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Assigning temperatures to eigenstates
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In the study of thermalization in finite isolated quantum systems, an inescapable issue is the definition of tem-
perature. We examine and compare different possible ways of assigning temperatures to energies or equivalently
to eigenstates in such systems. A commonly used assignment of temperature in the context of thermalization
is based on the canonical energy-temperature relationship, which depends only on energy eigenvalues and not
on the structure of eigenstates. For eigenstates, we consider defining temperature by minimizing the distance
between (full or reduced) eigenstate density matrices and canonical density matrices. We show that for full
eigenstates, the minimizing temperature depends on the distance measure chosen and matches the canonical
temperature for the trace distance; however, the two matrices are not close. With reduced density matrices, the
minimizing temperature has fluctuations that scale with subsystem and system size but appears to be independent
of distance measure. In particular limits, the two matrices become equivalent while the temperature tends to the
canonical temperature.
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I. INTRODUCTION

In recent years, there has been significant interest in
reconciling statistical mechanics to the quantum dynamics
of isolated many-body systems. This endeavor invariably
requires a correspondence between energy, a quantity well-
defined in quantum mechanics, and temperature, which is
necessary for a statistical-mechanical description. The eigen-
state thermalization hypothesis (ETH) [1–10], a cornerstone
of this field, posits that each eigenstate contains information
relevant to thermalization. Thus, a natural question is how to
assign temperatures to each eigenstate based on information
encoded in the eigenstates. In this work, we examine possible
ways of doing so.

The standard definition of temperature in statistical me-
chanics is given by the inverse of the derivative of entropy
with respect to energy [11,12]. For an isolated quantum sys-
tem, the entropy at energy E is defined as the logarithm of
the number of microstates (i.e., eigenstates) with energy E ,
or energy in a window around E . In finite systems, obtaining
this entropy generally requires approximating the density of
states.

Within the context of thermalization in finite isolated
quantum systems, it is more common to use the canonical
temperature-energy relationship to extract temperature from
the eigenvalues of the system Hamiltonian. The canonical
temperature TC = 1/βC can be obtained for any energy E by
inverting the canonical equation

E = 〈H〉 = tr(e−βC H H )

tr(e−βC H )
=

∑
j e−βC Ej E j∑

j e−βC Ej
, (1)

where Ej are the eigenvalues of the system Hamiltonian
H . This relationship originates in statistical mechanics from
the context of a system with a bath, but is widely used in
the study of the thermalization of isolated (bathless) quan-
tum systems to obtain an energy-temperature correspondence
[8–10,13–28]. In the large-size limit, the canonical tempera-
ture is, of course, equivalent to that obtained by differentiating
the entropy.

Curiously, both of these definitions rely only on the en-
ergy eigenvalues, making no reference to the physics of the
eigenstates. Therefore, it is of obvious interest to compare
the temperatures obtained from eigenstates (βE and βS , in-
troduced below) with an eigenvalue-based definition. In this
work, we introduce ways of obtaining temperatures from
eigenstates and then compare them to the canonical temper-
ature, βC , widely used in the thermalization literature.

If an eigenstate |En〉 of a many-body system “knows” the
temperature corresponding to its energy En, then one might
naïvely expect that ρ = |En〉〈En| should be closest to the
canonical density matrix (DM) ρC = Z−1e−βH for that value
of the inverse temperature β. (Here Z = tre−βH .) Thus, min-
imizing the distance d (ρ, ρC ) between these two DMs as a
function of β is one way of assigning a temperature to En.
We refer to this optimal β as the “eigenstate temperature”
βE . As |En〉〈En| is the limit of the microcanonical DM for an
ultra-narrow energy window, this idea is also related to the
equivalence of statistical ensembles [29,30]—this definition
of temperature minimizes the distance between microcanoni-
cal and canonical DMs.

It is admittedly over-ambitious to expect the complete
eigenstate DM ρ to resemble a Gibbs thermal state ρC , since
the first is a pure state and the second is a mixed state. The
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two density matrices cannot be expected to be “close,” as we
will illustrate in Sec. III. In real-time dynamics, the common
inquiry is whether a local subregion, rather than the whole sys-
tem, approaches a thermal state [21,22,31–41]. The intuition
is that the rest of the system acts as an effective bath, even if
the textbook properties of a bath (weak coupling, no memory)
are not satisfied. Accordingly, ETH is often formulated in
terms of local observables or a spatial fraction of the system
[22,23,39,40,42–47], and similar ideas appear in the approach
known as canonical typicality [7,16,32,34,44,48–51]. Thus,
one expects for thermalizing systems that, if the system is
partitioned spatially into A and B, with A smaller, then the
reduced DM of subsystem A for an eigenstate, ρA = trBρ,
should approximate the reduced canonical DM, ρA

C = trBρC

[23,44,46]. Inverting this expectation, we obtain another way
of assigning temperatures to eigenstates—use the value of
β which minimizes the distance d (ρA, ρA

C ). We call this the
“subsystem temperature” βS .

We find that βE , which minimizes the distance between
canonical DMs ρC and eigenstate (or microcanonical) DMs ρ,
depends on the distance measure employed. Using distances
based on the Schatten p norm [52–55], we show analytically
that the minimizing temperature βE is equal to p−1 times
the canonical temperature βC . Thus, only the trace distance
(p = 1) gives meaningful physical results; even the well-
known Hilbert-Schmidt norm (p = 2) would provide a
temperature that deviates by a factor of two! Although βE

aligns with βC for p = 1, the two DMs are never close, i.e.,
even the minimum distance is large.

The subsystem temperature βS appears numerically to be
broadly independent of p and is seen to match the canonical
temperature βC only approximately at finite sizes. Thus, for
finite systems, the reduced DMs of pure eigenstates can be
closer to thermal states at temperatures other than the canon-
ical temperature. The correspondence is shown to improve in
the limit where the size of the subsystem complement (B) is
large, but not necessarily in other ways of taking the large-size
limit.

The paper is laid out as follows. In Sec. II, we outline the
distance measures used to quantify how close two density ma-
trices are and introduce the many-body quantum systems that
we will numerically investigate. Following this, we present
our results for the eigenstate and subsystem temperatures in
Secs. III and IV, respectively. In Sec. V, we outline alterna-
tive choices that could have been used in our investigations.
Then, in Sec. VI, we investigate the deviation of the subsys-
tem temperature from the canonical temperature as a system
approaches integrability. Finally, in Sec. VII, we summarize
our findings and discuss their relation to existing work. In
addition, we outline open questions that remain.

