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The lattice Boltzmann method (LBM) has been developed as a powerful solution method in computational
fluid dynamics and heat transfer. However, the development of the LBM for solving radiative transfer prob-
lems has been far from perfect. This paper proposes a generalized form of the lattice Boltzmann model for
the multidimensional radiative transfer equation (RTE) in irregular geometry with a graded index based on
body-fitted coordinates. The macroscopic RTE is recovered from Chapman-Enskog analysis, which provides
two possible procedures to formulate the Boltzmann equation in graded-index media and irregular geometries.
These proposed models have been tested by considering one-and two-dimensional problems of the RTE, and
the benchmark solutions reported in the literature were used for comparisons. Afterwards, the LBM is used
to analyze the radiation transport in graded-index media for various forms of scattering law, refractive index,
boundary reflection, laser and optical properties, and temperatures. The graded-index function and the geometry
type have a significant effect on radiative transport in cases in which the refractive index matches or mismatches
the boundary. It is also apparent that the developed LBM is an efficient, powerful, robust, and accurate solver for
radiative transport in inhomogeneous media with a graded-index function and irregular geometries.
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I. INTRODUCTION

Several generations of researchers in the radiative transfer
community have studied the problem of radiative transfer
through participating media. This particular interest can be
justified by the fact that radiations play an important role in
many applications, such as the interpretation of spectroscopic
emissions from stars, planets, and atmosphere [1–3], nuclear
engineering [4–6], biological tissues [7], thermal insulations
[8], and glass fabrication and combustion systems [9,10]. Ra-
diative transfer in such problems can accurately be predicted
through the radiative transfer equation (RTE) solution. The
RTE is an integrodifferential equation of seven variables: three
spatial coordinates, a polar and an azimuthal angle, time,
and spectral dimension. Therefore, an accurate, simple, and
efficient tool to solve the radiative transfer problem is required
for these applications. In addition to its dependence on spatial
and angular variables, the ray goes along a curved path that
is clearly described by the Fermat principle in graded-index
media. Therefore, the RTE in graded-index media is more
difficult to solve analytically except for some limiting cases
[11,12].

The commonly used methods for the solution of the
radiative transfer budget include (i) the ordinates method
(DOM/FVM) [13,14], which defines the angular points to
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use in the solution procedure; (ii) the stochastic and reverse
Monte Carlo method [15,16], which traces the history of each
particle from its emission to disappearance; (iii) the spherical
harmonics method (SHM), which is a series decomposition
of radiative intensity; (iv) the discrete transfer method (DTM)
and the ray tracing method (RT), which follows the curvilinear
abscissa [17–19]; and (v) the spectral element method (SEM,
LSSEM, and meshless method) [20,21]. The ordinate method
and the very-low-order of spherical harmonics method are the
most popular, and they are generally incorporated in commer-
cial computational software as FLUENT [22–24], COMSOL
Multiphysics [25], OpenFoam, and ANSYS [26]. For the case
of irregular geometry, applying the radiative inflow boundary
condition is a challenge, and several approaches have been de-
veloped, including the inaccurate blocked-off procedure [27],
which models the complex boundary as a stair step, and the
embedded boundary method, which improves the blocked-off
method by treating the complex boundary in a Cartesian grid.
In addition, the body-fitted coordinates (BFC) and multiblock
grid, which matches the complex boundary, have shown a
high degree of accuracy in improving the embedded method.
Recently, the immersed boundary method, which was initially
developed for computational fluid dynamics, was proposed
to solve radiative transfer for complex geometries with high
accuracy [24,28]. Similar to the blocked-off procedure, the
immersed boundary method extends the complex geome-
try into active and inactive regions separated by a physical
boundary. This procedure increases the computational effort
and requires additional storage memory.
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In addition to the difficulty of matching the boundary of the
complex geometry, the bending of rays in graded-index media
[17–19] is another origin of errors that affect the spatial res-
olution or accuracy of the radiative solution [29]. To mitigate
these errors, high-resolution schemes such as the discontin-
uous finite elements/Galerkin method [20,30], a flux limiter,
and the semianalytic method [31] have been recently used for
radiative transfer solutions. Moreover, the mesoscopic lattice
Boltzmann method (LBM) for computational fluid dynamics
[32] has been extended to a large number of engineering
applications, such as heat and mass transfer, and acoustic
and phonon transport, and it has been proposed as an effi-
cient method for transient radiations. Regarding the angular
directions as macroscopic velocities, Wang et al. [33] treat the
transient RTE as a case of the convection-diffusion equation
without the diffusion term, and they provide a complete de-
scription of the lattice Boltzmann formulation (LBM) while
the Chapman-Enskog expansion was necessary to recover the
nondimensional parameters of the problem. This method has
recently gained extraordinary popularity in the radiative trans-
fer domain for both steady and transient studies [24,34–37],
and some versions have been presented for radiation problems
in which the fictitious speed of light is tuned along each direc-
tion of the ray [38,39]. Very recently, a complete version of the
first attempt of the RTE solution for graded-index media with
the LBM was presented by Liu et al. [40]. But unfortunately,
the proposed formulation fails to recover the macroscopic
RTE in multidimensional problems in the Chapman-Enskog
analysis, and therefore it should be amended.

To extend the applicability of the LBM method for both
graded-index media and irregular geometries, the complex
geometry known as the physical domain is mapped with an
element set compatible with the shape of the boundary, and
the real nonorthogonal grid is converted into a fictitious or-
thogonal grid called the computational domain. The Jacobean
matrix approach is used to perform the grid transformation
into a structured orthogonal grid that is straightforward to
generate [41], and on which the lattice Boltzmann method
works without extra effort.

The paper is organized as follows: the first part presents
the mathematical model and the methodology step by step to
build the solution. The second part is first devoted to testing
the accuracy of the proposed method, and subsequently to in-
vestigating the transient radiation in graded-index media with
regular or irregular geometries. Afterwards, the effects of var-
ious optical parameters on radiometric quantities are tested.

II. PROBLEM STATEMENT

A. Governing equations in graded-index media

The RTE for graded-index media describing the distribu-
tion of the radiative intensity I (r,�, t ) located at position r at
time t in the direction �(θ, φ) is given as [11,42]

n

c0

∂

∂t
I (r,�, t ) + (κe + � · ∇)I (r,�, t )

+ 1

n sinθ

∂

∂θ
{I (r,�, t )(� cosθ − k) · ∇n}

+ 1

n sinθ

∂

∂φ
{(s1 · ∇n)I (r,�, t )} = S(r,�, t ), (1)

where n is the refractive index, r is the position vector of
a given point belonging to the ray path, � = i sinθ cosφ +
j sinθ sinφ + k cosθ is the direction vector, and s1 = k ×

�
|k×�| = −i sinφ + j cosφ i, j, and k denote the unit vector
in a coordinate system, respectively. The radiative properties
are the absorption κa and scattering κs coefficients, which are
combined in extinction coefficient κe = κa + κs and the single
scattering albedo ω = κs/κe. The source term S(r,�, t ) is
simply expressed by [16]

S(r,�, t ) = n2κaIb(Tg) + κs

4π

∫
4π

	(�′ → �)I (r,�′, t )d�′,

(2)
where Tg is the medium temperature and 	(�′ → �) is the
scattering phase function characterizing the redistribution of
the energy from the incoming direction �′(θ ′, φ′) to the out-
going direction �(θ, φ).

The considered problem is defined under the boundary
conditions for � · n̂w < 0 and �s · n̂w < 0, where n̂w is the
normal vector pointing out of the surface, and �s = � −
2(� · n̂w )n̂w is the corresponding incident direction of specu-
lar reflection. The boundary intensity for � · n̂w < 0 is

I (rw,�, t ) = Qext + ρs
wI (rw,�s, t ) + n2

wεwIbw

+ ρd
w

π

∫
�′ ·n̂w>0

|�′ · n̂w|I (rw,�′, t )d�′, (3)

where Ibw is the blackbody intensity at the boundary, and ρs

and ρd are, respectively, the specular and diffuse reflectivities
of the boundary having the emissivity εw. The external Qext is
the driven force incoming at the external side of the boundary
with another direction �0 given by Snell’s law. From the
solution of the radiative transfer equation, the radiative flux
vector q(r, t ) and incident radiation G(r, t ) at any location
M(x, y) are easily calculated as

q(r, t ) =
∫

4π

� I (r,�, t )d�, G(r, t ) =
∫

4π

I (r,�, t )d�.

(4)
The collimated intensity Ic induced by the laser irradiation

undergoes attenuation while propagating within the medium
[43,44], and it can be solved analytically with the boundary
condition Ic(rw,�, t ) = Qext. The attenuation of collimated
intensity Ic within the medium gives rise to the diffuse inten-
sity Id(r,�, t ). Thus, the intensity I (r,�, t ) is composed of
collimated and diffuse components: I (r,�, t ) = Ic(r,�, t ) +
Id(r,�, t ).

B. Coordinate transformations and discretization

The dimensionless time is t∗ = c0t/lc, where lc is the
critical length, and the spatial operator is rewritten using a
new coordinates system x = x(ξ, η) and y = y(ξ, η), where
0 � ξ � 1 and 0 � η � 1 to convert the physical irregular
geometry into a regular geometry called the computational
domain. The nabla operator becomes ∇ = A(ξ, η)∇∗, where
∇∗ = i ∇ξ + j ∇η, and A(ξ, η) is a second-order tensor de-
fined from the Jacobean transformation by

A(ξ, η) =
[
ξx ηx

ξy ηy

]
=
[ yη

Ja
− yξ

Ja

− xη

Ja

xξ

Ja

]
,

Ja(ξ, η) = xξ yη − xηyξ . (5)
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FIG. 1. Angular control volumes and spatial lattice arrangement
in the LBM for 1D and 2D.

