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Langevin picture of anomalous diffusion processes in expanding medium
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The expanding medium is very common in many different fields, such as biology and cosmology. It brings
a nonnegligible influence on particle’s diffusion, which is quite different from the effect of an external force
field. The dynamic mechanism of a particle’s motion in an expanding medium has only been investigated in the
framework of a continuous-time random walk. To focus on more diffusion processes and physical observables,
we build the Langevin picture of anomalous diffusion in an expanding medium, and conduct detailed analyses
in the framework of the Langevin equation. With the help of a subordinator, both subdiffusion process and
superdiffusion process in the expanding medium are discussed. We find that the expanding medium with different
changing rate (exponential form and power-law form) leads to quite different diffusion phenomena. The particle’s
intrinsic diffusion behavior also plays an important role. Our detailed theoretical analyses and simulations present
a panoramic view of investigating anomalous diffusion in an expanding medium under the framework of the

Langevin equation.
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I. INTRODUCTION

Beyond the classical Brownian motion, anomalous diffu-
sion has become a very common phenomenon in the natural
world recently. It is characterized by the nonlinear evolution
of ensemble-averaged mean-squared displacement (EAMSD)
with respect to time, i.e.,

(x*(t)) =~ 2Dgt?, (1)

with 8 # 1 [1-5]. One of the most typical models of de-
scribing a particle’s motion is continuous-time random walk
(CTRW) [6-8], where the particle waits for a random time
between successive jumps and the length of individual jumps
is equally random. Depending on the choice of the distribu-
tions of waiting times and jump lengths, different regimes of
anomalous diffusion can be described. In CTRW, one typi-
cal example of subdiffusion with 8 < 1 is characterized by
power-law-distributed waiting times [9,10]. While superdiffu-
sion examples with 8 > 1 include Lévy flight with a divergent
second moment of jump length [11,12] and Lévy walk with
heavy-tailed duration time of each running event [8,13-15].
In recent years, how a particle diffuses in an expanding or
contracting medium attracted attention. Let a(¢) > 0 be the
scale factor which describes the expanding rate of a medium.
For any fixed time ¢, a(¢) > 1 implies an expanding medium,
while a(t) < 1 means a contracting medium. For convenience,
regardless if a(z) is greater or less than 1, we call it the
expanding medium for short in the following. Some phys-
ical processes, especially the particle’s stochastic transport,
are significantly influenced by the expanding or contracting
effects of the medium. The expanding medium is common
in the field of biology and cosmology. In biology, the ex-
amples include biological cells in interphase [16], growing
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biological tissues [17,18], and lipid vesicles [19,20]. While
In cosmology, the diffusion of cosmic rays in the expanding
universe [21] and the diffusion of fluids [22] are both worthy
of investigation.

The dynamic mechanism of a particle’s motion in the ex-
panding medium is quite different from that effected by an
external force field, while the later case has been discussed
a lot for different kinds of force fields [23—27]. For the first
case, in the framework of CTRW, the diffusing particles stick
to the expanding medium and experience a drift even when
they stay in the phase of waiting time. While at the moment of
jumping event, the actual physical displacement is affected by
the expanding rate a(¢) of a medium. Brownian motion [28]
and some common anomalous diffusion processes [29-33]
on the evolving domain were investigated to a certain extent.
The corresponding Fokker-Planck equation can be derived to
characterize the motion of diffusing particles on an expand-
ing medium, where the expanding rate a(z) appears as the
coefficient of the drift term or diffusion term in macroscopic
equations. The interplay between diffusive transport and the
drift associated with the expanding medium gives rise to many
striking effects, such as an enhanced memory of the initial
condition [28,29], the slowing-down, and even the premature
halt of encounter-controlled reactions [34,35].

Despite these achievements on diffusion processes in the
expanding medium obtained in the framework of CTRW, there
are still some of the important quantities missing, such as
the particle’s position correlation function and time-averaged
mean-squared displacement (TAMSD). Due to the rapid de-
velopment of the technique of single-particle tracking in
studying transport processes in cellular membranes [36] and
probing the microrheology of the cytoplasm [37,38], TAMSD
has become a useful observable by evaluating the particle’s
trajectory through video microscopy of fluorescently labeled
molecules. Compared with the probability density function
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(PDF) of a particle’s position and the EAMSD, the correlation
function and TAMSD depend on the two-point joint PDF and
contain more information of the particle’s trajectory. Another
missing in the CTRW framework is the discussion about a
Lévy walk in an expanding medium. One possible difficulty
is the coupling between the waiting time and jump length of
Lévy walk.

In fact, as an alternative model of describing anomalous
diffusion, the Langevin equation has the advantage of includ-
ing the effect of an external force field or noises generated
from a fluctuating environment [39]. Fogedby [40] proposed
an overdamped Langevin equation in operational time s
coupled with a physical time process #(s) (named as a sub-
ordinator), so that the Langevin process’s PDF is equal to the
solution of the fractional Fokker-Planck equation of subdiffu-
sive CTRW or Lévy flight. The equivalence between the sub-
ordinated Langevin equations and fractional Fokker-Planck
equations in the presence of an external force was also studied
in Refs. [23,24]. On the other hand, an underdamped Langevin
equation coupled with a subordinator describes the anomalous
diffusion exhibited by Lévy-walk-like models [41,42].

Based on these concerns, this paper aims at proposing
a Langevin picture of describing anomalous diffusion pro-
cesses in an expanding medium. Inspired by the fact that
the Langevin equation can be regarded as the continuous
time limit of a random walk model, based on the dynamic
mechanism of a particle’s motion in an expanding medium in
the CTRW framework, we build the Langevin equation of a
particle’s physical coordinate in an expanding medium, and
then conduct detailed analyses.

The remainder of this paper is organized as follows. In
Sec. II, we show the detailed mathematic descriptions of the
dynamic mechanism of a particle’s motion in an expanding
medium under the framework of both the CTRW model and
Langevin equation, together with some elementary knowledge
of a subordinator. Then we investigate the specific subdiffu-
sion and superdiffusion processes in expanding the medium
under the framework of the Langevin equation in Secs. III and
IV, respectively. A summary of the main results is provided
in Sec. V. In the Appendixes some mathematical details are
collected.