II. PRELIMINARIES

Here we first define an appropriate distance measure be-
tween density matrices. This distance measure is to be used in
our temperature definitions. Following this, we describe the
many-body quantum systems used in numerical calculations.
For each system, we provide the relevant quantum Hamilto-
nian.

A. Distance measures

To quantify the distance between two DMs, we use the
Schatten p distance, the norm of the difference between the
two normalized matrices

dp(ρ, σ ) =
∥∥∥∥ ρ

‖ρ‖p
− σ

‖σ‖p

∥∥∥∥
p

, (2)

with the Schatten p norm given by

‖A‖p = tr(|A|p)1/p =
(∑

n

|sn|p

)1/p

, (3)

for a Hermitian matrix A and 1 � p < ∞. Here sn are the
singular values of A, and |A| =

√
A†A. This class of distances

includes commonly used measures of distance between DMs,
such as the trace distance [56,57] and the Hilbert-Schmidt (or
Frobenius) distance [58–72]. The range of dp is [0,2].

The main body of this paper are based on the Schatten p
distances. In Sec. V A, we will examine briefly how our results
are affected if one uses instead the Bures distance [56,57].

B. Many-body systems

To ensure that the presented results hold generally for
chaotic (thermalizing) many-body Hamiltonians with local
interactions, we will provide numerical results for three dif-
ferent 1D, and a 2D, non-spin-conserving, chaotic models. For
all systems, we consider a spin- 1

2 lattice of L sites with open
boundary conditions.

The first model is the quantum Ising model, with transverse
and longitudinal magnetic fields on every site. The transverse
and longitudinal fields have strength hx and hz, respectively.
To remove symmetries of the model, we swap the x and z
field strength between the first two sites. The chaotic Ising
Hamiltonian is then

HI =
L−1∑
j=1

Sz
jS

z
j+1 +

L∑
j=1

[
hx(1 − δ j,1)Sx

j + hz(1 − δ j,2)Sz
j

]
+ hzS

x
1 + hxSz

2. (4)

The second model is the XXZ-chain with staggered trans-
verse and longitudinal magnetic fields along the even and odd
sites, respectively. In addition, we break the staggered pattern
at the start of the chain by inserting x and z fields on the first
and second sites, respectively, to remove any symmetry. The
staggered XXZ-chain Hamiltonian is then

HS =
L−1∑
j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + �Sz

jS
z
j+1

)

+
∑
even

hxSx
j +

∑
odd

hzS
z
j + hxSx

1 + hzS
z
2. (5)

The last 1D model we used is the XXZ-chain with disor-
dered transverse and longitudinal magnetic fields on every
site. In this case, rather than hz and hx being uniform across the
sites, the on-site strengths h j , h′

j , are chosen from a uniform
distribution [−W,W ]. The disordered XXZ-chain Hamiltonian
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is then

HD =
L−1∑
j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + �Sz

jS
z
j+1

)

+
L∑

j=1

(
h jS

z
j + h′

jS
x
j

)
. (6)

For all three 1D models, appropriate parameters were chosen
to ensure chaotic level spacing statistics. Namely, hz = 0.5,
hx = 0.75 for the Ising model, hz = hx = 0.5 for the staggered
field model, and W = 0.25 for the disordered field model.

Finally, the 2D model we use is a square lattice, with XXZ-
like connections between neighboring spins 〈 j, k〉. In addition,
transverse magnetic fields are placed on the sites ja in one of
the sublattices available within the bipartite square lattice, to
break total spin conservation. The square lattice Hamiltonian
is given by

Hsq =
∑
〈 j,k〉

[
Jjk

(
Sx

j S
x
k + Sy

j S
y
k

) + � jkSz
jS

z
k

]

+
∑

ja

hxSx
ja . (7)

To ensure chaotic level spacing statistics, the parameters Jjk

and � jk are drawn randomly from the uniform distribution
[0,2] and [0,1], respectively. This choice of parameters en-
sures any symmetries of the lattice are broken.

For 1D systems, the A subsystem is taken to be the leftmost
LA sites of the L-site chains. In the 2D square lattice, the A
subsystem is taken to be the first LA consecutive sites, starting
from a corner of the square and following either a row or
column. When this model is used, illustrations of the lattice
geometry are provided. For simplicity, we choose systems
whose underlying Hilbert space H has a tensor product struc-
ture H = HA ⊗ HB. This is the case for spin and fermionic
systems, where total spin and particle number, respectively,
are not conserved. Then the full Hamiltonian can be written as
H = HA ⊗ 1DB + 1DA ⊗ HB + HAB, where HA and HB only act
on A and B, respectively, and HAB is the interaction between
the two. The Hilbert space dimensions of A, B and the total
system are DA, DB and D = DADB, respectively.

III. EIGENSTATE TEMPERATURE

Here we discuss the eigenstate temperature, which we have
defined as

βE = argmin
β

dp(ρ, ρC ). (8)

Here, ρ is an eigenstate density matrix, while ρC is a canon-
ical density matrix. We first present analytical results that
are general to all Hermitian systems. In addition, we pro-
vide numerical results that illustrate these analytical results.
Following this, we consider a variation of the eigenstate tem-
perature. In particular, we consider a density matrix consisting
of an equally weighted sum of eigenstates from a finite energy
window, i.e., a microcanonical density matrix. Finally, we
provide the full derivation of the analytical results presented.

FIG. 1. Eigenstate temperature results for staggered field XXZ-
chain: hx = hz = 0.5, � = 0.95, L = 10. (A) βE against energy,
for 20 eigenstates which are equally spaced in energy across the
spectrum, with curves showing βC/p. (Highest and lowest state not
visible.) (B) d1(ρ, ρC ) vs β curve for ground state (E1), midspectrum
state (E3), and E2 in between the two. (C) The minimum of dp(ρ, ρC )
plotted against eigenenergy, for the same eigenstates used in
panel (A).

