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Accurately modeling dense plasmas over wide-ranging conditions of pressure and temperature is a grand
challenge critically important to our understanding of stellar and planetary physics as well as inertial confinement
fusion. In this work, we employ Kohn-Sham density functional theory (DFT) molecular dynamics (MD) to
compute the properties of carbon at warm and hot dense matter conditions in the vicinity of the principal
Hugoniot. In particular, we calculate the equation of state (EOS), Hugoniot, pair distribution functions, and
diffusion coefficients for carbon at densities spanning 8 g/cm3 to 16 g/cm3 and temperatures ranging from
100 kK to 10 MK using the Spectral Quadrature method. We find that the computed EOS and Hugoniot are in
good agreement with path integral Monte Carlo results and the SESAME database. Additionally, we calculate the
ion-ion structure factor and viscosity for selected points. All results presented are at the level of full Kohn-Sham
DFT-MD, free of empirical parameters, average-atom, and orbital-free approximations employed previously at
such conditions.
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I. INTRODUCTION

Carbon is one of the most abundant heavy elements found
in the interior of stars [1] and therefore one of the most studied
elements in warm dense matter physics [2–4]. Of particular
interest are the equation of state (EOS) and transport prop-
erties, as they are required for accurately modeling stars and
experiments targeting the recreation of stellar interiors in the
laboratory.

For many decades, modeling relied on analytical free-
energy models with material properties derived from the
theory of partially ionized plasmas [5,6]. A significant im-
provement was made with the development of Kohn-Sham
density functional theory (DFT) [7,8], which has enabled ro-
bust and predictive calculations of a wide range of material
properties from the first principles of quantum mechanics,
with no empirical parameters. It has been extensively ap-
plied to study the carbon phase diagram up to about 100 kK
[9–11] covering the range available to experiments up to the
Gbar range [12–16]. While it is possible to push standard
orbital-based DFT methods beyond this limit for high-density
plasmas, as has been demonstrated for hydrogen [17] and
recently for carbon [18], the comparably low-density range
below a compression ratio of five remains inaccessible. In
particular, the O(N3) bottleneck with respect to the number
of atoms or electronic states makes standard orbital-based
Kohn-Sham DFT particularly expensive at high temperature,
especially at low densities, even for small to moderate-sized
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systems [19]. Therefore, such conditions have remained gen-
erally inaccessible at this level of theory.

To overcome this practical limitation, approaches such
as path integral Monte Carlo (PIMC) [20,21], orbital-free
molecular dynamics (OFMD) [22], pseudoatom molecu-
lar dynamics (PAMD) [23,24], and extended first-principles
molecular dynamics [25] have been proposed. However, each
of these methods cannot treat lower temperature conditions
on the same level of theory leading to the use of a patchwork
of electronic structure methods to describe different condi-
tions of pressure and temperature for a number of materials
including carbon [2,10,26–28], the system of interest in this
work. This, in turn, requires careful stitching of equation of
state data and the use of ad hoc switching functions in the re-
gions where different methods overlap. A consistent ab initio
description that overcomes this problem and can be used to
establish or benchmark the region of applicability and accu-
racy of traditional models such as the one-component plasma
and the Yukawa model [29], or numerical approaches such
as the hypernetted chain approximation [30,31], is therefore
desirable. Moreover, such ab initio data can be used to inform
models [32] and train machine-learned force fields, as recently
done for carbon at extreme conditions [33].

The recently developed O(N ) Spectral Quadrature (SQ)
method [34,35] for large-scale Kohn-Sham DFT calculations,
as implemented in the SQDFT code [35–37], overcomes the
bottlenecks with respect to both temperature and system size
of diagonalization-based O(N3) Kohn-Sham methods [19],
allowing for a comprehensive and seamless quantum me-
chanical investigation over the full range of temperatures
and systems sizes required. The SQ method formulates DFT
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densities, energies, forces, and stresses as spectral integrals,
yielding a linearly scaling method whose cost decreases
with increasing temperature as the Fermi-Dirac distribution
becomes smoother and the density matrix becomes more
localized. This allows us to study systems at ultrahigh tem-
peratures in addition to making the method linear scaling
with the number of atoms. The SQ method extends the use
of many-particle Kohn-Sham DFT-MD electronic structure
calculations to temperatures and pressures where results can
be directly compared with high temperature methods such
as PIMC [38]. Its application facilitates the construction of
wide-range EOS [38,39], parametrization of effective one-
component plasma models [40], and enables the calculation of
transport properties in the ultrahigh temperature regime [37].