II. EXPANDING MEDIUM MODELS AND SUBORDINATOR

The particle’s motion on an expanding medium has been
formulated in the CTRW model [29-33]. The CTRW model
consists of a series of waiting times and jump lengths, where
the particle stays in some certain position for a random time
At at one waiting state and performs the instantaneous jump
with random length Ay. For a particle on an expanding
medium, its physical position changes even at the waiting
states as the medium expands. For a clear description of
the change of the particle’s physical coordinate y(¢), a new
comoving coordinate x(¢), which is associated with a refer-
ence frame where the expanding medium appears to be static,
was introduced in Ref. [29]. The two coordinates are related
through an equality for any physical time ¢:

y(t) = a(t)x(t), 2

FIG. 1. Schematic representation of the relationship between
physical coordinate y(z) and comoving coordinate x(¢) at time . The
upper rectangle denotes the expanding medium at time ¢, while the
lower one the original medium at the initial time.

where a(t) is the so-called scale factor satisfying a(0) = 1.
The advantage of introducing the comoving coordinate is that
the descriptions of both waiting states and jumping states
are effective with respect to the comoving coordinate. More
precisely, at waiting states, the particle keeps still with respect
to the expanding medium itself, in other words, its comoving
coordinate x(¢) does not change. While at jumping states,
letting the jump length PDF w,(Ay) describe the intrinsic
random motion of the particle, the corresponding jump length
with respect to the comoving coordinate should be

Ax = Ay/a(t), (3)

where 7 is the instant when the jump happens. See the graph
in Fig. 1 where the nth step in physical and comoving coordi-
nates are Ay and Ax, respectively. Therefore, the jump length
PDF w, (Ax) with respect to the comoving coordinate is

wy(Ax) = a(t)w,[a(t)Ax], “4)

becoming time dependent. Knowing the waiting time and
jump length PDFs, the standard procedures of the CTRW
model can be applied to obtain the information of the comov-
ing coordinate x(¢). Thus, the physical coordinate y(t) can be
obtained by use of the relation in Eq. (2).

Our aim is to extend the procedures in CTRW frame-
work to the Langevin equation, which describes the particle’s
motion by a stochastic differential equation of physical coor-
dinate y(¢). In the Langevin equation, the particle’s trajectory
can be approximated by the cumulative sum of increments
Ay in all different time intervals [¢,t 4+ At]. In this approx-
imation, the particle’s motion in time interval [z, # + Af] can
be understood as the combination of a waiting time At and
a jump length Ay. Therefore, similar to the method used
in the CTRW framework, the comoving coordinate x(¢) can
be introduced in the Langevin equation, and the relations in
Egs. (2) and (3) are also valid. Then dividing A¢ on both sides
of Eq. (3) and letting At — 0, we find that the Langevin equa-
tions of comoving coordinate x(¢) and intrinsic displacement
yy(t) only differs by the scale factor a(z), i.e.,

d N — 1 d , 5
EX( )= %E)’l( ). (5)

Nonte that the intrinsic disp!acement.).)I(tn) = . Ay.,- =
Zi:l a(t;) Ax; denotes the particle’s position at timet = ¢, ina
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static medium, which is different from the physical coordinate
y(t) in Eq. (2) for the case with an expanding medium.

Although the difference is only the scale factor a(t) in
Eq. (5), the analyses of the diffusion behavior of comoving
coordinate x(¢) are not trivial, especially when the Langevin
equation is coupled with a subordinator ¢ (s). The subordinator
is a nondecreasing Lévy process [43] and can be regarded as
a stochastic model of time evolution. In the coupled Langevin
equation, the particle’s physical coordinate is denoted as a
compound process y(t) := y[s(¢)], where s(¢) in the corre-
sponding inverse subordinator, defined by

s(t) = i_ng{s 11(s) >t} (6)

There are two time variables in the coupled Langevin equa-
tion, physical time ¢, and operational time s. It should be noted
that Eq. (5) with scale factor a(¢) is only valid with respect to
physical time 7.

The subordinator has been commonly used in the Langevin
system to describe different kinds of subdiffusion [40,44—
46] and superdiffusion [41,42,47-50] processes when coupled

J

a a9 1

with an overdamped and underdamped Langevin equation, re-
spectively. To characterize the power-law-distributed waiting
time in the CTRW model, the subordinator #(s) in this paper
is taken to be o dependent (0 < o < 2) with its characteristic
function being

gk, ) 1= (e7H0) = &7, (7
where the Laplace exponent [42,49,51] is

A9, O<a<l,

q)()\-) - { Ty )\' _ ‘[(‘)X|F(1 _a)|)\‘o¢’

a—1

®)

l<a<?2.

The two-point PDF of the subordinator ¢ (s) can be expressed
as

8(t1, 51512, 82) = (8[t1 — t(s1)18[12 — £(s2)]). &)

By virtue of the stationary and independent increments of
subordinator 7(s), the two-point PDF h(s,, t;51,1) of the
inverse subordinator s(¢) has the expression in Laplace space
(t1 > A, b — Xp) [51]

h(sy, A1;82, Ay) = — — —— g(Ay, 515 A2,
(s1, 21552, A2) 95, 952 i g1, 515 A2, 82)
— 8(52 _ sl)cb()\-l) + (D()\-Z) - CD()\-I + )‘-2) e—SICD()»H‘)»z)
Ay
@5y — 5p) DODPCL Fh2) = QOG04 (525006
AMAs
D(A)[DP(A M) — D(A
+ O(s1 — 52) (A0)lB¢ 1;; 2) ( 1)]eﬂzq’(k‘*“)e’(“’SZ)‘D(’\‘). (10)
1A2

The normalization of h(s», A2;s1, A1) can be verified through
the equality [;° [i° h(s2, Aa;s1, A)dsidsy = (AA2)~". The
two-point PDF h(s,, t,; 51, ;) will be used to evaluate the cor-
relation function in physical time . The dynamic behaviors of
particles moving in an expanding medium will be investigated
for both subdiffusion and superdiffusion cases. The subdiffu-
sion case only uses the range 0 < « < 1 in the subordinator,
while the superdiffusion case considers both 0 < @ < 1 and
1 < o < 2 due to its richer diffusion behaviors [42,49,51].

