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We combine ab initio path integral Monte Carlo (PIMC) simulations with fixed ion configurations from density
functional theory molecular dynamics (DFT-MD) simulations to solve the electronic problem for hydrogen under
warm dense matter conditions [Böhme et al., Phys. Rev. Lett. 129, 066402 (2022)]. The problem of path collapse
due to the Coulomb attraction is avoided by utilizing the pair approximation, which is compared against the
simpler Kelbg pair potential. We find very favorable convergence behavior towards the former. Since we do not
impose any nodal restrictions, our PIMC simulations are afflicted with the notorious fermion sign problem, which
we analyze in detail. While computationally demanding, our results constitute an exact benchmark for other
methods and approximations within DFT. Our setup gives us the unique capability to study important properties
of warm dense hydrogen such as the electronic static density response and exchange-correlation kernel without
any model assumptions, which will be very valuable for a variety of applications such as the interpretation of
experiments and the development of new XC functionals.
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I. INTRODUCTION

The quantum mechanical description of the hydrogen atom
proposed by Erwin Schrödinger in 1926 [1] was one of the
important milestones in the development of quantum mechan-
ics. As the most abundant element in the universe, hydrogen
plays a vital role ranging from technological applications [2,3]
to the understanding of astrophysical objects [4,5]. Ninety-
six years after the solution to the hydrogen atom has been
published, our theoretical understanding of this element still
contains large gaps. It is of utmost importance to have this
precise understanding for applications like energy generation
from nuclear fusion [6], which has the potential to provide
an abundance of cheap and clean energy for the next mil-
lennia. Intriguingly, solid hydrogen was predicted to be a
high-temperature superconductor by Ashcroft [7]. The obser-
vation of this transition has yet to be experimentally confirmed
[8]. All of these remarkable properties make hydrogen a very
interesting element to study in the high-temperature and pres-
sure regime.

However, despite almost 100 years of enormous research
efforts, many important open questions still remain about
the many-body effects and bulk properties of hydrogen. The
theoretical description of the simplest element in the periodic
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table has proven itself to be quite difficult. Even computa-
tionally and theoretically sophisticated schemes like density
functional theory (DFT) are unable to accurately predict
the liquid-liquid phase transition (LLPT) from an insulated
molecular fluid to a conducting atomic liquid. In particular,
DFT results for the LLPT strongly depend on the particu-
lar choice for the exchange-correlation (XC) functional [9],
which has to be supplied as an empirical external input. The
atomic liquid metal-insulator transition is especially chal-
lenging to study using DFT since nuclear quantum effects
influence the molecular bond of liquid hydrogen in the high-
pressure regime [10].

Of particular interest is the so-called warm dense matter
(WDM) regime, where both the quantum coupling parameter
rs = d/aB (with d and aB being the average interparticle dis-
tance and first Bohr radius) and degeneracy temperature � =
kBT/EF (with EF being the usual Fermi energy [11,12]) are of
the order of unity. Indeed, the accurate theoretical description
of WDM constitutes a most formidable challenge [13,14], as it
must take into account the complex interplay of a number of
physical effects. Moreover, the development of accurate XC
functionals for thermal DFT simulations of WDM is still in
its infancy [15–18] and constitutes an important bottleneck.

QMC methods, on the other hand, are in principle exact
and have already been successfully deployed for the warm
dense uniform electron gas (UEG) [16,19–24]. However, a
significant pitfall of QMC methods for fermionic systems is
the notorious fermionic sign problem [25–27], which causes
an exponential increase in the necessary Monte Carlo steps
with important parameters such as the system size to control
the statistical error of any measured observable. In particular,
Troyer and Wiese [26] have shown that the sign problem is
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NP-hard for some applications. A possible way to lift the
fermion sign problem in PIMC simulations is to use restricted
paths that do not cross any nodes of the density matrix
[28,29]. This restricted PIMC (RPIMC) method has already
been successfully applied to low-density hydrogen [30] and
is used in a number of other applications such as the recently
published first-principles equation of state table by Militzer
et al. [31]. One major disadvantage of the RPIMC method is
that it requires precise knowledge of the nodal structure of
the density matrix [28], which is, in general, not known and
which is commonly approximated by the Slater determinant of
single-particle density matrices. This approximation has been
shown to be inaccurate for the UEG for low temperature and
high density [32].

