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We present a numerical formulation for the solution of nonisothermal, compressible Navier-Stokes equa-
tions with thermal fluctuations to describe mesoscale transport phenomena in multispecies fluid mixtures. The
novelty of our numerical method is the use of staggered grid momenta along with a finite volume discretization of
the thermodynamic variables to solve the resulting stochastic partial differential equations. The key advantages of
the numerical scheme are that it significantly simplifies the discretization of diffusive and stochastic momentum
fluxes into a more compact form, and it provides an unambiguous prescription of boundary conditions involving
pressure. The staggered grid scheme more accurately reproduces the equilibrium static structure factor of hy-
drodynamic fluctuations in gas mixtures compared to a collocated scheme described previously by Balakrishnan
et al. [Phys. Rev. E 89, 013017 (2014)]. The numerical method is tested for ideal noble gases mixtures under
various nonequilibrium conditions, such as applied thermal and concentration gradients, to assess the role of
cross-diffusion effects, such as Soret and Dufour, on the long-ranged correlations of hydrodynamic fluctuations,
which are also more accurately reproduced compared to the collocated scheme. We numerically study giant
nonequilibrium fluctuations driven by concentration gradients and fluctuation-driven Rayleigh-Taylor instability
in gas mixtures. Wherever applicable, excellent agreement is observed with theory and measurements from the

direct simulation Monte Carlo method.
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I. INTRODUCTION

The intrinsic thermal (Brownian) motion of the constituent
atoms and molecules in a fluid at equilibrium results in hydro-
dynamic fluctuations that are well-understood from the results
of classical thermodynamics [1]. When a fluid is maintained in
a nonequilibrium state, such as under macroscopic gradients
of temperature, chemical potential, or velocity such as in shear
flow [2], the influence of these hydrodynamic fluctuations
can be enhanced by several orders of magnitude [3,4]. Such
enhancement occurs as a result of spatial coupling between
the fluctuations of hydrodynamic variables, such as between
temperature and velocity fluctuations in the presence of a ther-
mal gradient [5,6], and between concentration and velocity
fluctuations in the presence of a concentration gradient [7].
These enhancements can also be induced by cross-diffusion
phenomena such as thermodiffusion (Soret effect) [8,9]. The
long-ranged, scale-invariant structure of these correlated fluc-
tuations is apparent from their structure factor that exhibits
a power-law divergence [3]. These “giant fluctuations” have
been experimentally measured using shadowgraphy imaging
of the diffusive interface of two miscible fluids in micro-
gravity environments [10], and their spatial extent is found
to be only limited in size by either gravity [11] or finite sys-
tem size [12]. The long-ranged nature of these hydrodynamic
correlations introduces strong finite-size effects resulting in
intriguing physical phenomena such as enhanced diffusive
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transport [7,13], and fluctuation-induced Casimir-like forces
[14] in nonequilibrium fluids. Hydrodynamic fluctuations also
play a fundamental role in the vicinity of hydrodynamic insta-
bilities such as Rayleigh-Benard [15], Rayleigh-Taylor [16],
Richtmeyer-Meshkov [17], and Kelvin-Helmbholtz [18]. Fur-
thermore, recent simulations have demonstrated that thermal
fluctuations dominate the energy spectrum in the dissipation
range of turbulence at length scales comparable to the Kol-
mogorov length [19,20].

Particle-based numerical methods such as molecular dy-
namics (MD) and direct simulation Monte Carlo (DSMC)
naturally capture the thermal fluctuations in fluids, but are
computationally expensive even for coarse-grained meth-
ods such as the DSMC [21]. Specifically, the timescale of
particle motion is significantly shorter than the timescale
of hydrodynamic evolution, thus rendering many of these
methods intractable for various problems of practical inter-
est. Additionally, there are several outstanding challenges in
simulating cross-diffusion phenomena using particle-based
methods [22], which are crucial in multispecies transport.

Alternatively, thermal fluctuations can be introduced in a
continuum framework by including a stochastic forcing in
the Navier-Stokes conservation equations, as was originally
proposed by Landau and Lifshitz [23], and later extended to
the case of fluid mixtures by Cohen et al. [24], and by Ottinger
in the context of the GENERIC framework [25]. In such a fluc-
tuating hydrodynamics (FHD) formulation, a stochastic flux is
added to each dissipative flux associated with the transport of
species mass, momentum and energy in a manner that satisfies
the fluctuation-dissipation balance [26]. As such, the resulting
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system of stochastic partial differential equations (PDEs) en-
sures conservation at the microscopic scale while reproducing
the Gibbs-Boltzmann distribution of thermal fluctuations in
accordance with equilibrium statistical mechanics. The frame-
work of FHD has been useful in understanding the behavior
of fluids in various nonequilibrium conditions [3,27], but the-
oretical calculations have been feasible only with simplifying
assumptions for boundary conditions and transport properties
as well as ignoring the nonlinear coupling between hydrody-
namic fields and cross-diffusion effects (such as the Dufour
effect [28]).

Various numerical methods have been proposed to solve
FHD, starting with early works for a simple scheme to solve
the stochastic heat equation [29] and one-dimensional lin-
earized fluctuating Navier-Stokes equation [5]. Subsequently,
finite-volume methods were developed, such as De Fabritiis
et al. [30] for compressible isothermal fluids, and a collocated
finite-volume method for compressible, nonisothermal, binary
fluid mixtures [18]. Donev et al, improved these numeri-
cal schemes by using a specialized third-order Runge-Kutta
(RK3) integrator that minimizes the temporal integration error
in the discrete equilibrium structure factor of hydrodynamic
fluctuations [31]. These methods for compressible FHD, orig-
inally formulated for single fluid species and binary mixtures,
were extended to multispecies fluid mixtures, and were used
to investigate giant fluctuations and Rayleigh-Taylor instabil-
ity in ternary and four-species mixture, respectively [32].

A staggered spatial discretization of the fluctuating Navier-
Stokes equations provides several advantages compared to
a collocated discretization. In the former, the fluid velocity
and momenta reside on a grid that is staggered by half a
finite-volume cell width to the grid that stores other conserved
and thermodynamic fluid variables, such as density, pressure
and temperature. A staggered-grid arrangement has distinct
well-known advantages for incompressible flows [33,34], but
it is also advantageous for compressible flows as demonstrated
in Ref. [33] for the FHD formulation of binary isothermal
mixtures of gases. A staggered grid for the velocity results
in a more compact stencil for the velocity update resulting
from a pressure gradient, which provides for better handling
of the pressure oscillations in numerical solutions. Because
the velocity resides on the face of a centered finite-volume
grid in the staggered scheme, no extra boundary conditions
for pressure are needed for simulations with physical walls.
Furthermore, for a spatially varying viscosity, the complexi-
ties associated with discretizing the divergence of viscous flux
(shear stress tensor) [31,32] are considerably simplified when
using staggered grids. In the context of FHD, a staggered grid
also similarly prescribes a simpler, compact discretization of
the stochastic momentum fluxes [33]. The advantages of a
staggered grid formulation for FHD have been discussed pre-
viously for isothermal compressible flows for single species
[35,36] and binary fluid mixtures [33].

In this paper, we describe a staggered grid formulation
for the FHD of multispecies fluid mixtures using com-
pressible Navier-Stokes equations without the isothermal
assumption. We demonstrate that the staggered method more
accurately reproduces the equilibrium static structure factor
for multispecies fluids, which is the steady-state covariance
of the fluctuating fields in the Fourier space. We use our

numerical scheme to calculate hydrodynamic correlations for
fluid mixtures in various nonequilibrium scenarios. We find
excellent correspondence with DSMC simulations and ob-
tain more accurate predictions compared to a cell-centered
scheme for compressible, multispecies, nonisothermal equa-
tions of FHD [32]. Particularly, we measure giant fluctuations
in simulations of binary mixtures of ideal gases under external
concentration gradients and observe a power-law divergence
of the structure factor of hydrodynamic fluctuations at low
wave numbers. We also investigate the role of cross-diffusive
effects, such as the combined Soret and Dufour effects, in
the long-ranged correlations of hydrodynamic fluctuations in
ideal gas mixtures that are typically ignored in theoretical
FHD analyses. Last, we demonstrate the capability of our
numerical method to model hydrodynamic instabilities driven
only by thermal fluctuations by simulating the Rayleigh-
Taylor instability in a fluid mixture where an initially perfectly
flat interface separates the heavier and lighter fluid mixtures.

The paper is organized as follows. The mathematical
theory of compressible FHD in multispecies mixtures is
reviewed in Sec. II, and the staggered numerical method is de-
scribed in Sec. III. Computational results for equilibrium and
nonequilibrium steady states of multispecies fluid mixtures
are presented in Sec. IV, along with an emphasis on validation
by DSMC simulations wherever applicable. Conclusions and
avenues for future research are provided in Sec. V.