A. Main results

To determine the value of βE , we express the two density
matrices in the basis for which they are simultaneously di-
agonalized, and set to zero the derivative of dp(ρ, ρC ) with
respect to β. The full derivation of the minimum can be found
in Sec. III C, the main result of which is that the minimum is
precisely when

En = tr(He−pβH )

tr(e−pβH )
. (9)

Thus, comparing with the definition (1) of the canonical tem-
perature,

βE = βC

p
. (10)

The eigenstate and canonical temperatures coincide for p =
1, while they differ by a factor of p for p > 1. This result
is purely mathematical and holds for an arbitrary Hermitian
matrix H , irrespective of whether H has the interpretation of
a many-body Hamiltonian, e.g., even for a random matrix; see
results in Appendix A.

Figure 1 illustrates this relation βC = pβE (A) and the
behavior of the distance dp (B, C), for the staggered field
XXZ-chain.

The result βE = βC (for p = 1) does not imply that eigen-
state DMs ρ = |En〉〈En| closely resemble canonical states
ρC = Z−1e−βH .

We are comparing a pure state to a highly mixed state,
i.e., a projection operator (a rank-1 operator) ρ to a full-
rank operator ρC . So, even the smallest distance between
them (at β = βC) is close to the maximum. The smallest
p distance is in general close to 21/p, an analytical result
derived in the following Sec. III C. The minimum is thus
very close to the maximum for most eigenstates, as shown
in Figs. 1(B) and 1(C). The highest and lowest eigenstates are
exceptions.
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FIG. 2. Finite window eigenstate temperature results for spin
chains with L = 10, namely: (A)–(C) Chaotic Ising model with
hz = 0.5, hx = 0.75 and �E ∼ 0.059. (D)–(F) Staggered field XXZ-
chain with � = 0.95, J = 1, hx = hz = 0.5, and �E ∼ 0.0757. (A),
(D) βMC against energy, for 20 energy windows which are equally
spaced in energy across the spectrum, with curves showing βC/p.
(Highest and lowest state not visible.) (B), (E) d1(ρMC, ρC ) vs β

curve for energy windows: E1 near the ground state, E2 in the middle
of spectrum, and E2 in between the two. (C), (F) The minimum of
dp(ρMC, ρC ) plotted against energy, for the same energy windows
used in panels (A), (D).

B. Finite window eigenstate temperature

Instead of the eigenstate DM, ρ = |En〉〈En|, one could use
the microcanonical DM,

ρMC = 1

N
∑

Ej in �E

∣∣Ej 〉〈Ej

∣∣, (11)

where �E is an energy window containing En, and N is the
number of states in the window. This might be considered
more physical, as we are now comparing two mixed states.

Here, we fix the energy window width, and allow each
window to contain a different number of eigenstates. We want
to compute the value of β such that the distance dp(ρMC, ρC ) is
minimized. We label this minimizing value the finite window
eigenstate temperature β�E . One can follow the same proce-
dure as is detailed in Sec. III C for the eigenstate temperature,
and make the assumption that the energy EMC = tr(HρMC) =
1/N

∑
Ej∈�E Ej of the microcanonical state ρMC is roughly

EMC ≈ Ej ∈ �E , which is valid if the energy interval is suffi-
ciently small, and obtain the similar relation that βC ≈ pβ�E .

This result is illustrated numerically in Fig. 2, in which
we present results for the chaotic Ising model (A–C) and the
staggered field XXZ-chain (D–F). In panels (A, D), we plot
β�E that minimizes the Schatten p distance for the given p,
along with two canonical βC curves versus energy. In panels
(C, F), we plot the value of the minimum distance for the same
energy slices as taken in the left figure. Finally, in panels (B,
E) we plot the d1 distance versus β for three particular energy

slices E1, E2 and E3. The numerical results again illustrate
the derived relation of βC = pβ�E for the p distance dp when
taken between a microcanonical and canonical density matrix.

C. Derivation of analytical results

We wish to minimize the Schatten p distance (2) between
the canonical and eigenstate DMs, i.e., dp(ρ, ρC ). All Schatten
p norms of a matrix ρ can be expressed in terms of the singular
values sn of ρ,

‖ρ‖p =
(∑

n

sp
n

)1/p

. (12)

In other words, the Schatten p norm is the lp norm of the
singular values. The singular values of a Hermitian matrix ρ

are the absolute values of the eigenvalues of ρ. The eigenstate
density matrix ρ and the canonical density matrix ρC are
jointly diagonalizable with respect to the eigenstate basis of
H . The eigenvalues of the former are 1 and 0, while the
eigenvalues of the latter are given by e−βEj , where Ej are
the eigenvalues of the Hamiltonian H . The Schatten norms
are invariant under a basis transformation by definition, so the
normed Schatten p distance can be written as

d p
p (ρ, e−βH ) =

∣∣∣∣ 1

‖ρ‖p
− e−βEn

‖e−βH‖p

∣∣∣∣
p

+
∑

Ej �=En

e−pβEj

‖e−βH‖p
p
.

(13)

Now there are two results we wish to obtain, the value of
β for which Eq. (13) is minimized, and the value of that
minimum. In Sec. III C 1 we obtain the surprising result of
βE = βC/p, and in Sec. III C 2 we determine how the value of
the minimum scales.

1. Minimization

To find the minimum of Eq. (13), we differentiate the p-
normed Schatten p distance of ρ and exp(−βH ) and obtain

∂

∂β
d p

p (ρ, e−βH ) = − p

(
1

‖ρ‖p
− e−βEn

‖e−βH‖p

)p−1

× ∂

∂β

e−βEn

‖e−βH‖p
+

∑
Ej �=En

∂

∂β

e−pβEj

‖e−βH‖p
p
.

(14)

Then, we observe the two derivatives

∂

∂β

e−βEn

‖e−βH‖p
= e−βEn

‖e−βH‖p

[
−En + tr(He−pβH )

tr(e−pβH )

]
(15)

∂

∂β

e−pβEj

‖e−βH‖p
p

= pe−pβEj

‖e−βH‖p
p

[
−Ej + tr(He−pβH )

tr(e−pβH )

]
. (16)

Now, Eq. (13) is minimal if and only if Eq. (14) is 0, which
holds true if and only if

0 = − p

(
1

‖ρ‖p
− e−βEn

‖e−βH‖p

)p−1 e−βEn

‖e−βH‖p

×
[
−En + tr(He−pβH )

tr(e−pβH )

]
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− p
e−pβEn

tr(e−pβH )

[
−En + tr(He−pβH )

tr(e−pβH )

]

− p
tr(He−pβH )

tr(e−pβH )
+ p

tr(e−pβH )

tr(e−pβH )

tr(He−pβH )

tr(e−pβH )
. (17)

The last two terms cancel, and we group the remaining
terms together and divide by p to obtain

0 =
[

En − tr(He−pβH )

tr(e−pβH )

]

×
[(

1

‖ρ‖p
− e−βEn

‖e−βH‖p

)p−1
e−βEn

‖e−βH‖p
+ e−pβEn

tr(e−pβH )

]
.