The streaming operator for radiative transfer is expressed
as

� · ∇I = � · (A∇∗)I = (AT �) · ∇∗I

= ∇∗(AT �I ) − I∇∗(AT �), (6)

where AT is the transposed matrix of A. The finite-volume
method (FVM) [14] is used on a control solid angle as in
Fig. 1(b) to cast the angular dependency of the transient RTE
in graded-index media for diffuse radiation in the direction
�(θm, φn) as

n
∂Im,n

d

∂t∗ + lc∇∗(AT sm,n
∗ Im,n

d

) = Sm,n
T , (7)

where

Sm,n
T = lc

[
Sm,n

c + Sm,n
d + am,n

3 + am,n
4

− (
κe + am,n

1 + am,n
2 − ∇∗(AT sm,n

∗
))

Im,n
d

]
. (8)

The coefficients are given by

am,n
1 = max

⎛
⎝χθ

m+ 1
2 ,n

��m,n
· A

∇∗n

n
, 0

⎞
⎠

+ max

⎛
⎝−

χθ

m− 1
2 ,n

��m,n
· A

∇∗n

n
, 0

⎞
⎠, (9a)

am,n
2 = max

⎛
⎝χ

φ

m,n+ 1
2

��m,n
· A

∇∗n

n
, 0

⎞
⎠

+ max

⎛
⎝−

χ
φ

m,n− 1
2

��m,n
· A

∇∗n

n
, 0

⎞
⎠, (9b)

am,n
3 = max

⎛
⎝−

χθ

m+ 1
2 ,n

��m,n
· A

∇∗n

n
, 0

⎞
⎠Im+1,n

d

+ max

⎛
⎝χθ

m− 1
2 ,n

��m,n
· A

∇∗n

n
, 0

⎞
⎠Im−1,n

d , (9c)

am,n
4 = max

⎛
⎝−

χ
φ

m,n+ 1
2

��m,n
· A

∇∗n

n
, 0

⎞
⎠Im,n+1

d

+ max

⎛
⎝χ

φ

m,n− 1
2

��m,n
· A

∇∗n

n
, 0

⎞
⎠Im,n−1

d . (9d)

The discrete collimated and diffuse source term Sm,n
d is

given by

Sm,n
c = κs

4π

Ic(r,�c, t )

��m,n

∫
��m,n

	(�c,�)d�, (10a)

Sm,n
d = n2κaIb(Tg) + κs

4π

Nθ∑
m′=1

Nφ∑
n′=1

��m′,n′
Im′,n′
d 	̃m,n;m′,n′

,

(10b)

where 	̃m,n;m′,n′
is the angular mean scattering function for

the FVM. The quadrature sets are represented, respectively,
by directions and corresponding weights as

sm,n
∗ =

∫
��m,n

�d�

��m,n
, ��m,n =

∫ θ
m+ 1

2

θ
m− 1

2

∫ φ
n+ 1

2

φ
n− 1

2

d�. (11)

The recursive formulas for edge direction vectors χθ

m± 1
2 ,n

and χ
φ

m,n± 1
2

are

χθ

m+ 1
2 ,n

− χθ
m−1/2,n =

∫
��m,n

1

sinθ

∂

∂θ
(� cosθ − k)d�,

(12a)

χ
φ

m,n+ 1
2

− χ
φ

m,n−1/2 =
∫

��m,n

1

sinθ

∂s1

∂φ
d�, (12b)

where χθ
1
2 ,n

= χθ

Nθ+ 1
2 ,n

= 0 and χ
φ

m, 1
2

= χ
φ

m,Nφ+ 1
2

= j�θm. In

addition, the solid angle is mapped into Nθ × Nφ directions
such that θm = (m − 0.5)π/Nθ and φn = 2(n − 0.5)π/Nφ .

C. Lattice Boltzmann method

The consistency of the LBM to recover the macro-
scopic state of the angular discretized RTE is obtained via
the Chapman-Enskog analysis developed in the literature
[33–35,40,45]. Here in graded-index media, two possible
procedures, known as Procedure 1 and Procedure 2, can be
developed to construct the equilibrium distribution functions
and source terms. These procedures can be adopted by includ-
ing the new variable 𝒶0 such that 𝒶0 = 1 for Procedure 1 and
𝒶0 = n(r∗) for Procedure 2. So, in such a situation, Eq. (7) is
rewritten as

𝒶0
∂Im,n

d

∂t∗ + ∇∗[uIm,n
d (r∗,�mn, t∗)

] = F m,n, (13a)

F m,n(r∗,�mn, t∗) = 𝒶0

n
Sm,n

T + n

𝒶0
Im,n
d u · ∇∗

(
𝒶0

n

)
, (13b)

where u = lc𝒶0AT sm,n
∗ /n for irregular geometry, and it re-

duces to u = lc𝒶0sm,n
∗ /n for regular geometry. Procedure 1

and Procedure 2 are two possible approaches to construct
the equilibrium distribution functions and source term, and
these approaches are mathematically taken into consideration
by the coefficient 𝒶0. For Procedure 1, Eq. (7) is divided by
the refractive index n and 𝒶0 = 1, while for Procedure 2,
the equilibrium distribution functions are constructed based
on Eq. (7) and 𝒶0 = n(r∗). It should be noted that the two
procedures are the same for the RTE in regular and constant
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refractive index media. The discretized LBM form associated
with Eq. (13a) is given as [33–35,46]

fk (r∗ + ek�t∗, t∗ + �t∗)

=
(

1 − �t∗

τ

)
fk (r∗, t∗)

+ �t∗

τ
feq
k (r∗, t∗) + �t∗Fk + �t∗2

2

∂Fk

∂t∗ , (14)

where

feq
k = wkIm,n

d (r∗,�mn, t∗)

×
[
𝒶0 + ek .u

c2
s

+
(
uu − c2

s𝒶
2
0I
)

:
(
ekek − c2

s I
)

𝒶0(αs − 1)c4
s

]
,

(15a)

Fk = wk

[
1 + λ

ek · u
𝒶0c2

s

]
F m,n − λwkIm,n

d

ek · u
𝒶

2
0c2

s

(u · ∇∗
𝒶0)

+ λ0wk
ek · u
𝒶0c2

s

G0, (15b)

with I representing a unit tensor, cs is the lattice sound
speed, G0 is a function to be determined, fk is the k-
particle distribution function having the equilibrium state
feq
k , and wk is the weight of fk along the direction vec-

tor ek connecting to the nearest-neighbor node. The lattice
isotropy is defined as

∑
k wkekek = c2

s I and
∑

k wkek =∑
k wkekekek = 0.
In the commonly developed LBM in irregular geometries

based on BFC in convection analysis, the lattice streaming
operator is ek · ∇fk = ek · (A∇∗)fk = (AT ek ) · ∇∗fk . So, the
lattice vectors ek are tuned locally at each position into AT ek,

and u definitively becomes u = lc𝒶0sm,n
∗ /n. In such a case,

the known collision-streaming processes of the LBM are no
longer applicable, the Runge-Kutta method is used for time
integration, and the finite-difference, -volume, or -element
methods are used in spatial discretization [47–49]. In this
study, Eq. (6) is the primary key for the conservation of the
LBM philosophy of collision-streaming with global (constant)
streaming vectors ek .

The macroscopic variables are recovered using∑
k

feq
k = 𝒶0Im,n

d (r∗,�mn, t∗),

∑
k

ekfeq
k = uIm,n

d (r∗,�mn, t∗), (16a)

∑
k

ekekfeq
k = uu

𝒶0
Im,n
d (r∗,�mn, t∗),

∑
k

Fk = F m,n(r∗,�mn, t∗), (16b)

∑
k

ekFk = λu
(
𝒶0F m,n − (u · ∇∗

𝒶0)Im,n
d (r∗,�mn, t∗)

𝒶
2
0

)

+ λ0u
𝒶0

G0. (16c)

The recovering of the RTE for a graded index, and de-
termination of the partial source term G0, is realized via the

Chapman-Enskog analysis, which expresses G0 as

G0 = Im,n
d

(
u · ∇∗(uu)

|u|2 − ∇∗ · u
)

, (17)

where || is the Euclidian norm. So, the total discrete force Fk

is rewritten as

Fk = wk

(
1 + λ

ek · u
𝒶0c2

s

)
F m,n

+ λwk
ek · u
𝒶0c2

s

Im,n
d

(
u · ∇∗(uu)

|u|2 − ∇∗ · u − u · ∇∗
𝒶0

𝒶0

)
.

(18)

The RTE for graded-index media is recovered from the
Chapman-Enskog analysis, and different lattice arrangements
can also be used in one dimension thanks to the lattice
coefficient αs. In addition, the lattice arrangements for one-
dimensional (1D) and two-dimensional (2D) geometries are
also represented in Fig. 1, and the corresponding parameters
are listed in Table I [50].

Remarks
(i) For the RTE in a rectangular enclosure, u is a constant

vector in Procedure 2 and therefore G0 = 0, justifying that
Procedure 2 is simpler to code than Procedure 1.

(ii) In addition, if the refractive index is constant, then
∇∗
𝒶0 = 0, therefore only the first term in brackets is consid-

ered in Eq. (18), which indicates that the present LBM can be
naturally degenerated to handle the RTE in inhomogeneous
media with a constant refractive index.

(iii) In one-dimensional problems, Eq. (B5) in
Appendix B shows that Procedure 1, where 𝒶0 = 1 and
∇∗
𝒶0 = 0, is equivalent to the formulation recently proposed

by Liu et al. [40]. However, for multidimensional problems,
their formulation fails to accommodate Eq. (18) in Procedure
1. So, the real and general form of the discrete Fk to consider
in graded-index media for Procedures 1 or 2 is given by
Eq. (18), which corrects the recent formulation proposed by
Liu et al. [40].