II. MATHEMATICAL THEORY

In this section we summarize the hydrodynamic equa-
tions that describe the FHD of multispecies, nonreacting fluid
mixtures and refer the reader to Balakrishnan er al. [32] for a
detailed treatment [37]. We use a standard Fickian treatment
based on the Maxwell-Stefan equations to formulate multi-
species diffusion including cross-transport phenomena such
as the Dufour and Soret effects; see, for example, Giovangigli
[28]. Although our formulation is general, we will study the
specific case of ideal gas mixtures, whose transport coeffi-
cients are modeled based on the prescription by Giovangigli
[28].

A. Multispecies fluctuating hydrodynamics

The equations of FHD are obtained by adding white Gaus-
sian noise to each dissipative flux responsible for the entropy
production in the deterministic compressible Navier-Stokes
equations for multispecies mixtures [28]. These stochastic
fluxes represent thermal fluctuations in the fluid. Consider a
multispecies fluid mixture with N; nonreacting species. The
partial density of a species k is o, and the total density
0 =Y, px is obtained by summing over all the partial den-
sities. The mass fraction for species k is Y, = px/p, and X =
n/ Zi n; is the mole fraction where r; is the species number
density. The mass fraction and mole fraction are related by
Y = (my/m)X;, where my, is the species molecular mass, and
m= (), Y /my)~! is the average molecular mass of the mix-
ture. The fluctuating Navier-Stokes equations of continuity,
species, momentum, and energy in the conservation form are
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given as [32,38]

9
g(p) ==V - (pv), (D
9 -
5(,0k)=—V'(,0kV)—V'[Fk + Fyl, (2)
9 -
E(pV)=—V~[pV®v+pH]—V~[H+H]+pg, 3)
9 ~ _
E(pE)=—V~[V(pE+p)]—V-[Q+Q]—V'[(H+H)'V]+pg-v, 4

where I is the identity tensor, v is the fluid velocity vector,
p is the pressure, T is temperature, and pg is the vector of
external body force density such as due to gravity. The total
energy density pE = pe + %,o(v -v) is the sum of internal
energy and kinetic energy, where e is the specific inter-
nal energy not including the gravitational potential energy.
The tensor v @ v is the outer product of v with itself. The
diffusive fluxes of species density Fy, diffusive momentum
flux given by the viscous stress tensor II, and the diffusive
heat flux Q are governed by the transport properties of the
fluid. In the FHD framework, the deterministic Navier-Stokes
equations are augmented with stochastic fluxes that are de-
noted by the terms appearing with a tilde in Egs. (2)-(4).
These stochastic fluxes are formulated using the fluctuation-
dissipation relations to produce thermodynamically consistent
covariances of the hydrodynamic fields at equilibrium [3,23].
The complete hydrodynamic description of a fluid based
on the conservation Eqgs. (1)—(4) requires the knowledge of
properties of the fluid, such as the equation of state and
specific heats. Although the formulation given above is quite
general, here we will restrict our consideration to inert ideal

gas mixtures. For such a system, the equation of state is
p= Lol 5)

m

where kg is Boltzmann’s constant. The specific internal energy
e and enthalpy / of the mixture are then defined as

e(T. Ye) =Y Yeer(T),
k

WT, Y) =y Yeh(T), (6)
k

where ¢; and & are partial specific internal energies and
enthalpies, respectively. In an ideal gas, e; and A, are functions
of T only. The species enthalpy and energy are related by

kg
he = ex + —T. )
my

The specific heats at constant volume and pressure for the
mixture are, respectively,

ad
co(T) = (8—;> = Yicw (D),
Yi,v k

oh
cp(T) = (—) =Y Yicpx(T). ®)
T )y, , -

Generally, the specific heats of each species are specified as
a function of T, and the species energy and enthalpy are

(

determined by an integration of the specific heats. Here we
will consider the case of calorically perfect gases with con-
stant specific heats.

The chemical potential per unit mass for each species in an
ideal gas mixture is expressed as [28]

kBT P

e =—\InXp +1In — | + ws,o(T), &)
My Po

where (. o(T) is the chemical potential of pure species k at a

reference pressure p.

B. Viscous fluxes

For the Newtonian fluids considered here, the components
of the viscous stress tensor are

8I/li 8I/tj 2
=1y, * g ) 7o 3m) Vo) A9

where §;; is the Kronecker §, 7 is the shear viscosity, and
k is the bulk viscosity. The viscosities, as well as the other
transport coefficients, are not treated as constants but depend
on the local state of the gas mixture [28].

The stochastic stress needed to produce the thermodynam-
ically correct velocity covariance is a Gaussian random field
I, with zero ensemble mean (II) =0, and the following
covariance [3,23]:

(e, 1), T(r, 1))
=8(r — )8t — 1)[2kgTn(Sim8jn + 8inSjm)
+2kpT (i — 31)8i;8mn], (11)

where §(r — r’) and 8(¢r — t) are Dirac § functions. Espafiol
[38] described a following efficient form of the stochastic
stress tensor II in a three-dimensional system that produces
the correct covariance:

- ~ ke T 2kgnT ~
n(r,z)=,/2kBTnz+< Bg _ 33'7 Te(Z)I,
(12)
where
~ 1
Z=—(Z+ 2T 13
ﬁ( ) (13)

is a symmetric matrix constructed from an uncorrelated Gaus-
sian tensor field Z with zero mean and unit variance.

We note that the stochastic stress term defined by Eq. (12)
is not correct for quasi-2D and quasi-1D versions of FHD
where no transport occurs in one and two directions, respec-
tively. In a finite-volume sense, these versions are equivalent
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to a system domain that is only one cell wide in one di-
rection for quasi-2D simulations, and one cell wide in two
directions for quasi-1D simulations. Because we describe nu-
merical simulations in this paper that include results from
both quasi-1D and quasi-2D simulations in addition to full
3D simulations, the modifications required for computing the
components of II in lower dimensions are described in Ap-
pendix A.

C. Multispecies diffusion and heat flux

The classical construction of multispecies diffusion was
provided by de Groot and Mazur [39] through the Onsager
form for Ny — 1 species fluxes, where the diffusive flux for
the last species is determined by the continuity equation.
However, such a construction requires the identification of
a distinguishable reference species, which can cause numer-
ical issues in simulations where the reference species is only
present in trace amounts. A numerically stable, full system
construction for N; species fluxes was derived in Balakrishnan
et al. [32], where it was demonstrated that its entropy produc-
tion is exactly identical to the Onsager form. In this work we
utilize such a full construction of multispecies diffusion, and
remark that a similar derivation was given by Ottinger using
the GENERIC formalism [25]. We use Einstein indices in this
subsection to describe the various fluxes, where the Greek
symbols in the subscripts denote the species index, and i and
J subscripts represent the spatial directions x, y, and z.

The ith spatial component of the flux of species o, F;, is
expressed as

Fa:—lLa,s[uﬁ» +$—f‘r] (14)
1 T ST T N B
where L is an N; x N; augmented Onsager matrix that de-
pends on the multispecies diffusion coefficients, g ;. is the
ith spatial derivative of the chemical potential ug of species
B at constant T, and &g is related to the rescaled thermal
diffusion (Soret) coefficient of species B, as specified below.
The deterministic heat flux is given by

0 = —K% + (6o +ho)F o, 15)
where h, is the enthalpy of species «, ¢ depends on the
multispecies mixture thermal conductivity, and 7; is the ith
spatial derivative of T'.

Although useful when determining the stochastic fluxes,
the Onsager form of the species diffusion given by Eq. (14)
is typically not used in numerical simulations because of the
singularities in the gradient of chemical potential as a species
vanishes, i.e., Xy — 0. This issue is avoided by recasting F in
a Fickian form given by

(Xs —Yp)

P < XpXp )

ai = PYaDop| Xp,i + D+ T T;), (16)
where D is the N; x N; multispecies diffusion matrix com-
puted from the binary diffusion coefficients using Maxwell-
Stefan relations (see Giovangigli [28] for additional details.)
Here the column vectors of species mole fractions X; and
mass fractions Y; are represented by X and Y, respectively,
whereas Y and X are N; x N, diagonal matrices of ¥; and X,

respectively. The strength of thermal diffusion (Soret effect)
is governed by the Ny x 1 column vector of rescaled thermal
diffusion ratios ¥. The barodiffusion term associated with the
spatial derivative of pressure p; is a thermodynamic effect
and it does not have an associated transport coefficient [23].
The matrix D is symmetric and positive semidefinite with ¥
being in the null space of D. This property ensures that that
> oFa=0.