Leveraging this methodology, we calculate the Hugoniot
for carbon entirely based on Kohn-Sham DFT-MD from the
condensed matter regime up to the warm and hot dense matter
regime up to 10 MK. Additionally, we present benchmark
calculations for selected EOS points in comparison to the
widely used planewave Kohn-Sham DFT codes VASP [41–43]
and PWscf [44,45], as well as the SESAME 7831 EOS and
PIMC data. We also calculate structural and ionic transport
properties. In particular, we investigate the pair distribution
function and the structure factor at an isochore that corre-
sponds to approximately three-fold compression. The density
and temperature dependence of the diffusion coefficient is
explored and we calculate the viscosity close to the maximum
compression of the Hugoniot.

II. METHODS

A. Spectral Quadrature method

The Spectral Quadrature (SQ) method [34] is a density-
matrix based O(N ) method for the solution of the Kohn-Sham
equations that is particularly well suited for calculations at
high temperature. In the SQ method, all quantities of inter-
est, such as energies, forces, and stresses, are expressed as
bilinear forms or sums of bilinear forms which are then ap-
proximated by quadrature rules that remain spatially localized
by exploiting the locality of electronic interactions in real
space [46], i.e., the exponential decay of the density matrix
at finite temperature [47–50]. In the absence of truncation, the
method becomes mathematically equivalent to the recursion
method [51,52] for the choice of Gauss quadrature, while
for Clenshaw-Curtis quadrature, the classical Fermi operator
expansion (FOE) [53,54] in Chebyshev polynomials is re-
covered. Being formulated in terms of the finite-temperature
density matrix, the method is applicable to metallic and in-
sulating systems alike, with increasing efficiency at higher
temperature as the Fermi operator becomes smoother and the
density matrix becomes more localized [35]. O(N ) scaling
is obtained by exploiting the locality of the density matrix
at finite temperature, while the exact diagonalization limit
is obtained to desired accuracy with increasing quadrature
order and localization radius. Convergence to standard O(N3)
planewave results, for metallic and insulating systems alike, is
readily obtained [35,36].

While mathematically equivalent to classical FOE methods
in the absence of truncation for a particular choice of quadra-

ture, the more general SQ formulation affords a number of
advantages in practice [35,36]. These include the following.
(1) The method is expected to be more robust since it explic-
itly accounts for the effect of truncation on the Chebyshev
expansion. (2) The method computes only the elements of the
density matrix needed to evaluate quantities of interest (e.g.,
diagonal elements to obtain the electron density, and only
those off-diagonal elements that correspond to nonzero values
in the nonlocal pseudopotential projectors for the nonlocal
atomic forces) rather than computing the full density matrix
(to specified threshold) as in FOE methods. (3) The method
computes the Fermi energy without storage or recomputation
of Chebyshev matrices as required in FOE methods. (4) The
method admits a decomposition of the global Hamiltonian
into local sub-Hamiltonians in real space, reducing key com-
putations to local sub-Hamiltonian matrix-vector multiplies
rather than global full-Hamiltonian matrix-matrix multiplies
as in FOE methods. Since the associated local multiplies are
small (according to the decay of the density matrix) and inde-
pendent of one another, the method is particularly well suited
to massively parallel implementation, whereas the global
sparse matrix-matrix multiplies required in FOE methods
pose significant challenges for parallel implementation [55].

As discussed above, the SQ method circumvents the calcu-
lation of the Kohn-Sham orbitals and eigenvalues and directly
evaluates the quantities of interest such as energies, forces,
and stresses through spatially localized quadrature rules. Con-
sequently, properties that explicitly depend on orbitals and/or
eigenvalues, such as thermal and electrical conductivities, and
cannot be expressed in terms of analytic functions of the
density matrix, are not readily obtainable by the present SQ
formulation.

