive, Republican and Democrat,
etc.). The particles can switch the state independently with
idiosyncratic transition rate ri, and they may change states due
to interaction with other particles, which occurs with herding
behavior intensity h.

As all the transitions in the model influence just one par-
ticle, we can use one-step process formalism [38] to derive
an SDE approximating the discrete process in the thermody-
namic limit. For x = X

N , the following SDE can be derived:

dx = h[ε1(1 − x) − ε2x]dt +
√

2hx(1 − x)dWt . (2)

Here we have introduced relative independent transition rate
εi = ri

h by effectively coupling interaction rate h to the
timescale. Also, in the SDE above, Wt is the uncorrelated
standard Wiener process and Eq. (2) should be interpreted in
the Itô sense.

It can be trivially shown that the steady-state distribution
of Eq. (2) is the Beta distribution. The exact steady-state
probability density function (PDF) is

Pst(x) = �(ε1 + ε2)

�(ε1)�(ε2)
xε1−1(1 − x)ε2−1. (3)

Beta distribution is observed in socioeconomic data related
to popularity of political candidates or parties, also religions
and languages [34–36,39–42]. Hence, it is a popular model to
study from a theoretical perspective and to compare against
existing data.

Recently, various non-Markovian modifications were in-
troduced into the voter model, and a non-Markovian voter
model was considered as an alternative to the original,
Markovian, voter model. References [43,44] considered the
implications of the state aging; this mechanism leads to
a frozen discord state, while the original voter model is
known to reach a consensus state. References [40,41] con-
sidered the evolution of the interaction topology alongside
the evolution in individual particle states. This extension
was applied to model competition between languages and
language dialects. Further in this paper, we will attempt to
imitate non-Markovian behavior without introducing actual
non-Markovian mechanisms. We will do so by introducing
SBM, which is used to imitate certain features of the fBm,
into the noisy voter model.

A. Scaled Brownian motion and first passage time

In a later section, we will use SBM to describe the stochas-
tic dynamics of the noisy voter model. SBM can mimic some
statistical properties of fBm such as power-law FPTD and
power-law scaling of MSD. Therefore, here, we discuss SBM
and its statistical properties in more detail.

SBM is well studied in the context of anomalous diffusion
[45,46]. If MSD of observable x has power-law dependence
on time, 〈(�x)2〉 = 〈x2(t )〉 − 〈x(t )〉2 ∼ tγ , then it is said that
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the process exhibits anomalous diffusion. Also, if γ �= 1, one
can suspect that the process might exhibit long-range memory.
If γ < 1, this phenomenon is subdiffusive. The occurrence of
subdiffusion has been experimentally observed, for example,
in the behavior of individual colloidal particles in random
potential energy landscapes [47], while the 1 < γ � 2 case
(known as superdiffusion) has been observed in vibrated
granular media [48]. Recent research shows that anomalous
diffusion can be observed in socioeconomic systems [16]. For
example, in Ref. [49] it was shown that anomalous diffusion
can be observed by considering individual agent trajectories
in a modified voter model, thus providing an explanation for
the observations made in the parliamentary attendance data
[49,50].

SBM is one of the simplest Gaussian models that satisfies
the anomalous diffusion relation:〈

x2
s (t )

〉 ∼ tγs , 0 < γs < 2. (4)

Here 〈x2
s (t )〉 is the MSD of SBM and γs is the anomalous

diffusion exponent (SBM is a driftless process, therefore its
second moment coincides with MSD 〈(�x)2〉 = 〈x2

s (t )〉). We
have chosen to add subscript s to the exponent to point out
that γs is an anomalous diffusion exponent for SBM. In a
later section, we will see that the combination of SBM and the
noisy voter model can lead to a different anomalous diffusion
exponents.

SDE describing SBM can be derived by rescaling the time
of the Brownian motion,

dx =
√

2DdWt , (5)

by using the following nonlinear time transformation t →
ts = tγs , leading to SDE in scaled time ts:

dxs =
√

2DdWts . (6)

The equation above describes SBM in scaled time. Corre-
sponding to SDE (6), the Fokker-Planck equation is

∂P(xs, ts)

∂ts
= D

∂2P(xs, ts)

∂x2
s

. (7)

As we can see, SBM probability density P(xs, ts) in scaled
time ts satisfies the same Fokker-Planck equation as the Brow-
nian motion in real time t . Therefore, its PDF is identical in ts:

P(xs, ts) = 1√
4Dπts

exp

(
− x2

s

4Dts

)
. (8)

Returning from the scaled time to the real time, we can see
that the PDF for SBM is

P(xs, t ) = 1√
4Dπtγs

exp

(
− x2

s

4Dtγs

)
. (9)

One can see that free SBM has the same PDF [Eq. (9)]
as free fBm [51]. It has even been proposed that SBM is a
possible substitute for fBm in the large-time limit [52]. Cur-
rently, SBM is used to model anomalous diffusion in a wide
range of systems [45,46]. However, it has been shown that
due to long-range correlations fBm PDF becomes different
from SBM when the boundary conditions or a potential are
introduced [52,53].

The transition from scaled time ts = tγs to real time t can be
interpreted as a time derivative change in the Fokker-Planck
equation:

∂

∂ts
= 1

γstγs−1

∂

∂t
. (10)

By using Eqs. (10) and (7), we can obtain the Fokker-Planck
equation describing SBM in real time:

∂P(xs, t )

∂t
= γsDtγs−1 ∂2P(xs, t )

∂x2
s

. (11)

From Eq. (11), it follows that SDE for SBM in real time is

dxs = t
γs−1

2

√
2γsDdWt . (12)

Therefore, SBM can be interpreted as a Wiener process with
a time-dependent diffusion coefficient.

Now let us consider the first passage time denoted by T ,
which is the time taken for the process to reach a threshold
point x = a for the first time, having started from the initial
position x0 at initial time t = t0 = 0. Here a is an absorbing
boundary. At absorbing boundary x = a, PDF p(x, t |x0, 0)
must satisfy Dirichlet boundary condition p(a, t |x0, 0) = 0 for
all times.