D. Boundary treatments for the LBM in irregular
graded-index media

The boundary conditions of the RTE are the inflow bound-
ary types, and for the outflow boundary �m,n · n̂w > 0, the
Clausius ray invariant is used to express the radiation intensity
as

Id(rw,�m,n, t∗) =
(

1 +
∣∣∣∣ rw − ra

rna − ra

∣∣∣∣
)

n2
w

n2
a

Id(ra,�
m,n, t∗)

−
∣∣∣∣ rw − ra

rna − ra

∣∣∣∣ n2
w

n2
na

Id(rna,�
m,n, t∗), (19)

where ra denotes the location of the adjacent node of rw, and
rna denotes the location of the next adjacent node.

The nonequilibrium extrapolation scheme is used to apply
the boundary conditions [33–35,45,46,50,51] to obtain the
distribution functions at the boundaries. The boundary inten-
sity is used to compute the equilibrium distribution functions
at the wall node, and the radiative intensity at the previous
time step is used to compute the equilibrium functions at the
interior node neighboring the considered wall [36].
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TABLE I. Possible lattice arrangements for D1Q3 used in 1D and for D2Q9 used in 2D [50]. Note: The lattice speed e = �ξ∗
�t∗ = �η∗

�t∗ .

Sound Weights Linking vectors ek �=0

Lattice speed cs αs w0 wk �=0 with e0 = (0) or e0 = (0, 0)

D1Q3a e/
√

3 3 2/3 w1−2 = 1/6 e1,2 = (±1)e
D1Q3b e/

√
2 2 1/2 w1−2 = 1/4 e1,2 = (±1)e

D1Q3c e/
√

6 6 5/6 w1−2 = 1/12 e1,2 = (±1)e
D2Q9 e/

√
3 3 4/9 w1−4 = 1/9 e1,3 = (±1, 0)e, e2,4 = (0, ±1)e

w5−8 = 1/36 e5,7 = (±1, ± 1)e, e6,8 = (∓1, ± 1)e

III. RESULTS AND DISCUSSION

In this section, the stability and accuracy of the LBM are
first examined by considering some cases available in the liter-
ature in order to build the ray and grid-independent solutions.
Then, the methodology is used to treat the radiation transport
in graded-index media under diffuse or collimated irradia-
tion with combined radiative properties. By considering that
τ = �t∗, the grid and ray independence verifications show
that 200 lattices and Nθ = 96 discrete directions are adopted
for 1D studies, while 40 × 40 lattices and Nθ × Nφ = 12 × 48
discrete directions are used for 2D problems. The stability
condition based on the directional propagation speed in a com-
putational lattice is given as min(�x∗

0,�y∗
0 )/�t∗ � 1, where

�x∗
0 and �y∗

0 are evaluated on a lattice having a minimal
surface as

�x∗
0 =

∫ ξ+�ξ

ξ

n(ξ, ηmax)dξ

sin
(

0.5π
Nθ

)
cos
(

π
Nφ

) ,
�y∗

0 =
∫ η+�η

η

n(ξmax, η)dη

sin
(

0.5π
Nθ

)
cos
(

π
Nφ

) . (20)

This relation shows that the refractive index and grid size
affect the stability. In addition, decreasing Nθ or increasing
Nφ has a significant effect on the stability, and therefore �t∗
should be chosen judiciously. The value of �t∗ throughout
this study has been chosen as �t∗ = 0.001 to build these re-
sults using Procedure 2, except in a few cases with indications
where Procedure 1 has also been used.

A. One-dimensional RTE in graded-index media

The first considered case is the transient radiation in an in-
finite and cold isotropic scattering slab with diffuse or Fresnel
walls. The optical thickness of the slab is κeL = 1.0, and the
single scattering albedo is ω = 0.5 while the left boundary in-
tensity is suddenly raised at diffuse I (0, t∗) = I0H (t∗), where
H (t∗) is the Heaviside step function and I0 = 1 W m−2. The
medium is bounded by black walls, and the refractive index
with linear variation given by n = 1 + 2z/L is considered.
Figures 2(a) and 2(b) depict the time evolution of the incident
radiation G(z, t∗) and radiative heat flux q(z, t∗) with dif-
fuse walls, built with the most popular D1Q3a lattice
structure. These figures show good agreement with dis-
continuous finite-element method (DFEM) solutions [52],
which have been confirmed to be accurate. Moreover, a
radiation wavefront reaches any location z at time level
t∗ = ( z

L ) + ( z
L )2 = 0.4, 1.0, 2.0, and 4.0 corresponding to

z/L = 0.306, 0.618, 1.0, and 1.562 observed in Fig. 2. So, the
LBM can handle the correct propagation speed of radiations
within semitransparent graded-index media. Using the same
lattice structure, Figs. 2(c) and 2(d) depict the time variation
of the incident radiation and heat flux for the Fresnel wall built
with Procedure 1 and Procedure 2. These figures show that
the two procedures of the LBM are equivalent and produce
the same results. It can also be observed that, considering
the right boundary with Fresnel reflectivity, the upstream inci-
dent beam with 0.333 < μ = cos θ < 1 reflects back towards
the left boundary while the range 0 < μ < 0.333 undergoes
total reflection. So, the downstream hemisphere of the right
boundary is irradiated, as shown in Fig. 3. As a consequence,
the reflected beam increases the incident radiation and de-
creases the radiative heat flux near the right boundary. These
observations demonstrate clearly that the present LBM can
handle theoretical phenomena as diffuse, specular, or Fresnel
boundary types.

The next considered case is the transient radiative prob-
lem in a semitransparent graded-index slab, where the optical
thickness of the slab is κeL = 1.0, bounded by vacuum on
the left and a nonscattering semi-infinite medium with a con-
stant refractive index nL > 1. The isotropic scattering medium
with single scattering albedo ω = 1.0 and refractive index
n = 1 + (nL−1)z/L is illuminated at the left boundary with
a laser beam while the right boundary is free from radiation.
The laser pulse normal to the boundary is given by

Iw(t ) = I0exp

[
−
(

t − 3tp
0.5tp

)2

ln2

]
[H (t ) − H (t − 6tp)], (21)

where κec0tp = 0.4, and the total computational time span
t∗ = 12 is considered. The collimated beam is given analyt-
ically by Beer’s law as Ic(z, t ) = Iw(t− ∫ z

0
n(y)dy

c0
)exp(−κez).

The present LBM is used to build the time-resolved re-
flectance and transmittance for nL = 1 and 3 and compared in
Fig. 4 with the values of the DFEM [52]. To show the univer-
sality of the LBM even for very uncommon lattice structures,
the D1Q3b and D1Q3c in Procedure 2 are used. The LBM
results exhibit good agreement with the DFEM results and
demonstrate that the D1Q3b and D1Q3c lattices are also very
accurate as D1Q3a and therefore they can be used without loss
of accuracy.

The accuracy of the LBM is now investigated by consid-
ering an isotropic scattering slab with the optical thickness of
κeL = 1.0 made of two layers with different refractive indices
and separated by the Fresnel-type interface. Each layer with
the optical thickness of κeL0 = 0.5 is bounded by Fresnel-type
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FIG. 2. Incident radiation and radiative heat flux distributions in a cold slab at different time levels for ω = 0.5, n = 1 + 2z
L , and κeL = 1.0.

(a) Incident radiation with diffuse walls. (b) Heat flux with diffuse walls. (c) Incident radiation with Fresnel walls. (d) Heat flux with Fresnel
walls.

walls, and the first and second layers have constant refractive
indices n1 = 1.2 and n2 = 1.5, respectively. The first layer
is irradiated at the left boundary with a single square pulse
Iw(t ) = H (t ) − H (t − tp) of duration t∗

p = c0tp/L = 1.0 with
normal incidence and single scattering albedo ω = 1.0, while
the right boundary is free from radiation. The collimated rem-
nant of radiation is solved analytically, and it is observed in
Fig. 5 that the collimated beam undergoes multiple reflections
and transmission, which is due to the refractive index disconti-
nuities at semitransparent boundaries and interfaces. It is also
observed that the decreasing collimated intensity shows the
discontinuity at the interface, and the analytical solution of
the collimated beam agrees very well with the LBM results
developed by Zhang et al. [38].

Figures 6(a) and 6(b) depict the reflectance and
transmittance signals in comparison with the Monte Carlo

FIG. 3. Angular distribution of radiative intensity I (z, θ ) at
steady state for ω = 0.5, n = 1 + 2z/L, and κeL = 1.0 with (a) dif-
fuse type walls, (b) Fresnel-type walls.

method (MCM) developed by Zhang et al. [38] for n1 = 1.2
and n2 = 1.5. For this particular case, each layer has been
split into 100 lattices and 80 discrete directions to compute
the grid and angular independent solutions. It can be realized
that an excellent agreement is observed between the present
LBM solution and the MCM solutions. Theoretically, the
wavefront reaches the right boundary of the second layer at
time c0t = n1L1 + n2(L − L1) = 1.35, and the transmittance
signal appears and the bond ends at 1.35 + t∗

p . Due to the laser
pulse, the reflectance signal increases during the time period
of t∗

p , and the laser switches off. The wavefront undergoes the
first reflection at the interface at c0t = n1L1 = 0.6, giving rise
to the first bond in reflectance signal at c0t = 2n1L1 = 1.2
and the end at 1.2 + t∗

p , while partial fraction undergoes
transmission towards the second layer. Afterwards, this
fraction undergoes reflection at the right boundary of the
second layer and reaches the left boundary of the first layer
at c0t = 2n1L1 + 2n2(L − L1) = 2.7 to start the second bond
in reflectance signal which ends at 2.7 + t∗

p . These theoretical
analyses are consistent with the LBM results presented
in Fig. 6, which predict the correct propagation speed
of radiations.

