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The geometric pore size distribution (PSD) P(r) as function of pore radius r is an important characteristic
of porous structures, including particle-based systems, because it allows us to analyze adsorption behavior,
the strength of materials, etc. Multiple definitions and corresponding algorithms, particularly in the context of
computational approaches, exist that aim at calculating a PSD, often without mentioning the employed definition
and therefore leading to qualitatively very different and apparently incompatible results. Here, we analyze the
differences between the PSDs introduced by Torquato et al. and the more widely accepted one provided by Gelb
and Gubbins, here denoted as T-PSD and G-PSD, respectively, and provide rigorous mathematical definitions
that allow us to quantify the qualitative differences. We then extend G-PSD to incorporate the ideas of coating,
which is significant for nanoparticle-based systems, and of finite probe particles, which is crucial to micro and
mesoporous particles. We derive how the extended and classical versions are interrelated and how to calculate
them properly. We next analyze various numerical approaches used to calculate classical G-PSDs and may
be used to calculate the generalized G-PSD. To this end, we propose a simple yet sufficiently complicated
benchmark for which we calculate the different PSDs analytically. This approach allows us to completely rule out
a recently proposed algorithm based on radical Voronoi tessellation. Instead, we find and prove that the output of
a grid-free classical Voronoi tessellation, namely, the properties of its triangulated faces, can be used to formulate
an algorithm, which is capable of calculating the generalized G-PSD for a system of monodisperse spherical
particles (or points) to any precision, using analytical expressions. The Voronoi-based algorithm developed and
provided here has optimal scaling behavior and outperforms grid-based approaches.
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I. INTRODUCTION

The characterization of the void region in porous materials
is an important aspect for understanding their behavior and
for engineering purposes. The role of the void region has
been studied in the context of glassy systems [1–3], mechan-
ical behavior of cellular solids [4], hydrophobicity in amino
acids [5], phase transition in two-dimensional (2D) colloids
[6], strength of concrete [7], etc. The void regions are char-
acterized in terms of quantities such as solvent accessible
surface area (SASA) [8,9] and pore size distribution (PSD)
[10–12]. The latter is an important parameter for designing
mesoporous and microporous materials which can be used
for engineering applications such as gas storage [13–15] and
separation of different components [16]. Experimentally, a
PSD can be estimated using mercury porosimetry [11,12],
however this method is intrusive and could potentially damage
the sample during the measurement process. To avoid this
issue, methods have been developed which extract a PSD
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from adsorption isotherms [17–19]. These methods typically
assume the geometry of pores and shape of the distribution
before fitting with the experimental data to estimate a PSD.
The major drawback of such approaches is the assumption
of pore geometry, and even state-of-the-art methods based
on nonlocal density-functional theory [20,21] have shown to
produce spurious results for some cases [22]. Therefore, an
alternative approach wherein a PSD is directly calculated from
the microstructure of the material serves as a viable solution.
The microstructure in question can be either generated using
nonintrusive high-resolution microscopy techniques [23–25]
or via computational methods [26]. The mathematical defini-
tion of a pore size distribution, however, is not unique [27–29].
Definitions provided by Torquato et al. [30] and by Gelb et al.
[31] differ significantly. While the former is based on the
nearest-neighbor statistics, the latter derives the concept of
a pore from the total accessible volume to a probe of given
radius.

In the present work we focus on the definition provided
by Gelb and Gubbins [31], also referred to as geometric pore
size distribution P(r), and denoted as classical G-PSD in the
remainder of this paper because it provides results consistent
with indirect methods such as Barrett-Joyner-Halenda (BJH)
[17] and nonlocal density-functional theory (NLDFT) [20]
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for simple geometries such as cylinders, spheres while also
providing meaningful results for more complex structures
such as porous glasses [31]. It was demonstrated with ex-
traordinary clarity that the T-PSDs defined by Torquato et al.
[30] should not be used if a physically meaningful PSD is
targeted [28]. Most literature available in the context of PSD,
including computational approaches, consider the adsorbate
gas molecule (used for studying the adsorption isotherm), to
be a point sized sphere (probe radius rp = 0). However, for
the case of micro- and mesoporous materials such as metal
organic frameworks, aerogels, etc. [32], the size of the adsor-
bate gas molecule is comparable to the size of cavities present
in the adsorbent material and therefore has a significant effect
on the adsorption isotherms and derived quantities such as
SASA and PSDs [33]. Pinheiro et al. [34] have studied the
probe-size dependent G-PSD for computationally generated
Zeolite structures, but have not provided the equivalent math-
ematical expression for the Monte Carlo scheme used. For the
class of nanoparticles and their porous composites the PSD
is affected by a temperature- or solvent quality-depending
coating thickness [35,36]. Such stabilizing coatings usually
contain thermoresponsive polymers [37].

Here, we derive the analytical expression for probe radius
rp and coating-thickness rc-dependent generalized G-PSD
P(r; rp|rc). We examine how it changes qualitatively for a
simple benchmark case, for which the analytic solution is
derived as well. We consider both finite coating thickness rc

and probe particle radius rp mainly for the reason that they
can be treated using identical methods. The G-PSD P(r; rp|0)
for a naked system (uncoated, rc = 0) with finite probe size
rp can be mapped onto the problem P(r; 0|rc) of a rc-coated
system with vanishing probe radius. The G-PSD for the coated
system, in turn, is the P(r) for the modified, rc-coated original
material, which we denote by P(r|rc). There are several im-
portant points to realize: (i) the G-PSD for a coated system is
qualitatively different from the G-PSD for the original system
and does not correspond to a simply r-shifted P(r); (ii) the
generalized P(r; rp|rc) can be obtained from P(r|reff ) with an
effective coating thickness

reff = rc + rp, (1)

as we going to explain; (iii) the two versions of T-PSDs intro-
duced by Torquato et al. can be expressed in terms of a shifted
P(0|r) and are therefore qualitatively completely different to
P(r|0), as we will discuss in detail.

Different definitions of the PSD can be expressed in terms
of the void volume accessible to a full r sphere in an reff-
coated system denoted by

V (r|reff ), (r � 0, reff � −r◦).

This volume is significantly larger and more difficult to esti-
mate than the volume accessible to the center of an r sphere;
V (r|reff) is the most fundamental quantity in this work. The
generalized G-PSD is expressed in terms of V (r|reff) in Eq. (4)
below. All PSDs treated in this work and related quantities
can be derived from V (r|reff), as we show later. However, it
should be noted that this does not imply that an algorithm that
determines a PSD must focus on calculating V (r|reff). Nega-
tively coated particles appear in connection with the T-PSDs
and the classical G-PSD requires knowledge of V (r|0) only.

Examples for the classical case of V (r|0) and its geometrical
construction for a 2D system composed of N = 20 circular
material particles of radius r◦ = 0.1 are shown in Fig. 1. The
centers of the circular pores of radius r are located in a region
whose points are further away than r from the surface of
the material. To visualize this region, we show the euclidean
distance maps (EDM) in the first column. Each point in an
EDM map carries the distance to the closest center of a ma-
terial circle. The Voronoi tessellation is an EDM map where
only those points are shown as Voronoi edges that have equal
distance to more than a single material circle. Each Voronoi
cell surrounding a material circle then represents all points
that are closer to this material circle than to any other material
circle.