The Fokker-Planck equation describing the Brownian mo-
tion with a time-dependent diffusion coefficient, σ 2(t ), is

∂ p(x, t |x0, 0)

∂t
= 1

2
σ 2(t )

∂2 p(x, t |x0, 0)

∂x2
. (13)

For such type of Fokker-Planck equation first passage times,
T , distribution is well-known [54,55]:

f (T ) = |x0 − a|
2
√

π

e− (x0−a)2

4S(t )

S3/2(T )

d

dT
S(T ), (14)

S(T ) = 1

2

∫ T

0
σ 2(t ′)dt ′. (15)

Here |x0 − a| is the absolute value of the difference between
the absorption point a and the initial value of SBM. For
the derivation of Eq. (14), see Appendix B. By comparing
Eqs. (11) and (13), we see that σ 2(t )/2 = γsDtγs−1, therefore

S(T ) = DT γs (16)

if γs > 0. By inserting Eq. (16) into Eq. (14), we obtain FPTD
for SBM:

f (T ) = |x0 − a|γs

2
√

πD

1

T γs/2+1
exp

(
− (x0 − a)2

4DT γs

)
. (17)

For γs = 1, Eq. (17) reduces to the well-known FPTD
for Brownian motion. As t goes to ∞, FPTD fs(t ) ∼ 1/tβ

decays as a power-law function with exponent β = γs/2 + 1.
The aforementioned exponent is dependent on the anomalous
diffusion parameter γs. A special case of Eq. (17) for ab-
sorption at origin a = 0 (x0 > a) has been obtained by using
the method of mirrors [54]. In addition, the FPTD for SBM
affected by the time-dependent force has been obtained in
Ref. [54]. It is well-known that fBm also exhibits anomalous
diffusion with MSD 〈x2

fBm(t )〉 ∼ t2H and has FPTD with a
power-law tail ffBm(T ) ∼ 1

T H+1 [51]. Here, H is the Hurst
parameter. If we set γs = 2H , then we can see that SBM and
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fBm exhibit the same power-law scaling behavior in MSD and
in FPTD. fBm has a power-law PSD dependent on the Hurst
exponent, however, SBM PSD is always proportional to 1/ f 2

and does not depend on the anomalous diffusion exponent
[17].

Other transformations of the stochastic processes can also
lead to anomalous diffusion. For example, the nonlinear trans-
formation of Brownian motion y = xη [56], or Bessel process
y = (η − 1)x1−η

Bes [57], or even more complex transformations
y = (xV /(1 − xV ))1/α of the noisy voter model [16] lead to the
anomalous diffusion. Here xV is the process defined by SDE
(2) and xBes is defined by the Bessel process [6]. However, the
aforementioned transformations do not change FPTD power-
law exponent β. The exponent remains equal to 3/2 and
independent from the anomalous diffusion exponent [6]. To
obtain the anomalous diffusion and power-law FPTD, often
non-Markovian processes are used, such as fBm [58] or Lévy
walks [59].

Therefore, at least as far as we are aware, the SBM is the
only Markovian process exhibiting anomalous diffusion and
power-law FPTD with an exponent different from Brownian
motion. Therefore, we chose SBM as a noise source in the
following generalization of the noisy voter model.

III. SCALED VOTER MODEL AND ANOMALOUS
DIFFUSION

In this section, we will study the noisy voter model with
the time-dependent herding behavior intensity, h(t ). Here we
assume that the herding behavior intensity h in the SDE (2)
depends on the real time and the independent transition rates
are proportional to the herding behavior intensity ri = εih(t ):

dx = h(t )[ε1(1 − x) − ε2x]dt +
√

2h(t )x(1 − x)dWt . (18)

If we assume that the herding intensity is a power-law
function of time

h(t ) = γst
γs−1,

then SDE (18) becomes

dx = γst
γs−1[ε1(1 − x) − ε2x]dt +

√
2x(1 − x)

√
γst

γs−1
2 dWt .

(19)
By performing a timescale change t → ts = tγs , by using rela-
tion dts = γstγs−1dt and by using the definition of SBM, SDE
(12), we can show that

dx = [ε1(1 − x) − ε2x]dts +
√

2x(1 − x)dWts . (20)

The process described by SDE (19) in scaled time ts is
identical to the original noisy voter model, SDE (2), in real
time t . Therefore, from now on, a process described by SDE
(19) we will refer to as the scaled voter model.

For small x values (x 
 1), we can neglect higher x mem-
bers in the diffusion term

√
2h(t )x(1 − x) ≈ √

2h(t )x:

dx = h(t )[ε1(1 − x) − ε2x]dt +
√

2h(t )
√

xdWt . (21)

Let us introduce the following notation:

α(t ) = (ε1 + ε2)h(t ), β(t ) = ε1h(t ), k(t ) =
√

2h(t ).
(22)

Then we can see that (for x 
 1) SDE (18) can be well
approximated by the CIR process [24] with time–dependent
coefficients:

dx = −[α(t )x − β(t )]dt + k(t )
√

xdWt . (23)

In Refs. [25,60], it has been shown that if condition

2β(t )

k2(t )
= ε1 = const (24)

is satisfied, then time and space variables can be separated
in the Fokker-Planck equation by using time transforma-
tion. Therefore, the Fokker-Planck equation corresponding to
Eq. (23) can be solved by using a well-known solution in
the form of Bessel functions, then the transition probability
P(x, t |x0, 0) of the CIR process with time-dependent coeffi-
cients is [25]

P(x, t |x0, 0) = 1

φ(t )

(
x

x0e−τ (t )

)(ε1−1)/2

× exp

(
−x + x0e−τ (t )

φ(t )

)

× Iε1−1

(
2

φ(t )

√
xx0e−τ (t )

)
. (25)