B. Numerical details

In the present work, we employ the massively parallel
SQDFT code [36] for high-temperature Kohn-Sham
calculations. SQDFT implements the SQ method in real
space using a high-order finite difference discretization,
wherein sub-Hamiltonians are computed and applied for each
finite-difference grid point. For efficient molecular dynamics
(MD) simulations, Gauss quadrature is employed for the
calculation of density and energy in each SCF iteration
whereas Clenshaw-Curtis quadrature is employed for the
calculation of atomic forces and stress tensor [35,37]. The
SQDFT molecular dynamics simulations were carried out for
a series of 64-atom C unit cells at densities between 8 and 16
g/cm3 and temperatures ranging from 100 kK to 10 MK. We
employ two different optimized norm-conserving Vanderbilt
(ONCV) [56] pseudopotentials depending on the temperature,
i.e., we consider only the 2s2p valence below 750 kK and
switch to an all-electron ONCV pseudopotential for higher
temperatures to correctly account for the partial ionization of
the 1s states. Exchange and correlation were modeled in the
local density approximation (LDA) [57]. NVT simulations
were carried out using a Nosé-Hoover thermostat [58,59]
with ∼200–2000 steps for equilibration followed by ∼3000–
30 000 steps of production. The timestep of the simulations
was chosen between 0.2 fs for low temperatures and 0.02 fs
for high temperatures. A finite difference grid spacing of
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∼0.1 bohr (commensurate with unit cell dimensions), Gauss
and Clenshaw-Curtis quadrature orders of 16–80 and 32–120,
respectively, and localization radius of 0.5–3.5 bohr were
employed in the SQ calculations to obtain energies to less
than 0.5 Ha/atom and pressures to 1.5% error or less. Smaller
discretization errors can be obtained as needed by increasing
grid resolution, localization radius, and quadrature orders.

Whenever computationally feasible, we compare our
SQDFT results with similar planewave results computed with
VASP [41–43] and PWscf contained in the QUANTUM ESPRESSO

package [44,45]. The simulation parameters were chosen to
allow a direct comparison to the SQDFT calculations and
hence, the same convergence criteria and accuracy levels were
applied. Both planewave codes were run between 2000 K and
200 000 K with 64 atoms, the Baldereschi Mean value point,
and the LDA exchange-correlation functional [57]. We used
the hard PAW pseudopotential in VASP, while we employed
the same ONCV pseudopotential for the SQDFT and PWscf
calculations. In the VASP calculations, we used a cutoff of
1000 eV and the PWscf simulations were run with 100 Ry and
400 Ry cutoffs for the wave functions and charge densities,
respectively. All planewave Kohn-Sham DFT-MD simulations
were run for at least 20 000 timesteps with timestep sizes be-
tween 0.1 fs and 0.4 fs depending on temperature. We applied
a Nosé-Hoover thermostat in VASP, while PWscf was run with
a Berendsen thermostat.

It is worth noting that though the SQ method is capable
of performing simulations at low as well as high tempera-
ture [35–37], we restricted its usage to temperatures above
100 kK here. This is because the computational prefactor of
the SQ method grows rapidly with decrease in temperature,
making standard diagonalization-based methods or codes the
more efficient choice for that regime. In particular, the re-
quired quadrature order has an inverse dependence on the
temperature [34] and the truncation radius also increases with
decreasing temperature [50], i.e., the electronic interactions
become more delocalized. It is also worth noting that the
computational cost of the SQ method is not directly influenced
by the density.

III. THERMODYNAMIC PROPERTIES

A. Equation of state

The equation of state (EOS) data are directly calculated
by averaging the thermodynamic properties pressure, energy,
and temperature over the entire simulation length after a short
equilibration period. In the following, we focus on the thermal
equation of state and the Hugoniot, which were computed
entirely within the Kohn-Sham framework.

In Fig. 1, we present our results for the thermal EOS that
was calculated from 100 kK up to 10 MK and from 8 g/cm3 to
16 g/cm3 using the SQ method, as implemented in the SQDFT

code. The plot also contains our benchmarking results using
the planewave Kohn-Sham DFT-MD codes VASP and PWscf,
as well as the wide-range EOS SESAME 7831 for liquid carbon
[60] and the PIMC data available in the literature [10,20,28].
The upper panel illustrates the absolute pressures and the
lower panels show the difference of SESAME 7831, PIMC,
VASP, and PWscf relative to SQDFT from left to right. The color
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FIG. 1. Comparison of the thermal equation of state for car-
bon based on different methods. Upper panel: Pressure calculated
with SQDFT (circles) and the planewave Kohn-Sham DFT-MD codes
PWscf (triangles) and VASP (squares). PIMC data (diamonds) [10,28]
and the SESAME 7831 (colored lines) [60] data are shown for com-
parison. Lower panels: Pressure difference between SQDFT and other
approaches using the same color code and symbols as in the upper
panel.

code in both panels refers to the temperatures indicated as
numbers in the upper panel. Note that the SESAME results are
shown as lines in the upper panel and as crosses in the lower
left panel.