To remedy this unsatisfactory situation, we have recently
shown [33] that it is indeed possible to carry out PIMC simula-
tions of hydrogen over parts of the WDM regime without fixed
nodes. Specifically we have utilized the unrestricted, direct
PIMC method [27,34,35] for electrons in a static external
potential given by ion snapshots taken from DFT-MD simu-
lations. Throughout this work, we will refer to this approach
as snapshot PIMC (snap-PIMC). In Ref. [33] we presented
the first result for the static electronic density response of
hydrogen, which enabled us to study the exchange correlation
effects in this system. From these investigations, we were able
to extract a static XC kernel, which, in turn, was used in linear-
response time-dependent DFT (LR-TD-DFT) to calculate the
electronic dynamic structure factor of hydrogen for rs = 2, 4.
More specifically we have observed that the commonly used
adiabatic LDA (ALDA) breaks down at rs � 4 and � = 1.
In fact, ALDA even performed worse than a pure mean-field
calculation. We are convinced that the possibility to obtain the
DSF based on an exact treatment of XC effects on the static
level constitutes a promising route to improve the agreement
between simulations and applications such as state-of-the-art
x-ray Thomson scattering experiments [36–38].

In this work we give a detailed overview of the employed
setup for the PIMC simulations of hydrogen. As a first step,
we have overcome the problem of path collapse due to the
Coulomb attraction by utilizing the pair approximation (PA)
[34,39] as well as the simpler Kelbg potential [40], which has
been extensively used in PIMC simulations by Filinov and co-
workers [41–43]. While both approaches give the same result
in the limit of a large number of imaginary-time propagators
P [40], we find a significantly improved convergence of the
PA compared to Kelbg. Since we do not impose any nodal
restrictions on the paths, snap-PIMC suffers from the fermion
sign problem. We show that the presence of the ions indeed
makes the fermion sign problem more severe compared to the
UEG in most cases. Still, PIMC simulations are feasible over
substantial parts of the relevant parameter regime. In addition,
we investigate the impact of temperature and density on the
real space density, which is the essential quantity governing
the celebrated Hohenberg-Kohn theorems [44,45]. The theo-
rems state that the ground-state electronic density of a system
n0(r) uniquely determines its properties and even constructs
a functional E [n] with a global minimum at n0(r). This ap-
proach was extended to finite temperatures by Mermin [46].
Since we are able to compute the electronic density exactly
without the empirical input of the XC functional, we are in the

unique position to rigorously benchmark corresponding DFT
calculations.

We are convinced that this work, as already demonstrated
in Ref. [33], has the potential to study hydrogen on a true
ab initio level and will be highly useful for a gamut of applica-
tions, such as the development of accurate XC functionals for
warm dense hydrogen and the interpretation of XRTS spectra
from DT implosions [47].

The paper is organized as follows. In Sec. II the the-
oretical fundamentals are established including the system
Hamiltonian (Sec. II A), a description of the PIMC method
for hydrogen snapshots (Sec. II B), and a detailed description
on how to construct pair interactions for attractive Coulomb
potentials using the pair approximation (PA) (Sec. II C). Fur-
thermore, we give an overview of the fermion sign problem
(Sec. II D) and the estimation of observables (Sec. II E), and
show how to compute the density response in snap-PIMC
(Sec. II F) by applying an external harmonic perturbation
[48–52]. In Sec. III we present our simulation results, starting
with an analysis of the convergence behavior of snap-PIMC
with the number of imaginary time slices P in Sec. III A.
Moreover, a study of the Fermion problem in snap-PIMC is
presented in Sec. III B and the effects of density and tem-
perature on the real space electronic density are shown in
Secs. III C and III D. Finally, we compare our exact PIMC
results with DFT simulations for the real space electronic
density in Sec. III E. Section IV contains a concise summary
of our method, and a discussion of the multitude of possible
future applications.

II. THEORY

A. System parameters and Hamiltonian

The Hamiltonian of a hydrogen snapshot with the ionic
positions {I0, . . . , IN−1} is given by

Ĥ = −1

2

N∑
l=1

∇2
l︸ ︷︷ ︸

K̂

+Ŵ + V̂I ({I0, . . . , IN−1})︸ ︷︷ ︸
V̂

, (1)

where the first two terms on the right-hand side correspond to
the kinetic and interaction energy of the electrons, and the last
term contains all ionic contributions. Specifically, the interac-
tion between both the electrons and nuclei is expressed by an
Ewald sum over infinitely many respective periodic images.
Following the notation by Fraser et al. [53], the resulting pair
potential is written as

�(a, b) = 1

L3

∑
G �=0

(
e−π2G2/κ2

πG2
ei2πG·(a−b)

)

− π

κ2�
+

∑
n

erfc(κ|a − b + nL|)
|a − b + nL| , (2)

where n = (nx, ny, nz )T with ni ∈ Z, and G denote reciprocal
lattice vectors without the factors of 2π . Also note that Eq. (2)
is independent of the particular choice of the Ewald parameter
κ , which can be exploited to accelerate the convergence of
both (in principle infinite) sums. The electronic interaction is
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then given by

Ŵ =
N∑

l<k

[�(r̂l , r̂k ) − ξM], (3)

where the Madelung constant ξM is being defined as

ξM = lim
a→b

(
�(a, b) − 1

|a − b|
)

(4)

and takes into account the interaction by a point charge
(electron or nucleus) with its own background and array of
images. Similarly, we define the external ionic potential term
in Eq. (1) as

V̂I = −
N∑

l=1

N∑
k=1

[�(r̂l , Ik ) − ξM] +
N∑

l<k

[�(Il , Ik ) − ξM], (5)

where the bottom line solely contains interactions between the
fixed ions and is thus simply given by a constant which does
not affect the simulation.