Here x0 is the initial condition and we set the initial time to
t0 = 0. For voter models with linear herding such as SDE (2),
coefficients β(t ) and k(t ) always appear in such a form that
the conditions defined by Eq. (24) are satisfied for all t . The
aforementioned condition ensures that the diffusion and drift
coefficients only influence the relaxation of the process to the
steady state. But the steady-state distribution of the stochastic
process remains the same as if the coefficients would be con-
stant. An analytical expression for the transition probability
also can be found for β(t ) = 0 (if h �= 0, ε1 = 0) [25], how-
ever, such a solution is not useful in the context of anomalous
diffusion because the process tends to the singularity at zero as
time progresses [25,61]. Time-dependent functions φ(t ) and
τ (t ) are the time integrals of the CIR coefficients:

τ (t ) =
∫ t

0
α(s)ds, (26)

φ(t ) = 1

2

∫ t

0
k2(t ′) exp

(
−

∫ t

t ′
α(s)ds

)
dt ′. (27)

Using Eq. (25), we can calculate the time-dependent average
of the κth power of x:

〈xκ (t, x0)〉 =
∫ ∞

0
yκP(x, t |x0, 0)dx. (28)

By inserting Eq. (25) into Eq. (28) and setting κ = 1, we
obtain a general formula for the first moment of x(t ):

〈x(t, x0)〉 = x0e−τ (t ) + ε1φ(t ). (29)

By inserting Eq. (25) into Eq. (28) and setting κ = 2, we
obtain a general formula for the second moment of x(t ):

〈x2(t, x0)〉 = x2
0e−2τ (t ) + 2x0(1 + ε1)e−τ (t )φ(t )

+ ε1(1 + ε1)φ2(t ). (30)
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From Eqs. (29) and (30), it follows that the variance of x(t ) is

Var[x(t |x0)] = 〈x2(t, x0)〉 − 〈x(t, x0)〉2

= φ(t )(2e−τ (t )x0 + ε1φ(t )). (31)

From now on, let us consider the case of power-law tempo-
ral scaling of the herding behavior intensity function, h(t ) =
γstγs−1. Such form of the herding behavior intensity function
was chosen to introduce SBM [see SDE (12)] into the ABM
described by the SDE (18). Without loss of generality, let us
set the diffusion coefficient to unity, D = 1, in SDE (12). If
the herding behavior intensity has such a power-law temporal
scaling form, then from Eqs. (22), (26), and (27) it follows
that

φ(t ) = 1 − e−(ε1+ε2 )tγs

ε1 + ε2
(32)

and

τ (t ) = (ε1 + ε2)tγs . (33)

Furthermore, from Eqs. (29), (32), and (33), it follows that the
time evolution of the mean is

〈x(t, x0)〉 = x0e−atγs + b(1 − e−atγs
), (34)

with

a = ε1 + ε2, b = ε1

ε1 + ε2
. (35)

In the context of the noisy voter model, ε1 and ε2 are the
independent transition rates and we assume that they are pos-
itive real numbers, therefore a and b are also positive real
numbers. Note that if we set γs = 1, Eq. (34) reduces to the
mean formula for the CIR process with constant coefficients
[24].

Let us consider the time evolution of the mean 〈x(t, x0)〉,
Eq. (34). In the case when the initial position x0 is set such
as x0 
 b, by performing the Taylor series expansion we can
show that the time evolution of the mean exhibits power-law
scaling for intermediate times

〈x(t, x0)〉 = ε1tγs , tx0 < t < tc. (36)

Here

tx0 =
∣∣∣∣ x0

a(b − x0)

∣∣∣∣
1
γs =

∣∣∣∣ x0

ε1 − x0(ε1 + ε2)

∣∣∣∣
1
γs

(37)

is the time moment at which the influence of initial position
x0 is forgotten. If we set the initial value x0 = 0, then tx0 = 0;
this means that in this case, power-law scaling should start
instantly. tc defines the critical time value at which power-law
scaling of the mean stops:

tc = 1

a
1
γs

= 1

(ε1 + ε2)
1
γs

. (38)

For larger times t > tc, power-law scaling of the mean sub-
sides and the mean starts to tend to its steady-state value.

If the herding behavior intensity is a power-law function of
time, h(t ) = γstγs−1, then from Eqs. (31)–(33) it follows that

the variance of x(t ) is

Var[x(t |x0)] = 〈x2(t, x0)〉 − 〈x(t, x0)〉2

= 2x0

a
(e−atγs − e−2atγs

) + b

a
(1 − e−atγs

)2. (39)

Parameters x0, a, and b are the same as for the mean
〈x(t, x0)〉 defined by Eq. (34). For parameter γs = 1, variance
Var[x(t |x0)] reduces to a variance formula for the CIR process
with constant parameters [24] (see Eq. (19) with σ = √

2 in
Ref. [24]).

Now let us consider the time evolution of the variance
Var[x(t |x0)], given by Eq. (39) for various x initial values x0.
In the case when the initial position x0 = 0, the variance takes
the form

Var[x(t |0)] = b

a
(1 − e−atγs

)2 = b

a
(1 − 2e−atγs + e−2atγs

).

(40)
After performing the Taylor series expansion, we see that

for x0 = 0 and times t < tc, the variance exhibits power-law
scaling:

Var[x(t |0)] = ε1t2γs , t < tc = 1/a
1
γs . (41)

In this case, when diffusion starts at zero, x0 = 0, the
variance Var[x(t |0)] = 〈x2(t, 0)〉 − 〈x(t, 0)〉2 behavior is the
same as MSD; this is not the case for other initial positions
x0. Therefore, from Eqs. (41), it follows that for times smaller
than tc, the SDE (21) with power-law herding, h(t ), gener-
ated signal MSD scales with a double exponent compared
to standard SBM 〈x2(t )〉 ∼ tγs . Therefore, we can observe
anomalous diffusion for 0 < γs < 1, and for γs > 1 we can
even observe superballistic motion [62].

Some authors use only MSD as an indicator of the anoma-
lous diffusion [62–65]. However, we decided to use the
variance as an anomalous diffusion indicator instead of MSD
because variance takes into consideration the influence of
initial value x0. As we will see later, the introduction of initial
position x0 can lead to more interesting results.

In general, the evolution of variance for times t < tc can be
expressed as

Var[x(t |x0)] = 2x0tγs + 3a

(
b

3
− x0

)
t2γs , t < tc = 1/a

1
γs .