(18)

This is zero if and only if

En = tr(He−pβH )

tr(e−pβH )
. (19)

By the one-to-one correspondence of energies and canoni-
cal inverse temperatures there exists exactly one β for a given
En which obeys Eq. (19). This β minimizes Eq. (13) and we
call it βE . It is related to the canonical inverse temperature
βC , which is defined as the unique solution to Eq. (1), via
βC = p × βE .

2. Value of the minimum

To allow for the case of using a microcanonical DM in
place of the eigenstate DM (III B), we consider the distance
(13) with ρ now of the form (11) (N = 1 gives eigenstate
temperature). We assume that ||e−βH ||p � ||ρ||pe−βEj , and we
separate the final sum into the difference of two sums,

d p
p (ρ, e−βH ) =

∑
Ej∈�E

(
1

N 1/p
− e−βEj

‖e−βH‖p

)p

+
∑
Ej

e−pβEj

‖e−βH‖p
p

−
∑

Ej∈�E

e−pβEj

‖e−βH‖p
p
. (20)

Now we consider ρ is constructed from states in the middle
of the spectrum, hence we take β close to zero, and we can
approximate e−βEj ≈ 1,

d p
p (ρ, e−βH ) = 1

N
∑

Ej∈�E

[
1 − (N /D)1/p

]p + 1 −
∑

Ej∈�E

1

D

= [1 − (N /D)1/p]p + 1 − N
D

. (21)

If p = 1, and we assume N  D, then it is clear from
Eq. (21) that d1 ≈ 2.

For p � 2 we use the binomial expansion on Eq. (21), and
let DE = N /D,

(
1 − D1/p

E

)p =
∞∑

n=0

(
p

n

)
(−1)nDn/p

E , (22)

resulting in

d p
p (ρ, e−βH ) = 2 − pD1/p

E + O
(
D�

E

)
. (23)

Here, � = min(1, 2/p). Then finally to obtain dp, we raise
both sides to 1/p, and use the binomial expansion again,

dp(ρ, e−βH ) = 21/p − 21/p−1D1/p
E + O

(
D�

E

)
. (24)

Thus, the leading perturbation is D1/p
E = (N /D)1/p. So

when N  D, dp is close to 21/p for bulk eigenstates.

IV. SUBSYSTEM TEMPERATURE

We now turn to the subsystem temperature, which we have
defined as

βS = argmin
β

dp
(
ρA, ρA

C

)
. (25)

Here, ρA = trB(ρ), with ρ an eigenstate DM, and ρA
C =

trB(ρC ). The partial trace prevents a calculation similar to that
we used to derive βE = βC/p; we thus do not have analytical
predictions for the relationship between βS and βC . On physi-
cal grounds, one expects βS to match βC for LA  L and large
L. We first present our numerical findings for βS in various
quantum systems, exploring this expected correspondence.
Following this, we present an analytical argument for how the
distance dp(ρA, ρA

C ), at infinite temperature, should scale in
the limit of LA  L and large L.

A. Main results

The values of βS are found in general to be scattered around
βC , as shown in Fig. 3(A) for the chaotic Ising model. The
width of this scatter generally decreases with system size
(both LA and L), as quantified further below. In stark contrast
to βE , there is no obvious dependence on the distance measure
used—the qualitative behavior is the same for all p except
p = ∞, see Appendix C for p = 2 data. We therefore present
numerical results for the trace distance, p = 1.

The qualitative results of Fig. 3 are not specific to 1D
chains. This is clear from the strikingly similar results we
obtain for the 2D square lattice model as shown in Fig. 4.
In Fig. 4, we illustrate the geometry of the square lattice for
each given system and subsystem parameters, alongside the
respective βS and min(d1) versus E plots. In the geometry
illustrations, the red and black points represent the subsystems
A and B, respectively. We observe similar results to that of a
chaotic 1D spin chain such as those in Fig. 3.

When increasing LA with fixed total system size L, the vari-
ance of βS and the distance between βS and βC decrease, up to
LA = L/2. For LA > L/2 the distribution of βS values changes
shape and shows additional features, perhaps resulting from
ρA no longer having full rank. See Appendix B for examples
of results from systems with LA > L/2.

Although |βS − βC | and the variance of βS improve with
increasing LA, the minimum distance between ρA and ρA

C
does not, as is visible from Figs. 3(B) and 4(B). The average
min(d1) increases markedly with LA. The reduced DM has
decreasing resemblance to the reduced canonical DM, pre-
sumably because of the decreasing size of the complement
B, which plays the role of a bath.

Increasing L while keeping the fraction LA/L fixed, we
again find the variance of βS to decrease. In this limit,
min(d1) on average decreases when the fraction LA/L is < 1

2
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FIG. 3. Subsystem temperature results for the chaotic Ising
model with hz = 0.5 and hx = 0.75. (A) β that minimizes d1(ρA, ρA

C )
(βS) vs energy, plotted alongside the canonical βC curve, for the
given L and LA. (B)–(D) min[d1(ρA, ρA

C )] plotted vs energy, each row
illustrating a different scaling of system and subsystem size.

[see Fig. 3(C)] and is remarkably stable as a function of L
when the fraction is LA/L = 1

2 ; see Appendix B.
We now consider fixed LA and increasing L (or increasing

LB = L − LA). The reduced DMs become increasingly similar
in this limit, as shown in Figs. 3(D) and 4(C). In Fig. 5 we
show scaling behaviors in this limit computed using the cen-
tral 20% of the spectrum. Figures 5(A)–5(C) shows results for
the disordered-field XXZ-chain, while Figs. 5(D)–5(F) shows
those for the chaotic Ising model, both with LA = 2.