The isotherms of the SESAME 7831 EOS model show
overall a monotonic increase of pressure with increasing den-
sity. This behavior is recovered by all considered electronic
structure codes, which are generally in good agreement as
depicted by the maximum deviation of 4% in the lower panels.
These panels can be divided into two groups, i.e., on the
left we present the comparison to two commonly used EOS
for carbon at high temperatures and on the right we show
the benchmark against widely used planewave Kohn-Sham
DFT-MD codes using different types of pseudopotentials. The
two rightmost panels show that the SQ method agrees well
with the planewave results for 100 kK and 200 kK. The
smallest deviations are found for PWscf, with EOS results
differing by less than 0.6% from the SQDFT EOS results,
while using the same ONCV pseudopotential as SQDFT. Note
that the deviation could be further reduced by choosing
stricter convergence criteria for both codes [35]. Compar-
ing to the VASP code, which uses PAW rather than ONCV
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FIG. 2. Hugoniot curve entirely based on Kohn-Sham DFT-MD
by combining SQDFT (circles) and PWscf (triangles) as calculated in
this work, compared to wide-range equations of state results using
SESAME 7831 (solid line) [60] and FPEOS (dashed line) [28]. The
indicated temperatures refer to the SQDFT and PWscf points. Inset:
Comparison of pressure over compression ratio including pseu-
doatom models BEMUZE and PAMD as well as the extended FPMD
method [2].

pseudopotentials, we find a slightly larger deviation of typ-
ically about 1% and with a maximum of less than 2%.
Additionally, all values are positive, which indicates that the
ONCV pseudopotential gives systematically slightly smaller
values than the PAW pseudopotential. We find a significantly
larger, yet still satisfactory, deviation of up to 4% compar-
ing our SQDFT EOS results to the SESAME 7831 EOS model
which is constructed using a decomposition consisting of a
temperature-independent part (sometimes referred to as the
cold curve), a ion thermal part and an electron thermal part
based on average-atom (INFERNO) DFT calculations [61]. A
reparametrization of that underlying model may yield closer
agreement with full Kohn-Sham DFT.

For the systems where it can be performed, PIMC is
thought to be the most accurate first-principles simulation
technique to study the equilibrium properties of quantum sys-
tems in high temperature plasma states. It includes the effect
of bonding, ionization, exchange-correlation, and quantum
degeneracy [10]. However, this method becomes prohibitively
expensive for systems with high atomic number and at lower
temperatures when the free-particle nodal surface is not as
good of an approximation and the sampling efficiency goes
down. With the SQ method we can reach temperatures where
both Kohn-Sham DFT-MD and PIMC overlap. We find the
Kohn-Sham DFT-MD pressures to be in excellent agreement
with the PIMC data, with differences of less than 0.9%,
well within the targeted 1.5% discretization error of the
present calculations. This comparison is crucial because the
approximations inherent in Kohn-Sham DFT-MD and PIMC
calculations are altogether different, allowing us to verify that
certain features of our results such as the location of the maxi-
mum compression in the Hugoniot curve (see Fig. 2) are good
indicators of the true EOS of carbon in the WDM regime.

B. Hugoniot

The EOS data allow us to directly determine the Hugoniot
curve by relating internal energy u, pressure P, and density ρ

of the initial (subscript 0) and shocked (subscript 1) state

u1 − u0 = 1

2
(P1 + P0)

(
1

ρ0
− 1

ρ1

)
. (1)

The above equation is solved for every isotherm considering
diamond at a density of 3.515 g/cm3, a temperature of 300 K,
and a pressure of 1 bar as an initial state. The internal energy
of the initial state was determined to be −1 249.378 kJ/g
using PWscf with the 2s2p valence ONCV pseudopotential.
The resulting full Kohn-Sham DFT-MD Hugoniot is plotted
in Fig. 2. The blue triangles illustrate the planewave DFT-MD
points between 10 kK and 200 kK and the orange circles
represent the SQDFT results between 100 kK and 10 MK.
Both codes are in very good agreement for the 200 kK point,
while the PWscf point is slightly shifted towards a 0.04 g/cm3

higher density at 100 kK, which results in a pressure deviation
of 1%. Overall, our results recover the general behavior of
the SESAME 7831 and FPEOS [28] Hugoniots shown as solid
and dashed lines, respectively, in Fig. 2. Note that the FPEOS