II1. SUBDIFFUSION IN EXPANDING MEDIUM

Let us first consider a subdiffusion process described by an
overdamped Langevin equation coupled with a subordinator
[40,51-54]

d d
d—yz(S) = V2D§(s), —t(s) =n(s), (1T)
s ds

where D is the constant diffusivity, £(s) is the Gaussian
white noise with zero mean value and correlation function
(E(s1)E(s52)) = 8(s1 — s52), t(s) is the a-stable subordinator
(0 < o < 1) with the characteristic function in Eq. (7). The
notation y;(s) denotes the particle’s intrinsic displacement
over operational time s without an expanding medium. The
Lévy noise n(s), regarded as the formal derivative of the o-
stable subordinator ¢ (s), is independent of the Gaussian white
noise £(s).

(

Equation (11) describes the intrinsic random motion of
particles without considering an expanding medium. The key
of considering the effect of the expanding medium is to build
the Langevin equation of comoving coordinate x(¢), which
satisfies the relation in Eq. (5). For this purpose, the two sube-
quations in Eq. (11) should be merged into one equation of
physical coordinate y, (), which is

d _
(0 = V2DE(), (12)
where the new noise £(¢) is defined as [55,56]
= . dBls@)] ds(t)
§():= 7 = &[s(1)] P (13)

and B(-) is the standard Brownian motion. Equation (12) is
obtained by replacing s by the inverse subordinator s(¢) in
the first equation of Eq. (11) and using the definition of the
compound process y;(t) := y;[s(¢)]. Therefore, for the subd-
iffusion process in the expanding medium with scale factor
a(t), the Langevin equation with respect to the comoving
coordinate x(t) is

d V2D _

th(t) =20 £(1). (14)
The corresponding Fokker-Planck equation governing the
PDF W (x, t) of finding the particle’s comoving coordinate x
attime ¢, can be derived from Langevin equation (14) by using
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the common method in Refs. [23,24,53,56-58]

OW(x,1) 2D
ot a2(t) 9x2

The most direct way of obtaining Eq. (15) is taking the
Laplace symbol p = 0 in the Feynman-Kac equation (71) of
Ref. [58]. The consistence between Eqgs. (15) and (61) of
Ref. [29] derived under the CTRW framework implies that the
Langevin picture of the subdiffusion process in an expanding
medium is effective.

The moments of the comoving coordinate x(¢) and the
shape of PDF W (x, t) can be obtained by use of Eq. (15) as the
authors of Ref. [29] showed. Moreover, based on the Langevin
equation (14), more quantities, such as the position correla-
tion function and TAMSD, can be investigated. In detail, the
comoving coordinate x(¢) can be solved from the Langevin
equation (14), i.e.,

—[D} W (x,1)]. (15)

x(t) = ~2D $@) 4y (16)
o a(’)

Then, considering the correlation function of the noise £(t)
(see Appendix A for the derivation or refer to Refs. [55,56])

(EE ) =17718(h —1)/T (@), a7)

the EAMSD of the subdiffusion process in a comoving coor-
dinate x(t) is

2 5(%)5(5)
) _20/ a(t))a(t}) dnds,
/a 1
F(a) 0 az(t)dt. (18)

Due to the § correlation of noise £(¢) in Eq. (17), the correla-
tion function of the comoving correlation x(¢) satisfies

(x(t1)x(02)) = (& (1) 19)

fort; < ;. Based on the quantities over the comoving coordi-
nate x(¢), those over physical coordinate y(¢) can be obtained
by use of Eq. (2), which are the EAMSD

Daz(z‘) t t/a—l

T Jo @2y @0

GA()) = a*(t)(x*@)) =

and the correlation function for #; < 1,
(Y(t)y(2)) = alt)a(t) (x* (1))

a(IZ) >
= 21
2 —(y" (1)), 2D
respectively. On the other hand, the definition of TAMSD over
physical coordinate y(¢) is [10,59]
T—A

§2(A) = [t + A) — y(@)PPdr. (22)

T—-A

By use of the correlation function of y(¢) in Eq. (21), the
ensemble average of the integrand of Eq. (22) is

(vt + &) — yOF)

= O+ A)) + ) — 200t + A)y(t))

= 2+ A)) + (1 - 2M><y2(t>>. (23)
a(t)

Therefore, the ensemble-averaged TAMSD is equal to
T-a
t+ A
— [ s

+(1 2“(’(+f)><y2<r>>dr. (24)

The explicit dependence of the quantities on the scale
factor a(t) implies that the particle’s diffusion behavior is
indeed affected by the expanding medium. The results on the
physical coordinate y(z) in Eqgs. (20) to (24) are valid for
any form of a(¢). By taking a(t) = 1, these results recover
to those of the subdiffusion process in a static medium. For
example, in Eq. (20), a(t) = 1 yields the subdiffusion behav-
ior with (y2(¢)) = 2Dt*/T'(a + 1). In the expanding medium,
however, the scale factor a(t) appears both inside and outside
the integral of Eq. (20). The one in the denominator of the
integral results from Eq. (3), which transforms the particle’s
intrinsic motion into a comoving coordinate. While another
one appears outside the integral, which is yielded by Eq. (2)
and turns the comoving coordinate to the physical coordi-
nate. Since a(z) = 1 when ¢t = 0, the short time limit of the
quantities will be the same as the case without an expanding
medium. We mainly consider the long time limit for cases
with different scale factor a(t) in the following.