The minimum distance between DMs ρA
C and ρA decreases

apparently exponentially with system size, consistent with the
upper bound ∼D−1/2

B (equivalently ∼D−1/2); see Figs. 5(A)
and 5(D). While this scaling is difficult to prove for a general
Hamiltonian, one can argue for this dependence based on
assuming the eigenstates to be effectively random Gaussian
states near the center of the spectrum. This is known to be
a good but not perfect approximation for chaotic many-body
systems with local interactions [73–79], and has been used
to analyze ETH [2,10,17,42,43,45,74,80–82]. With this as-
sumption, the reduced DM is a Wishart matrix, while the
infinite-temperature canonical DM is an identity matrix. Thus,
the question is, how fast a p-normalized Wishart matrix con-
centrates around an identity matrix? Using concentration of
measure results [83], one can show that this dependence is at
most D−1/2

B , as shown in the following Sec. IV B.

FIG. 4. Subsystem temperature results for square lattice model
with the addition of staggered Sx fields with hx = 0.5. The geometry
of each system is illustrated above each plot, in which, red and black
sites correspond to the subsystems A and B, respectively. The results
in each plot are of a particular realization: (A) β that minimizes
d1(ρA, ρA

C ) (βS) vs energy, plotted alongside the canonical βC curve,
for the given L and LA. (B), (C) min[d1(ρA, ρA

C )] plotted vs energy,
each row illustrating a different scaling of system and subsystem size.

The width of min(d1) clouds appears to decrease at least as
fast as ∼D−1/2

B as well, as shown in Figs. 5(A) and 5(D). This
is reasonable as d1 is bounded from below and the average
min(d1) decreases as ∼D−1/2

B .
The width of the βS values which minimize d1 also appears

to have ∼D−1/2
B scaling (at most), see Figs. 5(B) and 5(E).

We have been unable to formulate an analytic argument for
this scaling. As the width of the βS cloud decreases, these
values concentrate on a line in the L → ∞ limit. Figures 5(C)
and 5(F) show, by plotting the average distance of the βS

cloud to the βC line, that the asymptotic shape of the βS

cloud coincides with the βC line. From the available data, it
is unclear whether this approach is power-law or exponential
in L. Again, no analytical prediction is currently available for
this dependence. In Ref. [46], an upper-bound scaling of L−1

is derived for a closely related quantity, namely, d1(ρA, ρA
C )

evaluated at βC , instead of at its minimum βS . Figures 5(C)
and 5(F) show that the actual scaling of min d1 is much faster.
In Appendix D we calculate the average value of d1(ρA, ρA

C )
at βC as a function of L.

B. Scaling of subsystem distance derivation

In this subsection we will prove that at infinite temper-
ature the Schatten-1 distance between an eigenstate of a
generic Hamiltonian and the reduced canonical density matrix
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(A) (B) (C)

(F)(E)(D)

FIG. 5. Subsystem temperature scaling for (A)–(C) disordered
field XXZ-chain with W = 0.25, and LA = 2, over many disorder
realizations. (D)–(F) chaotic Ising model with hx = 0.75, hz = 0.5,
and LA = 2. For both models, statistics are taken from the central
20% of the spectrum. (A), (D) Mean of min[d1(ρA, ρA

C )] and its
standard deviation vs DB for p = 1. (B), (E) Width of βS vs DB for
p = 1, 2. (C), (F) RMS-distance from the linear fit of βS , to βC curve
vs DB, for p = 1, 2.

decreases as O(D−1/2) or equivalently O(D−1/2
B ) in the limit of

fixed subsystem size LA and increasing complement LB → ∞.
Recall that DB = 2LB and D = 2L, so fixed LA and increasing
LB (increasing L) is equivalent to fixed DA and increasing DB

(increasing D = DADB).
At infinite temperature the canonical density matrix ρC is

the maximally entangled state ρC = D−1 · 1D and its reduced
density matrix is ρA

C = D−1
A · 1DA . So the spectrum of ρA − ρA

C

equals the spectrum of ρA shifted by the constant D−1
A . The

Schatten-1 distance between the reduced eigenstate density
matrix and the reduced canonical density matrix can then be
written as ∣∣∣∣

∣∣∣∣ρA − trBeβH

tr(e−βH )

∣∣∣∣
∣∣∣∣
1

=
DA∑
j=1

∣∣∣∣λ j − 1

DA

∣∣∣∣, (26)

where the λ j denote the eigenvalues of ρA.
We assume that an eigenstate |E〉 of a generic Hamiltonian

at infinite temperature is well approximated by a random state
uniformly distributed on the SD−1 sphere. For large D the uni-
form distribution on SD−1 is close to a multivariate Gaussian
distribution with independent components and mean 0 and
variance D−1. Because the density matrix |E〉〈E | has rank
1 the reduced density matrix ρA is given by ρA = D−1XX t ,
where X is a DA × DB matrix with independent Gaussian
entries with mean 0 and variance 1. The reduced eigenstate
density ρA is distributed according to the Wishart distribution

with expectation value D−1
A · 1DA = ρC . So the problem of

finding an upper bound for Eq. (26) reduces to finding an
upper bound on how quickly Wishart matrices concentrate
around their mean.

To answer this question we use a concentration of measure
result about singular values of Gaussian rectangular matrices
X , which can be found in, e.g., Ref. [83] (Corollary 7.3.3
and exercise 7.3.4). For 0 < t with probability 1 − 2e−t2/2 all
singular values σ j of X obey

√
DB − √

DA − t � σ j �
√

DB + √
DA + t . (27)

The eigenvalues λ j of ρA = D−1XX t are the squared singu-
lar values of X , renormalized by D−1, namely, λ j = D−1σ 2

j .
So for 0 < s < 1 + DA/DB − 2

√
DA/DB with probability 1 −

2e−sDB/2 we have

DA∑
j=1

∣∣∣∣λ j − 1

DA

∣∣∣∣ � DA

DB
+ 2

√
DA√
DB

+ s + 2

(
1 +

√
DA√
DB

)√
s.

(28)
Note that for fixed DA the leading order in the s indepen-
dent term is D−1/2

B . Under some mild assumptions on higher
moments of λ j , for example that the second moment of λ j

increases at most polynomially for fixed DA and increasing
DB, we can asymptotically estimate the expected value of
Eq. (26) as

E

⎡
⎣ DA∑

j=1

∣∣∣∣λ j − 1

DA

∣∣∣∣
⎤
⎦ � 2(

√
DA + 1)D−1/2

B + O
(
D−1

B ). (29)

Thus, one expects the Schatten-1 distance between the re-
duced density matrix of a Gaussian random state and the
maximally mixed state to decrease as O(D−1/2

B ) or equiva-
lently O(D−1/2) for fixed DA and increasing DB.