We revisit and eventually generalize existing algorithms,
and provide a new one that is particularly suited for the
calculation of the generalized P(r; rp|rc) = P(r − rp|reff ) for
monodisperse systems composed of spherical particles of ra-
dius r◦. This gives rise to a second relevant radius we use later,
the radius of the effectively coated particle,

rs = r◦ + reff. (2)

The calculation of G-PSD is not straightforward, and var-
ious approaches have been suggested. For all such methods,
the distribution is obtained at finite resolution: using M ran-
dom insertions or M grid nodes. Algorithms that aim to fill
the void space based on pixelated images of the material,
have been suggested previously [38,39]. Various Monte Carlo
schemes have also been proposed, including Bhattacharya
et al. [40], wherein each Monte Carlo step is formulated as
a constrained maximization problem and found it to be a
computationally cheap. However, given the nature of opti-
mization algorithms it is susceptible to locating local extrema
as opposed to optimal solutions. Pinheiro et al. [34] sug-
gested a semi-analytical solution to this problem by utilizing
a radical Voronoi partition of the porous system. However,
as we explain later, this method is actually erroneous and
not suitable for calculating the G-PSD. Given its extensive
use to characterize porous materials, the development of a
fast algorithm which provides correct results is imperative.
We adapt the existing numerical methods to generate probe
size dependent G-PSD, and also present a Voronoi-based
numerical method which can be used to calculate the same
specifically for monodisperse systems composed of spherical
particles. Furthermore, we compare the accuracy of the nu-
merical algorithms presented for some simple configurations.

The definition of G-PSD and its generalization, as well
as its connection to accessible volumes is provided in
Sec. II. Existing numerical methods are revisited in Sec. III,
along with a complete description of the new proposed
Voronoi-based O(M ) algorithm for calculating the G-PSD
for two-dimensional (2D) systems. Section IV presents our
recommended benchmark, for which we derive analytic ex-
pressions in Sec. IV A. The benchmark serves to rule out
the radial Voronoi approach in Sec. IV B. The differences
between T-PSDs and the G-PSD are worked out in Sec. IV C.
The convergence behavior and computational efficiency of
the Voronoi-based algorithm is discussed in Sec. IV D, for
the benchmark and also for a more “realistic” system, where
computational approaches are the only means to estimate
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FIG. 1. Multidisk setup. Construction, shape and size of the volume V (r) = V (r|0) for a 2D system consisting of 20 noncoated circles of
radius r◦ = 0.1 (filled circles) in a periodic box of side length L = 1 for two selected cases: (a) r = 0.1, and (b) r = 0.3. The first column
shows the euclidean distance map (EDM, colored) constructed from the particles center positions (dark blue), as well as a single contour line
(black) at altitude r + r◦. The second column highlights the region (green) enclosed by the EDM contour line; it carries all possible center
coordinates of circular pores of radius r. The last column shows the volume V (r|0) (green).

the PSD. Conclusions based on these results are provided in
Sec. V.

II. GEOMETRIC PORE SIZE DISTRIBUTIONS G-PSD

For an arbitrary porous system in D dimensions, the space
can be divided into rc-coated material and void regions. Here,
we denote by rc-coated material the expanded material, whose
outer surface is at distance rc away from the original surface;
rc = 0 corresponds to the classical naked case. These coatings
may overlap with themselves, and may also be regarded as
hypothetical coatings for the purpose of this paper. Then, the
size of a spherical pore for a given point p inside the void
space is defined by the largest sphere that resides completely
in the void region and contains this point p [40]. Such a
D-dimensional sphere is termed as largest enclosing sphere
(LES) and is represented as r(p|rc), where r is its radius which
is a function of the chosen point p subject to the condition that
the material is rc coated.

Classical G-PSD. The classical G-PSD, P(r), is the prob-
ability density function of r(p) = r(p|0) of the LES for
uniformly chosen p in the void region of the naked material.
It has been shown that P(r) is defined as [31]

P(r) = −V ′(r)

V (0)
(r � 0), (3)

wherein V (r) denotes the accessible pore volume, which is
the total volume of the void region that is within reach to

spheres of radius r, and V ′(r) represents the derivative with
respect to r. The denominator V (0) is then the total volume of
the void region as the entirety of the void region is accessible
to a point-sized sphere. As seen readily, P(r) is normalized
because, as V (∞) = 0 for any finitely sized—or periodic—
system, Eq. (3) implies

∫ ∞
0 P(r)dr = 1.

Generalized G-PSD. For the case of micro- and meso-
porous materials such as metal organic frameworks, aerogels,
etc. [32], the size of the adsorbate gas molecule (used for
studying the adsorption isotherm) is comparable to the size
of cavities present in the adsorbent material [33]. The total
pore volume that is accessible experimentally to finitely sized
probe particles is not necessarily the entirety of the void
region, and hence the concept of the size of the pore at a
point p is redefined as—the largest sphere that resides in the
void region and completely contains the probe sphere centered
at p with radius rp. Such a sphere is hereby termed as the
largest probe enclosing sphere (LPES) and is represented by
r(p; rp|rc) because it is a function of the chosen point p as
well as of the spherical probe radius rp, within the rc-coated
material. A schematic figure showing the LES r(p) = r(p|0)
and LPES r(p; rp) = r(p; rp|0) for a given p and rp, in an
arbitrary naked landscape, are respectively shown in Figs. 2(a)
and 2(b). The dashed lines around the material particles in
Fig. 2(d) to form the surface of the hypothetically rp-coated
material, and the region marked by the dashed circle, of radius
r − rp inside the LPES is the total volume accessible to the
center position p of the finitely sized probe particle, while the
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FIG. 2. Enclosing spheres for a material with just two solid 3D spheres. (a) Largest enclosing sphere (LES, black empty circle, actually
representing a sphere) of radius r(p), centered at c (cyan), containing the probe point particle centered at p (green). (b) Largest probe enclosing
sphere (LPES, black empty circle) of radius r(p; rp) centered at another c, containing the probe sphere (radius rp > 0) centered at p. (c) LES
of radius r(p|rc ) within the rc-coated material. (d) A hypothetical material shell of size rp can be used to calculate r(p; rp) − rp = r(p|rp), cf.
Eq. (4), and to reduce the LPES problem to the setup shown in panel (c), where rc is replaced by an effective radius reff = rc + rp, cf. Eq. (1).
The distance R(c) between c and the center of the nearest material particle (radius r◦) is different in panels (a)–(c). For sufficiently large probe
particles, there are regions in the void space (coating overlap) that cannot host a finitely sized probe particle. Note that the surface of the probe
particle must not touch the LES or LPES in general, if there are more than two material spheres. This will become obvious later below.

volume accessible to the probe particle itself also includes
the portions of the hypothetical coating.

We can find the expression for the generalized G-PSD,
P(r; rp|rc), by reducing it to a class of problem treated by
Eq. (3). The point p cannot be chosen within a distance of
rp from the rc-coated material region to prevent the probe par-
ticle from overlapping. Hence, we can operate in a modified
system wherein all the material elements are hypothetically
coated with an additional thickness of rp. For the rc-coated
system, the volume accessible to a sphere of radius r is de-
noted by V (r|rc). Therefore the entirety of the void region of
the reff ≡ rc + rp-coated material is represented by V (0|reff );
any possible probe particle center resides within this volume.
Any LES which contains the center of the probe particle is
then effectively the LPES, as extension into the imaginary
coating is permissible. Therefore the problem of finding the
LPES is now reduced to the original problem of finding the
LES in the coated system. Figure 2 illustrates the idea of
finding the LES and the LPES via hypothetical coating, while
Fig. 3 shows the change in the EDM for finite reff. Based on
these considerations, the generalized G-PSD is

P(r; rp|rc) = −V ′(r − rp|reff )

V (0|reff )
(r � rp), (4)

where the prime denotes a derivative with respect to r, and
where we recall that V (r|reff ) is the fundamental void volume
in the reff-coated system that is accessible to a full r sphere.

A special case is the naked version (3) since V (r) =
V (r|0). If we write Eq. (4) as

P(r + rp; rp|rc) = −V ′(r|reff )

V (0|reff )
(r � 0), (5)

with the effective coating reff = rc + rp, assumes the same
form as Eq. (1), therefore indicating that G-PSD depends on
r and reff only. It is therefore in every case sufficient to study

either the case P(r; 0|rc) of point-like probe particles in the
original material with variable coating, or the case P(r; rp|0)
of rp-sized probe particles in the naked system, to obtain
the full P(r; rp|rc). If the material consists of monodisperse
spheres of equal radius r◦, these particles can also be regarded
as r◦-coated points. For the special case of point-like probe
particles in naked material, Eq. (4) reduces to Eq. (3).