(82(A)) =

A. Scale factor a(t) = e”
When the medium changes exponentially with scale factor
a(t) = e¥', we have
2Dt
C(ax+1)

where the confluent hypergeometric function has the defini-
tion and asymptotic expression for large z [60]

(A(t)) = 1Fi(a, o+ 1;=2y1), (25)

1
1Fi(a, b;z) = ezuua—l(l _ M)b_a_ldu

F(@)l'(b —a) /0
= T(b)(€z""/T(a) + (=2)"*/T(b — @)). (26)

Therefore, the asymptotic EAMSD on the comoving coordi-
nate is

2=y —ep, y >0
2 9
1)) ~ 27
()C ( )> {Wr(a)ta 1 Z\yll y < 0. ( )

Considering the relation y(¢) = a(t)x(t) between two kinds of
coordinates, the EAMSD on the physical coordinate can be
obtained

2=y 2Pty > 0,
(1) ~ ! D e (28)
HRCHEE y <0,

which is consistent to the results in Ref. [29]. The exponen-
tially expanding medium with y > 0 yields a superdiffusion
behavior of exponential form, while the exponentially con-
tracting medium with y < 0 leads to a power-law decaying
of EAMSD due to o < 1. For the first case with y > 0,
the particle’s intrinsic motion is negligible compared with
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the exponential expanding of the medium. So the EAMSD
of the comoving coordinate (x?(t)) converges to a constant
at long time limit, while the corresponding (y*(t)) increases
at an exponential rate as the medium itself. The second case
with y < 0 presents the same diffusion behavior as the subdif-
fusion process in a harmonic potential [56], where the external
force acts on the subordinated process y(t) and drags the
particle towards zero for all physical times. For the limiting
case y = 0 with the scale factor a(r) = ¢”' = 1, it recovers to
the subdiffusion behavior in a static medium. It looks singular
at y = 0 in Egs. (27) and (28). This is because these results
are obtained based on the asymptotic form (large ¢ or large
z) of the confluent hypergeometric function |Fj(a, b;z) in
Eq. (26). The asymptotic form is obtained and only valid when
y # 0.If y = 0, then z = 0, and the confluent hypergeometric
function recovers to the constant 1.

In the case of y < 0, the effect of the exponentially con-
tracting medium on the subdiffusion process is equivalent to
that of a harmonic potential U(y) = |y|y*/2, which can be
justified by comparing the Langevin equation of physical co-
ordinate y(#) in the two cases. For a general process driven by
random noise ¢ (t), the Langevin equation of y(#) containing a

harmonic potential (or an external force U'(y) = —|y|y) is
d
70 =—lrbho)+ V2D¢ (1), (29)

the solution of which is
t
y(t) = ~/2D / e M= (t)dr, (30)
0

with the initial condition yy = 0. On the other hand, by sub-
stituting a(t) = e’ into Eq. (16), replacing () by the noise
£(t), and considering the relation y(¢#) = a(¢)x(¢), we can
arrive at the same expression as Eq. (30) for the particle mov-
ing in an exponentially contracting medium. The equivalent
Langevin equation implies that the idea of considering the
particle’s motion in an exponentially contracting medium is
an alternative way of investigating the diffusion behavior of
the particle affected by a harmonic potential. The equivalence
is valid for arbitrary random noise ¢ (¢), which means that the
idea can be applied to a large amount of anomalous diffusion
processes.

As for the ensemble-averaged TAMSD of particles, the
large-¢ behavior of the integrand in Eq. (24) plays a dominat-
ing role due to the precondition A <« T [61,62]. Therefore,
we substitute the asymptotic EAMSD in Eq. (28) into
Eq. (24), and obtain

4D —1,2yT
_ T e y >0
2 I+a k) ’
(8%(A)) =~ {( S 31)
e’ o v <0

for large lag time A, where the later result with y < 0 is
consistent to that of the subdiffusion process in a harmonic
potential [56]. This consistence also verifies the equivalence
between the effect of an exponentially contracting medium
and a harmonic potential. The ensemble-averaged TAMSD
tends to be independent of lag time A for both y > 0 and
y < 0, which shows an obvious difference from the EAMSD
is Eq. (28). Therefore, the Langevin system containing an

expanding medium with exponential scale factor a(t) is non-
ergodic. Even when o = 1, the subdiffusion process returns
to the classical Brownian motion, the ensemble-averaged
TAMSD is not equal to the corresponding EAMSD, either.
Note that for y < 0, similar to a harmonic potential, the
ensemble-averaged TAMSD tends to be twice the EAMSD
for Browian motion with o = 1, i.e.,

——— 2D 2
(B2(A) = — = 207(A)). (32)
¥
which can also be found in other anomalous diffusion pro-
cesses [27,63].

The simulations of EAMSD and ensemble-averaged
TAMSD over physical coordinate y(¢) are presented in Fig. 2,
where we choose different & and y. The positive y in the
upper panel of Fig. 2 implies an exponentially expanding
medium, while the negative one in the bottom panel im-
plies an exponentially contracting medium. The EAMSD
is sensitively affected by the medium, presenting exponen-
tial growth and power-law decaying for the expanding and
contracting medium, respectively. By contrast, the ensemble-
averaged TAMSD tends to a constant independent of the
lag time A for both of the two kinds of media as Eq. (31)
shows.

B. Scale factor a(t) = (%)y

When the medium changes in a power-law rate with scale
factor a(t) = (%)V, we have [29]

5 2D
X0 = 5———
ra+a)
where the Gaussian hypergeometric function has the defi-
nition for ¢ > b > 0 and asymptotic expression for large z

[29,60]

t
1% F (2)/, a;1 +a;—t—>, (33)
0

2Fi(a, b;c;z)
— F(C) 1 —a, b—1 b1
_m/;(l—zu) WP~ — ) du
L LOTG-a)
“Tore—a' (34)

Note that the asymptotic expression above is only valid for
a < b. Otherwise, exchanging a and b will yield the correct
result. Therefore, for the EAMSD on the comoving coordi-
nate, it holds that

2Dt T2y —a) o

2 ~ OF(ZV) ’ vy=2
C R (35)

—Ota_z}/ 1% < o

(a=2y)'(@) ’ 2°

Considering the relation y(¢) = a(t)x(t) between two kinds of
coordinates, the EAMSD on the physical coordinate can be
obtained
2018 TRy —a)
CHOVES S

2D o
(@=2y)T' ()"

’

12, >
’ (36)
J/ <

IR IR
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FIG. 2. EAMSD (x*(¢)) and ensemble-averaged TAMSD (52(A)) when the medium changes exponentially with scale factor a(t) = e".
The theoretical results for (x?(¢)) in Eq. (28) and (82(A)) in Eq. (31) are shown by black solid lines. The blue circles and red squares denote
the simulated EAMSD and ensemble-averaged TAMSD, respectively. They fit to the theoretical lines well in four panels with different o and
y. The last several simulation points for ensemble-averaged TAMSD deviate slightly from theoretical results due to the failure of condition
A < T. Other parameters: D = 1, T = 100 in (a), (b) and T = 200 in (c), (d), and the number of trajectories used for ensemble is N = 10>

Note that the later case y < «/2 is valid for both y > 0 and
y <0, where y = 0 yields the EAMSD (y?(¢)) ~ r(fﬁa)t"‘ of
particles moving in a static medium. It can be found that the
EAMSD depends on the power-law exponent y in the scale
factor a(z). If the medium expands fast enough with y > /2,
then the particle’s diffusion behavior is enhanced from #* to
t?7. Otherwise, for y < a/2, even when the medium contracts
with y < 0, the particle’s intrinsic motion plays the domi-
nating role and presents the subdiffusion behavior ¢*. It also
can be found that the diffusion behavior t* for a power-law
contracting medium is faster than t*~! in Eq. (28) for an
exponentially contracting medium.