V. ALTERNATE FORMULATIONS

Here, we present some possible alternate formulations of
our eigenstate-based temperatures. First, we discuss using the
Bures distance in place of the Schatten p distance. We derive
an analytical result for the eigenstate temperature utilizing the
Bures distance, analogous to that shown in Sec. III. Following
this, we discuss the use of exp(−βHA) in place of tr(ρC ) in
the subsystem temperature. We provide numerical results for
this alternate formulation of βS .

A. Bures distance

Instead of the Schatten p distances, one could justifiably
use the Bures distance, related to the fidelity [56,57]. We have
found that the subsystem temperature βS , when calculated
using the Bures distance, has the same overall features as
found using the Schatten distances.

Additionally, the eigenstate temperature if based on the
Bures distance, is the same as βC , i.e., the same as βE for
p = 1. We derive this analytically below, and also illustrate
the result numerically.

The fidelity between two density matrices is given as

F (ρ, σ ) = (tr
√

ρ1/2σρ1/2)2, (30)
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or sometimes as the square root fidelity (quantity fidelity)
F ′(ρ, σ ) = √

F (ρ, σ ). It is a measure of how similar ρ and σ

are, but it is not a metric on density operators. It is symmetric
in the inputs, and is bounded between 0 and 1.

Before delving into maximizing F , we note that the square
root of a microcanonical density matrix ρ, as defined in
Eq. (11), is

√
Nρ, as

(
√
Nρ)2 = N

N 2

∑
Ej ,Ej′ ∈�E

|Ej〉〈Ej |Ej′ 〉〈Ej′ | (31)

= 1

N
∑

Ej∈�E

|Ej〉〈Ej | = ρ. (32)

Now, we want to maximize the fidelity between a microcanon-
ical state ρ = ρMC and a canonical state ρC ,

F (ρ, ρC ) = tr(
√

ρ1/2ρCρ1/2)2 = (tr
√

ρρC )2 (33)

= [tr(
√
Nρe−βH/2)]2/tr(e−βH ) (34)

= 1

N tr(e−βH )

⎡
⎣tr

⎛
⎝ ∑

Ej∈�E

e−βEj/2|Ej〉〈Ej |
⎞
⎠

⎤
⎦

2

(35)

= 1

N tr(e−βH )

⎡
⎣ ∑

Ej ,Ej′ ∈�E

e− β

2 (Ej+Ej′ )

⎤
⎦. (36)

Now to find the value of β which maximizes F (ρ, ρC ), we
simply differentiate to obtain

∂F

∂β
= tr(He−βH )

N tr(e−βH )2

∑
Ej ,Ej′ ∈�E

e− β

2 (Ej+Ej′ )

+ 1

N tr(e−βH )

∑
Ej ,Ej′ ∈�E

− (Ej + Ej′ )

2
e− β

2 (Ej+Ej′ ) (37)

∂F

∂β
= 1

N tr(e−βH )2

∑
Ej ,Ej′ ∈�E

e− β

2 (Ej+Ej′ )

×
[

tr(He−βH ) − Ej + Ej′

2
tr(e−βH )

]
. (38)

We then make the approximation of Ej ≈ Ej′ ≈ E for
Ej, Ej′ ∈ �E , which is accurate for small �E , and is exact
when �E contains a single eigenstate,

∂F

∂β
= e−βH

tr(e−βH )

(
tr(He−βH )

tr(e−βH )
− E

)
. (39)

Then setting this equal to zero, we find the only roots of the
equation are when

E = tr(He−βH )

tr(e−βH )
. (40)

This is the canonical energy-temperature relation (1), meaning
that the temperature which maximizes the fidelity between a
microcanonical state ρ with energy E , and a canonical state,
is in fact the canonical temperature βC .

The Bures distance is defined as

dB(ρ, σ )2 = 2[1 −
√

F (ρ, σ )], (41)

(A) (B)

FIG. 6. Finite window eigenstate temperature β�E calculated
using Bures distance dB(ρMC, ρC ), for two models: (A) Random,
real, and symmetric matrix; (B) chaotic Ising model with hx = 0.5,
hz = 0.75. In both cases, L = 9 (D = 29) and 20 energy windows are
uniformly chosen from the spectrum of the given Hamiltonian.

with F (ρ, σ ) defined as Eq. (30). The Bures distance is min-
imized when the Fidelity is maximized (i.e., when F = 1).
Thus, the Bures distance is minimized when β = βC also.

We numerically demonstrate this result in Fig. 6. We
present results for both the chaotic Ising model used pre-
viously, and also for a random real symmetric matrix, both
clearly illustrating the model independent result β�E = βC for
the Bures distance dB(ρMC, ρC ).

B. Local Hamiltonian density matrix

For the subsystem temperature, we compared ρA to ρA
C =

trB exp(−βH ). An obvious alternative is to compare with
exp(−βHA). If HAB is nonzero, then the two are not equiva-
lent, as discussed widely in the literature [36,46,84–94], e.g.,
in the context of extracting an effective “Hamiltonian of mean
force” for the subsystem [84,85,91–95]. Numerically, we have
found that using exp(−βHA) to define βS leads to very similar
results to those obtained using ρA

C , except for eigenstates at the
spectral edges.

In Fig. 7 we illustrate the behavior of βS and
min[dp(ρA, ρA

C )] with ρA
C = exp(−βHA). We see the general

behavior is the same as in Figs. 3 and 4. In Fig. 8 we also
illustrate similar scalings as seen in Fig. 5.

VI. DEVIATION IN NONTHERMALIZING SYSTEMS

Up to now, we have been solely concerned with chaotic
systems that are expected to thermalize and hence satisfy the
ETH (ergodic). The subsystem temperature is based on ETH
predictions for density matrices restricted to a local subsys-
tem. One could then ask what happens to the temperature in
a system that is expected to violate the ETH, i.e., one which
does not thermalize (nonergodic).

To investigate this effect, we shall consider the staggered
field model with varying field strength h = hz = hx. For finite,
nonzero h, the system should in general be thermalizing. Of
course, when h = 0 the system is simply the XXZ chain and
is known to be exactly solvable via the Bethe ansatz. Thus,
if we tune h, from some finite nonzero value, toward zero,
then the system should approach a nonthermalizing regime.
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FIG. 7. Subsystem temperature results with ρA = exp(−βHA),
for staggered field model with hx = hz = 0.5, J = 1 and � = 0.95.
(A) β minimizing d1(ρA, ρA

C ) (βS) vs energy, plotted alongside the
canonical βC curve, for the given system and subsystem size. (B)–(D)
min[d1(ρA, ρA

C )] plotted vs energy, each row illustrating a different
scaling of system and subsystem size.