With Eq. (4) at hand, the cumulative distribution,
Pcum(r; rp|rc) = ∫ ∞

rp
P(ρ; rp|rc)dρ corresponding to the gen-

eralized G-PSD is

Pcum(r + rp; rp|rc) = 1 − V (r|reff )

V (0|reff )
(r � 0), (6)

where V (0|reff ) is the total void volume in the effectively or
hypothetically reff-coated system. As seen the proper limits
are Pcum(rp; rp|rc) = 0 and limr→∞ Pcum(r; rp|rc) = 1, for any
rc and any rp, confirming that P(r; rp|rc) is indeed a properly
normalized probability density. The mean pore radius as func-
tion of rp and rc is

〈r〉 =
∫ ∞

rp

rP(r; rp|rc)dr = rp +
∫ ∞

0 V (r|reff )dr

V (0|reff )
. (7)

These expressions allow us to calculate the G-PSD from V ,
which is the easier quantity for analytic calculations. We now
calculate the G-PSD for some regular shaped geometries. In
case of a reff-coated cylinder of radius r© > reff and length
L, we have V (r|reff) = π (r© − reff )2L for r � r© − reff, and
V (r|reff) = 0 otherwise. According to Eq. (4), P(r; rp|rc) =
δ(r© − rc − r) has a single dirac-distributed peak as long as
reff � r© and vanishes otherwise. This examples highlights
the fact that reff = rc + rp can be freely distributed over probe
radius and coating layer thickness, and how this splitting
affects the G-PSD.
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FIG. 3. Multidisk setup. Construction, shape and size of the volume V (r|reff ) for the system treated already by Fig. 1, here for two selected
cases which share their sum r + reff = 0.2: (a) r = 0.2, reff = 0, (b) r = reff = rc + rp = 0.1 (for example rc = 0.1 and rp = 0 or rc = 0 and
rp = 0.1). The first column shows the euclidean distance map (EDM, colored) constructed from the particles center positions (dark blue), as
well as a single contour line (black) at altitude r + rs. The second column highlights the region (green) enclosed by the EDM contour line; it
carries all possible center coordinates of circular pores of radius r. The black circles in panel (b) mark the outer surface of reff-coated particles.
The last column shows the volume V (r|reff ) (green), i.e., V (0.2, 0) in panel (a) and V (0.1, 0.1) in panel (b). All variants of PSD’s are encoded
in the two-parametric V (r|reff ). The numerical result for V (r|reff ) over the whole range of semipositive r and reff for this setup is shown in
Fig. 6, along with the corresponding results for the generalized G-PSD.

On the other hand, for a hollow cube, P(r; rp|rc) is very
sensitive to rp and rc, as the fraction of void region ac-
cessible to the probe in the neighborhood of the corners
changes considerably with rp and rc. Some cases for which
all the quantities V (r|reff) and P(r; rp|rc) can be calculated
analytically, are collected in Appendix. For more compli-
cated systems, such as those generated using methods such
as molecular dynamics, calculating the geometric G-PSD an-
alytically is impossible [31,41] and numerical methods must
be employed. In the following section, we briefly describe
existing numerical methods that can, or cannot be used to
calculate geometric G-PSD P(r; rp|rc) and also propose a new
method based on Voronoi tessellation that can be used for
systems made of monodisperse spherical particles.

As discussed in detail, we can analyze the case of
point-sized probe particle in reff-coated material instead of
considering nonvanishing rp and rc separately. To this end we
finally define, using Eqs. (5) and (6),

Pcum(r|reff ) ≡ Pcum(r; 0|reff ) = 1 − V (r|reff)

V (0|reff )
(r � 0),

P(r|reff ) ≡ dPcum(r|reff )

dr
= −V ′(r|reff)

V (0|reff )
(r � 0), (8)

keeping in mind that these quantities contain the generalized
G-PSD and cumulative G-PSD as function of rc and rp via
Eqs. (5) and (6). To be clear, the generalized G-PSD is ob-
tained from the two-parametric V (r|reff) via

P(r; rp|rc) = P(r − rp|reff ), (9)

Pcum(r; rp|rc) = Pcum(r − rp|reff ). (10)

With the help of Pcum(r|reff) the mean pore radius can also be
written as 〈r〉 = rp + ∫ ∞

0 [1 − Pcum(r|reff)] dr.
T-PSDs. Using unchanged notation, we can provide a

mathematical definition of the two T-PSD versions suggested
by Torquato et al. [30], which are only applicable for the spe-
cial case of rc = rp = reff = 0 (for a derivation see Sec. IV C;
to avoid any confusion we label them by P instead of
P). There is on one hand a center-based Tc-PSD, Pc(r) =
dPc

cum(r)/dr with

Pc
cum(r) = 1 − V (0|r − r◦)

V (0| − r◦)
(r � 0), (11)

and on the other a surface-based Ts-PSD, defined via
P s

cum(r) = Pc
cum(r + r◦) for r � 0. The qualitative differences

between the three PSDs (G versus center-based Tc-PSD and
surface-based Ts-PSD) are highlighted by the two examples
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FIG. 4. Relevant PSD volumes for the triangle and our bench-
mark setup. Drastic differences between the relevant (gray-shaded)
areas used to define the G-PSD P(r) of Gelb & Gubbins (G) [31]
as well as the Tc-PSD and Ts-PSD of Torquato et al. [30]. While
for the Tc-PSD (Ts-PSD) the red circle touches at least one center
(one surface) of a material particle, for the G-PSD it touches at least
two surfaces of material particles. (a)–(c) Naked triangle serving as
material. Its edges can be thought of consisting of infinitely many
circles of radius r◦ = 0. (d)–(f) Our naked benchmark setup, con-
sisting of a single material particle of radius r◦ subject to periodic
boundary conditions, i.e., tangent to its periodic image. (a) Shaded
area V (r|0) accessible to a circle of radius r, relevant for the G-PSD.
(b), (c) Shaded area V (0|r − r◦) = V (0|r) enclosed by r-coated tri-
angle, relevant for both Tc-PSD and Ts-PSD, because r◦ = 0 for the
triangle. (d) One quarter of the area V (r|0) (gray-shaded) accessible
to a circle of radius r, relevant for the G-PSD. (e) One quarter of
the area V (0|r − r◦) (gray-shaded) created by the material circle
coated by a shell of thickness r − r◦ (for this particular example,
negatively coated), relevant for the Tc-PSD. (f) One quarter of the
area V (0|r) (gray-shaded) created by the material circle coated by
a shell of thickness r, relevant for the Ts-PSD. While the Tc- and
Ts-PSDs are both trivially calculated at minor computational effort,
the efficient calculation of the G-PSD still poses a challenge, as these
simple examples might already suggest.

provided in Fig. 4. While the first example [Figs. 4(a)–4(c)]
is a simple triangle whose edges consist of infinitely many
material points (r◦ = 0), the second example [Figs. 4(d)–4(f)]
will become our benchmark case composed of a single ma-
terial point subject to periodic boundary conditions, to be
discussed in detail in Sec. IV. It is interesting to note that
the T-PSDs are linear in r for empty cylinders and spheres,
while the G-PSD to which we focus in this work considers a
spherical inclusion of radius r© to be a well-defined pore with
unique radius r©. As this Fig. 4 attempts to explain by show-
ing the relevant volumes entering the PSD definitions, the
versions produce qualitatively different pore size distributions
(Sec. IV C).