combines planewave Kohn-Sham DFT-MD data at low tem-
peratures with the PIMC data [10,20] previously discussed
in Fig. 1 at high temperatures. The SESAME and the PIMC
Hugoniots are very similar up to 300 Mbar, but increasingly
deviate for higher pressures with a maximum compression of
4.46 and 4.51, respectively. This compression maximum and
subsequent slope change of the Hugoniot curve are due to the
ionization of the 1s state, which is captured by all plotted data
sets. Our Hugoniot curve agrees closely with the SESAME and
FPEOS curves up to 200 kK and yields slightly lower pressures
up to 750 kK. For the highest temperatures, our results fall
between the FPEOS and SESAME curves. To further investigate
this difference at high pressures, we compare our Hugoniot
curve to other theories that are closely related to Kohn-Sham
DFT in the inset of Fig. 2. In particular, we compare to the
datasets gathered by Gaffney et al. [2], i.e., extended FPMD
and pseudoatom codes such as PAMD and BEMUZE. All
approaches including ours reproduce the general trend in-
duced by the 1s pressure ionization in this high-compression
region and hence we cannot differentiate between those equa-
tions of state. Considering the small difference observed in
the compression maximum of these curves, it would be also
extremely challenging to differentiate experimentally between
the different approaches.

Nevertheless, the excellent agreement of SQ with the
PIMC data suggests that Kohn-Sham DFT-MD using the SQ
method provides a promising approach to calculate the EOS
of materials in the warm dense matter regime, in particular for
higher atomic number systems out of reach for PIMC.

IV. STRUCTURAL PROPERTIES

The structural properties of the high-temperature carbon
plasma are accessible via the pair distribution function

g(r) = V

4πr2N (N − 1)

〈
N∑

i=1

N∑
j=1
j �=i

δ(r − |�ri − �r j |)
〉

, (2)
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FIG. 3. Pair distribution function of carbon obtained with SQDFT

(colored lines) along the 10 g/cm3 isochore between 100 kK and 10
MK. For comparison, the pair distribution functions calculated with
VASP (filled gray squares) and PWscf (open colored circles) are shown
for the two lowest temperatures. Note that the curves above 100 kK
are shifted along the y axis to improve visibility.

with particle number N , volume V , radial distance r, and the
particle positions �ri and �r j . The brackets 〈·〉 denote the time
average and δ describes the Dirac delta function. The results
obtained from the molecular dynamics trajectories computed
with SQ along the 10 g/cm3 isochore for all considered tem-
peratures are shown in Fig. 3 as colored lines.

The 100 kK curve shows a broad peak at about 1.15 Å,
which indicates that the carbon atoms are still significantly
correlated at this temperature. This broad peak is a remnant of
a nearest-neighbor peak as it can be found in solids or liquids.
The bonding distance of carbon is 1.54 Å in uncompressed
diamond, which shrinks to about 1.10 Å at 10 g/cm3 and
5000 K.

The broad peak becomes less pronounced at 200 kK and
shifts slightly towards smaller interatomic distances. As the
temperatures increases further, the peak vanishes and the pair
distribution functions extend to increasingly small distances.
This behavior is typical for a rather weakly coupled plasma
that is dominated by the kinetic energy and binary collisions,
as is to be expected under these thermodynamic conditions
with a compression factor of 2.85.

Additionally, the pair distribution functions calculated
with VASP and PWscf at 100 kK and 200 kK are shown in
Fig. 3 to benchmark our SQ results. The curves calculated
with the three different codes agree very well, as expected
among systematically convergent methods. Particularly, the

0 2 4 6 8 10
k [Å-1]

0.0

0.3

0.6

0.9

1.2

S(
k)

SκΤ(0)
Sn(k)
Sg(k)

0 2 4 6 8 100.0

0.3

0.6

0.9

1.2

S(
k)

fit

0 2 4 6 8 10
k [Å-1]

0.0

0.3

0.6

0.9

1.2
S(

k)
N = 8000

N = 8

N = 64

FIG. 4. Static structure factor for 8 (upper panel), 64 (middle
panel), and 8000 (lower panel) carbon atoms at 10 g/cm3 and 500
kK. The filled blue circles indicate the k = 0 limit directly obtained
from the equation of state results of the 64 atom calculations.

pair correlation functions computed with PWscf are almost
indistinguishable from the respective SQ curves as these cal-
culations employ the same ONCV pseudopotential. Note that
the planewave simulations with 64 carbon atoms become too
computationally demanding at 10 g/cm3 above 200 kK and
therefore, we rely entirely on SQ at high temperatures.