To investigate the accuracy of the different lattice structures
proposed in this LBM model, we consider the case of an infi-
nite slab with a Gaussian-shaped radiative source term S(z) =
n2κaIb(Tg) = exp[− (z/L−c00 )2

α2 ] and refractive index n = 1.0.
The medium is absorbing, emitting, and nonscattering (ω =
0) with black and diffuse surfaces. Both boundaries are
subjected to strongly inhomogeneous source terms with a
Gaussian intensity I (zw, μ) = S(zw )/κe. The mathematical
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FIG. 4. Time-resolved hemispherical transmittance signals with refractive index n = 1 + (nL−1)z/L for nL = 1 and 3.

solution at steady state is defined as [35]

I (z∗, μ) = 1

κe
exp

(
−κez∗

μ
− c2

00

α2

)

− α
√

π

2μ
exp

{
−κe

μ
u1

}
{u2(z∗) − u2(0)}, (22)

where z∗ = z
L , μ > 0, u1 = z∗ − ( α2κe

4μ
+ c00), and u2(z∗) =

erf[ ακe
4μ

+ (c00−z∗ )
α

]. Figure 7 depicts the radiative intensity at
μ = cosθ = 0.113 and 0.6 for different optical thicknesses
κeL = 0.1, 1.0, and 10, and it compares the LBM solution to
the exact solution given by Eq. (22). It can be observed that
the LBM agrees very well with the analytical solutions.

Moreover, the global relative error given as the summation
of |ILBM

𝒾
− Iexact

𝒾
| over all nodes 𝒾 divided by the summation

of Iexact
𝒾

when c00 = 0.5 and α = 0.02 is given in Table II. It
has been shown that, for this case the accuracy of the LBM is
much higher than that of the other methods, such as the mesh-
less method and the DFEM [35]. This section investigates the
accuracy of the different D1Q3a, D1Q3b, and D1Q3c lattice
structures for lattice number 20, 50, 100, 150, and 200 to solve
the radiative transfer problem defined in the same case. It can
be found that for all lattice structures considered, when in-
creasing the grid number, the relative error decreases rapidly.
In addition, the accuracy of the D1Q3a is higher than that of
D1Q3b, which is also higher than D1Q3c. So, for radiative

transfer problems in 1D, the D1Q3a and D1Q3b are preferable
to produce very accurate results than D1Q3c.

B. Two-dimensional RTE in uniform refractive index media

The rectangular enclosure with vertex nodes ABCD in
a counterclockwise direction is converted into a square
using the transformation r = rA + (rB − rA)ξ + (rD − rA)η,

where ξ = x/Lx and η = y/Ly; rA, rB, rC, and rD are the
position vectors of the vertex nodes. The steady state is as-
sumed to be achieved with the summation over all nodes 𝒾,∑all

𝒾=1 |ψ it
𝒾
−ψ it−1

𝒾
|∑all

𝒾=1 |ψ it−1
𝒾

| < 10−5, where ψ it
𝒾

and ψ it−1
𝒾

are the numerical

solutions of incident radiation at two consecutive iterations.
The case of an anisotropic scattering square enclosed

by black boundaries and square temperatures is Tg =
1000 K, Twall = 0 K, and q0 = σT 4

g is investigated to test
the accuracy of the LBM in 2D problems. The consid-
ered scattering phase function is given as 	(�,�′) = 1 +∑8

𝒾=1 𝒶𝒾P𝒾(�.�′), where P𝒾 is the Legendre polynomial
while the 𝒶𝒾 coefficients are given by 𝒶1 = 2.009 17, 𝒶2 =
1.563 39, 𝒶3 = 0.674 07, 𝒶4 = 0.222 15, 𝒶5 = 0.047 25,
𝒶6 = 0.006 71, 𝒶7 = 0.0068, and 𝒶8 = 0.000 050. In the first
consideration, the optical thickness κeL = 1.0, and the effect
of three combinations of the single scattering albedos ω =
0.0, 0.5, and 0.9 is investigated. In the second considera-
tion, the scattering albedo is kept at ω = 0.0, and the three
optical thicknesses κeL = 0.1, 1.0, and 10 are considered.

FIG. 5. Behavior of the transient collimated beam for n1 = 1.2 and n2 = 1.5. (a) Multiple reflections and transmissions of the collimated
beam when t∗

p = 0.1; (b) collimated intensity Ic(z, t )/(n2I0) with normal incidence and t∗
p = 1.0 at time level t∗ = 1.2.
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FIG. 6. Time-resolved reflectance and transmittance signals for two-layer slab with Fresnel-type walls and interface with refractive indices
n1 = 1.2 and n2 = 1.5.

Figures 8(a) and 8(b) plot the radiative heat flux at the lower
wall for the first and second considerations, respectively. It can
be found that Fig. 8(a) exhibits good agreement with the least-
squares spectral element method (LSSEM) proposed by Zhao
and Liu [53], the discrete ordinates method (DOM) [54], and
the LBM developed by Yi et al. [34] and Liu et al. [35], while
Fig. 8(b) agrees well with the LBM [34], the finite-element
method (FEM), and exact solutions [55].

The case of radiative equilibrium with boundary emission
and purely isotropic scattering ω = 1.0 is analyzed in a 2D
rectangular enclosure of sizes Lx × Ly with black walls and
temperature distribution TL = TR = TN = Tg = 0 K and for
TS = 1000 K. In Fig. 9, the discrete transfer method (DTM)
solutions proposed by Mishra et al. [56] are compared to
the LBM solutions for different values of the aspect ratio
Lx/Ly = 0.1, 1.0, 2.0, and 5.0. It can be observed that the
LBM provides accurate results, which agree well with the
DTM solutions. So, the LBM accommodates both squared and
rectangular geometries in radiative transfer analysis with good
accuracy.

Now, the transient collimated radiation is observed in a 2D
scattering square of size L and optical thickness κeL = 10
and single scattering albedo ω = 0.998. The left boundary
of the cold square is irradiated with a single square pulse
Iw(0, y, t ) = H (t ) − H (t − tp) of duration tp such that κet∗

p =
κec0tp/L = 1.0 with normal incidence. The scattering phase

function is given as 	(�,�′) = 1 + 𝒶1 � · �′, where three
values of 𝒶1 for backward scattering (𝒶1 = −1), for isotropic
scattering (𝒶1 = 0), and for forward scattering (𝒶1 = +1)
are considered. Figure 10 presents the time-resolved trans-
mittance and reflectance signals at locations 𝒜(0, 0.5L) and
B(L, 0.5L), respectively, and it compares to the least-squares
natural element method (LSNEM) solutions from Zhang et al.
[44]. It is observed that the LBM provides accurate results that
agree with benchmark solutions available in the literature.

C. Steady RTE in rectangular media
with a graded-index function

The first considered case concerns the radiative problem
in an emitting squared enclosure with linear scattering 	 =
1 + � · �′, and refractive index n = 5[1−0.9025x2/L2]0.5 in
the first consideration and n = 5[1−0.4356(x2 + y2)/L2]0.5

in the second [16]. The square temperature is Tg = 1000 K,

while Twall = 0 K and q0 = σT 4
g with black walls and three

combinations of optical properties. Figure 11 presents the
radiative heat flux along the lower wall of the enclosure with
possible optical thicknesses, boundary emission, and scatter-
ing albedos. Comparisons are made between the LBM results
and the MCM solution [57] and the DFEM [58] with good
accuracy. It can be observed that, as the refractive index de-
creases, the steady-state heat flux distribution along the line

FIG. 7. Radiative intensity for different optical thicknesses κeL = 0.1, 1.0, and 10. (a) For c00 = 0.25 and α = 0.025, and (b) for c00 = 0.5
and α = 0.02.
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TABLE II. Global relative error of D1Q3 lattice structures for c00 = 0.5 and α = 0.02.

κeL = 1.0 κeL = 10

Lattice number D1Q3a D1Q3b D1Q3c D1Q3a D1Q3b D1Q3c

20 1.431(–2)a 1.660(–2) 2.860(–2) 6.410(–2) 7.448(–2) 1.200(–1)
50 1.479(–4) 1.501(–3) 1.601(–3) 8.118(–4) 8.501(–3) 9.201(–3)
100 2.391(–5) 3.621(–4) 3.646(–4) 1.349(–4) 2.101(–3) 2.200(–3)
150 1.024(–5) 1.599(–4) 1.607(–4) 5.783(–5) 9.423(–4) 9.542(–4)
200 5.671(–6) 8.972(–5) 9.016(–5) 3.215(–5) 5.309(–4) 5.316(–4)

aRead as 1.431 × 10−2.

FIG. 8. Radiative heat flux at the lower wall for different optical properties at Tg = 1000 K and Twall = 0 K (a) for κeL = 1.0 and ω = 0.0,
0.5, and 0.9; (b) for ω = 0.0 and κeL = 0.1, 1.0, and 10.

FIG. 9. Radiative heat flux at the bottom wall when ω = 1.0 (a) for Lx = Ly = L with optical thickness κeL = 0.1, 1.0, 2.0, 3.0, and 5.0,
and (b) for Lx/Ly = 0.1, 1.0, 2.0, and 5.0 with κe = 1 m−1.

FIG. 10. Time-resolved reflectance and transmittance for three linear scattering laws in a square enclosure. (a) Transmittance signal,
(b) reflectance signal.
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FIG. 11. Radiative heat flux along the lower wall y = 0 of the square with q0 = σT 4
g for (a) n = 5[1−0.9025x2/L2]0.5 and (b) optical

thickness κeL = 2.0 and refractive index n = 5[1−0.4356(x2 + y2)/L2]0.5
.

y = 0 presents a local maximum with amplitude depending
on the optical properties. The location of this maximum along
the x-axis is near the location of the maximum refractive index
and does not strongly depend on the optical properties. This
is due to the fact that, since the enhancing factor of radiation
is proportional to n2Ib(Tg), which vanishes at the cold bound-
aries, local extrema can be necessarily found in the continuous
heat flux distribution in the hot medium.