Having provided proper mathematical definitions of the
existing PSDs, explained their differences, and added the
definition of the generalized G-PSD, it is an apparently
straightforward exercise to calculate all these quantities nu-
merically, e.g., by evaluating the two-parametric function
V (r|reff) defined in Sec. I. Many previous works have reported
PSD curves, however, a careful inspection of the literature
shows that most so-called PSD curves show something that

is either not well-defined, or as easy to compute as the T-
PSDs, while the calculation of the most useful G-PSD is much
more difficult to compute without making approximations or
introducing a finite grid resolution. After revisiting possible
approaches we derive an algorithm that is approximation-
and grid-free, efficient as it finds the coordinates of the
LPES semi-analytically, and exhibits the best possible O(M )
scaling.

III. EXISTING NUMERICAL METHODS FOR
GEOMETRIC AND GENERALIZED GEOMETRIC G-PSDs

Most numerical methods proposed in literature focus on
determining the G-PSD P(r) = P(r|0) for the naked material
via a Monte Carlo scheme wherein large number of p is
chosen uniformly in the void region and the corresponding
LES is determined to build the histogram and subsequently,
the approximate distribution. Past works have mostly focused
on finding fast and accurate algorithms to determine the LES.
We briefly explain the existing methods, mention how they
can be adapted to calculate LPES or the generalized P(r|reff )
based on LES for the coated material, and propose a new
algorithm for determining P(r|reff ) for a material consisting
of N monodisperse spheres in Sec. IV.

A. Brute force scan using a grid

The possibly most straightforward approach to directly
estimate P(r|reff) rather than V (r|reff) for a fixed coating
thickness reff at high memory and computational cost is by
considering a regular lattice of M coordinates {pi} in the void
space of the reff-coated structure, with an initially zeroed LES
field r(pi|reff ). Note here already that the LES r(p|reff ) for the
coated system is not identical to the LPES r(p; reff ) for the
naked system, and that this difference matters, if one is not
only interested in the classical P(r). For each of the lattice
points c ∈ {pi} all the nodes residing within the volume of
the largest sphere centered at c, with radius R(c|reff ), are
visited and the r values of all those nodes are updated to
max(r, R(c|reff )). R(c|reff ) is determined by the distance be-
tween c and coated material surface next to c. For a substrate
consisting of N polydisperse spheres of radius rk

◦ , centered at
xk , the radius R(c|reff ) of the largest sphere at c fully residing
in the void is given by R(c|reff ) = R(c) − reff with the usual
smallest distance

R(c) = mink=1,...,N
{|c − xk| − rk

◦
}
, (12)

where | · ·| represents the Euclidean distance between two
points. For other types of substrates, R(c) can be calculated
from the shape of the material surface, and R(c) � reff by
construction. At the end of this procedure one is left with a list
of size M whose entries are r(pi|reff ) values. The histogram of
all these r values is P(r|reff ) multiplied by a constant, and this
constant is simply given by Pcum(∞|reff ) = 1.

The accuracy of the method depends on the resolution of
the lattice and eventually requires large amounts of memory
to store the details of the lattice. If an upper limit for a pore
radius is determined in advance, memory can be saved and
resolution increased upon applying the grid-based approach
to regions of a size smaller than a multiple of the limiting
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pore radius. The lattice can also be displaced and the proce-
dure repeated to increase the resolution. If the grid spacing
is δ, the computational effort of the grid-based approach is
≈M × N for the generation of the R grid, and ≈M(〈r〉/δ)D

for the accumulation of the D-dimensional r grid, for each
reff. If M � N , the overall computational effort is therefore
somewhere between O(M ) and O(M2), and the details of the
PSD can only be obtained up to finite resolution δ.

B. Constrained local numerical optimization

The problem of finding the LES radius and its center posi-
tion c for a given p and effective coating thickness reff can
also be formulated as a nonlinear constrained optimization
problem, using R(c) from the previous section, as

maximize R(c|reff ) = R(c) − reff,

constraint R(c|reff ) � |c − p|, (13)

wherein the constraint guarantees that point probe particle is
completely covered by the R sphere and does not overlap with
the coating. A main difference with the grid-based approach
is that c and p must both not reside on a grid, and c can
reside anywhere within the void space. As for most off-lattice
problems of this kind, this system of equation and inequal-
ity cannot be strictly solved using a nonlinear programming
module, as the landscape can be highly nontrivial. While the
grid-based approach cannot miss the constrained extremum
within the given resolution, the off-lattice version does not
guarantee a certain resolution, but can potentially lead to
correct results at infinitely large resolution. The optimization
procedure is repeated M times to result in a G-PSD P(r|reff )
that has a resolution comparable with the grid-based approach.
The P(r; rp|rc) is then obtained from P(r|reff ) via Eq. (10). As
opposed to the grid-based approach, R(c) cannot be calculated
once and stored but must also be calculated each time it is
required. If the average step size of the solver is denoted by δ,
the computational effort is MN〈r〉/δ.

C. Radical Voronoi tessellation

Voronoi tessellation techniques partition the space using
a distance metric. In the standard method, given a set of N
points {xk}, the physical space can be divided into regions
based on the Euclidean distance from each point. In the
current context, the space is partitioned into N regions each
corresponding to one of the points. These regions are also
known as Voronoi cells. The Voronoi cell of point i contains
the set of all positions, r, which satisfy

∀ j=1,...,N |r − xi| � |r − x j |. (14)

Such a partition of space results in cells shaped as irregular
polyhedra, with the faces, edges and vertices being sets of
points that are equidistant with respect to adjacent particle
centers. To find the LES of yet unknown radius r(p) cen-
tered at some c, Pinheiro et al. [34] proposed to consider,
in addition, the Voronoi tessellation for the (N + 1) points
(p, x1, . . . , xN ). Then, the cell corresponding to the point p,
hereby denoted as Vp, termed the “ghost cell,” contains the
set of all coordinates r which satisfy

∀ j=1,...,N |r − p| � |r − x j |. (15)

For the case of naked point particles (ri
◦ = rc = 0), and point

probe particles (rp = 0), the center c of the largest included
sphere that contains p then resides on either the vertices of
the N- or (N + 1)-Voronoi meshes; the vertex with the largest
R(c) serves as the solution to the LES problem. Given this
property, it was further proposed [34] that the radical Voronoi
tessellation could be adapted to find the center and radius
of the LPES if both the material and the probe particle are
composed of spheres with finite radii, i.e., for ri

◦ > 0 and
rp > 0. In the case of radical Voronoi tessellation, the space
is partitioned according to modified Eq. (14):

∀ j=1,...,N |r − xi|2 − (
ri
◦
)2 � |r − x j |2 − (

r j
◦
)2

, (16)

where ri
◦ corresponding to p is rp, when the radical Voronoi is

applied to N + 1 points via Eq. (15). The metric |r − xi|2 −
(ri

◦)2 is essentially square of the tangential length. It was
suggested that this metric is used instead of a more intuitive
|r − xi| − ri

◦ because it results in irregular polyhedra much
like the standard Voronoi tessellation. Using this approach,
the center c of the LPES is then assumed to lie either on
one of the radical Voronoi vertices of the ghost cell, or on
one of the radical Voronoi vertices using N spheres. We can,
however, show that this approach exhibits a major deficiency
in methodology and is not suitable for all but the simplest
geometries. In particular, one can show analytically, that the
center of the LPES cannot coincide with the vertices of the
ghost cell.