The deterministic heat flux @ is also recast in terms of the
mixture thermal conductivity A and rescaled thermal diffusion
ratios ¥, which are relatively inexpensive to compute, to ob-
tain

Q; = =T + (ksT XM, "' +hy)F o, (17)

where M is a diagonal matrix of the molecular masses of the
species.

The stochastic counterparts of the deterministic diffusion
and heat fluxes are formulated by considering that the stochas-
tic fluxes are uncorrelated in space and time, and can be
represented as white noises, such as

F,=Bz",
0, = Ve 2@ 4 (€7 +n')F, (18)

where i = x, y, 7 is the spatial direction, and Z©@ is a scalar
and Z¥ is a vector of N, independent Gaussian white-noise
terms such that

(ZEFD @, ) ZFED (1)) = 88458 — YN8t — 1),
(ZQV (@, ) ZLD( 1) = §;8(r — /)8t — 1),
(Z(Q;i)Z(F;j)> =0, (19)

where o and B above correspond to species indices, and
i, j = x,y, z are the spatial directions. To satisfy fluctuation-
dissipation balance, the amplitude of the noise is set such that
BB” = 2kzL [32]. The matrix B is not uniquely defined, and
numerically a lower-triangular B can be computed from the
Cholesky factorization of L. We note that the properties of L
ensures that that >, F, = 0 [32].

Comparing the two representations, it is straightforward to
show that

L="ypy,
kg
. =T2A,
£ =kgT M™Y. (20)

A full specification of the transport coefficients requires the

computation of D, A and ¥. Efficient techniques for comput-
ing these coefficients are discussed in Ern and Giovangigli
[40] and Giovangigli [28].

In this paper we have restricted consideration to noble
gases modeled using the hard sphere properties; however, the
methodology can be easily extended to more general ideal
mixtures by utilizing existing software for computing trans-
port properties such as the EGLIB package that is commonly
used in the reactive flow community [41]. In addition, the
framework described above can be extended to include chem-
ical reactions [42], and multiphase flows such as previously
demonstrated for multiphase flow of a single species of a van

015305-4



STAGGERED SCHEME FOR THE COMPRESSIBLE ...

PHYSICAL REVIEW E 107, 015305 (2023)

der Waals fluids near the critical point [43]. The numerical
framework can also be extended to model nonideal fluids by
incorporating additional considerations associated with the
coarse-graining of thermal fluctuations at the hydrodynamic
scales [44].

III. NUMERICAL METHOD

In this section we describe our numerical method to solve
the fluctuating Navier-Stokes (FNS) equations described in
Egs. (1)—~(4). The current method extends a previous staggered
grid scheme for isothermal, compressible FNS equations for
binary mixtures [33] to incorporate nonisothermal effects and
to treat multispecies mixtures. Therefore, the Dufour cross-
diffusion effect that describes energy transport due to species
diffusion is naturally simulated in our scheme, and which
was absent in the isothermal formulation. We will focus the
description of our scheme on spatial discretization of the
fluctuating energy conservation equation, Eq. (4), which is
required to capture the nonisothermal effects. Compared to the
isothermal version, the new algorithm uses state-dependent
transport coefficients and models the Soret effect dynami-
cally rather than a fixed external force. The new staggered
algorithm represents an alternative to a previous collocated
finite-volume scheme for compressible, nonisothermal FNS
equations for multispecies gas mixtures [32]. In Sec. IV we
demonstrate that the present staggered grid scheme more ac-
curately reproduces the hydrodynamic fluctuations in both
equilibrium and nonequilibrium settings.

A staggered-grid approach based on the method-of-lines
approach is used to spatially discretize the system of stochas-
tic PDEs, and the resulting stochastic ordinary differential
equations are integrated explicitly in time using a low-storage
third-order Runge-Kutta (RK3) integrator [31,32]. The FNS
equations can be represented in the following compact form:

oU=—-V -Fy -V .Fp—-V.Fs+H=R(,Z2), (21)
where U represents the set of conserved hydrodynamic fields:

o)
_ | pY
U= 1" (22)

pE

Fy, Fp, and Fy are the hyperbolic, diffusive, and stochastic
fluxes, respectively, and H is a term representing external
forcing. The right-hand side of Eq. (21) is represented by
R, and Z is the spatiotemporal discretization of the Gaussian
random field Z that represents the noise used to construct the
stochastic fluxes. The various fluxes are

oV
ovY

ovv + pl

| V(PE + p)

0
F
F[-] = 3 FD = H ’ (23)

O+I-v

o

Fs = (24)

(=}
+

The external forcing considered here is of the form H =
[0, 0, pg, pg - v]T, representing forcing due to gravitational
acceleration g, but it can generally represent a more complex
external forcing.

The numerical method described here is implemented
within the AMReX framework [45], which uses an MPI
paradigm for massively parallel simulations along with GPU-
based performance acceleration. The code for the staggered
FHD numerical method has been tested on massively parallel
multicore architectures, and it is compatible with several GPU
programming environments where significant performance
enhancement by up to a factor of 20 has been observed upon
using GPU accelerators with near perfect scaling because of
the explicit time integration scheme. The numerical method
has been implemented in our fluctuating hydrodynamics soft-
ware, FHDeX, and it is available online as an open-source
code [46].

A. Spatial discretization

The equations of compressible FHD are spatially dis-
cretized on a uniform Cartesian grid with spacing given by
Ax, Ay and Az in the x, y, and z directions, respectively. In
a staggered grid spatial discretization, the conserved scalar
variables p, pY;, and pE, and primitive scalar variables p,
T, Xi, and Y} are discretized at the centers of a cell (i, j, k),
whereas the vector variables, such as conserved momentum
density j = pv and velocity v are discretized on the normal
faces of the grid, as shown in Fig. 1(a). As such, the x com-
ponent of velocity v and momentum density j* reside at
point (i + % J, k) of the cell face, the y component of velocity
v®) and momentum density j* reside at point (i, j + % k)
of the cell face, and so on. Regardless of where particular
variables are defined, we consider them as representing fluc-
tuating quantities over a cell of volume AxAyAz. This type
of staggered discretization is commonly used in projection
algorithms for incompressible flows [33], and it was also used
previously to simulate isothermal compressible flows [33].
Here we demonstrate its usage for the first time for nonisother-
mal, multispecies compressible equations of FHD.

The computation of cell-centered primitive scalar variables
p and T from the conserved variables through the equation of
state requires computing a cell-centered kinetic energy density
K from the momentum densities located at the faces of the
grid. This is achieved by a simple face to center interpolation
such as

1 2 2
o ) ) 0 0
K= S [(Ji—%,j,k +"i+%,.z:k> + (Ji,j—%,k +Jz',_i+%,k)

+(j(.z? +j@ )2] (25)

l,j,k*% l,j,k“r%

Once K is determined, the internal energy e is computed,
which is used to determine the temperature 7 and pressure
p of the gas mixture. Upon specifying all the primitive ther-
modynamic variables, the transport coefficients are evaluated
at the cell centers.

The advective fluxes for the total density, species density
and energy density are computed at the faces of the grid, cor-
responding to the normal directional component of each flux.
The staggered velocities on the faces required for computing
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FIG. 1. An illustration of the staggered spatial discretization. (a) The thermodynamic variables such as p, p, T, and Y are located at the
cell centers, and components of vector quantities such as v and j* (red), v and j* (green), and v and j*' (blue) are located on respective
staggered grids, i.e., on the faces of the finite volume grid. (b) Random numbers Z#-@ corresponding to F and Q are generated at the faces
of the control volume centered around the location of the thermodynamic variables. (c) The random numbers $** and §% corresponding to
the diagonal terms of IT are generated at the faces of the staggered control volumes around j* (red) and j© (blue), respectively, that are are

collocated at the cell centers of the finite volume grid. The random numbers $** corresponding to the off-diagonal terms of IT are generated on
faces of the staggered control volumes around both j* and j© that are collocated on the edges of the finite volume grid. The dotted lines in
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T

.5,k
1\ ZZ
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panels (b) and (c) represent the six-point divergence operator.

the advective fluxes are defined by interpolating the density
from the cell centers to the faces such as
. (x
) 2']i+)%, jik

S, = (26)
Bk o ik ik
Therefore, the advective flux pv of the density is simply
the momentum density j on the faces of the grid. For every
other cell-centered scalar conserved quantity ¢ such as species
density pY and energy density pE, the advective fluxes are
defined on the face by a simple interpolation the conserved
quantities as

@V = 1@ija+ GV o @D
although higher-order interpolation schemes such as the
piecewise parabolic method can also be used [47]. The
advective fluxes given by Eq. (27) were previously demon-
strated to satisfy the discrete fluctuation-dissipation balance
in isothermal, compressible FHD equations [33]. The face-
based advective fluxes can alternatively be defined using
momentum on the staggered grid along with an interpolation
of the thermodynamic variables from the cell centers to the

J

VO + p)iix

(x) x) +(x) +(x)
[(V+ ok + Vi—%,j,k)(JH—%,j,k +‘]i—%,j,k

faces. We have verified that these choices for discretizing
face-based advective fluxes only minimally influence the hy-
drodynamic fluctuations in equilibrium and nonequilibrium
conditions, and we refer the reader to the Supplemental Ma-
terial for further numerical details and comparisons [37]. The
results presented in the paper use the definition in Eq. (27)
to discretize the advective fluxes. The cell-centered diver-
gence of these advective fluxes on the faces is computed
by the standard discrete six-point divergence operator D/ ¢,
as shown in Fig. 1(b). It was demonstrated that such a
discrete divergence operator for the advective fluxes in a
staggered grid is skew-symmetric [33], which is important to
satisfy the discrete fluctuation-dissipation balance, i.e., advec-
tion should not modulate the fluctuations but only transport
them [31].