(42)
For x0 > b/3, the second term (the one proportional to t2γs )

in Eqs. (42) becomes negative and then the first term domi-
nates for all times up to tc. Therefore, for the initial position
x0 > b/3, the SDE (21) generated signal should exhibit the
anomalous diffusion

Var[x(t |x0 > b/3)] = 2x0tγs , t < tc = 1/a
1
γs . (43)

For the case with x0 < b/3, one no longer can ignore the
second term in Eqs. (42). Consequently, we should observe
double power-law scaling in variance

Var[x(t |x0 < b/3)] =
{

2x0tγs , 0 < t < tb

3a
(

b
3 − x0

)
t2γs , tb < t < tc,

(44)

tb =
(

2x0

3a
(

b
3 − x0

)
)1/γs

, (45)
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FIG. 1. Temporal evolution of the mean and the variance in the scaled voter model, SDE (19), for various parameter γs values. Red points
represent the results of numerical simulations. Black (solid) lines are calculated using analytical Eq. (39), and grey dashed lines show the
power-law dependence on time ∼tγs . The common parameter values were set as follows: x0 = 0.3 and ε1 = ε2 = 3.0 (b/3 = 1/6). SBM
anomalous diffusion exponent is different for the three cases shown: γs = 1/2 for (a) and (b), γs = 1 for (c) and (d), γs = 2 for (e) and (f)

Here tb is the time moment when more ballistic diffusion starts
(for γs > 1).

The mean and variance power-law scaling for the scaled
voter model is very sensitive to the initial position x0. In
the case of x0 > b/3 (here b = ε1

ε1+ε2
and εi are transition

rates), variance exhibits the same anomalous power-law scal-
ing as SBM up to critical time tc (see Fig. 1). After critical
time tc, moments tend to their steady-state values. This is
quite an unexpected result because other types of noisy voter
model transformation lead to inverse power-law decay from
the initial position to steady-state values for bought mean and

variance for large initial values [16]. In the case of x0 < b/3
(see Fig. 2), we can observe double power-law scaling of vari-
ance [see Eq. (44)]. Until the influence of initial position x0 is
forgotten, the variance exhibits the same anomalous scaling as
SBM up to time tb. After time tb, the variance starts growing
with the doubled exponent. For 0.5 < γs < 1, we can observe
both types of anomalous diffusion: subdiffusion transitioning
into superdiffusion. For 1 < γs < 2, the superdiffusion transi-
tioning into superballistic motion [62]. For 0 < γs < 1, such
double power-law scaling has only been obtained in more
complex models such as the Galilei variant time-fractional
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FIG. 2. Temporal evolution of the mean and the variance in the scaled voter model, SDE (19), for various parameter γs values. Red
points represent the results of numerical simulations. Black (solid) lines are calculated using analytical Eq. (39), and grey lines show the
power-law dependence on time ∼tγs (dashed) and ∼t2γs (solid), respectively. The common parameter values were set as follows: x0 = 10−5

and ε1 = ε2 = 3.0 (b/3 = 1/6) for all pictures. SBM anomalous diffusion exponent is different for the three cases shown: γs = 1/2 for (a) and
(b), γs = 1 for (c) and (d), γs = 2 for (e) and (f).

diffusion-advection equations [62,63]. Numerical simulation
shows that carrier-based transport through a line of cells
exhibits such double power-law scaling with anomalous diffu-
sion exponent γ = 0.59 [66]. Continuous time random walk
models suggest that inverse double power-law scaling the of
mean current can occur in amorphous semiconductors [67].
Therefore, the ability to reproduce double power-law scaling
of the variance might make our model more applicable to a
variety of physical and sociophysical systems.

IV. FIRST PASSAGE TIME DISTRIBUTION OF THE
SCALED VOTER MODEL

In this section, we will obtain the FPTD for the special
case of the noisy voter model described by SDE (18) when
parameters ε1 = ε2 = ε = 1/2. In addition, we discuss how
the scaled voter model can be differentiated from other long-
range memory processes using variance time dependence and
obtained FPTD.
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The Itô SDE (18) can be transformed into SDE
with additive noise by introducing new variable y(x) =√

2 arcsin(
√

1 − x). By using Itô’s formula [68], we obtain
SDE for a new variable y(x(t )):

dy = h(t )F (y)dt −
√

h(t )dWt . (46)

The drift term time-independent part F (y) is

F (y) = ε2 − ε1√
2

1

sin(
√

2y)
+ ε1 + ε2 − 1√

2
cot(

√
2y). (47)

Because the x(t ) process is bounded in interval [0,1] its trans-
formation y(x(t )) is bounded in [0, π/

√
2] due to force F (y).

If the condition is satisfied, ε1 = ε2 = ε, the F (y) takes a
simpler form and the SDE (47) becomes

dy = h(t )
2ε − 1√

2
cot(

√
2y)dt +

√
h(t )dWt . (48)

The minus sign can be dismissed because dW is statis-
tically equivalent to −dW . In the case of time–independent
herding behavior intensity, SDE (48) has been obtained by
using different nonlinear transformations [69].

In the special case when ε = 1/2, there is no drift force and
the process y(t ) can be described by a simpler SDE:

dy =
√

h(t )dWt . (49)

As in the previous section, we set the time–dependent
herding behavior intensity to be a power-law function of time
h(t ) = γstγs−1. In this case, the process y(t ) is a special case
of SBM with a diffusion coefficient equal to D = 1/2:

dy = t
γs−1

2
√

γsdWt . (50)

In this special case, the scaled voter model can be inter-
preted as a nonlinear transformation of SBM. Because y is
SBM, therefore its FPTD according to Eq. (17) is

fy(T ) = |y0 − ay|γs√
2π

1

T γs/2+1
exp

(
− (y0 − ay)2

2T γs

)
. (51)

Here |y0 − ay| is the absolute value of the difference between
initial position y0 and threshold ay (absorbing boundary). In
Eq. (51), an exponential term can be written in the form of
exp(−(z/T −1

� )γs ), where z = 1/T . Therefore, for short times
(z � T −1

� ), we have an exponential cutoff for the short pas-
sage times. For longer passage times, FPTD decays as a
power-law function:

fy(T ) = |y0 − ay|γs√
2π

1

T γs/2+1
, T > T� = 2− 1

γs |y0 − ay|
2
γs .