B. PIMC simulation of a hydrogen snapshot

We consider the canonical ensemble, meaning that the
particle number N , volume � = L3, and inverse temperature
β = 1/kBT are fixed, where kB is the Boltzmann constant.
Throughout this work, we use Hartree atomic units. Further-
more, we restrict ourselves to a fully spin-unpolarized system,
i.e., N↑ = N↓ = N/2. The canonical partition function in
coordinate space is then given by

Zβ,N,V = 1

N↑!N↓!

∑
σ↑∈SN↑

∑
σ↓∈SN↓

sgn(σ ↑, σ ↓)

×
∫

dR 〈R| e−βĤ |π̂σ↑ π̂σ↓R〉 , (6)

where R = (r1, . . . , rN )T contains the coordinates of both
spin-up and spin-down electrons. We again remark that we do
not integrate over the ionic coordinates {I0, . . . , IN−1}, since
they are fixed for the simulation of a hydrogen snapshot. In
addition, π̂σ↑ (π̂σ↓) denotes the permutation operator corre-
sponding to a particular element σ ↑ (σ ↓) from the permutation
group SN↑ (SN↓), and the sign function sgn(σ ↑, σ ↓) is equal
to positive (negative) unity for an even (odd) number of pair
permutations [35]. Unfortunately, a straightforward evaluation
of the matrix elements of the density operator

ρ(R, R′; β ) = 〈R| e−βĤ |R′〉 (7)

is not possible as the kinetic and potential contributions to the
full Hamiltonian [Eq. (1)] do not commute,

e−βĤ �= e−βK̂ e−βV̂ . (8)

As a first step towards overcoming this obstacle, we employ
the exact semigroup property of the density operator

e−βĤ =
P−1∏
α=0

e−εĤ , (9)

 0
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FIG. 1. Illustration of imaginary-time paths in the x-τ plane for
three particles. The red dots denote the so-called beads, which depict
the position of each particle at a particular imaginary-time step. The
second and third paths from the left illustrate a so-called exchange
cycle, where the trajectories of two particles are involved in a single
path. Such permutation cycles [35] are required to correctly take into
account the indistinguishable nature of both bosons and fermions
in the PIMC formalism. This exchange cycle ensures that PIMC
abides by the Pauli exclusion principle and identical bosons remain
indistinguishable from one another [54].

with P ∈ N and the definition ε = β/P. Applying Eq. (9) to
Eq. (6) and inserting P − 1 unity operators of the form

1̂ =
∫

dRα |Rα〉 〈Rα| (10)

leads to the modified expression

Zβ,N,V = 1

N↑!N↓!

∑
σ↑∈SN↑

∑
σ↓∈SN↓

sgn(σ ↑, σ ↓)

×
∫

dR0 · · · dRP−1 〈R0| e−εĤ |R1〉

× 〈R1| e−εĤ |R2〉 · · · 〈RP−1| e−εĤ |π̂σ↑ π̂σ↓R0〉 ,

(11)

which is still exact. An illustration of the resulting paths in
imaginary time is given in Fig. 1. Here the red dots represent
the so-called beads, which are the positions of the particles at
a particular imaginary-time step τ . Using the worm algorithm
introduced in Ref. [54], one can now sample the canonical par-
tition function by manipulating the beads using an efficient set
of Monte Carlo updates. The second and third path from the
left show a so-called exchange cycle [35]. Such configurations
ensure the adherence of the Pauli exclusion principle by taking
into account the indistinguishable nature of the electrons.

Evidently we have transformed the original expression for
the canonical partition function into a high-dimensional inte-
gral over P density matrices, each of which has to be evaluated
at P times the original temperature T . At this point, the task
at hand is to find a suitable high-temperature approximation
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for ρ(R, R′; ε) that becomes exact in the limit of large P.
This can often be accomplished by employing the primitive
factorization

e−εĤ ≈ e−εV̂ e−εK̂ , (12)

which is then justified by the well-known Trotter formula [55]

lim
P→∞

(
e−εV̂ e−εK̂

)P = e−β(V̂ +K̂ ). (13)

Unfortunately, Eq. (13) holds only for potentials V̂ that are
bounded from below [56]. Obviously, this condition is vi-
olated by the snapshot Hamiltonian (1) as the Coulomb
attraction between an electron and an ion diverges towards
negative infinity when the distance vanishes.