The advection of the momentum density vector is a bit
more involved than the scalar quantities. The advective flux
for the component of the momentum normal to a face is
stored at the cell centers of the finite-volume grid, whereas
the advective flux for the tangential momentum is stored at
the edges of the grid. For example, the discrete advective
flux (vWj® 4+ p) is computed by a simple interpolation of
face-centered velocity and momentum to cell centers as

)]+ pij (28)

where the pressure p natively resides on the cell centers. The first contribution to the advective fluxes for the momentum on faces
is given by a two-point discrete divergence operator, D/, involving the two nearest cell-centered fluxes, as shown in Fig. 1(c).
The advective flux of the normal momentum by the transverse velocities is computed at the edges of the finite-volume grid using

= A0 RS | 9)

./72v
v=al0 )(Jf’i) I )] (30)
[

(V(y)j(x)),;%

(V(z) (x)) .
17— k=3

where the contribution of these edge-based advective fluxes
to the face-based momentum is computed by a four-point
discrete divergence operator D¢/, as shown in Fig. 1(c).

The two operators D/ and D¢~/ contribute to the to-
tal divergence of the momentum advection flux, which
has been previously demonstrated to be skew-symmetric
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[33] for the purposes of discrete fluctuation-dissipation
balance.

The computation of face-centered diffusive fluxes of heat,
species and energy is straightforward by a simple interpolation
of cell-centered primitive variables and transport coefficients
to the faces of the grid, and the divergence of these face-
centered fluxes to cell centers is computed from the standard
operator D/~¢, which is the same as cell-centered numerical
schemes for compressible FHD in Refs. [31,32], as shown
in Fig. 1(b). A major difference between the cell-centered
numerical scheme and the present staggered grid scheme
arises in the discretization of the diffusive momentum flux,
i.e., the viscous stress tensor II. For spatially varying viscos-
ity considered here, the diagonal terms of Il corresponding
to 9,v®™, 9,v®) and 9,v\? are calculated at the cell centers
through a G/~¢ gradient operator for the face-centered veloc-
ities, and the off-diagonal terms corresponding to 3,v®™, 3,v®
and 9,v® etc., are calculated at the edges through a G/~¢
gradient operator. The viscosity is appropriately interpolated
for the off-diagonal terms, but requires no interpolation for the
diagonal terms. Such a discretization naturally maintains the
symmetric nature of the stress tensor, which is more compli-
cated to obtain in the cell-centered approach [32]. The reader
is referred to Supplemental Material for details on the discrete
representation of the viscous stress tensor [37]. Upon comput-
ing the center- and edge-based fluxes as above, the discrete
divergence operators D~/ and D°~/ are used to compute
the divergence of the stress tensor at the faces. The viscous
heating in the energy equation V - (I - v) is calculated at the
faces by appropriately averaging the center and edge-based
components of II to the faces, followed by computing the
divergence to the cell centers using D/~¢. .

The stochastic terms corresponding to the species flux F
and heat flux Q are calculated at the faces using the same
prescription as in the cell-centered scheme for compressible
FHD [32], i.e., by generating independent standard Gaussian
random variables on the faces as shown in Fig. 1(b), along
with appropriately averaging the cell-centered transport coef-
ficients onto the faces. However the treatment of the stochastic
momentum flux, i.e., the symmetric stochastic stress tensor IT
is different in the staggered grid scheme. Consider the sym-
metric matrix Z in Eq. (13) with six uncorrelated elements
given as

- SXX S)Cy SXZ
Z=|8v S 9| 31
sz Syz Szz

where the diagonal terms are uncorrelated Gaussian random
variables with variance of two, and the off-diagonal terms
have a variance of one. The diagonal variables corresponding
to the diagonal terms of II are generated at the cell centers,
whereas the off-diagonal terms are generated at the edges,
as shown in Fig. 1(c). Unlike the cell-centered scheme that
requires a split operator approach [31,32], a collocated repre-
sentation of the diagonal terms of II in the staggered scheme
makes it convenient to establish the structure of the correla-
tion of the stochastic stress defined in Eq. (11). Furthermore,
because the off-diagonal stochastic stresses are generated on
the same face of the staggered velocity grid, such as I, and

II,,, it is easy to establish the symmetry of n by generating
only one random variable §** corresponding to both, as shown
by the edge-based location of S** in Fig. 1(c). The viscous
heating from the stochastic stress is computed similarly to the
deterministic viscous heating described above.

B. Temporal discretization

Following Ref. [31], we use an explicit, three-stage, low-
storage Runge-Kutta (RK3) scheme for integrating the FNS
Egs. (21). In this scheme the stochastic terms are discretized
in time in a manner that requires generating only two ran-
dom fields Z4 and Z? per time step, while providing a weak
second-order accuracy for the noise [48]. The three stages of
the RK3 scheme per time step proceed as

U3 = 0" + ArR(U", Z)),
U2 = 33U 4 LU 4+ ARU™, 7)),
Ut = Lo 4 %[fj"+2/3 + AR(U™R, 7)),

where the stochastic fluxes generated from the random fields
Z; are related to each other between stages by

Zy = 27"+ B 2%,
7, = 7% + B, 75,
Zy = 7% + B3 Z5. (32)

We use the weights described in Ref. [49] where B =
V2 +3)/5, Br = (—4/2+3/3)/5, and B3 = (V2 -
24/3)/10.

C. Boundary conditions

In addition to demonstrating the equilibrium structure
of hydrodynamic fluctuations using periodic boundary con-
ditions, in this paper we incorporate several nonperiodic
boundary conditions for the fluxes of species, heat and mo-
mentum. Specifically we consider thermal (Dirichlet) and
adiabatic (Neumann) boundaries for heat flux, zero concen-
tration flux (Neumann) and fixed concentration (Dirichlet)
boundaries for species flux, and no-slip (Dirichlet) and slip
(Neumann) walls for tangential momentum flux. For all such
nonperiodic boundaries, the normal momentum vanishes at
the boundary corresponding to the no net-flow condition.

In the staggered grid for velocity, the physical boundary
aligns with the faces of the grid. Therefore, unlike a cell-
centered scheme for velocity, it is straightforward to set the
normal velocity to zero at the walls without requiring any
extra normal velocity variables to be assigned outside the
domain in a ghost cell. Similarly, because the normal velocity
is exactly zero at the walls, there is no requirement of pre-
scribing any pressure value in a ghost cell, which introduces
a complication in the cell-centered scheme by presenting a
choice of prescribing either pressure or density in the ghost
cell. Furthermore, the advective fluxes of density, concentra-
tion, and energy normal to the walls are automatically set to
zero at the physical boundary without requiring any special
treatment.

The boundary conditions for the other cell-centered quan-
tities, such as concentration, temperature, and tangential
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velocity components, that reside half a cell width away from
the physical boundary are implemented using ghost cells
outside the boundary. For example, a Neumann adiabatic con-
dition at the x = 0 boundary is implemented by setting the
temperature in the ghost cell 7(—1) equal to the temperature
in the first cell of the domain 7'(0), which sets the heat flux
from temperature gradient at x = 0 boundary to zero. Addi-
tionally the Dufour contribution to the energy flux at x = 0
adiabatic boundary is also set to zero. For Dirichlet condi-
tions such as concentration and temperature specified at the
boundaries, the transport coefficients are calculated based on
the boundary values, which are used to compute the fluxes at
the boundaries. A modified operator using half the cell width
is used to compute the divergence of these boundary fluxes
to update the state of the cells in the domain adjacent to the
boundaries.

The treatment of stochastic fluxes at the Neumann bound-
aries is similar to diffusive fluxes, i.e., they are set to zero. For
the stochastic fluxes at a Dirichlet boundary, the variance of
the flux noise is multiplied by +/2 resulting from an effective
reduction of the control volume by half, as explained in detail
in Refs. [33,49].