(52)
By remembering relation y(x) = √

2 arcsin(
√

1 − x), we
obtain FPTD for the scaled voter model x (for parameters
ε1 = ε2 = 1/2):

fx(T ) = γs�x√
2π

1

T γs/2+1
exp

(
− �2

x

2T γs

)
. (53)

Here �x = √
2| arcsin (

√
1 − x0) − arcsin (

√
1 − ax )| and ax

absorption point in x space.
In this section, we have shown that the noisy voter model

with the time-dependent herding behavior intensity is a non-
linear transformation of SBM in an external field. By using
this similarity, we have obtained an analytical approximation
of FPTD. This approximation suggests that in the case of

a symmetrical noisy voter model (with ε = 1/2), FPTD has
the same power-law tail as SBM FPTD. To test this predic-
tion, we performed numerical simulations. In the numerical
simulations, we use a modified next reaction method [70,71]
with an additional scaling modification, which allows us to
improve simulation speed by dynamically scaling N whenever
greater precision is needed (see Appendix A for more de-
tails). The numerical simulations confirm that the scaled voter
model exhibits FPTD with a power-law tail whose exponent
is well predicted by the analytical expressions derived in this
section (see Fig. 3). In addition, by using numerical simula-
tions, we have also examined the asymmetric case, FPTD of
the scaled voter model still retains the predicted power-law
tail exponent. (see Fig. 4). The proposed analytical formula
Eq. (53) predicts the overall shape of FPTD quite well up to
large times. For large times, we see a cutoff of the power-
law tail. We suspect that this deviation from the power law
might be due to reflective boundaries used in the numerical
simulations or due to the influence of parameter ε describing
independent transition rates. To explain this phenomenon, a
more precise approximation is needed. It would need to take
into consideration not only one absorbing boundary but the
combination of the reflective and absorbing boundaries.

FPTD of the scaled noisy voter model has the same power-
law tail as the SBM FPTD, but these processes can be
differentiated by different power-law scaling of their MSD.
The MSD for SBM is 〈x2(t )〉 − 〈x(t )〉2 ∼ tγs and for the
proposed noisy voter model MSD is 〈x2(t )〉 − 〈x(t )〉2 ∼ t2γs .
When we take into consideration the initial position, things
can become a little bit more complicated. For x0 > b/3,
variance has the same power-law scaling as MSD and pro-
cesses can be easily separated from each other. For x0 < b/3,
variance of the proposed model can have double power-law
scaling. For shorter times, the proposed model and SBM
variances have identical power-law scaling. For longer times,
the proposed model variance starts growing with a double
exponent compared to SBM. Therefore, the knowledge of
both FPTD and variance lets us differentiate the considered
scaled voter model from various other long-range memory
processes such as SBM and fBm (fBm and SBM have iden-
tical dependence on FPTD and power-law scaling of MSD).
In addition, because the FPTD can have power-law tails with
other exponents than −3/2, this lets us differentiate our model
from other nonlinear transformations of the noisy voter model
[16] and Lévy flights.

V. SCALED VOTER MODEL RELATION TO OTHER
AGENT–BASED MODELS

In this section, we will study how the scaled voter model
relates to other ABMs and stochastic processes. We will show
the noisy voter model with the time-dependent herding behav-
ior intensity arises as a special case of other more complicated
agent-based models.

In the case of x0 < b/3, the scaled voter model ex-
hibits double power-law scaling of variance [see Eq. (44)].
For 0.5 < γs < 1, we can observe both types of anomalous
diffusion: the subdiffusion transitioning into superdiffusion.
Similar double power-law scaling has been obtained by per-
forming a numerical simulation of multistate agent-based
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FIG. 3. The first passage times T distribution (FPTD) of the scaled voter model, SDE (19), for various values of the parameters x0 and γs

values. Red points represent the results of numerical simulations. Black (solid) lines are calculated using an analytical Eq. (53), grey dashed
and grey solid lines show the power-law tail of FPTD f (t ) ∼ 1/tβ with exponent β = γs/2 + 1. The common parameter values were set as
follows: ax = 0 (point of absorption) and ε1 = ε2 = 0.5. Initial position is different for the two cases shown: x0 = 10−3 for (a), (c), and (e);
x0 = 10−2 for (b), (d), and (f). SBM anomalous diffusion exponent is different for the three cases shown: γs = 1/2 (β = 5/4) for (a) and (b),
γs = 1 (β = 3/2) for (c) and (d), γs = 2 (β = 2) for (e) and (f).

models describing carrier-based transport through a line of
cells [66]. The aforementioned research and other studies
[62,63] motivated us to search for the relation between the
scaled noisy voter model and multistate ABMs. In this section,
we present the simplest possible cases.

Let us start with a system of coupled SDEs:

dn1 = n2[ε1(1−n1)−ε2n1]dt +
√

2n2n1(1 − n1)dW1,t , (54)

dn2 = f (n1, n2)dt + g(n1, n2)dW2,t . (55)

A special case of the two-dimensional stochastic process
above has been used to model superexponential financial
bubbles, where the stochastic variable n2(t ) = h(t ) was
interpreted as herding fluctuations driven by the Ornstein–
Uhlenbeck process [20]. Therefores Eq. (54) and Eq. (55)
systems can be interpreted as noisy voter models with mod-
ulated herding behavior intensity h(t ) = n2(t ) by SDE (55).
In Ref. [10], a more general case of coupled SDEs have been
used to model long-range memory process such as Gaussian
1/ f noise.
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FIG. 4. The first passage times T distribution (FPTD) of the scaled voter model, SDE (19), for various values of the parameters ε and
γs. Red points represent the results of numerical simulations. Black (solid) lines are calculated using an analytical Eq. (53), and grey solid
lines show the power-law tail of FPTD f (t ) ∼ 1/tβ with exponent β = γs/2 + 1. The common parameter values were set as follows: ax =
cos2(1/

√
2) (ay = 1), x0 = 1/2 (y0 = π/

√
8). The transition rate is different for the two cases shown: ε = 0.4 for (a), (c), and (e); ε = 0.8

for (b), (d), and (f). SBM anomalous diffusion exponent is different for the three cases shown: γs = 3/4 (β = 11/8) for (a) and (b), γs = 1
(β = 3/2) for (c) and (d), γs = 3/2 (β = 7/4) for (e) and (f).