Let us define an effective interaction �(R, R′; ε) by the
relation

ρ(R, R′; ε) = e−ε�(R,R′;ε)
N∏

l=1

ρ0(rl , r′
l ; ε), (14)

with the definition of the free particle density matrix

ρ0(r, r′; ε) = 1

λ
3/2
ε

e
− π

λ2
ε

(r′−r)2

, (15)

and λε = √
2πε being the thermal wavelength associated with

a single high-temperature factor. It is important to note that,
while �(R, R′; ε) does have the dimension of an energy, it
is off-diagonal in coordinate space and does not constitute an
actual physical interaction between a pair of particles. Within
the primitive factorization [Eq. (12)], it is simply given by

�prim(R, R′; ε) = 1
2 [V (R) + V (R′)], (16)

i.e., by the average of the potential energy between all elec-
trons and ions evaluated on the two involved imaginary-time
slices. Yet, the Coulomb divergence between electrons and
ions is directly translated to �prim(R, R′; ε). Ultimately, this
leads to a so-called path collapse, as an electron can never be
separated from an ion again once they are too close together.

A more suitable alternative is given by the pair approxi-
mation [34,39] (PA), which constructs the effective potential
�(R, R′; ε) from a sum over pairs of particles,

e−ε�pair (R,R′;ε) = e−ε
∑N

l<k φ(rlk ,r′
lk ;ε), (17)

where the effective pair potentials φ(rlk, r′
lk ; ε) are con-

structed from the nonideal parts of the (exact) pair density
matrices ρ(rlk, r′

lk ; ε) via the relation

φ(rlk, r′
lk ; ε) = −1

ε
log

(
ρ(rlk, r′

lk ; ε)

ρ0(rlk, r′
lk ; ε)

)
. (18)

First and foremost, we note that Eq. (17) becomes exact in
the limit of large P as P−4 [34,39], as three-body correla-
tions and other higher order terms do not contribute when
the temperature is high. Therefore, it constitutes a suitable
scheme for the present study. Second, there is some freedom
about how to exactly construct the total effective interaction
as Eqs. (17) and (12) can be easily combined. Specifically, the
only problematic term in the Hamiltonian [Eq. (1)] is given by
the bare Coulomb attraction between an ion and the nearest
image of an electron. This can be easily seen by considering

the real-space part of the Ewald pair interaction Eq. (2), which
can be rewritten as∑

n

erfc(κ|a − b + nL|)
|a − b + nL|

=
∑

n

1

|a − b + nL| −
∑

n

erf(κ|a − b + nL|)
|a − b + nL| . (19)

Evidently, the last term in Eq. (19) is always finite since it
holds

lim
x→0

erf(xκ )

x
= 2κ√

π
. (20)

We can thus decompose the total potential energy into the
problematic nearest-image contribution V̂NI and the rest, V̂R =
V̂ − V̂NI, with the definition

V̂NI = −
N∑

l=1

N∑
k=1

1

|Ik − r̂l |NI
, (21)

where | · · · |NI denotes the absolute difference between the
ionic position Ik and the nearest image of the electron at rl ,

|Ik − r̂l |NI = minn|Ik − r̂l + nL|. (22)

The total effective potential �(R, R′; ε) can thus be con-
structed as

�(R, R′; ε) = �NI(R, R′; ε) + �R(R, R′; ε). (23)

The last term in Eq. (23) can then simply be evaluated us-
ing the primitive approximation Eq. (12) and the NI term is
constructed by evaluating Eq. (17) using as input the exact
two-body Coulomb density matrix.

The practical details on the construction of the pair poten-
tial from the two-body Coulomb density matrix will be subject
of the next section.

While the evaluation of the PA is possible in practice, it is
worth considering if the exact numerical solution of the two-
body Coulomb problem might be replaced by an approximate
analytical expression that becomes exact in the limit of large P
sufficiently fast. Using first-order perturbation theory, Eq. (18)
becomes [40]

φ0
NI(rlk, r′

lk ; ε) = −
∫ 1

0
dν

erf
( |νrlk+(1−ν)r′

lk |
2λlk

√
ν(1−ν)

)
|νrlk + (1 − ν)r′

lk|
, (24)

with the definition λlk = √
ε/2μlk and the corresponding

reduced mass μ−1
lk = m−1

l + m−1
k . Note that rlk here automati-

cally assumes the nearest-image convention, which is dropped
for simplicity. While being considerably more simple than the
full two-body density matrix, Eq. (24) still requires a numer-
ical integration, which is too slow for PIMC simulations. A
further simplification is given by considering the diagonal el-
ements r = r′, which leads to the well-known Kelbg potential
[40,57,58],

φKelbg(rlk; ε) = − 1

|rlk|
{

1 − e−r2
lk/λ

2
lk

+ √
π

|rlk|
λlk

[
1 − erf

( |rlk|
λlk

)]}
, (25)
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FIG. 2. Comparison of various effective potentials between a test
electron and an ion located at I = (L/2, 0, 0)T . Top panel: diagonal
potential, r = r′ = (x, 0, 0)T . Bottom panel: off-diagonal potential,
r = (x, 0, 0)T , r′(x, λε, 0)T .