FIG. 8. Subsystem temperature results with ρA = exp(−βHA),
for staggered field XXZ-chain with J = 1, � = 0.95, hx = hz = 0.5
and LA = 2. Statistics from the central 20% of the spectrum. (A)
Mean of min[d1(ρA, ρA

C )] and its standard deviation vs DB for p = 1.
(B) Width of βS vs DB for p = 1, 2. (C) RMS-distance from the linear
fit of βS , to βC curve vs DB, for p = 1, 2.

FIG. 9. Subsystem temperature results for staggered field model
with L = 12, J = 1, � = 0.95, and hz = hx = h. Top: The RMS-
distance between βS and βC (Deviation) plotted vs shared field
strength h. The RMS-distance is calculated for eigenstates in the
central 20% of the spectrum. Bottom: Average restricted gap ratio
value plotted vs shared field strength h.

In the top panel of Fig. 9 we plot the RMS-distance between
βC and βS for such a system as a function of magnetic field
strength h. As one could expect, when h → 0 the deviation
between the temperatures increases, due to the system no
longer thermalizing.

To illustrate the systems approach to a nonthermalizing
regime, we have plotted the average restricted gap ratio 〈r̃〉
against the field strength h in the bottom panel of Fig. 9. The
restricted gap ratio is defined as the minimum of the gap ratio
r and its inverse r−1. The gap ratio itself is defined as the
ratio of two consecutive level-spacings. Level-spacing statis-
tics are an effective tool in classifying a system as ergodic
(chaotic) or nonergodic (integrable). The restricted gap ratio
〈r̃〉 is particularly useful, as it avoids the need to perform an
unfolding procedure on the spectrum, as is often required for
bare consecutive level-spacings. In the bottom panel of Fig. 9,
we have marked the predicted average restricted gap ratio
values for chaotic and integrable systems, 0.5307 and 0.386,
respectively [96]. As expected, 〈r̃〉 approaches the predicted
value for nonergodic systems as h → 0, coinciding with the
increasing deviation between βS and βC .

VII. SUMMARY AND DISCUSSION

Our first eigenstate-based temperature, βE , turned out to
be determined solely by the eigenvalues. It has interesting
(arguably unexpected) dependencies on the distance measure.
The relation βE = βC/p is a mathematical result that holds
for any system, including nonchaotic (integrable, many-body-
localized,...) systems and even systems without any notion of
locality.

In contrast, the second eigenstate-based temperature, βS , is
independent of the distance measure and reflects the physics
of the eigenstates. This contrast highlights that the partial trace
operation is a crucial ingredient for the emergence of thermo-
dynamics. We have shown that βS conforms increasingly to βC
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when the system size increases while keeping LA (subsystem
size) fixed, and also while keeping the ratio LA/L fixed to
some value smaller than 1/2. As βS depends on the chaotic
(thermalizing) nature of the system and the physical content of
the eigenstates, it does not match βC for random matrices, as
shown in Appendix A, and generally shows deviant behavior
for nonchaotic systems (Sec. VI).

By asking how close ρA can be to ρA
C , we have char-

acterized the best temperature (typically different from the
canonical temperature at finite sizes), and also the degree to
which the system is thermal, e.g., through the value of the
minimum distance d1. The issues addressed in the investiga-
tion of βS are closely related to (in some sense the converse of)
questions addressed in the ETH and thermalization literature,
e.g., in Refs. [23,46,97–105]. Our results on size dependence
confirms the intuition obtained from Refs. [23,98,101,102]
that thermal behavior is best seen in the limit of LA/L → 0.

The present work raises a number of new questions.
(1) The partial trace and minimization operations in the

definition of βS render analytical treatments difficult. Thus,
it remains an open task to prove analytically that βS should
be independent of p, or that it should approach βC in the
large size limit. The latter is consistent with the spirit of
ETH, which is similarly difficult to prove, but is verified in
a wide array of numerical studies [7,8,10,13–15,17,18,24–28,
42,43,45,74,78,80,81,106–122]. Proving the D−1/2 behavior
of Fig. 5(B) also remains an open problem.

(2) The correspondence between βS and βC may break
down when approaching nonchaotic regimes, such as near-
integrability or many-body localization [19,123,124]. There is
the possibility of scaling with different power-laws than those
seen here, in analogy to the power-law ETH scaling displayed
by integrable models [42,43,115,125–127]. In Sec. VI we
did observe the deviation of βS from βC as the system ap-
proached integrability, as one might have expected. A deeper
investigation into the effects of integrability and localization
is required.

(3) A weak or even zero system-bath coupling is often
considered the natural setting for discussing quantum thermal-
ization [36,49]. In the present context, we did not consider it
natural to modify HAB, as we do not a priori have a system-
bath separation, and the partition into A and B is arbitrary.
However, it would be interesting to explore the effect of vary-
ing HAB. For the exact limit of HAB = 0, the reduced density
matrix ρA

C = trB(ρC ) is just e−βHA , and the eigenstates of the
full system decompose into tensor products of the eigenstates
of the two subsystems. Thus, the reduced eigenstate density
matrix ρA is simply |EA

j 〉〈EA
j |, where |EA

j 〉 are eigenstates
of HA. Thus, if one calculates the subsystem temperature βS

for HAB = 0, then the resulting temperature is actually the
eigenstate temperature of the contributing eigenstate in HA.
Then using the result from Sec. III this temperature will in
fact be βC/p of the subsystem HA, as opposed to βC of the total
system. One can still ask how the correspondence between βS

and βC changes systematically in the HAB → 0 limit.
(4) In this work, we compared the eigenstate-based tem-

peratures βE and βS to the canonical temperature βC . The
canonical temperature is widely used as a standard definition
of temperature in the study of thermalization in many-body
quantum systems. In the study of statistical mechanics, a

standard definition of temperature is the inverse of the deriva-
tive of entropy with respect to energy. The possibility of
entanglement entropy being representative of the thermal
entropy in the large system size limit is often discussed
[21,23,101,128,129]. Reference [23] investigates the devia-
tion of the entanglement entropy from a canonical entropy in
a finite quantum system. One could consider the temperature
arising from the entanglement entropy of eigenstates as an-
other possible eigenstate based temperature.
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APPENDIX

In the Appendices, we provide additional numerical re-
sults:

(1) In Appendix A, we present numerical results for both
the eigenstate and subsystem temperatures, using random ma-
trices in place of a physical Hamiltonian. We illustrate the
generality of the analytical result of βC = pβE , and also show
how poorly βS and βC align for random matrices.