The assumption that herding behavior is time dependent
is quite common in the literature [18–21]. Yet, often it is
assumed to be a stochastic process, while here we assume
that stochastic fluctuations of variable n2 (herding behav-
ior intensity) can be neglected [condition g(n1, n2) = 0 or
condition dW2,t = 0 must be satisfied in SDE (55)]. Also,
we assume that stochastic variable n2 is independent from
n1. These assumptions are needed to introduce long-range
memory properties into our model. Our assumption might be
correct when the trend in herding time dependence is much
more significant than the noise.

From the aforementioned assumptions follows f (n1, n2) =
f (n2), and the SDE (55) becomes a deterministic ordinary
differential equation:

dn2 = f (n2)dt . (56)

Let us consider the influence of f (n2) on the equation sys-
tem. If we set

f (n2) = (γs − 1)γ
1

γs−1
s n

1− 1
γs−1

2 , (57)
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then herding behavior intensity is growing according to

n2(t ) = (γ
1

γs−1
s t + n

1
γs−1

20 )
γs−1

and SDE (55) can be rearranged
into

dn1 = [ε1(1 − n1) − ε2n1]
(
γ

1
γs−1

s t + n
1

γs−1

20

)γs−1
dt

+
√

2
(
γ

1
γs−1

s t + n
1

γs−1

20

)γs−1
n1(1 − n1)dW1,t . (58)

In the above, n20 is the initial herding behavior intensity

value at the time t = 0. If t � n
1

γs−1

20 /γ
1

γs−1
s or we assume that

initial herding n20 = 0 (at time moment t = 0, we have only
individualistic behavior), then herding behavior intensity is
growing according to n2(t ) = γstγs−1 and SDE (58) becomes
identical to SDE (19) describing the scaled voter model.

If f (n2) = a(1 − n2) and we set that initial herding n20 =
0 (at first t = 0 we have only individualistic behavior n2 =
0), then herding behavior intensity is growing according n2 =
1 − e−at and

dn1 = [ε1(1 − n1) − ε2n1](1 − e−at )dt

+
√

2(1 − e−at )n1(1 − n1)dW1,t . (59)

For small times t 
 a−1, we obtain that stochastic variable n1

satisfies equation

dn1 = [ε1(1 − n1) − ε2n1]atdt +
√

2atn1(1 − n1)dW1,t .

(60)
If we change the timescale t → 2t√

a
(or by set a = 2), we

see that SDE is a special case of the scaled voter model
with γs = 2. SDE (60) describes a special case of the scaled
voter model that could be used to approximate the short-
time dynamics of the Kaizoji model [20] when the trend in
herding time dependence is much more significant than the
noise.

In this section, we made some suggestions on how the
scaled noisy voter model might be applied to analyze other
multistate ABMs. Here, we simply assumed that only one
variable is affected by the noise and the second variable
behaves in a deterministic manner. Therefore, the second
variable can be interpreted as a mechanism generating time-
dependent herding behavior intensity. In the general, case, to
show that two variable voter models can be approximated by
using the scaled voter model, one should use adiabatic or other
elimination procedures of one variable [72–74]. To perform
such a procedure, one should know the exact form of the
g(n1, n2) coefficient at the diffusion term. In some cases, drift
and diffusion coefficients are known [20]; in other cases they
can be determined from empirical data [75]. We are planning
to move in this direction for future research.

VI. CONCLUSIONS

We have shown that a one-dimensional noisy voter
model with a time-dependent herding behavior intensity for

short times can be approximated by the CIR process with
time-dependent coefficients. Additionally, general analytical
expressions for the first and second moments, MSD, and
variance have been obtained. In the particular case when the
herding behavior intensity is a power-law function (scaled
voter model) of time, exact moments and FPTD have been cal-
culated. The time-dependent herding behavior intensity was
chosen in such a form that the proposed scaled voter model
would be a stationary process with the same variance scaling
and power-law tail in FPTD as fBm. Such a tail in FPTD is
unique compared to other nonlinear transformations of the
voter models [11,16]. However, the proposed model cannot
reproduce power-law PSD as nonlinear transformations of
voter models [11,16] (or SDEs [5]).

The proposed model has bistable steady-state distribution
as bounded fBm [52,76,77]. We expect that in the future the
combination of the scaled model and one of the proposed
nonlinear transformations discussed in Ref. [16] will lead to
an ABM that mimics all statistical properties of fBm.

One of the long-range memory indicators is power-law
scaling of MSD. In addition, power-law scaling of MSD can
be an indication of anomalous diffusion. From Eqs. (41),
it follows that for times smaller than tc the SDE (21) with
power-law h(t ) generated signal MSD, 〈x2(t )〉 − 〈x(t )〉2 ∼
t2γs , scales with doubled exponent compared to SBM. There-
fore, we can observe anomalous diffusion for 0 < γs < 1, and
for γs > 1 we can observe superballistic motion. In addition,
we also have time evolution of the variance. In the case of
x0 > b/3 (here b = ε1

ε1+ε2
and εi are transition rates), variance

exhibits the same anomalous scaling as SBM up to critical
time tc (see Fig. 1). After critical time tc, moments tend to
their steady-state values. In contrast, other transformations
of the noisy voter model lead to inverse power-law decay
of variance from the initial value to the steady-state value.
[16]. In the case of x0 < b/3 and 0.5 < γs < 1 (see Fig. 2),
we can observe double power-law scaling of variance: the
subdiffusion transitioning into superdiffusion [see Eq (44)].
Similar double power-law scaling has only been obtained in
more complicated two-dimensional models [62,63,66,67].