Let cp be a vertex of Vp, then as per the definition of radical
Voronoi tessellation, it satisfies

|cp − p|2 − r2
p = |cp − xi|2 − r2

◦ , (17)

where i is index of all particles which share the vertex cp, and
where we assumed monodisperse material particles, ri

◦ = r◦,
only to shorten the following expressions. Then, the LPES
radius r(p; rp) = R(cp) must be large enough to completely
cover the probe particle. Mathematically, these conditions
can be represented as R(cp) − rp � |cp − p| and R(cp) + r◦ �
|cp − xi|, where we basically reiterated Eqs. (12) and (13).
These inequalities imply

0 � |cp − xi| − r◦ − |cp − p| − rp. (18)

Upon multiplying Eq. (18) with the positive |cp − xi| + r◦ one
obtains with the help of Eq. (17)

0 � |cp − xi|2 − r2
◦ − (|cp − p| + rp)(|cp − xi| + r◦)

= |cp − p|2 − r2
p − (|cp − p| + rp)(|cp − xi| + r◦). (19)

Upon dividing by the positive |cp − p| + rp, this inequality
implies

|cp − p| − rp � |cp − xi| + r◦. (20)

This last inequality, however, negates inequality (18) and is
only possible when r◦ = rp = 0 and |cp − p| = |cp − xi|. The
latter equality is ensured by the radical Voronoi construction,
if the former is fulfilled. As the radical Voronoi reduces to
the classical Voronoi construction for r◦ = rp = 0, the radical
Voronoi construction can simply not be used for calculating
the classical or generalized G-PSD. We are going to calculate
the radical Voronoi vertices for the benchmark used within
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(a) vertex-centered
      pore

(b) edge-centered
       pore

FIG. 5. The Voronoi-based algorithm locates the center c (blue
point) and radius of the pore (black open circle) for a given point p
(green) either on (a) a vertex or (b) an edge of the Voronoi diagram
(black straight lines) corresponding to the material circles (black
solid circles). We calculate the position of c analytically, t ∈ {0, 1}
for vertex-centered pores, and t ∈ (0, 1) for edge-centered pores in
Sec. III D.

this work in Sec. IV B to confirm that they do not lead to the
correct R(c|reff ).

D. Voronoi-based global analytical optimization

We have already seen that the radical Voronoi construction
cannot be used to calculate the G-PSD, except where it re-
duces to the classical Voronoi, i.e., for the case of point-like
probe and point-like, uncoated material particles. However,
the information contained in the Voronoi network of the
N material particles alone can be used devise an algorithm
that greatly improves over the suitably adapted classical ap-
proaches (Sec. III B).

Finding the center c of the LES or LPES for a given p
can be simplified by considering the fact that they must touch
at least two spheres at the same time (Fig. 5). In the case of
D = 2 dimensions, this amounts to the center c residing on an
edge of any of the N Voronoi cells, and on any of the Voronoi
faces in case of D = 3. Instead of randomly walking through
continuous D-dimensional space as done within constrained
optimization in its original form, we can restrict the algorithm
to inspect a number of relevant (D − 1)-dimensional faces.
For each such face, the optimum solution satisfying the con-
straints can be solved analytically not only in 2D but also in
three dimensions (3D). Each face gives rise to a candidate pore
radius; the largest among those candidate pore radii is the pore
radius for the given p.

Here, we are limiting ourselves to derive and describe the
2D algorithm that returns the generalized G-PSD P(r|reff ) for
a probe circle (radius rp) in a system of eventually overlapping
monodisperse material circles (radius r◦, coating thickness rc).
The corresponding algorithm for the 3D case can be treated
in an analogous fashion. Once P(r; reff ) has been computed,
P(r; rc|rp) is immediately available via Eq. (10). As a first
step, we make use of an existing algorithm to calculate, for
each material particle center x ∈ {xk}, the vertex coordinates
of its Voronoi cell. Each Voronoi cell can be uniquely sub-
divided into nonoverlapping adjacent triangles that all meet
at x. Importantly, as the T = O(N ) triangles corresponding
to the N material circles are all known from the Voronoi
construction at minor O(N ) effort, to subsequently calculate
the G-PSD using M � T probe particle insertions efficiently,
and with proper statistics, without searching for each insertion

point p all possible candidate edges, we can visit each of
the T triangular regions and its finite number of candidate
edges just once. To this end we randomly pick a known
but triangle-dependent number m� of points p within each
triangle � ∈ {1, . . . , T }, such that mj equals M times the void
area covered by the triangle � within the system of reff-coated
material circles, divided by the total void area V (0|reff ) avail-
able in the reff-coated system. This implies that, if a given
triangle does not have any overlap with the void space, no p
have to be placed in this region because this triangle does not
contribute to V (r|reff). For each of the m� different positions
p located within a triangle � (whose three vertices are respec-
tively at the center position x of the material particle to which
it belongs and at two adjacent vertices of the Voronoi face
belonging to x; the two relative vectors A� and B� point from
x to the other two vertices), we have to calculate a center c and
radius r of the LES that includes the point p and does not over-
lap with the reff-coated material circles. Once calculated, the
G-PSD P(r|reff ) is the probability density constructed from
the M different r values. There are now two equally important
ingredients of our proposed algorithm left to be described, that
are key to the speed of execution and optimal scaling of CPU
time ∝M: (i) the generation of static subsets E� of potentially
relevant Voronoi edges for the given triangle �, and (ii) an
analytic expression for a candidate re value (and its ce) for the
given Voronoi edge e ∈ E� and point p. The final pore radius
for p is then given by the largest candidate re with e ∈ E�. (i)
The generation of static subsets E� ⊂ {1, . . . , T } is useful as
the number of pore-relevant edges for points p located inside
any of the T triangles is usually much smaller than both m�

and N . A list E� is obtained by first calculating the shortest
distances {se} between the triangle � and all the T/2 different
Voronoi edges e (connecting Ae with Be). All those edges e
for which max(|Ae|, |Be|) − rs � se are added to E�. Because
max(|Ae|, |Be|) − rs is finite, the computational effort is at
most O(N ) and therefore does not affect the scaling ∝M for
sufficiently large M. (ii) The given Voronoi edge e ∈ E� is a
line connecting two Voronoi vertices at A ≡ Ae and B ≡ Be,
that form a triangle with the corresponding material center
at x. Hence ce − x = A + tC with C ≡ B − A and yet un-
known t ∈ [0, 1]. The pore radius in the reff-coated system
is given by the maximum R(c|reff ) = |c − x| − rs = c − rs

subject to the constraint R(c|reff ) � |c − p| = |A − P + tC|,
where c ≡ |ce − x| and P ≡ p − x. Since R(c|reff ) � 0, max-
imizing R2(c|reff ) presents an optimal solution for R(c|reff ) as
well. We observe that ∂2[rs + R(c|reff )]2/∂c2 = 2 > 0, which
indicates that R2(c|reff ) and by implication R(c|reff ) has a
local minimum only and no local maximum. Hence, for any
given interval t ∈ [t1, t2], the maximum lies on either of the
endpoints provided where the above inequality is satisfied.
Consequently, we first test one of the two extremal values
t ∈ {0, 1} corresponding to the edge terminals [Fig. 5(a)]. If
|A − P| � |B − P|, we set t0 = 1, otherwise we set t0 = 0. If
|A + t0C| − rs � |A − P + t0C|, we are done. The candidate
pore radius is re = |A + t0C| − rs and the corresponding pore
center is at ce = x + A + t0C because the two additional can-
didates to be derived next cannot lead to a larger re anymore.
The so far unused 1 − t0 we have to keep in mind. If the two
terminals did not yet give rise to a final candidate pore radius
re, we need to continue and calculate at most the two solutions
t± to the effectively quadratic equation c − rs = |A − P + tC|
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FIG. 6. Multidisk setup. Results from the presented algorithm for the configuration inspected in Figs. 1 and 3. The former figures provided
visual information on how to obtain 4 selected points (marked by red bullets) in the present quantitative plots (a) V (r|reff ), (b) the cumulative
G-PSD Pcum(r|reff ), and (c) the G-PSD P(r|reff ) defined in Eq. (8). Beyond a certain r + reff (the radius of the LES), there is no contour
line anymore in the left column of Fig. 1, and therefore vanishing V (r|reff ) = 0, P(r|reff ) = 0, and Pcum(r|reff ) = 1. For the uncoated system
(rc = 0), the classical PSD P(r) for point-like probe particles (rp = 0) is contained in panel (c) on the x axis, i.e., at reff = rc + rp = 0.