The pair distribution function is not directly accessible in
experiments, however, the closely related structure factor can
be measured. In particular, the static ion-ion structure factor
can be directly calculated by Fourier transforming the pair
distribution function [11]

Sg(k) = 1 + N

V

∫ ∞

−∞
d�r g(r)ei�k·�r . (3)

The static ion-ion structure factor S(k) can only be calculated
for small wave vectors k, when the simulation box, and in turn
the particle number, are chosen sufficiently large. Therefore,
we exploit the capability of large-scale Kohn-Sham DFT-MD
simulations performed by SQ and calculate the static ion-ion
structure factor with up to 8000 carbon atoms. In Fig. 4,
we show the results for different particle numbers as dashed
orange lines. The 8000 atom calculation agrees well with the
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predictions based on smaller cell sizes, but one significant
advantage becomes evident: we can reach very small k values
that extrapolate nicely to the compressibility limit SκT (k =
0) = κT NkBT/V , where kB is the Boltzmann constant and κT

is the compressibility. This is of crucial importance for x-ray
Thomson scattering experiments [63–65] and the measure-
ment of ion acoustic modes [62]. The small k behavior for
a given simulation size can even be further improved by using
an alternative method to calculate the static ion-ion structure
factor

Sn(k) = 1

2πN

∫ ∞

−∞
dω

∫ ∞

−∞
dt 〈n�k (0) n−�k (t )〉eiωt , (4)

based on the correlation function of the Fourier-transformed
ion density n�k (t ) = ∑N

i=1 e−i�k·�ri (t ) [62]. The results and fits are
shown as black crosses and solid lines in Fig. 4.

V. TRANSPORT PROPERTIES

A. Diffusion coefficient

The diffusion coefficient is evaluated for each density-
temperature point by integrating the velocity autocorrelation
function

D = 1

3N

∫ ∞

0
dt

N∑
i=1

〈�vi(0) · �vi(t )〉, (5)

where �vi is the three-dimensional velocity vector of the ith
particle.

The calculated diffusion coefficients are shown in Fig. 5.
In the upper panel, we show the diffusion coefficients derived
from the SQDFT trajectories as colored circles for all consid-
ered isotherms. The values along each isotherm decrease only
slightly with density, which can be assumed to be linear over
the considered density range. The linear fits of the diffusion
coefficients are illustrated as colored curves. From these fits,
we obtain the diffusion coefficients along the Hugoniot curve,
which are indicated by black crosses.

In the lower panel, we show an Arrhenius plot of the
diffusion coefficients obtained with SQDFT and VASP along
the 10 g/cm3 isochore. We find our results to behave funda-
mentally differently compared to the Arrhenius law ln(D) ∼
EA/(kBT ) that breaks down over large temperature scales and
in high-temperature systems with thermal energies that are
significantly higher than the activation energy EA. Therefore,
we study the temperature dependence of the carbon diffusion
coefficients along the 10 g/cm3 isochore with a fit of the
form ln(D) ∼ −αln(1/T ), which is equivalent to D ∼ T α

that was previously used in high-temperature studies [67].
This functional form gives the known limiting cases of the
Einstein-Stokes fluid for α = 1.0 and the Maxwell-Boltzmann
gas for α = 0.5. We find a best fit value of α = 0.96 consider-
ing the SQDFT and VASP results combined. The value is similar
to the reported value of α = 0.95 for the heavy particles in hot
dense HCNO plasmas considering temperatures up to 200 eV
(2.32 MK) [67]. Hence, the Kohn-Sham DFT-MD data agree
with the expected Einstein-Stokes trend indicating a fluid-like
behavior of the carbon plasma despite the high temperatures.
Our presented Kohn-Sham DFT-MD results in the lower panel
of Fig. 5 follow the trend of the data discussed in a com-
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FIG. 5. Diffusion coefficients calculated for the considered den-
sities and temperatures. Top panel: Density dependence of the
diffusion coefficients obtained with SQDFT for various temperatures
up to 10 MK. The Hugoniot points are marked by black crosses.
Bottom panel: Arrhenius plot to illustrate the temperature behavior
of the diffusion coefficient along the 10 g/cm3 isochore combin-
ing planewave and Spectral Quadrature DFT. For comparison, we
show the result by White and Collins [66] as well as the dataset by
Grabowski et al. [3]. The solid black line illustrates the best T α fit of
our Kohn-Sham DFT-MD data.

parative study by Grabowski et al. [3], where the error bars
indicate the spread of the predictions by the considered mod-
els and codes, which includes, for example, orbital-free MD
and average atom models. Unfortunately, the datasets of the
different approaches presented in that study are not available
individually, so we cannot differentiate further. We can only
compare directly to the mixed deterministic-stochastic DFT
value at 10 g/cm3 and 10 eV (116 kK) provided by White
and Collins [66], which is consistent with our calculations.
Additionally, we find the diffusion coefficients calculated with
the two different Kohn-Sham DFT-MD codes at 100 kK and
200 kK agree within 5%. This agreement is at the level ex-
pected given the statistical errors in the SQ DFT-MD results
(Table I), comparable errors in the VASP DFT-MD results,
and different pseudopotentials employed in the SQ and VASP

calculations.