Using the same scattering law, 	 = 1 + � · �′ and the
temperatures of the south, right, and north boundaries are
TS = TR = TN = 0 K while the left boundary has TL =
1000 K and q0 = σT 4

L ; the radiative heat flux at the lower
boundary (y = 0) is presented in Fig. 12. In Fig. 12(a),
the optical thickness κeL = 2.0 and refractive index n =
5[1−0.4356(x2 + y2)/L2]0.5 are used while κeL = 1.0 and
n = 5[1−0.9025x2/L2]0.5 are used to build Fig. 12(b) for
three combinations of optical properties. Figure 12 shows
excellent agreement between the LBM results and the bench-
mark solutions produced by the MCM [57] and the FVM [57].
It can also be found that, due to the forward nature of the
scattering function, the case with nonzeros scattering albedo
dominates the nonscattering radiations cases with zero scatter-
ing albedo. The dimensionless heat flux along the line y = 0
achieves a certain extremely high value at position x = 0 due
to the combination of two aspects: the maximum temperature
and the refractive index at the same location (x = 0).

The next case concerns the square of size L with opti-
cal thickness κeL = 0.1 and single scattering albedo ω = 1.0
(isotropic scattering). The temperatures of the left, right, and
north boundaries are TL = TR = TN = 0 K, and the south
boundary has TS = 1000 K and q0 = σT 4

S while the refractive
index is set as n = 1 + 2(x + y)/L. By considering the same
refractive index and optical thickness, the second test case
concerns the square with forward scattering law 	 = 1 + � ·
�′ bounded by black walls and temperatures kept at Tg =
1000 K, Twall = 0 K, and q0 = σT 4

g . Using Procedures 1 and
2 of the LBM scheme, Figs. 13(a) and 13(b) present the ra-
diative heat flux at the lower boundary for three possible wall
emissivities εw = 0.1, 0.5, and 1.0 associated with ω = 1.0 in
the first test problem and for three scattering albedos ω = 0.0,
0.5 and 0.9 in the second consideration. It can be found that
both Procedures 1 and 2 of the LBM exhibit good agreement
with the finite-element method (FEM) [59], the FVM and the
LSSEM [60]. It can also be observed that the two procedures
of the LBM are very accurate and equivalent. Moreover, the
spatial distribution of the heat flux increases with position vec-
tor as well as the refractive index. In Fig. 13(a), the maximum
heat flux along the hot wall (y = 0) is obtained at the location
with the maximum refractive index (y = L). Meanwhile, in
Fig. 13(b) the heat flux distribution along the cold wall (y = 0)
shows a local maximum near the location of the maximum re-
fractive index (y = L). This last observation is due to the fact
that, since the enhancing factor of radiation is proportional to

FIG. 12. Radiative heat flux along the wall y = 0 of the square with q0 = σT 4
L for (a) κeL = 2.0 and n = 5[1−0.4356(x2 + y2)/L2]0.5,

(b) κeL = 1.0 and n = 5[1−0.9025x2/L2]0.5.
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FIG. 13. Radiative heat flux at the lower wall of the square for n = 1 + 2(x + y)/L and κeL = 0.1. (a) Isotropic scattering, ω = 1.0 and
q0 = σT 4

S ; (b) linear scattering, εw = 1.0 and q0 = σT 4
g .

n2Ib(Tg), which vanishes at the cold boundaries, as was stated
previously in Fig. 11, local extrema can be necessarily found
in the continuous heat flux distribution in the hot medium.

Consider the case of a nonscattering (ω = 0.0) medium
with optical thickness κeL = 1.0 bounded by black walls.
The first test case concerns the square enclosure at radiative
equilibrium when the temperatures of the left, right, and north
boundaries are TL = TR = TN = 0 K while the south boundary
has TS = 1000 K. Figure 14 shows the radiative equilibrium
temperature distributions T (x, y)/TS at x/L = 0.325 for two
boundary emissivities εw = 0.5, 1.0, and the radial refractive
index n = 5[1−0.4356(x2 + y2)/L2]0.5. For this particular
case, the angular discretization Nθ × Nφ = 12 × 72 has been
used to obtain the case with a boundary emissivity of 0.5.
Figure 14 shows excellent agreement with the benchmark
solutions produced by the MCM [57]. In addition, since the
maximum refractive index is achieved at the hot boundary,
the factor n2

wεwIbw enhances the radiative transfer particularly
at the hot boundary, and consequently the decreasing abso-
lute value of the temperature rate from hot to cold wall and
temperature slip at the boundary walls can be observed. Also,
the absolute value of the temperature rate decreases with the
emissivity power εw due to the fact that the enhancing factor
is proportional to εw.

FIG. 14. Temperature distributions for two-dimensional
radiative equilibrium with refractive index n =
5[1−0.4356(x2 + y2)/L2]0.5 and optical thickness κeL = 1.0.

The second case is a hot medium bounded by cold walls
(Twall = 0 K). Figures 15 and 16 show the incident radiation
contours at steady state and four refractive index distributions
used when the boundaries are diffused or Fresnel reflecting
types. It can be observed in Fig. 15 that the maximum incident
radiation is achieved at the boundary point having the maxi-
mum refractive index for a Fresnel reflection boundary type,
and for a diffuse boundary type this maximum is located near
the boundary point having the maximum refractive index. It
can be found that incident radiations at steady state presented
for the Fresnel boundary walls are slightly more important
than the case of diffuse nonreflective walls. This is mainly
due to the fact that each radiation beam emanating from the
medium with diffuse and nonreflective walls is directly trans-
ferred to the environment after hitting the boundaries. So, the
reflectivity coefficient due to the refractive index discontinuity
at the boundaries induces increasing incident energy since
the same ray undergoes many reflections in 2D before being
absorbed completely. In the case describes in Fig. 16, the re-
fractive index n = 1.5 + 0.4 sin( πx

L ) + 0.2 cos( 4πy
L ) presents

local extrema in the spatial domain, and it shows one period
along the x-axis and two periods along the y-axis as plotted by
Zhang et al. [42]. It can be found once more that the LBM is
an efficient method that can also handle the radiative transfer
when the refractive index presents local extrema in the spatial
variation.

D. Two-dimensional RTE in irregular geometries

The popular finite-element method and variants
[20,30,53,55,58] are always recognized as powerful tools
to capture the macroscopic variables in irregular geometries
with or without structured grids. But the computational
time increases rapidly for grid refinement. Besides this
formulation, the blocked-off and immersed boundary methods
[24,27,28] have been proposed for simulations in irregular
geometries, whereas the computational effort and storage
memory are increased due to the spatial inactive zone. In
this section, the transfinite interpolant is used to generate
the body-fitted coordinates [61], and Eq. (5) is evaluated
analytically. Using lc = 1 m for irregular geometries, the
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FIG. 15. Incident radiation G(x, y)/4q0 at steady state with ω = 0.0 for diffuse nonreflecting and Fresnel walls for (a) and (d) n = 1 +
2(x + y)/L, (b) and (e) n = 5[1−0.4356(x2 + y2)/L2]0.5, (c) and (f) n = 5[1−0.9025x2/L2]0.5

.

FIG. 16. Incident radiation G(x, y)/4q0 at steady state with ω = 0.0 for sinusoidal refractive index n = 1.5 + 0.4 sin(πx/L) +
0.2 cos(4πy/L) having local extrema located at the center of the square for (a) diffuse nonreflecting walls and (b) Fresnel walls.

FIG. 17. Radiative heat flux at the bottom wall of Geometry 1 and 2 when ω = 0.0 for three extinction coefficients κe = 0.1, 1.0, and
10 m−1.
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FIG. 18. Radiative heat flux at the boundaries. (a) Bottom wall (line AB) of Geometry 2, and (b) right wall (line BC) of the rhombic
Geometry 3.

cases of constant refractive indices are validated before intro-
ducing the graded-index function to diversify the validity of
this proposed LBM.

1. Irregular geometries with constant refractive indices

First, let us consider the test case of the RTE involving
an irregular quadrilateral enclosure with vertex nodes ABCD,
which is converted into a square of size 1 by the BFC us-
ing the transformation r = rA + (rB − rA)ξ + (rD − rA)η +
(rC − rB + rA − rD)ξη. The emitting-absorbing hot medium
with temperature Tg = 1000 K, Twall = 0 K, and q0 = σT 4

g
is bounded by black walls and the scattering albedo ω = 0.0.
The quadrilateral geometry commonly investigated in the lit-
erature with vertex nodes A(0, 0), B(2.2, 0), C(1.5, 1.2),
and D (0.5, 1.0) is namely Geometry 1 [62]. The radiative
heat fluxes on the bottom wall of Geometry 1 at steady state
are shown in Fig. 17(a) for extinction coefficients κe = 0.1,
1.0, and 10 m−1, and comparisons are made with benchmark
solutions built with exact solution methods [62], the FVM
[62], and the immersed boundary LBM (IB-LBM) [24]. In
Fig. 17(b), the transient state of the bottom heat flux of Ge-
ometry 1 at time levels t∗ = c0t/lc = 0.25, 0.5, 1.0, and
2.0 is recorded for κe = 1.0 m−1 and compared to the FVM
solutions built by Chai [14]. These figures show excellent
agreement between the present LBM formulation and bench-
mark solutions.

Secondly, two quadrilateral enclosures—where the first has
vertex nodes A(0, 0), B(2, 0), C(1.5, 2), and D(0.5, 1.0),
namely Geometry 2 [63] (all dimensions in meter), and the
second is a rhombic quadrilateral enclosure with vertex nodes
A(0, 0), B(1, 0), C(1.5,

√
3

2 ), and D(0.5,
√

3
2 ) (dimensions

in meter), namely Geometry 3—are considered. For the two
irregular geometries, the medium is hot and bounded by cold
and black walls. The radiative heat flux on the bottom wall
(line AB) of the nonscattering Geometry 2 at steady state
is shown in Fig. 18(a) for extinction coefficients κe = 0.1,
1.0, and 10 m−1, and comparisons are made with exact so-
lutions [63]. In addition, using the extinction coefficient κe =
1.0 m−1, the participating medium scatters isotropically. Then
Fig. 18(b) presents the steady radiative heat flux at the right
wall (line BC) of Geometry 3 for two scattering albedos with
comparisons with the FVM and the MCM [62]. It can be
observed that, for Geometry 2, the LBM solutions agree very
well with the exact solutions, while a slight difference can be
observed between the present method and the MCM and the
FVM in the case of Geometry 3, and the LBM underestimates
the radiative heat flux. This can be attributed to the false
scattering phenomenon in multidimensional radiative transfer
analysis.