over the domain t± ∈ (0, 1) [Fig. 5(b)]. Some basic algebraic
operations lead to t± = a ± (a2 + b)1/2, with

a = 1

2

(
2P · A + r2

s − P2
)
P · C − 2r2

s A · C

(rsC)2 − (P · C)2 ,

b = 1

4

(
2P · A + r2

s − P2
)2 − (2rsA)2

(rsC)2 − (P · C)2 , (21)

where A = |A|, C = |C|, and P = |P|. These expressions for a
and b in Eq. (21) that determine the three remaining candidate
t in the set {1 − t0, t−, t+} can be derived most conveniently
by first subtracting c2 + r2

s from both sides of the squared
equation c − rs = |c − p|, and then squaring it again. Out
of these three t , the t∗ ∈ [0, 1] leading to the largest c∗ =
|A + t∗C| solves the problem, i.e., the candidate pore radius
is re = c∗ − rs and the candidate pore center is located at
ce = x + A + t∗C. To summarize, this algorithm relies on the
Voronoi network for a given configuration. It ensures that we
find the LES (rp = 0, reff = rc) or LPES (rc = 0, reff = rp),
i.e., the global optimum of the constrained optimization prob-
lem stated in Eq. (13). Each of the analytically calculated r
values, whose ensemble with M members gives rise to a prob-
ability distribution G-PSD P(r|reff ), has computational effort
O(1). The number of required calculations for the G-PSD is
therefore strictly proportional to M, apart from the relatively
cheap Voronoi and list Ej constructions that have to be done
only once at O(N ) effort for all subsequent choices of system
parameters r◦, rc, and rp. As opposed to the other mentioned
strategies, the algorithm proposed here is unaffected by a
mean pore radius.

The 2D code just described is part of our Supplemental
Material [42]. The slightly more complicated analytic expres-
sions for the 3D case we are planning to publish along with a
2D + 3D code elsewhere, as mentioned in the conclusion.

IV. RESULTS AND DISCUSSION

As we have exemplified the definition of the two-
parametric volume V (r|reff) in Figs. 1 and 3 by inspecting
just four different (r|reff) pairs, we start with completing this
numerical example first, before we enter a more fundamental

discussion that makes, apart from the development of the
algorithm presented in Sec. III D, the core of our results. To
this end, Fig. 6 displays V (r|reff) as well as Pcum(r|reff) and
P(r|reff ) versus r and reff for the configuration shown as filled
black circles in Figs. 1 and 3.

The remainder of this section has two parts: In the first part
we develop the analytic expression for the generalized G-PSD
(which includes T-PSDs as special cases) of an extremely
simple, but not too simple, configuration because it allows us
to test G-PSD algorithms rigorously. The strategy turns out
useful in falsifying the radical Voronoi approach. In the sec-
ond part we present a new G-PSD algorithm, which improves
over the local numerical optimization approach because it al-
lows us to make sure that the global optimum is found exactly,
and also efficiently, as we provide analytic expressions that
solely require the coordinates of the N-Voronoi network.

A. Benchmark with analytically known G-PSD

We consider a simple geometry wherein the pore size dis-
tribution can be calculated analytically, and therefore serves
as a validation case for the algorithms to be tested. The idea
for this benchmark is derived from simple reasoning—if the
phase of a given setup is flipped then the algorithm should be
able to correctly compute the geometric pore size distribution
of the “negative material.” A figure of the setup is shown in
Fig. 7. While the setup is essentially two dimensional, it is
trivially extended to three dimensions. We therefore keep the
symbol V for areas within the remainder of this paper.

To calculate the generalized G-PSD P(r; rp|rc) which con-
tains the classical G-PSD P(r) for point-like particles in the
naked benchmark setup as a special case, we need to derive
an expression for V (r|reff), the void area accessible to circles
of radius r in the reff-coated setup for the only nontrivial case
of rs = r◦ + reff � 0. Given the symmetry of the benchmark
setup, it is sufficient to focus on calculating V (r|reff)/8, the
shaded area in Fig. 8. It corresponds to the area accessible
to a sphere of radius r in the reff-coated configuration. One
selected circle of radius r is shown, with its center coordinate
at x on the y axis marking its outermost position in the void
space. The cylinder is gray, the actual coating is blueish, the
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L

L

r

FIG. 7. Naked (uncoated) benchmark setup. The setup consists
of identical circles of radius r◦ = 1 or, equivalently, infinitely long
and aligned cylinders, that just touch each other (L = 2r◦). The
colored filled circles represent two possible largest circles that can be
inscribed within the (white) void space enclosed by the large circles.
The blue circle with radius rmax (24), represents the circle with largest
possible radius that can be inscribed within this setup. This situation
is realized in a periodic simulation cell (black square) of side length
L, carrying a single circle of radius r◦.

r

r

r+rc

0 x L/2

r+reff

rp

V(r r    )/8eff

L
2

FIG. 8. Benchmark geometry. First quadrant of the rc-coated
benchmark setup (Fig. 7). Here we introduce radius r of the circle
centered at (x, 0), radius rp of the probe particle, and some inter-
related angles α, β, and γ . The shaded area V (r|reff ) is the area
that needs to be calculated as function of r, for given effective
shell thickness, reff = rc + rp to obtain the generalized G-PSD. The
classical G-PSD is adsorbed by the special case reff = 0.

additional virtual coating of thickness rp required to perform
the calculation for probe particles of radius rp is white. Some
angles α, β, and γ have been added to help writing down the
equations. One has β + γ = π/4 and α + β = π/2, more-
over tan β = (r◦ − x)/r◦ and sin β = (r◦ − x)/(r◦ + reff + r).
This implies

x(r) = r◦ −
√

(rs + r)2 − r2◦ , (22)

β(r) = tan−1

[
1 − x(r)

r◦

]
, (23)

where we have re-introduced rs = r◦ + reff, Eq. (2). The
largest possible circle that can be placed in the void space is
centered at the origin with radius

rmax =
√

2 r◦ − rs. (24)

The shaded area can be seen as a difference between two
areas—a large triangle with base length x and height r◦ and
the fraction γ /2π of the circle of radius r◦ + reff = rs—plus
a fraction α/2π of the r circle. Putting this together gives

V (r|reff) = 4
[
r◦x(r) − r2

s γ (r) + r2α(r)
]

(rmax − r),

(25)

with α(r) = π/2 − β(r), γ (r) = α(r) − π/4, and 
 denotes
the Heaviside step function. One has V (rmax|reff ) = πr2

max, as
the largest pore of radius rmax is located in the center of the
setup, where it occupies a large fraction of the void space. To
express the G-PSD, we need the total area of the void space in
the reff-coated setup which is already known from Eq. (25) as

V (0|reff ) = 4
[
r◦x(0) − r2

s γ (0)
]
, (26)

where reff is again hidden in rs, x(0) and γ (0) via Eq. (2). By
now, we have calculated all ingredients to write down the final
results for the benchmark setup, with and without coating, for
point-like and finitely sized probe particles. Point of departure
is the final cumulative G-PSD for a point-like probe particle
in the reff-coated material:

Pcum(r|reff ) = 1 − r2α(r) + r◦x(r) − r2
s γ (r)

r◦x(0) − r2
s γ (0)


(rmax − r),

(27)

with α(r), γ (r) given in terms of x(r) and β(r) specified by
Eqs. (22) and (23), and rmax given by Eq. (24). The classical
cumulative G-PSD is Pcum(r) = Pcum(r|0), which amounts to
replacing rs by r◦ in the derived expression. This yields also
the simple V (0) = V (0|0) = (4 − π )r2