B. Viscosity

The viscosity η is calculated by integrating the ensemble
average of the autocorrelation functions defined via the stress

015306-6



PROPERTIES OF CARBON UP TO 10 MILLION KELVIN … PHYSICAL REVIEW E 107, 015306 (2023)

0 5 10 15 20
t [fs]

0
10
20
30
40
50
60
70

η 
[m

Pa
s]

0
10
20
30
40
50
60
70

η 
[m

Pa
s]

0 5 10 15 20
t [fs]

0
10
20
30
40
50
60
70

η 
[m

Pa
s]

8 atoms: 30.0 mPas  +/- 1.2 mPas

64 atoms: 42.8 mPas +/- 1.8 mPas

216 atoms: 42.2 mPas +/- 1.2 mPas

FIG. 6. Viscosity of carbon at 16 g/cm3 and 2 MK calculated
for different unit cell sizes containing 216 (top), 64 (middle), and
8 (bottom) atoms. The thin lines represent the individual SQDFT

simulations whose average is shown as thick line. The final values
for each case are given as filled circles with 1σ error bars.

tensor

η = V

5kBT

∫ ∞

0
dt

5∑
i=1

〈σi(0) · σi(t )〉. (6)

The five individual autocorrelation functions are given by the
three off-diagonal stress tensor components σxy, σyz, σzx, and
the linear combination of the diagonal components (σxx −
σyy)/2 and (σyy − σzz )/2 [68]. Viscosity converges in general
much more slowly than the diffusion coefficient and hence,
we only demonstrate its calculation and the important finite-
size effect for one plasma condition. In particular, we evaluate
the viscosity at 16 g/cm3 and 2 MK, which is close to the
maximum compression of our calculated Hugoniot curve (see
Fig. 2). We consider different system sizes containing 8, 64,
and 216 carbon atoms. For each system size, we use ten differ-
ent starting configurations and run every individual simulation
for 24 000 timesteps. The results of those individual runs are
shown as thin lines in Fig. 6 and their averages are illustrated
as thick lines. All thin curves show a very strong variation
independent of the considered particle number. This shows the
importance of sampling viscosity properly by running multi-
ple simulations or one very long simulation with more than
100 000 timesteps. The final viscosity value for each system
is marked as filled circle at t =7.5 fs. The calculated values of

42.2 mPas and 42.8 mPas for 216 and 64 atoms, respectively,
agree very well within the error bars. At the same time, we
find a value of 30.0 mPas for eight atoms, which deviates more
than 25% from the converged values. Therefore, we conclude
that eight atoms are not sufficient to study viscosity at these
high-temperature conditions, even though the plasma is only
mildly correlated and almost classical.

VI. CONCLUSION

In this work, we studied the thermodynamic and transport
properties of carbon up to temperatures of ten million kelvin
using full Kohn-Sham density functional theory molecular
dynamics. By employing the Spectral Quadrature method, we
are able to cover the principal carbon Hugoniot spanning con-
ditions from the nonclassical to the classical plasma regime,
all at the Kohn-Sham level of theory. Previous such ab initio
studies employing conventional planewave based Kohn-Sham
methods were restricted to sufficiently high densities at tem-
peratures above 1 MK or temperatures well below the Fermi
temperature for typical densities along the Hugoniot.

In the considered thermodynamic range, we find our EOS
results in very good agreement with planewave Kohn-Sham
DFT-MD, reproducing PWscf pressures along the 100 kK and
200 kK isotherms within 0.6%. We also find excellent agree-
ment with PIMC results at temperatures of 1 MK and above.
This is particularly notable because the theoretical approach
to solve the many-particle problem in PIMC is inherently
different and both approaches rely on complementary approx-
imations (DFT exchange-correlation approximation versus
PIMC fixed node approximation). Yet they agree to within
0.9% for the thermal EOS leading to a similar description of
the Hugoniot and giving a measure of the uncertainty in the
EOS of warm dense carbon.

One of the major benefits of an efficient many-particle
method is the ability to generate ionic structural and transport
properties by performing molecular dynamics simulations,
e.g., pair distribution function and diffusion coefficients. For
carbon under the conditions studied here, these properties
reflect the nature of a liquid-like and rather weakly coupled
carbon plasma that reproduces the Einstein-Stokes diffusion
behavior. Furthermore, the O(N ) scaling of the SQ method
allows us to treat large particle numbers. Hence, we are able
to explore properties that are notoriously hard to converge,
such as viscosity, and access the low-k limit of the ion-ion
structure factor, which in turn is related to the isothermal
compressibility. The structure factor can be measured in x-ray
Thomson scattering experiments, which allow the derivation
of plasma parameters such as temperature, density, and ion-
ization state. Therefore, the approach used here may provide
useful information in the interpretation of such measurements.