For the ensemble-averaged TAMSD over the physical co-
ordinate y(¢), we need to substitute the EAMSD in Eq. (36)
into Eq. (24). For convenience, denote (y2(t)) ~ Cﬂt’3 with
B =max(2y,a) and Cy being the diffusion coefficient in

Eq. (36). Then for A <« T, it holds that

(j T—A
(82(A)) ~ —2 / t+ AP +1P =20+ AP 7ar
T—AJ
Cpy® m2y—2 A2 o
L EaTTTA oy 37
T G2 pa-1 5 a
o ’ v < 2°

Similar to the EAMSD, the ensemble-averaged TAMSD also
shows different diffusion behavior for particles moving in an
expanding medium with different rate y. When the medium
expands slowly with 0 < y < «/2 and contracts with y < 0,
the particle’s intrinsic diffusion plays the leading role and
presents the linear increase with respect to the lag time A.
The linear increasing of the ensemble-averaged TAMSD on
A is common in a large amount of diffusion processes,
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108

10% ¢

t A

£ A

FIG. 3. EAMSD (x*(¢)) and ensemble-averaged TAMSD (52(A)) when the medium changes at the power-law rate with scale factor a(t) =
(1 41/15)7. The theoretical results for (x?(¢)) in Eq. (36) and (5§2(A)) in Eq. (37) are shown by black solid lines. The blue circles and red
squares denote the simulated EAMSD and ensemble-averaged TAMSD, respectively. They fit to the theoretical lines well in four panels with
different « and y. The last several simulation points for ensemble-averaged TAMSD deviate slightly from theoretical results due to the failure
of condition A « T. Other parameters D = 1, T = 1000, t, = 0.1, and the number of trajectories used for ensemble is N = 10°.

including (scaled) Brownian motion [64,65], subdiffusive
CTRW [9,66], heterogeneous diffusion processes [67,68], and
random diffusivity processes [62,69,70]. When the medium
expands fast with ¥ > «/2 and plays the dominating role,
however, the particle presents the ballistic behavior A? for
large A, which is a quite interesting phenomena and only
found in the ballistic Lévy walk [71,72] as well as its variants
in external force fields [49,73]. For the limiting case y = «/2,
the EAMSD shows a logarithmic power-law growth (y?(¢)) =
%t“ In ¢, which was obtained from Ref. [29]. Based on the
EAMSD and Eq. (24), the corresponding ensemble-averaged
TAMSD when y = «/2 presents a normal regime (§2(A)) =~

2D a—1
el A

The corresponding simulations are shown in Fig. 3, where
we choose different ¢ and y. The positive y, satisfying

y > «/2 in the upper panel of Fig. 3, implies an expanding
medium, while the negative one satisfying y < /2 in the
bottom panel implies a contracting medium. The difference
between the EAMSD in Eq. (36) and ensemble-averaged
TAMSD in Eq. (37) (also in simulations) implies the noner-
godicity of the particles moving in an expanding medium with
power-law-formed scale factor a(t) = (”%)V.

The explicit T dependence in the ensemble-averaged
TAMSD in Egs. (31) and (37) shows the nonergodic property
of subdiffusive CTRW in the expanding medium. Even for
the special case o = 1, where the diffusion process recovers
to the normal case, the discrepancy between the ensemble-
averaged TAMSD, and the corresponding EAMSD also exists
and implies the ergodic breaking for Brownian motion in the
expanding medium.
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IV. SUPERDIFFUSION IN EXPANDING MEDIA

Compared with the subordinated overdamped Langevin
equation, the subordinated underdamped Langevin equation is
often used to describe superdiffusion or finite-velocity pro-
cesses [74,75]. Assume that the particle’s intrinsic motion
is characterized by the following set of Langevin equa-
tions [41,42]:

d
@) =v@),

d
d—v(s) = —uv(s) + £(s), (38)
S

d —_—
1O =10,

where y;(¢) denotes the particle’s trajectory driven by its in-
trinsic motion, v(s) is the particle’s velocity in operational
time s, w is the friction coefficient, and & (s) is the Gaussian
white noise satisfying (£(s;)&(s2)) = 2D8(sy — s,). Differ-
ent from the subordinated overdamped Langevin equation in
Sec. I, it is the velocity process in physical time ¢ here that is
defined by v(#) := v[s(¢)]. The diffusion behavior and the er-
godicity breaking of Eq. (38) were studied in Ref. [42], which
shows that Lévy-walk-like dynamic exhibits superdiffusion
behavior [41,42,49]

D=a),2 O<a<1
2 Iz ’
(7O} = Y e 1@y (39)
L @ml) 3-a
P T LA l<oa<?2.