and the full effective potential is then simply obtained by
averaging over the two involved imaginary-time slices,

�NI,Kelbg(R, R′; ε) = 1

2

N∑
l=1

N∑
k=1

[φKelbg(rlk; ε)

+φKelbg(r′
lk; ε)]. (26)

A practical demonstration of various effective potentials
is shown in Fig. 2 for rs = 2 and θ = 1. Specifically, the
top panel shows results for the attractive potential between a
single ion at I = (L/2, 0, 0)T [where L is the length of a simu-
lation cell with N = 4] and the nearest image of a test electron

at r = r′ = (x, 0, 0)T . The dashed blue line corresponds to the
bare Coulomb attraction (i.e., the primitive approximation),
which diverges towards negative infinity for x → L/2 as it is
expected. The three solid red (dotted green) lines correspond
to the effective potential due to the PA (Kelbg potential) and
have been obtained for P = 100, P = 20, and P = 5 high-
temperature factors; see the corresponding labels in the figure.
First and foremost, we note that the high-temperature density
matrix (HTDM) and Kelbg curve are qualitatively very similar
for all P. In particular, they attain a finite value around the po-
sition of the ion, which is of fundamental importance to avoid
the phenomenon of path collapse in the PIMC simulations.
Furthermore, they converge towards the bare Coulomb poten-
tial for large distances to the ion, which happens for smaller
distances for larger numbers of high-temperature factors P.

The bottom panel of Fig. 2 shows the same information
for an off-diagonal case, with the same I and r, but r′ =
(x, λε, 0)T , i.e., a relative displacement of λε = √

2πε along
the y direction. Strictly speaking, this would lead to three dis-
tinct curves for the primitive approximation. Yet, as they can
hardly be distinguished with the naked eye, we here restrict
ourselves only to the case of P = 5 as a reference. Further-
more, the off-diagonal nature does not affect the divergence
of the bare Coulomb potential on the first time slice, which, in
turn, leads to a diverging effective potential as well. Again,
this issue is removed by both the Kelbg and HTDM-based
potentials for all three values of P. Still, we note that the
differences between the red and green curves are substantially
larger than in the diagonal case, as the Kelbg potential by itself
is not capable to intrinsically capture the off-diagonal nature
of the action. This, in turn, implies a substantially slower
convergence of PIMC expectation values with P, which is
empirically verified in Sec. III A. Finally, the primitive ap-
proximation only becomes accurate in the limit of very large
distances between the electron and ion.

The final result for the partition function is given by

Zβ,N,V =
∫

dX sgn(X)

(
P−1∏
α=0

N∏
l=1

ρ0(rl,α, rl,α+1; ε)

)

×
(

P−1∏
α=0

e−ε�R(Rα )e−ε�NI(Rα,Rα+1;ε)

)
, (27)

where the integration over the multivariable X =
(R0, . . . , RP−1)T also contains the sum over all possible
permutations of particle coordinates of the same spin.

C. Constructing pair potentials from the two-body
Coulomb density matrix

As mentioned in the previous section, we construct the pair
potential for the PA using an analytical expression for the two-
body Coulomb density matrix. The density matrix for a two-
body system with Coulomb interaction is given by

ρ(r, r′; β ) =
∞∑

l=0

Pl [cos(θ )]

4π

∞∑
n=l+1

e−βEn Rl
n(r)Rl

n(r′) +
∫ ∞

0
dke−βκk2

F l
k (r)F l

k (r′)

︸ ︷︷ ︸
=:ρl (r,r′;β )

, (28)
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with the distances in units of the Bohr radius aB, the energies
in Rydbergs, and the dimensionless parameters as proposed in
Ref. [59]:

κ := h̄2

2μ2
e2aB, (29)

Z := Z1Z2

κ
. (30)

Here μ−1 = (m−1
1 + m−1

2 ) refers to the reduced mass and
Zi refers to the charge of the individual particle. Rl

n(r) refers
to the radial part of the eigenfunctions for the bound states in
an attractive Coulomb potential and F l

n (r) refers to the radial
Coulomb scattering eigenfunctions [60]. Equation (28) is hard
to converge sufficiently. The reason for that is the sum over the
l-channel integrals containing the Coulomb scattering func-
tions, which are hard to evaluate. To overcome this obstacle
we use the result of Pollock [59], who obtained an expression
for the two-body Coulomb density matrix using the results
from Ref. [61]