IV. NUMERICAL RESULTS

In this section we first provide numerical evidence that
the staggered scheme correctly reproduces the structure of
hydrodynamic fluctuations of ideal gas mixtures at equilib-
rium with periodic boundary conditions, while demonstrating
higher accuracy of the scheme compared to the previous
cell-centered scheme [32]. Next, we simulate giant fluctua-
tions in a nonequilibrium mixture driven out of equilibrium
by concentration gradients and provide comparisons of their
scale-invariant, correlated structure with theoretical predic-
tions. This is followed by various quasi-one-dimensional tests
for long-ranged correlations in mixtures of real ideal gases
driven by thermal and concentration gradients, particularly
focusing on the role of cross-diffusion effects (such as Soret
and Dufour) on these correlations that are often neglected
in the theoretical analysis of such phenomena. We validate
our results by comparing with DSMC simulations. Last, we
demonstrate the ability our code to simulate the Rayleigh-
Taylor instability in a two-fluid system driven by thermal
fluctuations with an initially perfectly smooth interface.

A. Gas mixture at equilibrium: Static structure factor

As a first test, we consider an inert mixture of four ideal
noble gases with equal mass fractions at equilibrium with
periodic boundaries; see Table I for molecular details of these
gases. The ideal gas equation of state along with an ideal
gas specific heat described in Sec. IT A are used for the gas
mixture.

The simulation setup consisted of a cubic domain of size
L,=L,=L,=5.12 x 107* cm discretized on a 64° regu-
lar finite-volume grid. The system was initialized with zero
velocity at ambient pressure p = 1.01 x 10° dyn/cm? and
temperature 7 = 300K. The initial mass fractions of all the
species are equal, i.e., ¥; = 0.25, and the total initial density
is p = 4.82 x 107 g/cm>. A time step of At = 10712 s was

TABLE I. Molecular properties of species k in the equilibrium
gas mixture.

k Species Molecular Weight Diameter (cm) Yi
(g/mol)

1 Helium 4.0026 2.18 x 1078 0.25

2 Neon 20.1797 2.58 x 1078 0.25

3 Argon 39.9480 3.63 x 1078 0.25

4 Krypton 83.8000 4.16 x 1078 0.25

used to advance the FHD equations, which corresponds to an
acoustic Courant number (||V||s + co)A?/Ax ~ 7 x 1073,
where ¢ is the speed of sound and ||v|| is the £,, norm
of the fluid velocity vector at each point in the domain. This
setup matches with the one used by the cell-centered scheme
in Ref. [32].

An initial simulation was run for 5 x 10* time steps to
reach equilibrium after which data was collected every 10
time steps for an additional 5 x 10° time steps. Each snapshot
of the data was Fourier transformed in three dimensions, and
pairwise correlations were computed in Fourier space and av-
eraged in time to produce the static structure factor. The static
structure factors were nondimensionalized by the equilibrium
variance of fluctuations from classical thermodynamics [1], as
summarized in the Appendix A of Ref. [32]. For example, the
structure factor for density fluctuations ((§0)(8p)*) is normal-
ized by (8p2), where the §p denotes the Fourier transform of
the §p field, the asterisk denotes the complex conjugate, and
the angular brackets denote averaging over space and time.
For the structure factors containing cross-correlations such as
((60)(8T)*) that vanish at equilibrium for all wave vectors,
the cross-correlations are nondimensionalized by the corre-
sponding variances of each quantity such as /(802)(8T2).

Figure 2 shows the nondimensionalized static structure
factor at equilibrium for various conserved variables as well
as temperature. In a perfect numerical scheme, the nondimen-
sionalized structure factor should be unity at all wavelengths.
Our simulations show excellent agreement with theoretical
predictions at all wave numbers. Furthermore, unlike the cell-
centered numerical scheme (see Fig. 1 in Balakrishnan et al.
[32]), we observe significantly less statistical scatter in the
structure factor for the total density ((§0)(6p)*) and partial
density of the heaviest species {(801)(802)*) at high wave
numbers. The current scheme with the velocity on a staggered
grid provides a more compact stencil for the pressure term
in the momentum flux, which results in reduced spurious
correlations of local noise that would manifest at high wave
numbers of the structure factor at finite time steps. The large
statistical error observed for the lowest wave vectors results
from very long relaxation times for the largest wavelengths.

Figure 3 shows correlations between various combinations
of temperature and the conserved variables as a function of
the wave number. Our results show near-zero correlations
in agreement with theory that predicts that the measured
quantities should be uncorrelated at equilibrium. Similar to
the cell-centered numerical scheme (see Fig. 2 in Ref. [32]),
our staggered scheme performs well in the discretization
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FIG. 2. Nondimensionalized static structure factors along the k, and k. axes for k = 0 with the wave numbers ranging from —3.93 x
107ecm™! to 3.93 x 10~7cm™!. The panels correspond to (a) ((60)(59)*), (b) (((SJ("))((SJ(")) ), (©) (((S,oE)((SpE)*) (@) ((601)(801)*), (e)
((803)(803)%), and (f) ((8?)(8?)*). The colored data ranges around +20% from the expected theoretical value of unity. The center of the
image corresponds k, = k. = 0.

of the stress tensor as evidenced by the excellent agree- est species {(801)(804)*), thus demonstrating that the present
ment of ((8§0)(8j*))*) with theory. Furthermore, our scheme numerical method robustly handles the relaxation of hydrody-
outperforms the cell-centered scheme in removing spurious ~ namic fluctuations at most wavelengths except at the largest,
correlations between partial densities of lightest and heavi- ~ Wwhich have the longest relaxation times.
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FIG. 3. Magnitude of nondimensionalized correlations _in Fourier space (see the caption in Fig. 2). The panels correspond to
(@) (PBID)*). (b) (BPGT "), (©) ((BFD)(E)"). (d) (BJ)(BPE)*). () ((871)(873)*). and (D) ((BV)(BT)").
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B. Giant fluctuations and long range correlations induced
by a concentration gradient

Next we consider two examples of a binary fluid mixture at
nonequilibrium induced by an external concentration gradient
that exhibits giant fluctuations of the local concentration fluc-
tuations. For the first example, we assume that the two species
have identical thermodynamic and mechanical properties but
can be distinguished. The setup is similar to a previous study
that utilized DSMC simulations to study diffusion enhance-
ment due to giant fluctuations in nonequilibrium fluids [13].
Although this is a remarkably simplified setup compared to
microgravity experiments of giant fluctuations [10], the choice
of identical but distinguishable species maintains homoge-
neous thermodynamic and transport properties throughout the
system, where the concentration fluctuations can only diffuse
within the domain. As such, this setup provides for a conve-
nient comparison with the predictions of the linearized FHD
theory [50].

The system was initialized at 7 = 273K and p = 1.78 x
1073 g/cm® with two identical but distinguishable species
with properties corresponding to Argon (Ar). For these con-
ditions the mean free path of the gas is [, = 6.26 x 10~° cm.
The cell sizes were Ax = Ay = 21,, and the system thickness
in the z direction was set as 2/, in a quasi-2D simulation (a
modified formulation for the stochastic stress tensor in the
quasi-2D approximation is described in Appendix A). The
time step was fixed at Az = 107! s, which corresponds to an
acoustic Courant number ~(0.2. A concentration gradient was
applied in the x direction, and periodic boundary conditions
were applied in the y direction. The dimensions of the system
were fixed at 256 cells in x direction. We varied the number
of cells in the y direction from 32 to 1024 to study the effects
of finite system size L, perpendicular to the gradient. A strong
external concentration gradient was applied to the system by
setting the Dirichlet values for the mass fraction of species 0
to Y =0.25at x =0 and YR = 0.75 at x = L, where L, is
the system length in the x direction. The two boundaries in the
x direction were also held at a fixed temperature with no slip
for the tangential velocities.

After an initial run for 10° time steps to relax the system
to a statistically stationary state, snapshots of the data were
collected at every 10 time steps for at least an additional
5 x 10° time steps to compute the Fourier-space spatial cor-
relations between concentration fluctuations §Y and velocity
fluctuations v in the x direction parallel to the concentration
gradient. The data was further averaged from an ensemble
of two simulations that were run in parallel for each case of
varying L,. The linearized equations of FHD predict long-
ranged correlations, Sy,vH = ((5?)(86@*), between Y and
dv) resulting in the giant fluctuation phenomena, and whose
magnitude scales linearly with the magnitude of the applied
gradient |VY| [50],

kgT

Sy =~
T+ pD) kP

(sin®0)| VY], (33)
where |k| is the magnitude of the wave vector k, sin’0 =

kf_ /k?,i.e., @ is the angle between k and the vector of the ap-

plied concentration gradient VY, and D is the binary diffusion
coefficient.

ol \
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FIG. 4. The structure factor Sy_vH as a function of wave number
k, normalized by cell spacing Ay for wave vectors perpendicular to
the applied concentration gradient, i.e., k, = 0, for various values of
L,. The theoretical prediction from Eq. (33) for an infinitely periodic
system is shown with a dotted line.