Some of the results presented in this work can likely be
obtained by computationally less expensive approaches such
as Average Atom models or the Hypernetted Chain Approx-
imation [30,31], which are expected to provide a faithful
representation of the EOS for temperatures sufficiently above
the Fermi temperature [2]. However, as with all more approx-
imate methods, their accuracy and region of applicability are
not known a priori. Fully ab initio calculations as presented
here hence provide important benchmarks to clarify the ac-
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curacy and applicability of more approximate methods, as
well as providing key data which may be used to inform and
improve such methods.

Future work will be directed towards other ablator ma-
terials for inertial confinement fusion experiments such as
beryllium and hydrocarbons and higher-Z materials such as
iron and nickel.
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APPENDIX: SQDFT DATA

The EOS data and diffusion coefficients computed for 64
carbon atoms with SQDFT are summarized in Table I. The
data of the lowest three isotherms were obtained with the 4-
electron ONCV pseudopotential, while the higher temperature
data were calculated with the all-electron ONCV pseudopo-
tential. The energies of the all-electron potential are shifted
by a constant energy of 6885.81 kJ/g to match the Hugoniot
starting condition, consistent with the four-electron pseudopo-
tential.

TABLE I. SQDFT equation of state data (density ρ, temperature T , pressure P, internal energy u) and diffusion coefficients D. The 1σ errors
Perr, uerr, and Derr are given for the pressure, internal energy, and diffusion coeffients, respectively.

ρ[g/cm3] T[K] P[Mbar] Perr[Mbar] u[kJ/g] uerr[kJ/g] D[cm2/s] Derr[cm2/s]

8.0 100 000 29.237 0.025 −914.08 0.38 0.00423 0.00012
9.0 100 000 36.183 0.020 −897.09 0.25 0.00388 0.00012
10.0 100 000 43.461 0.024 −878.64 0.26 0.00353 0.00010
9.0 200 000 59.514 0.013 −517.70 0.17 0.00728 0.00022
10.0 200 000 69.299 0.020 −504.75 0.40 0.00713 0.00027
11.0 200 000 79.855 0.018 −488.49 0.18 0.00680 0.00036
10.0 500 000 157.68 0.02 853.47 0.29 0.0167 0.0005
11.0 500 000 176.62 0.03 858.82 0.29 0.0156 0.0005
12.0 500 000 196.24 0.03 866.98 0.32 0.0145 0.0004
13.0 500 000 216.17 0.04 875.03 0.46 0.0145 0.0006
10.0 750 000 238.84 0.03 2280.0 0.4 0.0235 0.0013
12.0 750 000 293.56 0.06 2256.7 0.7 0.0217 0.0006
13.0 750 000 321.45 0.06 2248.1 0.7 0.0204 0.0010
15.0 750 000 379.25 0.06 2245.0 0.6 0.0197 0.0010
10.0 1 000 000 329.96 0.07 4034.6 0.9 0.0310 0.0019
12.0 1 000 000 400.99 0.08 3946.0 0.9 0.0303 0.0014
15.0 1 000 000 511.61 0.08 3866.5 0.8 0.0250 0.0012
8.5 2 000 000 658.41 0.04 12 985 0.7 0.0589 0.0003
10.0 2 000 000 771.56 0.05 12 681 0.8 0.0543 0.0006
13.0 2 000 000 998.99 0.16 12 215 1.8 0.0460 0.0009
16.0 2 000 000 1 228.3 0.3 11 872 2 0.0424 0.0010
8.5 5 000 000 1 928.9 0.2 37 853 4 0.145 0.004
10.0 5 000 000 2 259.9 0.2 37 483 4 0.139 0.006
13.0 5 000 000 2 920.3 0.3 36 886 3 0.113 0.003
16.0 5 000 000 3 578.2 0.3 36 393 3 0.100 0.003
8.5 10 000 000 4 023.2 0.3 75 558 5 0.372 0.017
10.0 10 000 000 4 722.2 0.4 75 222 7 0.318 0.023
13.0 10 000 000 6 120.2 0.6 74 705 8 0.296 0.020
16.0 10 000 000 7 513.8 0.7 74 236 8 0.243 0.009
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