Afterwards, setting the extinction coefficient to κe =
2.0 m−1 and ω = 0.5, the bottom wall of the isotropic scat-
tering medium is hot while the media and other walls are cold
and black. Figure 19 plots the contours of the incident radia-

FIG. 19. Contours of the incident radiation G(x, y)/4q0 for ω = 0.5 in Geometries 1 and 2 when κe = 2.0 m−1, n = 1.0, and the bottom
wall is hot.
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FIG. 20. Contours of the incident radiation G(x, y)/4q0 for irregular Geometries 1 and 3 with graded-index functions (a) and (b) n =
1 + 2(ξ + η), and (c) and (d) n = 5[1−0.4356(ξ 2 + η2)]0.5

.

tion at steady state for the two geometries when considering
diffuse walls with n = 1.0.

2. Irregular geometries with graded-index distribution

The last results presented concern the nonscattering radia-
tive transfer in a hot (q0 = σT 4

g ) irregular geometry with a
graded-index function bounded by black, diffuse, and cold
walls. It can be observed in Fig. 20 that the hot spot that
appears in the solution of the incident radiation adapts the
geometry shape near the corner having the maximum refrac-
tive index. It can also be found that the incident radiation for
a decreasing refractive index n = 5[1−0.4356(ξ 2 + η2)]0.5 is
relatively higher than the case with increasing refractive index
n = 1 + 2(ξ + η). This can be attributed to the fact that the
source term of the RTE is proportional to n2σT 4

g , and the case

with n = 5[1−0.4356(ξ 2 + η2)]0.5 has the higher refractive
index difference �n = nmax − nmin for the same nmax = 5.

Following the methodology described in this work, a MAT-
LAB code is built on a personnal genuine Intel (R) CoreTM

i5–3230M processor with 2.6 GHz central processing unit
(CPU) and 8 GB RAM. The computational cost, which rep-
resents the executive time per time step during numerical

simulation, is investigated in this section. The nonscattering
radiations are considered in a hot medium with irregular
Geometry 1 bounded by black, cold, and Fresnel boudary
type. The considered refractive index is a sinusoidal function
n = 1.5 + 0.4 sin(πξ ) + 0.2 cos(4πη), which presents local
extrema in the spatial domain, and the extinction coefficient is
κe = 1.0 m−1. Using a dimensionless time step �t∗ = 0.001,
the CPU time of the first time iteration and the total CPU
time to reach the steady state are presented in Table III. It can
be observed that either grid or angular refinement increases
the computational time considerably. Also, the computational
time increases more rapidly when the angular mesh is refined
rather than the grid refinement, and the combination of the
two refinements leads to accurate results within a reasonable
computation time.

IV. CONCLUSION

This work establishes the 1D and 2D formulation of the
LBM to simulate the RTE in irregular geometries with a
graded-index function. Based on the Chapman-Enskog anal-
ysis, two possible approaches are proposed to construct the
equilibrium distribution functions and source term using the

TABLE III. CPU time for the first time iteration and CPU time to obtain the 2D steady-state distribution of the diffuse incident radiation
with LBM and time step �t∗ = 0.001.

Nθ × Nφ = 8 × 12 Nθ × Nφ = 12 × 48

Mesh Nx × Ny First time step (ms) Steady state (s) First time step (s) Steady state (s)

21×21 18 11 min 53 s 1.8 01 h 50 min 32 s
31×31 26 18 min 14 s 3.1 02 h 49 min 40 s
41×41 38 33 min 11 s 5.0 05 h 09 min 07 s
61×61 57 1 h 5 min 22 s 9.2 10 h 08 min 57 s
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local radiative direction. In addition, the construction of equi-
librium distribution functions accounts for the use of several
lattice structures to diversify the framework of the LBM. First,
the LBM with three lattice arrangements of D1Q3 is applied
for the RTE in 1D problems with a graded-index function
involving one or two layers subjected to diffuse or colli-
mated radiations. Afterwards, the RTE in 2D graded-index
media with regular geometries under diffuse or collimated
radiations is investigated with the D2Q9 scheme. Then, the
LBM is extended in 2D irregular geometries with/without
a graded index. Numerical experimentations show that the
LBM is an efficient, robust, stable, and accurate solution
method for transient or steady states of the RTE in complex
geometries with a graded index, and therefore it is strongly
recommended. Due to the limits of the present work, it would
be quite difficult to adapt the methodology to situations with
point source heating as a hot spot and with time variation
of optical properties, and also for irregular geometries where
the Jacobean transformation matrix A and its partial deriva-
tives present some singularity points in the computational
domain.

We plan to perform in future works the RTE in 3D irregular
geometry with the LBM proposed in this paper to build refer-

ence data for some of the challenges mentioned by Howell
and Mengüç [64].
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APPENDIX A: THE CHAPMAN-ENSKOG ANALYSIS

The main idea of this process consists in expand-
ing the time, distribution function, and space with a
small expansion parameter ε known as the Knudsen
number: t∗ = ε−1t1 + ε−2t2, fk = feq

k + εf (1)
k + ε2f (2)

k , Fk =
εF (1)

k + ε2F (2)
k , ∂t∗ = ε∂t1 + ε2∂t2 , F m,n = εF (1) + ε2F (2),

G0 = εG(1)
0 , and ∇∗ = ε∇1. The following constraints are

imposed:

∑
k

f ( j)
k = 0,

∑
k

F ( j)
k = F ( j) ( j > 0), (A1)

∑
k

ekF (1)
k = λu

(
𝒶0F (1) − Im,n

d (u · ∇1𝒶0)

𝒶
2
0

)
+ λ0G(1)

0

u
𝒶0

, (A2)

∑
k

ekF (2)
k = λu

𝒶0
F (2). (A3)

The time and spatial Taylor expansion of the term fk (r∗ + ek�t∗, t∗ + �t∗) is given by

fk (r∗ + ek�t∗, t∗ + �t∗) = fk (r∗, t∗) + �t∗Dkfk + �t∗2

2
D2

k fk + O(�t∗3), (A4)

where Dk = ∂t∗ + ek∇∗. Setting D1k = ∂t1 + ek∇1, Eq. (14) is separated at order ε and ε2 as

ε : ∂t1 feq
k + ek∇1feq

k = F (1)
k − f (1)

k

τ
, (A5)

ε2 : ∂t2 feq
k +

(
1 − �t∗

2τ

)
D1kf (1)

k + �t∗

2
ek∇1F (1)

k = F (2)
k − f (2)

k

τ
, (A6)

ekf (1)
k = −τ

[
∂t1 ekfeq

k + ek
(
ek∇1feq

k

)− ekF (1)
k

]
. (A7)

Summing Eqs. (A5)–(A7) over all subscripts k, the macroscopic conservation equations at t1 and t2 scales are

𝒶0∂t1 Im,n
d + ∇1

(
uIm,n

d

) = F (1), (A8)

𝒶0∂t2 Im,n
d +

(
1 − �t∗

2τ

)
∇1

{∑
k

ekf (1)
k

}
+ �t∗

2
∇1

{∑
k

ekF (1)
k

}
= F (2), (A9)

∑
k

ekf (1)
k = −τ

[
∂t1

(
uIm,n

d

)+ ∇1

{∑
k

ekekfeq
k

}
−
∑

k

ekF (1)
k

]
. (A10)

Using Eq. (16b), the quantity ∇1{
∑

k ekekfeq
k } is expressed as

∇1

{∑
k

ekekfeq
k

}
= ∇1

{
uu
a0

Im,n
d

}
= uu

(
a0∇1Im,n

d − Im,n
d ∇1a0

a2
0

)
+ Im,n

d

a0
∇1(uu)︸ ︷︷ ︸

vector

. (A11)
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After substitution of Eq. (A11) into Eq. (A10) and using Eq. (A2), it can be observed that∑
k

ekf (1)
k = −τ

[
∂t1

(
uIm,n

d

)+ uu
(
𝒶0∇1Im,n

d − Im,n
d ∇1𝒶0

𝒶
2
0

)
+ Im,n

d

𝒶0
∇1(uu) − λu

(
𝒶0F (1) − Im,n

d (u · ∇1𝒶0)

𝒶
2
0

)
− λ0G(1)

0

u
𝒶0

]
.