Figure 4 shows the structure factor Sy y, for various values
of L, along the periodic direction. Excellent agreement is
observed between theory and our numerical results. The cor-
relations exhibit a k-2 power-law decay at low wave numbers,
which is indicative of their long-ranged and scale-invariant
nature. Because the system consists of a mixture of identi-
cal gases, these long-ranged correlations result entirely from
the system being out of thermodynamic equilibrium since
there is no net macroscopic transport. The giant fluctuations
have previously been demonstrated to enhance the diffusive
transport in nonequilibrium fluids through the advection of
concentration by thermal velocity fluctuations [7,13]. At very
low wave numbers, we observe a suppressed correlation com-
pared to theory, resulting from the effect of confining walls in
the x direction that occurs at wave numbers k, comparable to
27 /L, [13]. The numerical structure factor Sy,VH in Fig. 4 is
in excellent agreement with previous DSMC simulations of a
similar nonequilibrium system [13].

In the second example we analyze the nonequilibrium
effect of a strong applied concentration gradient on the
long-ranged correlations of hydrodynamic fluctuations in real
space. For this example, we consider a quasi-1D simulation of
a binary mixture of identical but labeled Neon (Ne) gas (see
Appendix A for a modified formulation of the stochastic stress
tensor in the quasi-1D approximation). The system domain is
a 128 x 1 x 1 grid with cubic cells of size 3 x 107® cm. The
gas mixture was initialized at a temperature of 7 = 300K and
density p = 8.17 x 10~* gm/cm? with an equimolar concen-
tration of both the identical species. The two walls confining
the gas mixture prescribe a Dirichlet condition for concentra-
tion and temperature.

A strong concentration gradient was imposed on the system
by setting the concentration of species 0 at the boundaries at
low and high x coordinates to Y~ = 0.1 and Y® = 0.9, respec-
tively, while the wall temperature was fixed at 300K. A time
step of At = 107!%s was used to march the solution forward
in time, which corresponds to an acoustic Courant number
~1.5 x 1072, The simulation was initially run for 2 x 107
time steps to reach a statistically stationary state, after which
it was run for an additional 1.3 x 10® time steps to gather
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FIG. 5. Real-space spatial correlations in a quasi-1D binary fluid
mixture. Results are shown for equilibrium and nonequilibrium
steady states using FHD and DSMC simulations [see legend in panel
(a)]. (a) Spatial correlation between the fluctuations of partial density
of species 0, & ,og , at x* with the fluctuations 8,0, in every other cell.
(b) Spatial correlation between the fluctuations of partial density of
species 1, Spf, at x" with the fluctuations 8p, in every other cell.
The correlations are normalized by the volume V of either FHD or
DSMC cell in their respective cases. The position of x is shown by
vertical dashed lines, and the value of the correlations at x™ have been
removed in panels (a) and (b).

statistics. An ensemble of 16 simulations were run in parallel
to provide sufficiently large statistics for computing corre-
lations between various fluctuating hydrodynamic quantities.
We also modeled this system using DSMC since it accurately
describes nonequilibrium transport for strong gradients, such
as in shock waves. The reader is referred to Appendix B for
details about the DSMC simulations. Equilibrium simulations
using the same setup but without an applied concentration
gradient were also conducted both in DSMC and continuum
FHD for the purposes of comparison with the nonequilibrium
case.

Figure 5(a) shows real-space correlation between the fluc-
tuations of partial density of species O, i.e., (Spg = §(pYy)",
at x" = L,/4 — Ax/2 with the fluctuations 8p, everywhere
else in the domain. At equilibrium, the real-space correla-
tion of these fluctuations normalized by the cell volume,
ie., V(5p£8po), is theoretically predicted to be 1.36 x
10%%gm?/em? atx = x¥, and —5.3 x 107 gm?/cm? at every
other x # x' due to effects of mass conservation. We observe
excellent correspondence between the theoretical predictions
and the results from both DSMC and continuum FHD simula-
tions in Fig. 5(a). As expected, beyond the variance introduced

by mass conservation, there is no spatial correlation between
the fluctuations of py at equilibrium. At equilibrium, a sim-
ilar correlation (SplTSpo) between the fluctuations of partial
density of species 1, 8,0?, at x™ and 8py at every other x is
observed, as shown in Fig. 5(b), which corresponds well with
theoretical predictions.

Upon the application of a concentration gradient, long-
ranged correlations in both (8p£8p0) and (8,0?8,00) emerge
at the nonequilibrium steady state, as shown in Fig. 5.
Remarkably, our staggered grid scheme for solving FHD
equations agrees excellently with DSMC simulations even
with strong concentration gradients that are typically well-
resolved by DSMC but often pose a challenge for continuum
methods.

C. Nonequilibrium fluctuations induced by temperature
gradient: Role of Soret and Dufour effects

In the next example, we consider a binary mixture of dis-
similar fluids under a strong applied thermal gradient induced
by constant temperature walls. Because the two gases are
physically dissimilar, thermal gradients in the system will
introduce concentration gradients (Soret effect), and these
concentration gradients will induce a heat flux (Dufour effect)
in addition to the heat flux induced by temperature gradi-
ents [39]. Several previous experiments using light scattering
[8,51] and shadowgraphy techniques [52-54] have studied the
effect of induced concentration gradients due to an applied
temperature gradient (Soret effect) on the nonequilibrium
fluctuations in binary and ternary fluid mixtures.

Previous theoretical analyses using linearized FHD equa-
tions for the nonequilibrium fluctuations in fluid mixtures
induced by the Soret effect have neglected the role of
Dufour effect, and assumed incompressibility of flow and
constant thermodynamic properties that are independent of
temperature and the composition of the mixture (Boussi-
nesq approximation) [9,55]. Although these assumptions are
well-justified for liquids, they break down in the case of
gas mixtures, which is our focus here. Particularly, we are
interested in demonstrating the role of the Dufour effect on
nonequilibrium fluctuations in ideal gas mixtures. Further-
more, we do not make any assumptions about the spatially
varying thermodynamic properties of the mixture.

We consider a binary mixture of two dissimilar inert gases,
Neon (Ne; species 0) and Krypton (Kr; species 1), confined
between two thermal walls in a quasi-1D simulation. The
length of the domain L, = 3.84 x 10~* cm was discretized
over a 128 x 1 x 1 grid with cubic cells. The gas mixture
was initialized at a temperature of 7 = 273K and density p =
1.45 x 1073 gm/cm?® with an equal mass concentration of
both the species. The two walls confining the gas mixture pre-
scribed a Dirichlet condition for temperature, and prescribed
no flux of normal momentum and concentration. A time step
of Ar = 107125 was used to advance the solution, which
corresponds to an acoustic Courant number ~1.5 x 1072, At
t =0, the wall at x = L, was set at a temperature at 519K,
while the wall at x = 0 remained at 273K, resulting in a
strong thermal gradient of ~6 x 10°K cm™'. The simulation
was initially run for 2 x 107 time steps to achieve a nonequi-
librium steady state, after which it was run for an additional
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FIG. 6. Real-space spatial correlations in a quasi-1D binary mix-
ture of dissimilar gases under thermal gradient. Results are shown
for FHD and DSMC simulations [see legend in panel (b)]. (a) Spatial
correlation between the fluctuations of temperature 87 at x* with the
fluctuations 87 in every other cell. (b) Spatial correlation between
the fluctuations of x-velocity §v! at x* with the fluctuations of total
density ép in every other cell. The correlations are normalized by the
volume V of either FHD or DSMC cell in their respective cases. The
position of x is shown by vertical dashed lines, and the value of the
correlations at x™ have been removed in panels (a) and (b).

1.3 x 10® time steps to gather statistics. An ensemble of 4
simulations were run in parallel to provide sufficiently large
statistics of the correlations between various fluctuating hy-
drodynamic quantities. We also ran DSMC simulations for
this system to verify and corroborate the results from FHD
numerical solution. The reader is referred to Appendix B for
details about the DSMC simulations.