In Sec. IV, we have shown that the noisy voter model with
the time-dependent herding behavior intensity is a nonlinear
transformation of SBM in an external field. By using this sim-
ilarity, analytical approximation for FPTD was obtained. This
approximation suggests that the scaled voter model FPTD
has the same power-law tail as SBM FPTD. The numerical
simulations confirm the existence of such a tail for a va-
riety of parameter values (see Figs. 3 and 4). The derived
analytical approximation, Eq. (53), predicts the overall shape
of FPTD quite well up to large times. For large times, we
see a cutoff of the power-law tail. The scaled noisy voter
model FPTD has the same power-law tail as the SBM FPTD,
but these processes can be differentiated by different power-
law scaling of their MSD. The MSD for SBM is 〈x2(t )〉 −
〈x(t )〉2 ∼ tγs and for the proposed noisy voter model MSD
is 〈x2(t )〉 − 〈x(t )〉2 ∼ t2γs . Therefore the knowledge of both
FPTD and variance lets us differentiate the considered scaled
voter model from various other long-range memory processes
such as SBM, fBm (fBm has the same FPTD and MSD as
SBM, but different PSD), Lévy flights, or other nonlinear
transformations of the noisy voter model [16].
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APPENDIX A: NUMERICAL SIMULATION OF THE
SCALED VOTER MODEL

In this Appendix, we briefly discuss the numerical simula-
tion method used in this paper.

Typically, to numerically simulate the noisy voter model,
it is sufficient to use rejection-based simulation methods or
a Gillespie method. These methods are applicable because
the transition rates in the noisy voter model are not ex-
plicitly time dependent. Here, however, we have considered
the scaled voter model, which has time-dependent transition
rates:

π (X → X + 1, t ) = γ tγ−1(N − X )(ε1 + X ) = γ tγ−1πb, (A1)

π (X → X − 1, t ) = γ tγ−1X (ε2 + [N − X ]) = γ tγ−1πd . (A2)

In the above, πb and πd gather the terms which are not time
dependent. Yet some of those terms depend on X , which is
not constant and changes as the simulation progresses, though
changes in X occur during the transitions themselves.

We simulate the model with time-dependent transition
rates using the modified next-reaction method [70,71], which
allows the transition rates to be time dependent. In general, the
modified next-reaction method requires solving multiple inte-
gral equations every time the system state is updated [70,71].
This complication is introduced by the time dependence of
the transition rates, though, in our particular case the required
integrals of the transition rates over time can be calculated
analytically:∫ t+τ

t
π (X → X ± 1, s)ds

= γπb,d

∫ t+τ

t
sγ−1ds = πb,d [(t + τ )γ − tγ ]. (A3)

Obtaining this result allows us to avoid the numerical so-
lution of integral equations, which speeds up the numerical
simulation. See Algorithm 1 for a detailed description of the
employed numerical simulation algorithm. The algorithm was
implemented in C and the code was made available on GitHub
[78].

Note that our implementation also includes dynamic scal-
ing of the simulation if the system state X gets close to either 0
or N . Dynamic scaling of the simulation allows us to diminish
the observed discretization effects while keeping the duration
of the numerical simulation reasonable [16]. Otherwise, we
would have to increase N for simulation as a whole, which
would be quite costly as the time complexity of the model is
O(N2). Dynamic scaling allows us to increase N whenever
it is necessary, and otherwise run the model with lower N .
Unlike in Ref. [16], here we have implemented both upscal-
ing and downscaling of the simulation (overall number of
particles N).

APPENDIX B: FIRST PASSAGE TIME DISTRIBUTION FOR
SCALED BROWNIAN MOTION WITH TIME-DEPENDENT

DRIFT

Here we follow the works of Molini et al. [54] and Bhatia
[55]. Let us start with the Fokker-Planck equation with time-
dependent coefficients:

∂ p(x, t |x0, 0)

∂t
= μ(t )

∂ p(x, t |x0, 0)

∂x
+ 1

2
σ 2(t )

∂2 p(x, t |x0, 0)

∂x2
.

(B1)
Here x = x0 is the starting point of the process and starting

time is 0. The PDF satisfies the initial condition

p(x, 0|x0, 0) = δ(x − x0). (B2)

We solve this problem with the boundary conditions. At the
natural boundary, the PDF must satisfy

p(∞, t |x0, 0) = 0. (B3)

At absorbing boundary x = a (a > 0), the PDF must sat-
isfy the Dirichlet boundary condition:

p(a, t |x0, 0) = 0. (B4)
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The survival probability F (t ) is defined as the probability
that the process trajectories are not absorbed before time t and
the first passage time density function f (t ) is given by the
negative time derivative of the survival probability:

f (t ) = − d

dt
F (t ). (B5)

The free-space fundamental solution (Green’s function) of
the Fokker-Planck equation (B1) is well-known [54] :

pF (x, t |x0, 0) = 1

2
√

πS(t )
exp

(
− (x − x0 − M(t ))2

4S(t )

)
, (B6)

M(t ) =
∫ t

0
μ(t ′)dt ′, (B7)

S(t ) = 1

2

∫ t

0
σ 2(t ′)dt ′. (B8)

To solve this problem, we will use the method of images
[79,80]—the barrier at a is replaced by a mirror source located
at a generic point x = m (mirror point), such that the solutions
of Eq. (B1) emanating from the original and mirror sources
exactly cancel each other at the absorbing boundary Eq. (B4)
at each instant of time [80]. This implies the initial conditions
in Eq. (B2) must now be changed to [54]

p(x, 0|x0, 0) = δ(x − x0) − e−κδ(x − m), (B9)

where κ determines the strength of the mirror image source.
Due to the linearity of the Fokker-Planck equation (B1), a
solution for this partial differential equation is provided by

p(x, t |x0, 0) = pF (x, t |x0, 0) − e−κ pF (x, t |m, 0). (B10)

Here we placed an image source e−κ pF (x, t |m, 0) at x =
m. Here e−κ is the strength of a mirror. From Eq. (B4), it
follows that equality

p(a, t |x0, 0) = pF (a, t |x0, 0) − e−κ pF (a, t |m, 0) = 0
(B11)

must be true for all times or

exp

(
− (a − x0 − M(t ))2

4S(t )

)
= e−κ exp

(
− (a − m − M(t ))2

4S(t )

)
,

(B12)

(a − x0 − M(t ))2

4S(t )
= κ + (a − m − M(t ))2

4S(t )
, (B13)

(a − x0 − M(t ))2 = 4S(t )κ + (a − m − M(t ))2.