(A12)
Using Eq. (A8) to obtain ∂t1 (uIm,n

d ) and substituting into Eq. (A12) yields

∑
k

ekf (1)
k = −τ

[
u

F (1) − ∇1
(
uIm,n

d

)
𝒶0

+ uu
(∇1Im,n

d

𝒶0
− Im,n

d ∇1𝒶0

𝒶
2
0

)

+ Im,n
d

𝒶0
∇1(uu) − λu

(
𝒶0F (1) − Im,n

d (u · ∇1𝒶0)

𝒶
2
0

)
− λ0G(1)

0

u
𝒶0

]
. (A13)

Using the mathematical formula uu(∇1ψ ) = u∇1(uψ ) − ψ u(∇1 · u) in Appendix B, Eq. (A13) reduces to∑
k

ekf (1)
k = τ (λ − 1)u

[
F (1)

𝒶0
− Im,n

d

u · ∇1𝒶0

𝒶
2
0

]
− τ

[
Im,n
d

n
∇1(uu) − uIm,n

d

∇1 · u
𝒶0

− λ0G(1)
0

u
𝒶0

]
. (A14)

Inserting Eq. (A14) into Eq. (A9), the results can be expressed as

𝒶0∂t2 Im,n
d +

(
τ − �t∗

2
− λτ

)
∇1

{
Im,n
d u

(
u · ∇1𝒶0

𝒶
2
0

)
− u

F (1)

𝒶0

}

+ ∇1

{
λ0τG(1)

0

u
𝒶0

−
(

τ − �t∗

2

)
Im,n
d

[∇1(uu)

𝒶0
− u

∇1 · u
𝒶0

]}
= F (2). (A15)

Setting λ = λ0 = 1−0.5�t∗/τ and G(1)
0 u = Im,n

d [∇1(uu) − u(∇1 · u)], Eq. (A15) reduces to

𝒶0∂t2 Im,n
d = F (2). (A16)

Combining ε× Eq. (A8) + ε2× Eq. (A16) yields

𝒶0
∂Im,n

d

∂t∗ + ∇∗(uIm,n
d

) = F m,n. (A17)

So, the partial source term G0 is such that G0u = Im,n
d [∇∗(uu) − u(∇∗ · u)], and then

G0 = Im,n
d

(
u · ∇∗(uu)

|u|2 − ∇∗ · u
)

. (A18)

APPENDIX B: MATHEMATICAL FORMULAS USED FOR THE LBM

In this Appendix we present the following formulas, which are used for the LBM:

uu(∇ψ ) =
(

u2
x∇xψ + uxuy∇yψ

uxuy∇xψ + u2
y∇yψ

)
, (B1)

u∇(uψ ) =
(

u2
x∇xψ + uxψ∇xux + uxuy∇yψ + uxψ∇yuy

uxuy∇xψ + uyψ∇xux + u2
y∇yψ + uyψ∇yuy

)
, (B2)

uu(∇ψ ) − u∇(uψ ) = −ψ

(
ux

uy

)
[∇xux + ∇yuy] = −ψ u(∇ · u), (B3)

∇(uu) =
(∇x(uxux) + ∇y(uxuy)

∇x(uxuy) + ∇y(uyuy)

)
, (B4)

u · ∇(uu)

|u|2 − ∇ · u = u2
x∇xux + u2

y∇yuy

u2
x + u2

y

+ uxuy
(∇xuy + ∇yux

)
u2

x + u2
y

(B5)

[1] A. Liemert and A. Kienle, Analytical solution of the radiative
transfer equation for infinite space fluence, Phys. Rev. A 83,
015804 (2011).

[2] C.-H. Wang, Y.-Y. Feng, Y.-H. Yang, Y. Zhang, K. Yue,
and X.-X. Zhang, Chebyshev collocation spectral method for

vector radiative transfer equation and its applications in two-
layered media, J. Quant. Spectrosc. Radiat. Transf. 243, 106822
(2020).

[3] A. Fokou, R. Tapimo, G. L. Ymeli, R. R Tchinda, and
H. T. T. Kamdem, Radiation distribution in inhomogeneous

015302-16

https://doi.org/10.1103/PhysRevA.83.015804
https://doi.org/10.1016/j.jqsrt.2019.106822


GENERALIZED LATTICE BOLTZMANN METHOD FOR … PHYSICAL REVIEW E 107, 015302 (2023)

atmosphere-ocean system by discrete spherical harmonics
method, J. Quant. Spectrosc. Radiat. Transf. 270, 107707
(2021).

[4] J. J. Duderstadt and W. R. Martin, Transport Theory (Wiley,
New York, 1979).

[5] E. W. Larsen, F. Malvagi, and G. C. Pomraning, One-
dimensional models for neutral particle transport in ducts, Nucl.
Sci. Eng. 93, 13 (1986).

[6] R. D. M. Garcia, An analytical discrete-ordinates solution for an
improved one-dimensional model of three-dimensional trans-
port in ducts, Ann. Nucl. Energy 86, 55 (2015).

[7] J. H. Randrianalisoa, L. A. Dombrovsky, W. Lipinski, and V.
Timchenko, Effects of short pulsed laser radiation on transient
heating of superficial human tissues, Int. J. Heat Mass Transf.
78, 488 (2014).

[8] D. Baillis, R. Coquard, J. Randrianalisoa, L. Dombrovsky, and
R. Viskanta, Thermal radiation properties of highly porous cel-
lular foams, Spec. Top. Rev. Porous Media 4, 111 (2013).

[9] R. Viskanta and M. P. Mengüç, Radiation heat transfer in com-
bustion systems, Prog. Energy Combust. Sci. 13, 97 (1987).

[10] H. Ebrahimi, A. Zamaniyan, J. S. S. Mohammadzadeh, and
A. A. Khalili, Zonal modeling of radiative heat transfer in
industrial furnaces using simplified model for exchange area
calculation, Appl. Math. Model. 3, 78004 (2013).

[11] J. M. Zhao and L. H. Liu, Radiative transfer equation and
solutions, in Handbook of Thermal Science and Engineering,
edited by F. Kulacki (Springer, 2017).

[12] S. Wen, H. Qi, Y.-R. Ren, J.-P. Sun, and L.-R. Ruan, Solution
of inverse radiation-conduction problems using a Kalman filter
coupled with the recursive least-square estimator, Int. J. Heat
Mass Transf. 111, 582 (2017).

[13] H. T. T. Kamdem, Ray effects elimination in discrete ordinates
and finite volume methods, J. Thermophys. Heat Transf. 29, 306
(2015).

[14] J. C. Chai, Transient radiative transfer in irregular two-
dimensional geometries, J. Quant. Spectrosc. Radiat. Transf. 84,
281 (2004).

[15] C.-H. Wang, Y. Zhang, H.-L. Yi, and H.-P. Tan, Transient ra-
diative transfer in two-dimensional graded- index medium by
Monte Carlo method combined with the time shift and superpo-
sition principle, Num. Heat Transf., Pt. A 69, 574 (2016).

[16] L.-Y. Wei, H. Qi, Z.-T. Niu, Y.-T. Ren, and L.-M. Ruan, Reverse
Monte Carlo coupled with Runge-Kutta ray tracing method
for radiative heat transfer in graded-index media, Infr. Phys.
Technol. 99, 5 (2019).

[17] P. Ben-Abdallah and V. Le Dez, Temperature field inside an
absorbing-emitting semitransparent slab at radiative equilib-
rium with variable spatial refractive index, J. Quant. Spectrosc.
Radiat. Transf. 65, 595 (2000).

[18] P. Ben-Abdallah, M. Sakami, V. Le Dez, and J. B. Saulnier,
Two-dimensional analytical solutions of the radiative transfer
equation for the axisymmetrical inhomogeneous semitranspar-
ent medium, CRAS-IIB 328, 47 (2000).

[19] A. Dehghanian and S. M. H. Sarvari, Transient radiative transfer
in variable index media using the discrete transfer method,
J. Quant. Spectrosc. Radiat. Transf. 255, 107259 (2020).

[20] Y. Sun, S. Li, R. Zhou, Z. Guo, and J. Ma, Spatial-angular
spectral element method with discontinuous Galerkin schemes
for radiative transfer in 2D irregular enclosures with obstacle

based on unstructured spatial elements, J. Quant. Spectrosc.
Radiat. Transf. 280, 108082 (2022).

[21] C.-A. Wang, H. Sadat, and V. Le Dez, Meshless method for
solving multidimensional radiative transfer in graded index
medium, Appl. Math. Modell. 36, 5309 (2012).

[22] B. W. Webb, J. Ma, J. T. Pearson, and V. P. Solovjov, SLW
modeling of radiation transfer in comprehensive combustion
predictions, Combust. Sci. Technol. 190, 1392 (2018).

[23] Y. Sun and X. Zhang, A hybrid strategy of lattice Boltzmann
method and finite volume method for combined conduction and
radiation in irregular geometry, Int. J. Heat Mass Transf. 121,
1039 (2018).

[24] M. Abaszadeh, A. Safavinejad, H. Amiri, and A. A. Deloue, A
direct–forcing IB–LBM implementation for thermal radiations
in irregular geometries, J. Therm. Analys. Calorimetry 147,
11169 (2022).

[25] M. Vajdi, F. S. Moghanlou, F. Sharifianjazi, M. S. Asl, and M.
Shokouhimehr, A review on the Comsol Multiphysics studies
of heat transfer in advanced ceramics, J. Compos. Comp. 2, 35
(2020).

[26] C. Wang, T.-R. Shen, J. P. Gao, and J.-Y. Tan, Development of
RTE solver for radiative transfer in absorbing–emitting medium
using finite volume based CFD library OpenFoam, Int. J.
Therm. Sci. 140, 36 (2019).

[27] D. Y. Byun, S. W. Baek, and M. Y. Kim, Investigation of
radiative heat transfer in complex geometries using blocked-
off, multiblock and embedded boundary treatments, Num. Heat
Transf., Pt. A 43, 807 (2003).

[28] M. Mohammadi, S. Abdolreza, and G. Nassab, Application of
the immersed boundary method in solution of radiative heat
transfer problems, J. Quant. Spectrosc. Radiat. Transf. 260,
107467 (2021).

[29] H. S. M. Sarvari, Solution of multi-dimensional radiative heat
transfer in graded index media using the discrete transfer
method, Int. J. Heat and Mass Transfer 112, 1098 (2017).

[30] Y.-Y. Feng and C. H. Wang, Discontinuous finite element
method applied to transient pure and coupled radiative heat
transfer, Int. Commun. Heat Mass Transf. 122, 105156 (2021).

[31] R.-R. Zhou and B.-W. Li, The modified discrete ordinates
method for radiative heat transfer in two-dimensional cylindri-
cal medium, Int. J. Heat Mass Transf. 139, 1018 (2019).

[32] C. K. Aidun and J. R. Clausen, Lattice-Boltzmann method for
complex flows, Ann. Rev. Fluid Mech. 42, 439 (2010).

[33] Y. Wang, L. Yan, and Y. Ma, Lattice Boltzmann solution of the
transient Boltzmann transport equation in radiative and neutron
transport, Phys. Rev. E 95, 063313 (2017).