Figure 6(a) shows the long-ranged correlation between
temperature fluctuations at nonequilibrium under a thermal
gradient, which is a classic signature in mesoscale fluids
driven out of equilibrium by temperature gradients [5]. Fig-
ure 6(b) shows the long-ranged correlations between velocity
and density fluctuations, and excellent agreement is observed
between DSMC and numerical solutions of FHD using the
staggered grid. Furthermore, previous studies using a cell-
centered grid scheme demonstrated that continuum FHD
significantly under-predicts the sharp peak in the correlation
(8vi8p) near x* to almost half of the value obtained from
DSMC simulations [6,21]. The staggered numerical scheme
provides a better correspondence with DSMC as a result of
the compact discretization of stochastic momentum fluxes, al-
though it still under-predicts the correlation near x to almost
three-quarters of the value obtained from DSMC simulations.
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FIG. 7. Real-space spatial correlations in a quasi-1D binary mix-
ture of dissimilar gases under thermal gradient. Results are shown
for FHD and DSMC simulations [see legend in panel (b)]. (a) Spatial
correlation between the fluctuations of partial density of species 0,
8,03 , at x7 with the fluctuations 8, in every other cell. (b) Spatial
correlation between the fluctuations of partial density of species 1,
1) pf, at x* with the fluctuations §py in every other cell. The correla-
tions are normalized by the volume V' of either FHD or DSMC cell in
their respective cases. The position of x' is shown by vertical dashed
lines, and the value of the correlations at x™ have been removed in
panels (a) and (b).

We note that because the velocities and momenta reside on the
faces of the finite-volume grid in the staggered grid scheme,
the fluctuations in the velocity $v! are computed by averaging
the fluctuations in the momentum §j, from the neighboring
faces to the center of the cell [37], which is a numerical artifact
that could also contribute to the under-prediction.

Next we consider the fluctuations of the partial densities
of each species at nonequilibrium under the action of ex-
ternal thermal gradient. The induced concentration gradient
(or the species separation) introduces long-ranged corre-
lation between concentration fluctuations, as evidenced by
(8p38p0) and (8p8po) in Figs. 7(a) and 7(b), respectively.
The (5,086,00) correlation has a constant (in space) con-
tribution from the species conservation with an additional
nonequilibrium component arising from the induced gradients
in concentrations. Excellent agreement is observed between
FHD and DSMC simulations. The correlation for (§ p}L(S Po) 18
noisier than (§ pg 8pp) resulting from the relatively lower mole
fraction (or number density) of the heavier species.

We ascertain the role of Dufour contribution to the energy
flux and Soret contribution to the species flux on the long-
ranged hydrodynamic correlations by simulating the same
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FIG. 8. The role of Soret and Dufour effects in the mean and
fluctuating hydrodynamics of a mixture of dissimilar gases under
an applied thermal gradient. Results are shown for FHD simula-
tions with ¥ # 0 (circles), and ¥ = 0 (squares) that corresponds to
neglecting the Soret and Dufour effects. (a) The mean profile (p;)
of the partial density of species 1. (b) Spatial correlation between
the fluctuations of partial density of species 1, & ,of, at x* with the
fluctuations dp; in every other cell. The correlations are normalized
by the volume V of the FHD cell. The position of x' is shown by
vertical dashed lines, and the § function for correlation at x™ has been
removed in panel (b).

system as above and setting ¥ = 0 in Egs. (16), (17), and
(18). As shown in Fig. 8(a), the mean profile of (p;) differs
significantly when ¥ = 0 as there is no additional Soret con-
tribution to the species flux from the temperature gradient.
Similarly, the mean profile of (T') also differs upon neglecting
the Dufour contribution to the heat flux, and the reader is
referred to the Supplemental Material for details [37]. Con-
comitantly, the structure of the hydrodynamic fluctuations is
also modified upon the absence of Soret and Dufour effects.
Figure 8(b) shows the long-ranged correlation between the
fluctuations in p;, given by (5,013,01), for the two cases of
X = 0and X # 0. The magnitude of (8,0;(8,01) is weaker when
X =0, and this results from a weaker local gradient in p,
since the magnitude of these correlations scales as (V ;)2
[9]. Similar differences are observed in the correlation of
temperature fluctuations (87787, and the reader is referred
to the Supplemental Material for the details [37]. Therefore,
the Soret and Dufour effects that emerge from the Onsager’s
reciprocity arguments [39] are important to be considered
while analyzing both mean and fluctuating hydrodynamics of
fluid mixtures at nonequilibrium, particularly in the case of
compressible gas mixtures as described here.

D. Hydrodynamic instability induced by thermal fluctuations:
Rayleigh-Taylor instability

As a final example, we demonstrate that thermal fluctua-
tions can trigger a Rayleigh-Taylor instability in mesoscale
fluid mixtures with an perfectly smooth initial interface sep-
arating a heavy fluid above a light fluid. Even in the absence
of any macroscopic perturbations, the molecular-scale thermal
fluctuations, which are modeled in a coarse-grained sense
by FHD, trigger the development and growth of the insta-
bility. Because such thermal fluctuations contain a whole
spectrum of wavelengths of perturbation, the perturbations
corresponding to the unstable wavelength [56] grow the in-
stability quickly, whereas the perturbations corresponding to
other wavelengths diffuse at the interface. This has been
reported in particle simulations and here we confirm those
observations by FHD [16,57].

We model a mixture of two fictitious monoatomic gases
consisting of a lighter species of molar mass my = 10 g/mol
and a heavier species of molar mass m; = 100 g/mol. The
two species have the same molecular diameter d; = d, =
9.63 x 1078 cm. The simulation domain was defined on a
64 x 64 x 128 grid with Ax = Ay = Az = 1.6 x 107> cm.
The low and high z boundaries prescribed Neumann boundary
conditions for concentration, heat flux (adiabatic walls) and
tangential momentum (full slip walls), and periodic bound-
aries were assigned in the other two directions. Two layers of
the gas mixture were initialized such that upper half contains
a heavier composition of the mixture Yy = 0.3 and Y¥; = 0.7,
and the lower half contains a lighter composition of the
mixture ¥y = 0.7 and Y; = 0.3, corresponding to an Atwood
number of 0.82 [56]. The interface separating the two mixture
halves was initially perfectly flat as shown by the variation
of the partial density of the lighter species pp in Fig. 9(a).
The density and temperature at the top z wall were set at p =
1.4 x 1073 g/cm® and T = 300K, respectively. The pressure,
density, and temperature were varied throughout the z direc-
tion such that the system was in hydrostatic equilibrium with
the gravity, which was set to g = 10'* cm/s?. As is commonly
done in molecular simulations, an exceptionally large value of
g was chosen to speed up the initiation of fluid instability. The
transport and thermodynamic properties of the gas mixture
were computed based on the prescription by Giovangigli [28].

We fixed the time step set of the simulation at At = 2.5 x
10~13 s, which corresponds to an acoustic Courant number
~1072. The simulation initially proceeded with a stratified
diffusion of the species across the interface resulting from the
concentration gradients, as shown by the variation of py at
an early time in Figs. 9(b) and 9(e). Soon after, an instability
started growing at the interface with a characteristic wave-
like pattern, as seen in Figs. 9(c) and 9(f). At later times,
the instability developed into growing bubble- and spike-like
penetrating structures [57], as seen in Figs. 9(d) and 9(g).
The Mach number of the fluid flow during these later times
of instability growth was ~0.1. Remarkably, this instability
was triggered in a simulation starting from a perfectly flat
interface, and it results entirely from thermal fluctuations.
By contrast, in conventional Navier-Stokes simulations an
artificial perturbation of the interface is needed to initiate the
hydrodynamic instability.
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FIG. 9. Rayleigh-Taylor instability. The images depict the temporal evolution of the partial density of the lighter species py. Panels (a)—
(d) show the vertical cross section of py at times t = 0,7 = 2.0 x 1078 5,7 =3.75 x 1078 5, and t = 5.0 x 1078 s, respectively. Panels (e, f)
show the horizontal slice at the center of the domain corresponding to panels (b—d). The data range for all the images is shown in the color bar

on the top right of the figure.

V. CONCLUSIONS AND FUTURE WORK

A staggered grid numerical scheme for the solution
of compressible, multispecies, nonisothermal, fluctuating
Navier-Stokes equations was demonstrated to more accurately
reproduce both equilibrium and nonequilibrium hydrody-
namic fluctuations of fluids mixtures when compared to
our previous cell-centered scheme [32]. By simulating mul-
tispecies mixtures of ideal gases, we demonstrated that
cross-diffusion effects, such as Soret and Dufour, importantly
govern the long-ranged correlations of hydrodynamic fluctu-
ations, and these observations were validated against DSMC
simulations. The present numerical scheme was demonstrated
to be adept in simulating thermal fluctuation-driven fluid in-
stabilities such as Rayleigh-Taylor. As a part of our future
work, we will utilize the accuracy of our numerical scheme
to study the role of thermal fluctuations in compressible tur-
bulent flows by simulating the fluctuating hydrodynamics of
Taylor-Green vortex flows [19,20].