(2) In Appendix B, we present further numerical data for
the subsystem temperature, in particular, the result of varying
the subsystem size in the staggered field model.

(3) In Appendix C, we present results obtained using the
Schatten 2-norm in place of the 1-norm for the subsystem
temperature.

(4) In Appendix D, we compute the distance between ρA

and ρA
C at the canonical temperature βC .

FIG. 10. Eigenstate temperature results for random symmetric
matrix with D = 210. Left: βE against energy, for 20 eigenstates
which are equally spaced in energy across the spectrum, with curves
showing βC/p. (Highest and lowest state not visible.) Mid: d1(ρ, ρC )
vs β curve for ground state (E1), midspectrum state (E3), and E2 in
between the two. Right: The minimum of dp(ρ, ρC ) plotted against
eigenenergy, for the same eigenstates used in panel (A).
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FIG. 11. Subsystem temperature results for a random symmetric
matrix with D = 213. Left: β minimizing d1(ρA, ρA

C ) (βS) vs energy,
plotted alongside the canonical βC curve. Right: min[d1(ρA, ρA

C )]
plotted vs energy.

APPENDIX A: RANDOM MATRIX RESULTS

Here we present the results for both the eigenstate temper-
ature βE and the subsystem temperature βS using a random,
real, symmetric matrix in place of a physical Hamiltonian.

1. Eigenstate temperature

As previously demonstrated, βC = pβE is a general mathe-
matical result that will hold for any Hermitian matrix H . Here
we illustrate this with a random matrix in Fig. 10.

FIG. 12. Subsystem temperature results for staggered field
model with hx = hz = 0.5, J = 1 and � = 0.95. min[d1(ρA, ρA

C )]
plotted vs energy for the captioned L and LA.

FIG. 13. Subsystem temperature scaling with subsystem size re-
sults. Staggered field model with hx = hz = 0.5, J = 1, � = 0.95,
and L = 14. (A) Mean value of min[d1(ρA, ρA

C )], (B) standard devi-
ation of min[d1(ρA, ρA

C )], (C) width of βS data, (D) RMS-distance
between βC and linear fit to βS vs LA. All quantities are calculated in
the central 20% of the spectrum.

2. Subsystem temperature

In the main text we found that |βS − βC | → 0 when
LA/L → 0, for the chaotic systems that we studied. Here we
illustrate in Fig. 11 that this is not a generic result, showing
how poorly the temperatures align for a random matrix.

APPENDIX B: SUBSYSTEM TEMPERATURE—VARIOUS
SUBSYSTEM SIZES

Here, we present the result of using different subsystem
sizes when computing the subsystem temperature βS , in vari-
ous models.

In Fig. 12 we show the resultant minimum d1 when using
different subsystem sizes for various system sizes. Illustrating
again the decrease in average minimum distance as L in-
creases, but also showing that the average minimum distance
increases with increasing LA.

In Fig. 13 we show the explicit scaling of various quan-
tities. We see in Fig. 13(A) that the average minimum of
d1 increases as LA increases, i.e., the two matrices become
less alike. In Fig. 13(B) the standard deviation of the minima

FIG. 14. Subsystem temperature results for chaotic Ising model
with L = 10 and LA = 7, hx = 0.75, and hz = 0.5. Left: βS vs E with
canonical βC curve shown. Right: min[d1(ρA, ρA

C )] vs energy.
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FIG. 15. Subsystem temperature results using p = 2 distance,
for chaotic Ising model with hx = 0.75, hz = 0.5 and LA = 2.
Statistics from the central 20% of the spectrum. (A) Mean of
min[d2(ρA, ρA

C )] and its standard deviation vs DB. (B) Width of βS

vs DB. (C) RMS-distance from the linear fit of βS , to βC curve vs DB.

increases but then decreases again as LA approaches L/2. In
Fig. 13(C) we see the width of βS decreased as LA increased,
and similarly in Fig. 13(D) the distance between βC and βS

decreased as LA increased.
In the main text, we restricted our results to subsystems

with LA < L/2. Here we present an example of the result of
using a subsystem with LA > L/2. The minimum distance
min[dp(ρA, ρA

C )] continues the trend previously described of
increasing as LA increases, and the variance of the values
also decreased. However, the βS values appeared to cease to
align with the βC curve, although the variance did continue
to decrease. An example of the resultant βC for a subsystem
greater than half the total system can be seen in Fig. 14. One
can also see that the distance between the matrices is close to
the maximum value.

APPENDIX C: SUBSYSTEM TEMPERATURE
WITH ALTERNATE P-DISTANCES

In the main text, we showed there was an explicit p-
distance dependence for the full eigenstate temperature, and
stated that we found no similar dependence for the subsystem

FIG. 16. Distance d1 at canonical temperature βC , averaged over
the central 20% of the spectrum, vs inverse system size L. We also
show the mean standard deviation of the minima. With LA = 2 for
(A) staggered field XXZ-chain, with hz = hx = 0.5, and (B) chaotic
Ising model with hz = 0.5 and hx = 0.75.

temperature. In Fig. 15 we show results for the Schatten 2-
norm (Hilbert-Schmidt norm). The scaling results that we find
are generally the same as those obtained for p = 1. The only
exception that we found was the p = ∞ distance (the operator
norm), which resulted in a gap in βS around β = 0. Thus, in
this case, βS was never close to βC where βC was near zero.

APPENDIX D: DISTANCE AT CANONICAL
TEMPERATURE

In the main text, we minimized the distance between the
reduced density matrix ρA = trB|En〉〈En|, and the reduced
canonical matrix ρA

C = trB exp(−βH ), as a function of β, to
obtain the subsystem temperature βS . One could instead ask
how close the two matrices are at the canonical temperature
βC . In Fig. 16 we show the resulting distances for the two
chaotic models investigated in the main text. Alongside the
data, we show a line proportional to the inverse system size
1/L, which clearly illustrates that the distance between the
matrices at βC decreases faster than 1/L, for these particular
systems at least.
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