ρ[3]
(
r, r′; β

) = 1

π

∂

∂η
ρ

[3]
l=0

(
ξ +

√
ξ 2 − η

2
,
ξ −

√
ξ 2 − η

2
; β

)
,

(31)

where ξ = r + r′ and η = (r + r′)2 − |r − r′|2. The resulting
expression is much easier to converge than Eq. (28), since
it results in only a single evaluation of the integral over the
Coulomb scattering functions. However, evaluating the above
expression multiple times at each Monte Carlo step would also
be computationally very costly due to the numerical integra-
tion. A solution to this problem was proposed by Ceperley in
Ref. [28] by constructing a lookup table of the resulting pair
action as a combination of interpolations and polynomial fits.
We found the simplified polynomial ansatz from Militzer [39]
easier to evaluate and sufficiently accurate to use in the snap-
shot PIMC simulations. We note here that the estimator for
the total energy also requires the β derivative of Eq. (31). The
resulting expression thus requires another lookup table, which
can again be accurately captured by the ansatz in Ref. [39]. A
distinct advantage for the usage of the Coulomb density ma-
trix over the simplified Kelbg pair potential is the significantly
faster convergence with the amount of time slices, which re-
sults in a much faster runtime and therefore faster convergence
of the estimators. The convergence speed as a function of the
number of time slices is further investigated in Sec. III A. In
this section we always draw the comparison against the Kelbg
potential, which is analytically exact for a sufficiently large
number of imaginary time steps. Any inaccuracy of Militzer’s
ansatz would result in a deviation of the converged energy
or induced density. Since both Kelbg and PA converge to the
same value as a function of P we determined the accuracy of
this ansatz to be sufficient.

D. The fermion sign problem

A major obstacle of fermionic QMC is the notorious
sign problem. It is a consequence of the antisymmetry of
any many-body fermionic wave function under particle ex-
change. We start with the basic idea behind Metropolis Monte
Carlo sampling [62], by drawing samples of configurations

X from a probability distribution W (X), with an unknown
normalization. In the case of PIMC, we wish to sample the
canonical partition function Z [see Eq. (6)],

Z =
∫

dXW (X), (32)

where we identify the imaginary time-paths R =
(R1, . . . , RP−1)T with the configuration of the system.
Each vector Ri = (ri,1, . . . , ri,N ) contains all the particle
positions at the imaginary time slice i. One now can use an
implementation of the Metropolis algorithm [62] such as the
schemes introduced in Refs. [54,63,64] in order to sample the
configuration space of the system. The expectation value of
any observable is then simply given by

〈Ô〉 = 1

Z

∫
dX O(X)W (X). (33)

However, in the case of fermionic systems one has to
consider the antisymmetrization of the wave function due to
the Pauli exclusion principle. This has already been included
in Eq. (6) and leads to the issue that W (X) can include neg-
ative weights, thus its interpretation as a probability density
is not possible anymore. The Metropolis algorithm requires a
probability distribution and therefore a straight-forward appli-
cation of this algorithm is not possible. We resort to generate
configurations according to the modified probability density

P′(X) = |W (X)|∫
dX |W (X)| = W ′(X)

Z ′ , (34)

which is identical to the probability density of the corre-
sponding bosonic system. The fermionic expectation values
therefore are now of the following form:

〈Ô〉 f =
∫

dX sgn[W (X)]W ′(X)Ô(X)∫
dX sgn[W (X)]W ′(X)

, (35)

with sgn(X) = W (X)/|W (X)| ≡ S(X) as the so-called sign of
the configuration. With this definition we are able to write the
fermionic expectation values in the compact form

〈Ô〉 f = 〈ÔŜ〉′
〈Ŝ〉′ , (36)

where the dashed expectation values denote that the modified
probability density Eq. (34) is used. However, due to the sign
terms it is now possible that cancellations occur during the
Monte Carlo sampling procedure. These cancellations affect
the statistical uncertainty of any observable to a large extent.
The average sign 〈Ŝ〉′ therefore decisively determines the fea-
sibility of a fermionic PIMC simulation for a given system. It
is easy to see that 〈Ŝ〉 vanishes both for low temperatures and
large systems as

〈Ŝ〉 = e−βN ( f − f ′ ), (37)

where f and f ′ denote the free energy density of the fermionic
and the bosonic system, respectively. The above relation has
profound implications on the convergence of the resulting
Monte Carlo estimators

�O

O
∼ 1

S
√

M
∼ eβN ( f − f ′ )

√
M

. (38)
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Thus, the statistical uncertainty of any observable will hit an
exponential wall, when increasing the system size N or the in-
verse temperature β. For a more detailed technical discussion
in the case of different systems we refer the reader to Ref. [27].
The results of the average sign in the case of snap-PIMC
simulations of hydrogen are shown in Sec. III B.