The numerical scheme accurately represents various
boundary conditions such as isothermal and adiabatic walls,
slip and no-slip walls, and walls with fixed values of species
concentrations. In future we will formulate numerical meth-
ods to model particle reservoirs at the boundaries within
the staggered numerical scheme to simulate an open sys-
tem. A previous DSMC study improvised standard reservoir
models to avoid nonphysical correlations in hydrodynamic
fluctuations [58], and similar care will be required while
formulating reservoir boundaries in the present compressible
FHD numerical scheme. These developments will also con-
tribute to our ongoing and future work on coupling FHD with

surface chemistry models to simulate chemical reactions at a
reactive surface, such as in catalysis. Similarly, we also plan
to include bulk chemistry models in the present numerical
scheme to model reacting, multispecies mixtures toward sim-
ulating chemical processes such as combustion and explosive
detonation, where thermal fluctuations have been shown to
be important [59]. An isothermal, incompressible solver for
the FHD equations of reactive fluid mixtures was developed
previously, and will be extended to include nonisothermal
and compressibility effects using the staggered grid scheme
described here [60].

In earlier work we used kinetic theory to formulate stochas-
tic models to simulate the transpiration of a gas across a
nanoporous membrane at the nanoscale [21], with practi-
cal applications in gas separation and sensing technologies
[61]. A single-species, cell-centered numerical scheme for
compressible, nonisothermal FHD was used for this pur-
pose, and good agreement was observed between DSMC and
continuum solutions. As a part of our ongoing work, we
are reformulating the kinetic theory models for transpiration
in the staggered grid numerical scheme described here to
more accurately investigate the long-ranged correlations of
hydrodynamic fluctuations across a nanoporous membrane,
particularly in the presence of multiple species, which is of
practical importance.

Building on this formulation, we also plan to develop
a hybrid DSMC-continuum algorithm to provide higher fi-
delity modeling of the fluctuating hydrodynamics near the
nanoporous membrane. Such an algorithm specifically in-
volves implementing a DSMC representation of the fluid
mixture near the membrane, which is coupled to a continuum,
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compressible FHD representation of the bulk fluid domain
away from the membrane. The hybrid coupling strategy will
be based on an approach developed previously in Ref. [62],
but will need to be generalized to include multiple species
using the compressible, multispecies, staggered-grid scheme
described here. The resulting hybrid algorithm will provide
a more accurate representation of the fluid mixture within
the Knudsen layer near the membrane, which was found to
be inaccurately represented in a continuum FHD description
[21].
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APPENDIX A: QUASI-1D AND QUASI-2D FHD
SIMULATIONS

In quasi-1D and quasi-2D simulations, the fluxes along the
neutral direction are zeroed out. For example, in a quasi-1D
simulation with transport along the x direction, all energy,
species, and momentum fluxes along y and z direction are set
to zero. Although this is straightforward to do for species and
energy fluxes, care is required to set the diagonal terms of the
stochastic stress tensor that produce the correct covariances
for the stochastic stress.

Consider the components of the viscous stress tensor I for
the specific case of zero bulk viscosity (valid for monoatomic
gases [28]),

1'[ ou; n ou;j Iy 2 v

ij =07+ o= )+ znV-u)
J & 0x; 0x; \3 7

In three dimensions, the components of the stochastic stress
tensor IT is [38]

(AD)

= /2kgTnZ — —VT 2, (A2)

where the diagonal terms of the Gaussian tensor Z have a
variance of two and the off-diagonal terms have a variance

of unity. The covariances of the diagonal components of the
stochastic stress tensor are

~ ~ ’o SnkBT ’ ’
(I (r, L (x', 1)) = <T) S(r—r)s@ —1),

(M (r, ), (¢, 1) = —

(4”§BT> S — )8t —1').

(A3)

In quasi-1D case, all the terms of Viscqys stress IT and
stochastic stress I are zero except I1,, and IT,,, respectively.
The viscous stress is given as

M = _znux + %qu’ (A4)

where V -u =u, and u, = du/dx. However, II,, is now

given as
~ ~ [kgnT ~
I = v 3kBTanx - B;I Zxx’

to give the same covariance (’I:IJX(I', t)ﬁxx(r’;j’)) in Eq. (A3).
Here, we have used Tr(Z) = Z,,. Note that IT,, for quasi-1D
differs from the three-dimensional case given in Eq. (A2) by
a factor of \/3/2.

For the case of quasi-2D, the stochastic stress tensor is
determined by the following. We write it as

I = ay/2ksTnZ — pY2ksnT 3 T(Z)}I

(A5)

(A6)

where the numerical weights a and b are to be determined. In
quasi-2D, I1,, and I1,, are

«/Zk T ~ ~
Iy =ay 2kpT Zxx - 3377 (Zo + Zyy)y

A/ 2kBT]T

ﬁyy =a 2kBTﬂZ~yy —-b (Zxx + Zyy) (A7)

where a and b are real numbers that satlsfy the covariances in
Eq. (A3). The following values satisfy this

a=1,

3+4/3
2 b

b=

for Gaussian-distributed gxx and Z~w with a variance of 2.0.
Note that because a = 1, the off-diagonal terms of M remain
unchanged from their three-dimensional version.

The modified formulation of the stochastic stress tensor
described above for quasi-1D and quasi-2D simulations re-
quires generating and storing fewer random numbers than
a full 3D simulation, which makes numerical scheme more
computationally efficient.

APPENDIX B: DSMC SIMULATIONS

The results from the numerical solutions to the FHD equa-
tions are compared with molecular simulations performed
using the direct simulation Monte Carlo (DSMC) method,
which has traditionally been used to simulate gas dynam-
ics at both macroscopic and molecular scales. The reader is
referred to Ref. [63], and to Refs. [64,65] for a pedagog-
ical treatment of this method. The simulation begins with
an initial random placement of DSMC particles (each rep-
resenting a single gas atom or a collection of atoms) in the
domain with velocities drawn from a Maxwell-Boltzmann
distribution. In each time step, the particles are first advected
along their velocity without accounting for any collisions
between them. At this stage, any appropriate boundary condi-
tions are also imposed. Subsequently, the collisions between
particles are chosen by a stochastic process that conserves
momentum and energy, with the post-collision velocities se-
lected from kinetic theory distributions. The equilibrium and
nonequilibrium fluctuations in DSMC accurately reproduce
the physical spectra of spontaneous thermal fluctuations; this
has been confirmed previously by excellent agreement with
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fluctuating hydrodynamic theory [5,29] and molecular dy-
namics simulations [66].

In the implementation used here we have employed the
no time counter (NTC) method [63] to select collisions, with
the particles treated as hard spheres, and each representing
a single gas atom. This produces the same ideal gas trans-
port properties used for the FHD simulations, discussed in
Sec. I C. Particle reflections from boundaries are either dif-
fuse, corresponding to an isothermal no-slip boundary, or
specular, corresponding to an adiabatic full slip boundary; see
Sec. I C. The DSMC method has been implemented using
the AMReX framework [45].

For the DSMC simulations described in Sec. IVB the
same parameters were used as FHD simulations, with the
following exceptions: (a) DSMC simulations used noncubic
cells, where Ax =3 x 10~%cm (same as FHD), but Ay =
Az =3.5 x 107%cm, and (b) a time step of At =3 x 107 's
was used in the DSMC simulations. One simulator parti-
cle was used to represent each real gas molecule, resulting
in approximately 115 000 particles; this ensures a mini-
mum of 100 particles of each species per cell. To impose
the concentration boundary conditions, particles impacting
the wall have their species randomly assigned proportion-
ally to the specified concentration. Due to Knudsen effects
[63,67] that are significant far from equilibrium, it is gen-
erally not possible to impose a strict Dirichlet condition

on the hydrodynamic and thermodynamic fluid properties
at a boundary in DSMC simulations. This occurs because
the bulk fluid properties are obtained by integrating over
all particle velocities, while the boundary condition is ap-
plied only to particles with velocities moving away from
the wall. This typically results in a “slip” at the boundary,
where the bulk fluid properties undershoot the condition be-
ing applied to the outgoing particles. To compensate for this
effect, the probability of a particle being assigned to species
0 at the left and right boundaries was set as P* = 0.06 and
PR = 0.94, which yielded boundary concentrations similar to
the FHD values of Y = 0.1 and Y® = 0.9, as described in
Sec. IV B.

For the DSMC simulations described in Sec. IV C, the
same cell size and time step was used as the DSMC sim-
ulations in Sec. IV B. This yields approximately 100 000
particles representing neon, and 25 000 particle representing
krypton, resulting in a minimum of 100 particles of each
species per cell. The thermal gradient is imposed through
Dirichlet temperature walls, and a temperature slip occurs at
the boundaries, similar to the case of the applied concentration
gradient. The wall temperatures of 534K and 261K were
set in the DSMC simulations, which resulted in bulk fluid
temperatures that matched well with the 519K and 273K tem-
perature boundary conditions used in the FHD simulations, as
described in Sec. IV C.
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