◦ .
It is important to recall once again the meaning of

reff = rp + rc and the identities P(r|reff ) = P(r + rp; rp|rc) =
dPcum(r|reff)/dr as stated in Eq. (8). The general result (27)
contains three special cases: (i) the classical G-PSD for point-
like probe particles in the naked setup, P(r) = P(r|0) for r �
0, (ii) the generalized G-PSD for a finitely sized probe particle
of radius rp > 0 in the naked setup, P(r; rp|0) = P(r − rp|rp)
for r � rp, and (iii) the generalized G-PSD for a point probe
in the rc-coated setup, P(r; 0|rc) = P(r|rc) for r � 0. Addi-
tionally the analytical expression for the mean pore radius 〈r〉
can be derived from Eq. (7). We are plotting 〈r〉 for various
cases in Fig. 9.
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FIG. 9. Benchmark (analytic results). Mean pore radius 〈r〉 for
the benchmark configuration, obtained analytically. (a) 〈r〉 versus
rc for various probe particle radii rp. (b) 〈r〉 versus rc for various
coating thickness values rc. The sum reff = rc + rp is limited by rmax

for reff = 0, which is (
√

2 − 1)r◦ ≈ 0.41 r◦.
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FIG. 10. Benchmark. Analytic distribution functions for the
benchmark, Eq. (27), all exactly reproduced with the numerical
scheme of Sec. III D. (a) Pcum(r; rp|0) = Pcum(r − rp|rp) for various
probe radii rp in the naked setup. (b) G-PSD P(r; rp|0) corresponding
to the cumulative G-PSD shown in panel (a). (c) Pcum(r; 0|rc ) =
Pcum(r|rc ) for point-like probe particle at various coating thickness
values rc. (d) Pcum(r; rp|rc ) = Pcum(r − rp|rp + rc ) for probe particles
of radius rp = 0.1 at various coating thickness values rc.
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FIG. 11. Benchmark. The largest pore radius rmax is covering a
significant portion V (rmax|reff ) of the total pore volume V (0|reff ) for
the reff-coated benchmark setup, leading to a jump in the cumulative
G-PSD Pcum(r|reff ) from the value Pcum(rmax|reff ) to unity for r >

rmax. The effect of reff on this value is displayed here because it is an
important characteristics of the whole benchmark G-PSD. Because
reff can only take values between 0 and (

√
2 − 1)r◦ for the benchmark

(Fig. 8), we here plotted versus the scaled a dimensionless reff that
resides on the interval [0,1].

The Pcum(r; rp|0) (Fig. 10) starts being nonzero at r = rp,
then increases monotonically until it jumps from its value
Pcum(rmax|reff ) to unity at r > rmax. There are two values that
are particularly useful when comparing a numerical imple-
mentation of the G-PSD with the analytical solution. The
magnitude of Pcum(rmax|reff ) (Fig. 11), and the mean pore
radius (Fig. 9). For reff = 0, we obtain Pcum(rmax) = 2[2 −
(2 − √

2)π ]/(4 − π ) ≈ 0.37208 and 〈r〉 ≈ 0.3383 r◦.
As there are no spurious local minima, the analytic results

are fully consistent with the solution to the benchmark prob-
lem of aforementioned numerical algorithms (constrained
local optimization, grid-based brute force), according to the
chosen resolution of the numerical methods.

To summarize, in this section we have derived and pre-
sented analytic expressions for the interrelated V (r|reff),
P(r|reff ), Pcum(r|reff) for the benchmark with probe particles
of arbitrary radius rp and arbitrary coating thickness rc, while
reff = rc + rp, Eq. (1). The classical G-PSD P(r) is absorbed
by reff = 0.

B. Radical Voronoi applied to the benchmark

Consider a point p inside the void space of our naked
benchmark (Fig. 8) with r◦ = 1 and a probe particle radius
rp � rmax. For all p residing inside the largest inscribed cir-
cle of radius rmax, the radical N-Voronoi results in c = 0
and r(p; rp) = rmax, which is correct. Now consider a point
p = (px, py) with px > rmax located outside the central re-
gion, but for simplicity on the x axis, py = 0. Since x(r) =
1 − √

(2 + r)r is the position of the center of the r circle
that touches the naked material according to Eq. (22) with
rs = r◦ = 1, and because this r circle must just touch the
probe circle to make sure the probe is contained within the
r circle, and the r circle maximally large, we know that
the correct LPES radius r(p; rp) is given by the solution to
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x(r) + r = px + rp, hence

r(p; rp) = (px + rp − 1)2

2(px + rp)
(px > rmax, py = 0), (28)

while c = (cx, cy) with cx = px + rp − r(p; rp) and cy = 0 is
the center of the LPES sphere. If the radical Voronoi were ap-
plicable, this point c must be a vertex of either the N-Voronoi
or the (N + 1)-Voronoi networks. The N-Voronoi network has
a single vertex at the origin in Fig. 8 and is therefore ruled out.
The (N + 1)-Voronoi network has four vertices, only one of
them located on the positive x axis. It is sufficient to show that
the above c does not fulfill Eq. (17) to disqualify the radical
Voronoi method for calculating a proper G-PSD.

Inserting c = (cx, 0), p = (px, 0) and xi = (1,±1) into
Eq. (17) yields (cx − px )2 − r2

p = (cx − 1)2, further replacing
cx by px + rp − r(p; rp) shows that the equation defining the
vertices of the (N + 1)-Voronoi produces a vertex position at
the proper c only for the single case of px = 1 − rp. All other
points with px > rmax on the x axis are not capturing the LPES
radius correctly. Even worse, this single point px = 1 − rp is
the irrelevant point for which the pore radius vanishes, and
therefore does not exceed a finite rp. The radical Voronoi
does fail completely not only if p is located on the x axis,
but whenever the probe particle covers a point outside the
rmax circle. In general, the vertices of the (N + 1)-Voronoi
are located inside the material, except for the special case
of rp = r◦, that was most likely for this reason chosen in the
original work [34].

C. Difference between G-PSD and T-PSD

Torquato’s cumulative center-based Tc-PSD Pc
cum(r) =

1 − EV (r) is the probability of finding a region, which is a
spherical cavity of radius r (centered at some arbitrary point),
containing one or more particle centers [30]. Using our nota-
tion, we can write this as

Pc
cum(r) = 1 − V (0|r − r◦)

V (0| − r◦)
(r � 0), (29)

noting that V (0|r − r◦) = L2 − πr2 if r � r◦ for our bench-
mark, i.e., if the particle is negatively coated. The situation
was shown in Fig. 4(e). The often-employed surface-based
version of the above center-based Tc-PSD is just the r◦-shifted
variant of Pc

cum(r),

P s
cum(r) = 1 − V (0|r)

V (0|0)
= Pc

cum(r + r◦) (r � 0). (30)

The Tc-PSD based on area Tc in Fig. 4(e), and the Ts-PSD
based on area Ts in Fig. 4(f) are both qualitatively differ-
ent from the G-PSD not only in general, but also for the
benchmark, and the analytic expression is given by Eq. (11)
or Eq. (30) with Eq. (26). This yields for our benchmark,
recalling rs = r◦ + reff, and using ξ = r/r◦,

Pc
cum(r) =

√
ξ 2 − 1 − πξ 2

4
+ ξ 2 csc−1 (ξ ) (ξ �

√
2).

(31)
Note that Eq. (31) simplifies to Pc

cum(r) = πξ 2/4 for ξ � 1;
this expression is confirmed visually by Fig. 4(e). The largest
pore radius is r = √

2 r◦ using Pc(r), exceeding the true

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

(a)
G-PSD
T-PSDs

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

(b)
G-PSD
T-PSDs

FIG. 12. Triangle. For the equilateral triangle with unit side
length and a straight edges (r◦ = 0), the volume V (r|reff ) can be
calculated analytically, cf. Eq. (A4) and leads to the G-PSD quanti-
ties (a) Pcum(r) = [4(9 − √

3π )r2
1 ]/3, (b) P(r) = [8(9 − √

3π )r1]/3,
while both T-PSDs are identical in that case, (a) Pc

cum(r) =
P s

cum(r) = 4(
√

3 − 3r1)r1, and (b) P (r) = 4(
√

3 − 6r1). This fig-
ure demonstrates the huge qualitative difference between G-PSD and
T-PSDs. The same is true for our benchmark, cf. Eq. (31) versus
Eq. (27) for rs = r◦.

largest radius rmax by 341% while the largest radius according
to P s(r) is the same as for the G-PSD, however contrary to the
G-PSD, the volume accessible to the probe V (0|rmax) = 0.