Although the underdamped Langevin form in Eq. (38) is
more complex than the subdiffusion case in Sec. III, the rela-
tions in Egs. (3) and (5) between the physical coordinate and
comoving coordinate are still valid. Therefore, the Langevin
equation of the comoving coordinate x(¢) is

_ 0
( )= a0)
d—v(S) = —pv(s) +§(s), (40)
N

d —_—
1) = (),

for particles moving in the expanding medium with scale fac-
tor a(t). Based on the second equation in Eq. (40), the velocity
correlation function in operational time s can be obtained as

(v(s1)v(s$2)) = 9((*““”' — g Mty (41)
n

Then, using the technique of subordination [42,49,51], the
velocity correlation function in physical time ¢ has the asymp-
totic behavior at long time (small A; and A;):

(A )v(A2))

= / / (W(sv(s2))A(s2, A2 81, A1 )dsidsy
o Jo

D OM) + P(h) — P(A1 +22)

o AMAa®(Ay + Ay)

where the expression of A(sy, A2; 51, A1) is shown in Eq. (10).
Performing the inverse Laplace transform on Eq. (42), we

) (42)

obtain, for large #; and 1, (t; < 1),

Dsm(rra)B(tl. 71_05)’ O<a<l,
(v(t)v(n)) =~ o
Dro ((lz — 1)t _’2 a)’ l<a<2,
43)

where B(x;a, b) is the incomplete Beta function. Therefore,
based on the first equation of Eq. (40), the position correlation
function over comoving coordinate x(¢) can be obtained

<x(11)x(t2))—/0 o at)a(t;)

Considering the relation y(¢) = a(t)x(¢) between two coor-

dinates at any time 7, we also have the position correlation
function in the physical coordinate

drjdt). (44

v(t1) (tz)
a(ty)a(ty)

where the velocity correlation function is shown in Eq. (43).

G(y(0) = alals) f f WD 4 gy, (45)

A. Scale factor a(t) = e”

Similar to the discussions on subdiffusion in an expand-
ing medium in the previous section, the two cases of y > 0
and y < 0 will lead to different diffusion behaviors and be
discussed separately here. For the exponentially expanding
medium with y > 0, we have

hn 153
(x(t)x(r2)) = / f e e R (i v())ddty,  (46)
o Jo
the Laplace transform of which is

(x(A)x(r2)) =

1
Wi+ yvlie + )
2

V() (47)

T A

for small Ay and XA,. The expression of the velocity correlation
function in the frequency domain is shown in Eq. (42). Then
we perform the inverse Laplace transform in Eq. (47) and
obtain

(x(t)x()) = A = (v (), (48)

which tends to a constant A at long time limit. Therefore, the
EAMSD in the physical coordinate is increasing exponentially

0P0) = @O0 = AT, 49
where
pee-n 0<a<l,
Ao o (50)
DILC-w =y 4 o

woy=27TQ—a)y*

Note that the coefficient A is obtained by use of the expression
of ®(1) in Eq. (42), and the later expression is approxima-
tively given in Eq. (8) for small A. Thus, Eq. (50) is only
valid for small y. Although the accurate value of A cannot
be obtained for large y, the sure thing is that A is a constant
and the EAMSD increases exponentially as Eq. (49) shows. To
get a good presentation in simulations, we show the EAMSDs
(x2(t)) of the comoving coordinate in Fig. 4 for different o.
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FIG. 4. EAMSDs (x?(t)) of the comoving coordinate when the
medium expands exponentially with scale factor a(t) = e"’. The
(x2(t)) tends to a constant A ~ =2/ (y?(¢)) in Eq. (50) and implies
an exponentially increasing of (y?(t)). The theoretical results for
different o are shown by black solid lines. The markers (cyan cir-
cles, blue squares, red plus signs, and green asterisks) denote the
simulated EAMSDs with different «, respectively. Other parameters:
D=p=1=1,T =5000, y =0.001, and the number of trajecto-
ries used for ensemble is N = 103

All the EAMSDs (x*(¢)) tend to a constant at a long time limit,
which is smaller for larger «.

On the other hand, for a contracting medium with y < 0,
the corresponding position correlation function in a physical
coordinate is

o ph
(ﬂm%h»=/1/ e’ 1= T (y (1 yu(ry))dt{dtj,
0 0
(51

which happens to be a convolution form. By using the tech-
nique of Laplace transform, we obtain the position correlation
function in the frequency domain

y)y(r2) =

T )

1
~ — (v )v(A2)), (52)
4

where we consider the asymptotic behavior for large #; and
t, [i.e., for small A; and A;]. Performing the inverse Laplace
transform yields the EAMSD

1 D
0P0) = 5 00) = — (53)
Y wy

since the velocity process v(¢) in Langevin equation (40) tends
to a stationary state with variance D/u. In contrast to the
a-dependent result in Eq. (49) for y > 0, the EAMSD (y*(¢))
of the physical coordinate tends to an «-independent constant
in Eq. (53). The corresponding simulations for different « are
presented in Fig. 5. All the EAMSDs (y*(¢)) tend to the same
constant at long time limit, which shows a significant differ-
ence from the case y > 0 in Fig. 4. Similar to the case of the

10"
100 7 ,ﬁuﬂﬂmﬂm .....
S
N\Q/ 10 ® o
. a=0.3
10'2 o o Oé=07 |
+ a=1.3
| Oé=1 7
1073 |
10° e

t

FIG. 5. EAMSDs (y*(t)) of the physical coordinate when the
medium contracts exponentially with scale factor a(r) = ¢”'. The
theoretical results for different o are shown by the same black solid
line. The markers (cyan circles, blue squares, red plus signs, and
green asterisks) denote the simulated EAMSDs with different o,
respectively. Other parameters D = u =1y = 1,7 =800, y = —1,
and the number of trajectories used for ensemble is N = 103,

subdiffusion process discussed in Sec. III, the superdiffusive
particles moving in an exponentially contracting medium also
show the same results as the case of particles influenced by a
harmonic potential [27].

B. Scale factor a(t) = (%)y

Now we focus on the case with the power-law-formed scale
factor a(t) = (”%)V. Since the velocity correlation function
shows discrepant asymptotic behaviors for 0 <« < 1 and
l <o <2 in Eq. (43), we analyze the particle’s diffusion
behavior in the expanding medium separately. Due to the
power-law form of a(t), the calculation of the double integral
in Eq. (45) is very complicated. Therefore, we present the
final asymptotic behavior of EAMSD in the physical coordi-
nate here by putting the technical derivations and the explicit
diffusion coefficients to Appendices B and C for 0 <« < 1
and 1 < o < 2, respectively. It holds that the EAMSD for
O<a<lis

tzy, y > 1,
0A0) o< {2 Int,  y =1, (54)
12, y <1,
and for 1 <o < 21is
e, y > 5%
0F(0) o 337 Ine,  y = 32, (55)
3 y < 3_7"‘