E. Estimation of observables

The thermodynamic PIMC estimator for the total energy E
can be derived from the partition function via the relation

E = − 1

Zβ,N,V

∂Zβ,N,V

∂β
. (39)

In particular, the primitive approximation leads to the familiar
expression

Eprim(X) = 3NP

2β
− mP

2h̄2β2

P−1∑
α=0

N∑
l=1

(rl,α − rl,α+1)2

+ 1

P

P−1∑
α=0

V (Rα ), (40)

where the top and bottom line of the right-hand side corre-
spond to the kinetic and potential contributions, respectively.
Let us next consider the modification of Eq. (40) when we
instead use the action given by the Kelbg potential [Eq. (26)].
Specifically, the Kelbg potential itself is diagonal in R and
may thus simply be included into the total potential energy
on a particular imaginary time slice V (R). Yet, in contrast to
the bare Coulomb (or Ewald) pair interaction, it does have an
explicit dependence on the temperature, which, in turn, leads
to an additional term upon evaluation of Eq. (39),

EKelbg(X) = Eprim(X) + β

P

P−1∑
α=0

N∑
l=1

�(rl,α ), (41)

with the definition

�(rl,α ) = −
N∑

k=1

∂φKelbg(rl,α − Ik; ε)

∂β
. (42)

Obtaining the actual β derivative of the Kelbg potential
[Eq. (25)] is straightforward, and we find

∂φKelbg(rlk ; ε)

∂β
= −

√
π

2λlkβ

[
erf

( |rlk|
λlk

)
− 1

]
. (43)

In the case of the PA we find a similar relation. The differ-
ence is that the last term in Eq. (40) now reads

Epair(X) = Eprim(X) +
P−1∑
α=0

∂upair(Rα )

∂β
, (44)

with upair being the so-called pair action given by

upair = log

(
ρfree(r, r′; β )

ρC(r, r′; β )

)
. (45)

One therefore has to obtain the derivative of the two-body
Coulomb density matrix given by Eq. (31). In order to im-
prove performance, we used the method from Ref. [39] and
compute a lookup table of the corresponding derivative before

running our simulation in addition to the lookup table of the
HTDM.

F. PIMC approach to the density response

For uniform systems like the UEG or a hydrogen plasma,
the entire wave-vector dependence of the static linear density
response function χ (q) can be obtained from a single simu-
lation of the unperturbed system by utilizing the imaginary-
time version of the well-known fluctuation dissipation
theorem [65],

χ (1)(q) = −n
∫ β

0
dτ F (q, τ ), (46)

where F (q, τ ) denotes the usual imaginary-time version of
the intermediate scattering function; see, e.g., Ref. [65] for
details. Yet, Eq. (46) does not hold for a hydrogen snapshot as
defined by the Hamiltonian from Eq. (1), which is inhomoge-
neous even in the unperturbed case.

Therefore, we use the same methodology as already em-
ployed in Ref. [66] by modifying the snapshot Hamiltonian
Eq. (1) to include a harmonic perturbation

Ĥq,A = ĤSNAP + 2A
N∑

i=1

cos(qri ), (47)

where A is the perturbation strength and q =
(nx, ny, nz )T 2π/L the perturbation wave vector. Using this
modified Hamiltonian, we compute the density in reciprocal
space,

〈ρ̂k〉q,A = 1

V

〈
N∑

l=1

e−ik·r̂l

〉
q,A

, (48)

and the induced density is given by

�ρq,A ≡ 〈ρ̂k〉q,A − 〈ρ̂k〉q,0 . (49)

In the limit of small A, Eq. (49) can be expanded as

〈ρ̂q〉q,A = χ (1)(q)A + O(A2), (50)

with χ (q) being linear response coefficient of interest.

III. RESULTS

A. Convergence properties

The convergence of snap-PIMC results for the energy as a
function of the inverse number of imaginary time slices P−1

is displayed in Fig. 3, with the blue and green curves corre-
sponding the PA and Kelbg action, respectively. Figure 3(a)
clearly demonstrates the influence of the off-diagonal contri-
butions to the action on the convergence of PIMC expectation
values. In order to account for the finite Monte Carlo errors,
we carried out an extensive analysis of both the Kelbg poten-
tial and the pair approximation. Empirically, we find that the
convergence behavior of the Kelbg potential is proportional
to O(ε) in the given range of P, whereas the PA converges
with O(ε3) which is consistent with Refs. [34,67]. In order
to obtain the given red and black error margins, we added
Gaussian noise to the data points with the standard deviation
given by the Monte Carlo error and fitted the perturbed data
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FIG. 3. Convergence of (a) the total energy, (b) potential energy, and (c) kinetic energy, with the inverse number of imaginary time slices
P−1. The calculations have been carried out for N = 4, � = 1, and rs = 2. The convergence behavior of the pair approximation is clearly
favorable compared to the simple Kelbg pair potential.

points to the respective convergence behavior. This was done
104 times to have a sufficient sample size. The fits were carried
out starting at P = 50 up to P = 1000. From the obtained
set of fitting coefficients, we then constructed a more fine-
grained P−1 grid in the interval I = [10−6, 1/50]. For each
point in I , we then calculated the mean values and obtained
the error margins by taking the maximum or minimum value
of the obtained fit samples. This analysis has been carried out
for all subplots in Fig. 3 and ensures that the errors are not
underestimated. The data have been calculated up to a Monte
Carlo error of a few millihartree.