For systems made of point-like particles, r◦ = 0, such as
the equilateral triangle treated in Fig. 4(a), the two T-PSDs
are identical by definition. The enormous differences between
the G- and T-PSDs we quantify in Fig. 12 for this particularly
simple example, for which analytic expressions are also avail-
able (Appendix 3).

D. Performance of the various G-PSD algorithms

Finally, we demonstrate how the newly proposed Voronoi-
based algorithm performs in practice, and how it compares
with the classical, grid-based approach, for both, the bench-
mark with N = 1, and a larger system with N = 1000. The
larger system is chosen in addition, as one might be still in
doubt about the relevance of the benchmark for the general
case. We begin by inspecting the benchmark (Fig. 13). This
figure quantitatively compares both the speed and quality of
the two algorithms at either identical values for M, or identical
computational cost. The Voronoi-based method outperforms
the grid-based algorithm in all aspects. The deviation analyzed
in panels (a) and (c) is measured against the analytical solu-
tion. Figure 13(b) highlights the CPU scaling behavior with
M. While the Voronoi-based algorithm has a computational
cost ∝M, the grid-based approach scales as M5/3 for this
example, and is more generally superlinear in M. To confirm
that all observations for the benchmark overtake to real sys-
tems made of a large number of particles, we inspect such
a configuration in Fig. 14. Indeed, the grid-based result con-
verges only slowly against the exact result, which is (at least
by eye) obtained using the Voronoi-based version at relatively
small M = 10N already. Still, a much larger M of the order
of 107 is required to generate a smooth P(r|0) for this system
(result not shown). While such a value for M is easily within
reach for the Voronoi-based method (several seconds), it poses
both a memory problem for the grid-based version, as well
as significantly enlarged computational cost (several hours).
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FIG. 13. Benchmark. Comparison (quality and speed) between methods to calculate the cumulative G-PSD Pcum(r|reff ) for the benchmark
setup with reff = 0: (i) the Voronoi-based global analytical optimization developed in this work (Sec. III D) with M shots, (ii) regular grid-
based brute force scan (Sec. III A) with M nodes. The deviation is a standard deviation calculated against the analytical solution (27). The
computational effort is strictly linear in M for the Voronoi-based version, and generally independent of N , while the grid-based approach is
∝M5/3 for this case, and also independent of N . The local constrained optimization approach is almost linear in M, but in addition linear in N
except for systems with very small pores, where a neighbor list can remove the dependency on N (Sec. III B).

These aspects rule out the grid-based approach completely for
systems with millions of particles.

V. CONCLUSIONS

We have presented a proper definition of the generalized G-
PSD, following the notions introduced by Gelb and Gubbins
[31]. Additionally we have described the relation of the G-
PSD to other definitions in particular the different definitions
based on the work of Torquato et al. [30], termed T-PSDs.
Calculating the generalized G-PSD and classical G-PSD is
a long-standing problem, as all known methods come with
severe limitations. Therefore, to shed light on this problem,
we set up a simple benchmark that is complex enough to
test implementations, and calculated the generalized G-PSD

and the T-PSDs analytically. With this at hand, we concluded
that the method based on radical Voronoi tessellation is un-
fit for calculating the G-PSD for complex geometries. The
grid-based approach and constrained optimization provide an-
swers but are computationally expensive. The latter fails to
locate the maxima at times especially in the case of com-
plex geometries, while the former becomes highly time- and
memory-consuming for high resolution.

We proposed a novel approach within the spirit of con-
strained optimization, which becomes a simpler problem to
solve by considering an additional constraint. This reduces
the search space of solutions for the optimization problem
considerably. We were also able to calculate the solution to the
optimization problem analytically for a given triangle located
on a Voronoi face, which could prove crucial to a significant
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FIG. 14. Multidisk. Comparison of convergence behavior for Voronoi-based and grid-based methods during the calculation of the
cumulative G-PSD Pcum(r|reff ) for the multidisk N = 1000 setup shown on the left. The right panel displays Pcum(r|0) versus r for various
choices of M, for both methods. While the grid-based result slowly converges against the Voronoi-based result, the latter remains basically
unaffected by M for sufficiently large M � N . The underlying reason is the absence of a grid for the Voronoi-based method. At the same time
it runs more efficiently and does not suffer from memory limitations. The present result just confirms the trends already available from our
benchmark (Fig. 13).
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increase in the efficiency and accuracy of determining gener-
alized G-PSD for any given spherical monodisperse system.
Instead of scanning the D-dimensional space in a random or
deterministic fashion, which comes with the inherent danger
of missing the global optimum, we can walk over a limited
number of relevant triangles, those in the neighborhood of the
test particle position. The size of the neighborhood is known
a priori from the radius of the largest pore, and the global
optimum is therefore found exactly (analytically) at relatively
low computational cost.

While the 2D code is part of our Supplemental Material
[42], we are planning to make the 3D code available as a
LAMMPS [43] option, and as a stand-alone C++ application
that makes use of the VORO++ library [44].
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APPENDIX: ANALYTICS RESULTS FOR THE
GENERALIZED PSD

Analytical results for the benchmark configuration have
been provided in Sec. IV A. Here we add additional results
for simple configurations that serve to test the accuracy of
the algorithms. As we have shown, the G-PSD, and also T-
PSDs, are trivially calculated from an analytic expression for
V (r|reff).

1. Circular or cylindrical void

The generalized G-PSD P©(r|reff) for a circular void with
radius r©, or equivalently, an infinitely long cylindrical three-
dimensional void with cylinder radius r©, is

P©(r|reff ) = δ(r − r© + reff ) (r � 0), (A1)

because the full circle is available to circles of any radius r as
long as r � r© − reff. The same result is obtained if we start
from V©(r|reff), the area accessible to circles of radius r in the
reff-coated substance. This is the area of a circle with radius
r© − reff as long as r � r© − reff, more formally,

V©(r|reff) = π (r© − reff )
2
(r© − reff − r). (A2)

Inserting this V©(r|reff) into Eq. (8) reproduces Eq. (A1). To
complete this, Eqs. (4), (8) then imply P©(r; rp|rc) = P©(r −
rp|rc + rp) = δ(r − rp − r© + reff ) = δ(r − r© + rc) for
r � rp, just highlighting the fact that the only effect of probe
radius rp on the G-PSD for this simple example is its absence
for r � rp.

2. Square-shaped and cubic void

The pore radius distribution for a square-shaped two-
dimensional void with linear size L, or equivalently, an
infinitely long rectangular three-dimensional void with square
cross-sectional area L2, is most conveniently obtained from
V�(r|reff), the area accessible to circles of radius r in the
reff-coated square, given by

V�(r|reff) = [(L − 2reff )
2 − (2r)2 + πr2]
(L − 2reff − 2r).

(A3)

Here (L − 2reff )2 is the void area of the coated square, and
r2 − πr2/4 is the area not reachable by an r circle in any of
the four corners of the square. The area vanishes as soon as r
exceeds L/2 − reff, giving rise to the Heaviside contribution.
Inserting this V�(r|rp) into Eqs. (4) and (8) yields the G-PSD
P�(r; rp|rc) and all related quantities analytically.

3. Triangular void

For an equilateral triangle with unit side lengths, one finds

V�(r|reff ) = V�(0|0) − (3
√

3 − π )r2 − 3reff(1 −
√

3reff ),
(A4)

with V (0|0) = √
3/4. This implies

Pcum
� (r|reff ) = 4(9 − √

3π )r2
1

3(1 − 2
√

3reff )2
, (A5)

and

P�(r|reff ) = dPcum
� (r|reff)

dr
= 8(9 − √

3π )r

3(1 − 2
√

3reff )2
. (A6)

The special case of reff = 0 is shown in Fig. 12.
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