The corresponding simulations are presented in Figs. 6 and
7for0 <a < 1land 1 < a < 2, respectively. For both cases,
y = 0 yields the results of the standard Lévy walk, i.e., the
ballistic diffusion #*> and subballitic superdiffusion 3~ for
0O<oa<land 1 <o < 2, respectively. Similar to the result
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FIG. 6. EAMSD (y*(¢)) when a = 0.5 and the medium changes
in a power-law rate with scale factor a(t) = (1 4+ ¢/ty)?. The theoret-
ical results in Eq. (54) are shown by the black solid lines for different
y. The markers (cyan circles, blue squares, red plus signs, green
asterisks, and megenta triangles) denote the simulated EAMSDs
with different y, respectively. Other parameters are D = = 7 = 1,
T = 10%, 1, = 0.01, and the number of trajectories used for ensemble
isN =103

of the subdiffusion case in Eq. (36), the diffusion behavior de-
pends on the relationship between the parameters y and «. In
the case of 0 < @ < 1, the particle’s intrinsic motion presents
ballistic behavior #2. If the medium expands fast enough with
y > 1, then the diffusion behavior of particles is enhanced

10'°

1010,

10° 10°
t

FIG. 7. EAMSD (y*(t)) when o = 1.5 and the medium changes
in a power-law rate with scale factor a(t) = (1 4 ¢/ty)?. The theoret-
ical results in Eq. (55) are shown by the black solid lines for different
y. The markers (cyan circles, blue squares, red plus signs, green
asterisks, and megenta triangles) denote the simulated EAMSDs
with different y, respectively. Other parameters are D = = 79 = 1,

T = 10%,t, = 0.01, and the number of trajectories used for ensemble
is N =10

from 72 to t2¥ . Otherwise, for y < 1, including the contracting
medium with y < 0, the particle’s intrinsic motion plays the
leading role and presents the ballistic behavior #2. The critical
case with y = 1 shows an addition logarithmic increasing.
While for the case of 1 < o < 2 with the particle’s intrinsic
motion presenting subballistic superdiffusion behavior #3~¢,
the critical condition becomes y = LT‘J‘ A faster expanding
rate with bigger y also leads to the superdiffusion #>” and
slower expanding rate with smaller y yields the intrinsic diffu-
sion £>~¢, The biggest difference between the exponential and
power-law-formed a(¢) is that, when the medium contracts
with y < 0, exponentially contracting the medium changes
the particle’s intrinsic diffusion behavior while the power-law
contracting medium does not.

V. SUMMARY

The dynamic mechanism of particles moving in an ex-
panding medium was revealed in the framework of CTRW
[29-33]. To explore more anomalous diffusion processes in an
expanding medium and more physical observables, this paper
proposes the Langevin picture of a particle’s trajectory in an
expanding medium. By using the subordinated overdamped
Langevin equation and underdamped Langevin equation to
describe common subdiffusion and superdiffusion processes,
respectively, we consider both the exponential and power-law-
formed scale factor a(¢) and find some interesting phenomena.

For the power-law-formed scale factor a(r), there exists
a critical value for the power-law exponent of a(t), a larger
exponent implies a faster expanding rate of the medium and it
enhances the particle’s diffusion. While a smaller one implies
a slower expanding rate or contracting medium and it does not
change the particle’s diffusion [see Egs. (36), (37), (54), and
(55)]. For the exponential formed a(t), however, the medium
changes fast, so that it produces a profound impact on the par-
ticle’s motion. The particle’s diffusion behavior is enhanced
to exponential form in an exponentially expanding medium,
but gets suppressed in an exponentially contracting medium
similar to the case with a harmonic potential [see Egs. (28),
(31), (49), and (53)].

In the subdiffusion case, the PDF of the subordinated
overdamped Langevin equation is equal to the solution of
the fractional Fokker-Planck equation of subdiffusive CTRW.
Therefore, by deriving the Fokker-Planck equation, evaluating
the EAMSD, and comparing them to the results obtained in
the CTRW framework in Ref. [29], we verify the effectiveness
of the Langevin approach proposed in this paper. Then we
evaluate more physical observables, such as correlation func-
tion and TAMSD, and extend to the superdiffusion case. Since
the subordinated underdamped Langevin equation describes
anomalous diffusion exhibited by the Lévy-walk-like mod-
els, the discussions in the superdiffusion case reveal how the
Lévy-walk-like diffusion process behaves in the expanding
medium in some sense. More velocity-jump processes in the
expanding medium can be analyzed in the framework of the
(underdamped) Langevin equation as this paper shows.

The standard Lévy walk says that the particle moves in a
straight line with a fixed speed for some random time [§]. In
fact, the Lévy walk is not only analyzed in the form of a con-
stant velocity, but also in the context of coupled CTRW, i.e.,
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the so-called wait-first and jump-first models [8,76]. Instead
of the constant velocity v for duration time t at one flight
in the standard Lévy walk, the wait-first Lévy walk says that
the particle remains motionless for time t and then executes a
jump with length vt, resulting in a discontinuous trajectory
as the uncoupled CTRW. The jump-first Lévy walk differs
from the wait-first case by the changed order of waiting and
jumping moments.

Although the wait-first and jump-first models appear to
be very similar to the standard Lévy walk, they have very
different statistical properties, especially on the PDFs [77].
If we compare the three models only at the renewal moments
where the direction of motion is chosen, we find that particle’s
positions are exactly the same. Thus the last renewal period
plays a crucial role with regard to the differences between
the three models. For EAMSD, it shows that the standard
Lévy walk and wait-first one have the same diffusion be-
havior but with different diffusivity, while the jump-first one
has diverging EAMSD [76]. Corresponding to the similarity
between the wait-first Lévy walk and uncoupled CTRW, we
utilize the same way to deal with the superdiffusion case as
the subdiffusion case. In other words, Sec. III provides the
Langevin approach of analyzing the diffusion behavior of
subdiffusive CTRW in the expanding medium, while Sec. IV
aims to investigate the diffusion behaviors of the wait-first
Lévy-walk-like processes in the expanding medium.