[34] H. L. Yi, F. J. Yao, and H. P. Tan, Lattice Boltzmann model for
a steady radiative transfer equation, Phys. Rev. E 94, 023312
(2016).

[35] X. Liu, Y. Huang, C.-H. Wang, and K. Zhu, Solving steady and
transient radiative transfer problems with strong inhomogeneity
via a lattice Boltzmann method, Int. J. Heat Mass Transf. 155,
119714 (2020).

[36] X. Liu, Y. Huang, C.-H. Wang, and Z. Zhu, A multiple-
relaxation–time lattice Boltzmann model for radiative transfer
equation, J. Computat. Phys. 429, 110007 (2020).

[37] X. Liu, H. Wu, K. Zhu, and Y. Huang, Lattice Boltzmann model
for multidimensional polarized radiative transfer: Theory and
application, Optica 8, 1136 (2021).

015302-17

https://doi.org/10.1016/j.jqsrt.2021.107707
https://doi.org/10.13182/NSE86-1
https://doi.org/10.1016/j.anucene.2015.02.048
https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.011
https://doi.org/10.1615/SpecialTopicsRevPorousMedia.v4.i2.20
https://doi.org/10.1016/0360-1285(87)90008-6
https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.017
https://doi.org/10.2514/1.T4251
https://doi.org/10.1016/S0022-4073(03)00183-3
https://doi.org/10.1080/10407782.2015.1090236
https://doi.org/10.1016/j.infrared.2019.04.002
https://doi.org/10.1016/S0022-4073(99)00111-9
https://doi.org/10.1016/j.jqsrt.2020.107259
https://doi.org/10.1016/j.jqsrt.2022.108082
https://doi.org/10.1016/j.apm.2011.12.027
https://doi.org/10.1080/00102202.2018.1452123
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.067
https://doi.org/10.1007/s10973-022-11328-1
https://doi.org/10.29252/jcc.2.1.5
https://doi.org/10.1016/j.ijthermalsci.2019.02.035
https://doi.org/10.1080/713838148
https://doi.org/10.1016/j.jqsrt.2020.107467
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.037
https://doi.org/10.1016/j.icheatmasstransfer.2021.105156
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.071
https://doi.org/10.1146/annurev-fluid-121108-145519
https://doi.org/10.1103/PhysRevE.95.063313
https://doi.org/10.1103/PhysRevE.94.023312
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119714
https://doi.org/10.1016/j.jcp.2020.110007
https://doi.org/10.1364/OPTICA.432712


GUILLAUME LAMBOU YMELI AND CUN-HAI WANG PHYSICAL REVIEW E 107, 015302 (2023)

[38] Y. Zhang, H.-L. Yi, and H.-P. Tan, Lattice Boltzmann method
for short-pulsed laser transport in a multi-layered medium,
J. Quant. Spectrosc. Radiat. Transf. 155, 75 (2015).

[39] Y.-H. Wang, L.-M. Yan, B.-Y. Xia, and Y. Ma, Lattice Boltz-
mann method for simulation of time-dependent neutral particle
transport, Nucl. Sci. Tech. 28, 36 (2017).

[40] X. Liu, S. Wu, K. Zhu, Y. Cai, and Y. Huang, Mesoscopic lattice
Boltzmann model for radiative heat transfer in graded-index
media, Phys. Rev. Res. 4, 013125 (2022).

[41] S. B. Mansoor, Computational aspect of radiative transfer equa-
tion in non–orthogonal coordinates, J. Thermal Eng. 5, 162
(2019).

[42] Y. Zhang, H.-L. Yi, and H.-P. Tan, Analysis of transient ra-
diative transfer in two-dimensional scattering graded index
medium with diffuse energy pulse irradiation, Int. J. Thermal
Sci. 87, 187 (2015).

[43] M. Sakami, K. Mitra, and P.-F. Hsu, Analysis of light pulse
transport through two-dimensional scattering and absorbing
media, J. Quant. Spectrosc. Radiat. Transf. 73, 169 (2002).

[44] Y. Zhang, H.-L. Yi, M. Xie, and H.-P. Tan, Short-pulsed laser
transport in two-dimensional scattering media by natural ele-
ment method, J. Opt. Soc. Am. A 31, 818 (2014).

[45] Y. Wang, M. Xie, and Y. Ma, Neutron transport solution of lat-
tice Boltzmann method and streaming-based block-structured
adaptive mesh refinement, Ann. Nucl. Energ. 118, 249 (2018).

[46] B. Shi and Z. Guo, Lattice Boltzmann model for nonlin-
ear convection-diffusion equations, Phys. Rev. E 79, 016701
(2009).

[47] X. He and G. Doolen, Lattice Boltzmann method on curvilinear
system: Flow around a circular cylinder, J. Computat. Phys.
134, 306 (1997).

[48] Q. Li, Y. L. He, and Y. J. Gao, Implementation of finite–
difference lattice Boltzmann method on general body–fitted
curvilinear coordinates, Int. J. Mod. Phys. 19, 1581 (2008).

[49] J. A. R. Barraza and R. Deiterding, A lattice Boltzmann
method in generalized curvilinear coordinates, VI International
Conference on Particle-based Method—Fundamentals and
Applications (Particles, 2019), pp. 477–488.

[50] A. A. Mohammad, Lattice Boltzmann Method, Fundamentals
and Engineering Applications with Computer Codes, 2nd ed.
(Springer-Verlag, London, 2019).

[51] L. G. Zhao, Z. Chu-Guang, and S. Bao-Chang, Non-equilibrium
extrapolation method for velocity and pressure boundary con-
ditions in the lattice Boltzmann method, Chin. Phys. 11, 366
(2002).

[52] L. H. Liu and P.-F. Hsu, Analysis of transient radiative transfer
in semitransparent graded index medium, J. Quant. Spectrosc.
Radiat. Transf. 105, 357 (2007).

[53] J. M. Zhao and L. H. Liu, Least-squares spectral element
method for radiative heat transfer in semitransparent media,
Numer. Heat Transf., Pt. B 50, 473 (2006).

[54] T.-K. Kim and H. Lee, Effect of anisotropic scattering on ra-
diative heat transfer in two-dimensional rectangular enclosures,
Int. J. Heat Mass Transf. 31, 1711 (1988).

[55] W. A. Fiveland and J. P. Jessee, Finite element formulation of
the discrete-ordinates method for multidimensional geometries,
J. Thermophys. Heat Transf. 8, 426 (1994).

[56] S. C. Mishra, P. Talukdar, D. Trimis, and F. Durst, Com-
putational efficiency improvements of the radiative transfer
problems with or without conduction–A comparison of the col-
lapsed dimension method and the discrete transfer method, Int.
J. Heat Mass Transf. 46, 3083 (2003).

[57] L. H. Liu, Benchmark numerical solutions for radiative
heat transfer in two-dimensional medium with graded index
distribution, J. Quant. Spectrosc. Radiat. Transf. 102, 293
(2006).

[58] L. H. Liu and L. J. Liu, Discontinuous finite element method for
radiative heat transfer in semitransparent graded index medium,
J. Quant. Spectrosc. Radiat. Transf. 105, 377 (2007).

[59] L. H. Liu, L. Zhang, and H. P. Tan, Finite element method
for radiation heat transfer in multi-dimensional graded in-
dex medium, J. Quant. Spectrosc. Radiat. Transf. 97, 436
(2006).

[60] J. M. Zhao and L. H. Liu, Solution of radiative heat transfer in
graded index media by least square spectral element method,
Int. J. Heat Mass Transf. 50, 2634 (2007).

[61] A.-S. W. Lindberg, T. M. Jorgensen, and V. A. Dahl, Inter-
polation from grid lines: Transfinite and weighted method, in
Image Analysis, Lecture Notes in Computer Science No. 10270
(Springer, 2017), pp. 338–349.

[62] J. C. Chai and G. Parthasarathy, Finite volume radiative heat
transfer procedure for irregular geometries, J. Thermophys.
Heat Transf. 9, 410 (1995).

[63] D. Y. Byun, S. W. Baek, and M. Y. Kim, Thermal radiation in
a discretely heated irregular geometry using the Monte-Carlo,
finite volume, and modified discrete ordinates interpolation
method, Numer. Heat Transf., Pt. A 37, 1 (2000).

[64] J. R. Howell and M. P. Mengüç, Challenges for radiative trans-
fer 1: Towards the effective solution of conjugate heat transfer
problems, J. Quant. Spectrosc. Radiat. Transf. 221, 253 (2018).

015302-18

https://doi.org/10.1016/j.jqsrt.2015.01.008
https://doi.org/10.1007/s41365-017-0185-z
https://doi.org/10.1103/PhysRevResearch.4.013125
https://doi.org/10.18186/thermal.654191
https://doi.org/10.1016/j.ijthermalsci.2014.08.019
https://doi.org/10.1016/S0022-4073(01)00216-3
https://doi.org/10.1364/JOSAA.31.000818
https://doi.org/10.1016/j.anucene.2018.04.013
https://doi.org/10.1103/PhysRevE.79.016701
https://doi.org/10.1006/jcph.1997.5709
https://doi.org/10.1142/S0129183108013126
https://doi.org/10.1088/1009-1963/11/4/310
https://doi.org/10.1016/j.jqsrt.2006.12.003
https://doi.org/10.1080/10407790600682821
https://doi.org/10.1016/0017-9310(88)90283-9
https://doi.org/10.2514/3.560
https://doi.org/10.1016/S0017-9310(03)00075-9
https://doi.org/10.1016/j.jqsrt.2006.02.014
https://doi.org/10.1016/j.jqsrt.2006.11.017
https://doi.org/10.1016/j.jqsrt.2005.05.067
https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.032
http://doi.org/10.1007/978-3-319-59129-2_29
https://doi.org/10.2514/3.682
https://doi.org/10.1080/104077800274389
https://doi.org/10.1016/j.jqsrt.2018.10.016