(B14)

In general, Eq. (B14) is nonsolvable because we have one
equation and two unknown variables m and κ . So, we need to
make additional assumptions. We require that time-dependent
mean M(t ) and variance S(t ) at initial time moment t0 = 0 are
also equal to zero (in the case of SMB, this is true anyway).
Therefore, at time moment t = 0, Eq. (B14) becomes

(a − x0)2 = (a − m)2. (B15)

The aforementioned equation has two solutions: m = x0

and m = 2a − x0 . If we set m = x0 from Eq. (B14), it follows
that the mirror is at the same point as the free solution. The

mirror image should mirror the free solution, not copy it. If
we set that m = 2a − x0, then at the initial time 0, the free
solution and its mirror image are placed at opposite sites of
absorption point a and with the same distance from it as
a method of images requires. By putting the m value into
Eq. (B14):

(a − x0 − M(t ))2 = 4S(t )κ + (x0 − a − M(t ))2, (B16)

κ

x0 − a
= M(t )

S(t )
. (B17)

For Eq. (B10) to be a solution of the Fokker-Planck equa-
tion (B1), parameter κ must be a constant, therefore M(t ) and
S(t ) should be chosen such as

M(t )

S(t )
= q = const, (B18)

then the Fokker-Planck equation (B1) solution satisfying an
absorbing boundary at x = a is

p(x, t |x0, 0) = 1

2
√

πS(t )
e− (x−x0−M(t ))2

4S(t )

− 1

2
√

πS(t )
e−(x0−a)qe− (x+x0−2a−M(t ))2

4S(t ) . (B19)

The survival probability function F (x, t |x0, 0), where x =
x0 represents the starting point of the diffusive process con-
taining the initial concentration of the distribution and a is a
positive lower barrier, such that a < x0, is

F (x, t |x0, 0) =
∫ ∞

a
p(x, t |x0, 0)dx, a < x0. (B20)

Here we show only the derivation of the FTPD if diffusion
is limited to the positive domain of x values a < x0 from
Eqs. (B20) and (B19) follows:

F (x, t |x0, 0) = 1

2

(
1 + Erf

(
x0 − a + M(t )

2
√

S(t )

)

− e−(x0−a)q

[
1 + Erf

(
− x0 − a − M(t )

2
√

S(t )

)])
.

(B21)

FPTD f (t ) can be obtained by calculating the time deriva-
tive of survival probability:

f (t ) = − ∂

∂t
F (x, t |x0, 0).

To simplify the derivation, we invoked the previously made
assumption that q = M(t )/S(t ) = const:

fa<x0 (t ) = (x0 − a)

2
√

π

e− (x0−a+M(t ))2

4S(t )

S3/2(t )

d

dt
S(t ). (B22)

TO obtain the survival probability function F (x, t |x0, 0),
when diffusion can occur at negative x domain(a > x0) we
need to calculate integral:

F (x, t |x0, 0) =
∫ a

−∞
p(x, t |x0, 0)dx a > x0. (B23)
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It can be shown that FPTD in such a case is

fa>x0 (t ) = (a − x0)

2
√

π

e− (x0−a+M(t ))2

4S(t )

S3/2(t )

d

dt
S(t ). (B24)

By comparing fa<x0 (t ) and fa>x0 (t ), we see that the ob-
tained FPTDs differ only in their sign. Therefore, without loss
of generality, we can write

f (t ) = |x0 − a|
2
√

π

e− (x0−a+M(t ))2

4S(t )

S3/2(t )

d

dt
S(t ). (B25)

The case when x0 = a is trivial if we initially set the pro-
cess x at the absorbing boundary—it is absorbed instantly and
therefore FPTD is zero.

Now we will show that the derived general formula can
reproduce the results obtained in other works [54]. Therefore,
we set μ(t ) = qAtα and σ (t ) = √

2Atα/2 as in Ref. [54] and
put them into Eqs. (B7) and (B8) and into (B22) to obtain

f (t ) = |x0 − a|(1 + α)3/2

2
√

πA

1

t
3+α

2

e− (qAt1+α+(x0−a)(1+α))2

4A(1+α)t1+α . (B26)

If we set a = 0, FTPD coincides with the well-known
result (see (Eq. (34) in Ref. [54]). Parameter q defines the
influence of drift term μ(t ); if we set q = 0 [μ(t ) = 0], we
obtain FPTD for the driftless case:

f (t ) = |x0 − a|(1 + α)3/2

2
√

πA

1

t
3+α

2

e− (x0−a)2 (1+α)

4At1+α . (B27)

Here the exponent we have is (x0 − a)2 in Eq. (32); in
Ref. [54] there is a typo x0 that should be x2

0.

Driftless case

If we set μ = 0 [ and therefore M(t ) = 0], then the process
is described by the Fokker-Plank equation

∂ p(x, t |x0, 0)

∂t
= 1

2
σ 2(t )

∂2 p(x, t |x0, 0)

∂x2
, (B28)

and the method of images leads to a solution satisfying the
absorbing boundary at x = a (see text above):

p(x, t |x0, 0) = 1

2
√

πS(t )

(
e− (x−x0 )2

4S(t ) − e− (x+x0−2a)2

4S(t )

)
. (B29)

Because there is no drift mirror, the strength is 1 (e−κ =
1, κ = 0). By setting M(t ) = 0 in Eq. (B25), we obtain the
FTPD for the process described by Eq. (B28):

f (t ) = − ∂

∂t
F (x, t |x0, 0) = |x0 − a|

2
√

π

e− (x0−a)2

4S(t )

S3/2(t )

d

dt
S(t ) (B30)

S(t ) = 1

2

∫ t

0
σ (t ′)dt ′.
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