The scale factor a(f) only depends on time ¢ in this pa-
per, which implies the medium is expanding uniformly, i.e.,
with the same growth rate at all points. This leads to a sim-
ple relation between the particle’s comoving coordinate x(z)
and physical coordinate y(¢) as Eq. (2) shows. In the frame-
work of the CTRW, the anomalous diffusion processes in a
nonuniformly expanding mediumwere modeled and analyzed
in Refs. [30,32]. While in the framework of the Langevin
equation, the nonuniformly expanding medium could be de-
scribed by a space-time dependent scale factor a(x,?), the
relation between two coordinates and the anomalous diffusion
behavior will be investigated in the future.
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APPENDIX A: DERIVATION OF EQ. (17)

We first introduce the Heaviside step function ®(x), which
satisfies @(x) = 1 forx > 0, ®(x) =0 forx < 0, and O(x =
0) = 1/2. Then let (B(s(t;))B(s(t,))) be the correlation func-
tion of compound Brownian motion, where the brackets
denote the ensemble averages in Brownian motion B(-) and
inverse subordinator s(¢). Calculating the ensemble average
in Brownian motion, we obtain

(B[s(t1))B(s(2)]) = (s(11)O(t2 — 11) + s(12)O(F — 12)).
(AD)

By using Eq. (13) and dividing #; and #, on both sides of
Eq. (A1), we arrive at

(E@DE)) = (5(11)3(12 — 1))

d
=48t _tl)d_tl<s(tl)>

a—1
1
= 8(t, — 1), A2
T (t, —11) (A2)
where the first moment of the inverse subordinator [51]
toz

H))=—— A3
(s(t1)) e+ D) (A3)

is used.

APPENDIX B: DERIVATION OF EAMSD IN EQ. (54)

When 0 < o < 1, substituting a(t) = (%)V and Eq. (43)
into Eq. (44), we have

2y : t ph
(1)) ~ Zo Dsintre) / f (1 +10) 7 (12 +10)
22 o Jo

t
x B(t—l,a, 1 —oz)dtldtz. (B1)
2

It can be found that the value of y determines whether (x*(¢))
tends to a constant or infinity. More precisely, the internal-
grows at the rate of tzl_y with respect to #, as t, — oo. Thus,
the external integral [i.e., (x*(¢))] grows at the rate of 1>~/
with respect to t. Therefore, (x*(¢)) tends to a constant when
y > 1l and to infinity when y < 1. Indetail, for y > 1,itholds
that

GA()) = a* ()P (t)) ~ e, (B2)

where
2Dsin(wa) [ ("
C = #/ / (t1+10) 7V (t+10)77
ni 0 0

t
X B(—I;a, 1 - oz)dtldtz.
15)

While for y < 1, (x?(¢)) tends to infinity as t — 0o, and thus,
the long-time behavior of the integrand [i.e., large #; and ;]
plays a leading role. By considering this asymptotics, we solve
the double integral in Eq. (B1) and obtain

(@) =17 Cot >, (B3)
and
GA()) = a* ()P (t)) =~ Cat?, (B4)

where

F(l—l—a—y)) (B5)

D

T ( L@l —y)
which recovers the diffusion coefficient of the standard Lévy
walk in Eq. (39) by taking y = 0. For the critical case y = 1,
we arrive at (y>(t)) ~ Cst?Int. The diffusion coefficients C,
and C; cannot be obtained explicitly due to the difficulty
of evaluating the double integral in Eq. (B1). For plotting
the theoretical lines in simulations, we obtain the diffusion
coefficients C; and Cs by using the fitting method (see Fig. 6).
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APPENDIX C: DERIVATION OF EAMSD IN EQ. (55)
When 1 < o < 2, substituting a(t) = (’%)V and Eq. (43) into Eq. (44), we have

(0 (0) = 257 78~ 1—/ /2(t1 +10) V(0 +10) T (2 —1)' T =1
0 JO

t

1

7a)dl‘1dl‘2

D 0 1 L
= "G DRy 3 — =y = [0+ D7 = g+ D7y |
2 — 1 —
o *Jo v Jo

Similar to Appendix B, we analyze the asymptotic behav-
iors of the two integrals above with respect to time ¢ and find
two critical cases, whichare y = (3 —«)/2 and y =2 — «.
Therefore, we present the details for cases with different y
in order. For the case with y > 3%, the integral in Eq. (C1)
converges as t — 00, and thus, the EAMSD in the comoving
coordinate x tends to a constant, i.e., (x*>(t)) ~ D,. However,
we cannot obtain the exact value of D due to the difficulty of
evaluating the integral.

For the case 2 —a <y < % the integral of the three
terms in Eq. (C1) can be solved and we have

(x2(0)) = 27 ¢! (thHV—“ + D5), (C2)

where
1 ra—-—y)re- 1
Dy — (1-re-o) o
3-2y -« re—y—a) 1—y
and
32ya
Dy =2 / o+ 17y dy
32yo¢
_ I re—-—ao)ily +a —2) (C4)
l—y C(y) '

Since in this case, we have 3 — 2y — o > 0, the constant D;
can be omitted.

Then for the case y < 2 — «, the EAMSD in the comoving
coordinate x is

(1)) =

2Va1D

tl v
% (D2t32ya + 0 t2ya>’
QC-y—-—a)—-y)

(C5)

where the last term comes from the same integral as D3 in
Eq. (C2). The difference is that y < 2 — o makes the integral

(ChH

(

increase as t — o0o. Considering 1 < o < 2, it holds that 3 —
2y —a > 2 —y — «a, and thus, the last term in Eq. (C5) can
be also omitted as D3 does.

For the critical case y = 2 — «, the EAMSD in comoving
coordinate x can be obtained as

D
(1)) 21527y »

F)lQ—a)—1 o1
w LGz =1 0 il (o)
(o — 1)2 a—1
where Int < t*~! and the last term can be omitted. In fact,
the leading terms in Egs. (C2), (C5), and (C6) are both

D
(02@)) = 207 78~ IM Dy, (CT)

Therefore, the value range of y can be merged into y < 3%,

2
For another critical case y = 5%, the EAMSD in comov-
ing coordinate x is

3—a_a— lD
(x () =2t %1, -D4lnt, (C8)
n
where
rsHre —o 2
D, = & )3,( - (C9)
r(=) a—1
In conclusion, the EAMSD in physical coordinate y is
02(0) = O 0)
Dty 1%, e <y,
S e T (C10)
MI?’—(X’ y < 3—701'
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