We already stated that the PA includes off-diagonal terms,
which are particularly important at lower temperatures. This
is in contrast to the Kelbg pair potential, which completely
neglects these off-diagonal contributions. The latter decay
only at large temperatures and, therefore, a large number of
time slices in the PIMC simulation are needed to reach this
limit. This directly explains the much faster convergence of
the PA compared to the Kelbg pair potential in Fig. 3. While
the energy estimator in the PA is already sufficiently con-
verged at P = 50 time slice, the Kelbg estimator shows only
a sufficient energy agreement with the pair approximation
P = 1000 inside the error margins. Therefore, the PA offers a
significant performance boost in comparison to the Kelbg po-
tential, which is in qualitative agreement to earlier findings by
Filinov et al. [40]. Practically, it is very hard to approach the
limit of P → ∞ computationally and would require at least
P = 5000 propagators, which is not feasible. Since the total

energy is a sum of positive and negative energy contributions
[see Figs. 3(b) and 3(c)], the resulting cancellations cause a
comparably large relative statistical error. Nevertheless, if we
look at the calculated potential and kinetic energy separately,
we see a very good agreement within the error margins even
for the very high accuracy of the data points that are of the
order of a few milihartree. Our fitting extrapolation scheme
indeed indicates an agreement of both the Kelbg potential
and PA with increasing P and furthermore confirms the faster
convergence rate of the PA.

Another test for the convergence behavior of both ap-
proaches is shown in Fig. 4, where the induced density (48)
for q = 2π/L êz is depicted as a function of P−1. In particular,
we chose a perturbation strength of A = 0.1 for rs = 4, N =
14 particles, and a degeneracy temperature of � = 1. The
comparison between the green Kelbg curve and the blue PA
curve again nicely illustrates the improved convergence rate
of the PA. Even for the given high accuracy of the data points
it is very hard to obtain an exact agreement between Kelbg
and PA. For this reason, we have carried out the identical
statistical analysis as described in Fig. 3. An exact agreement
with Kelbg would require a significantly higher number of
propagators, which is unfortunately computationally unfea-
sible for the given accuracy. Indeed, the induced density of
the blue curve is well converged already at P = 200 within
the given Monte Carlo error bars. Due to the low density of
rs = 4, the off-diagonal elements in the density matrix are of
significant importance for the correctness of the simulation
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FIG. 4. Induced density convergence as a function of P for a
perturbation strength of A = 0.1, N = 14, rs = 4, and � = 1. The
red curve shows the results using the Kelbg pair potential, and
the green curve depicts the PA. Since the lower density of rs = 4
causes a stronger localization of the electrons near the protons, the
off-diagonal elements in the density matrix of the PA significantly
improve the convergence with the number of imaginary time steps.

since the electrons are now more localized near the protons,
which explains the substantially worse performance of the
Kelbg action in this case.

We now focus on the convergence behavior of the real
space density n(r) in Fig. 5, since it is arguably the most im-
portant observable to test the accuracy of electronic structure
methods. The panels of Fig. 5 depict the electronic density
(integrated over x and y) in the z direction for N = 14, rs = 4
and � = 1 in units of the corresponding UEG density n0. The
results for the density in both panels are plotted for different
choices for the number of imaginary time slices in order to
observe the convergence behavior for the Kelbg pair potential
and the PA. The influence of the ions, which are shown as
the vertical gray dashed lines, on the electronic localization
can clearly be observed in both panels. In the upper panel,
the results for the PA are shown. We observe a very favorable
convergence behavior even for a small number of imaginary
time slices. To better resolve the difference between the mea-
sured points, two insets are used to offer a better resolution
around four manually chosen points. The insets reveal that
all the results are already in very good agreement within the
given error bars. In comparison, the lower panel shows a less
favorable convergence behavior for the density with the use of
the Kelbg potential. Both inset plots in the lower panel zoom
in on the identical area as above. Here we clearly observe
a much more pronounced difference between the choice of
imaginary time steps. We note that the error bars are an order
of magnitude smaller than the estimator values and therefore
are not visible in the plot. The insets were specifically cho-
sen to be close to an ionic position in order to observe the
influence of the off-diagonal contributions to the action. Since
this off-diagonal error is especially pronounced in the vicinity
of the ions, one can easily see that the Kelbg pair potential
requires a higher number of imaginary time steps compared
to the PA for a sufficient convergence.

In Fig. 6 we examine the effects of a perturbation on
the electronic density. For this purpose, a perturbation of

FIG. 5. Density convergence with P for rs = 4 and � = 1 along
the z direction (i.e., integrated over x and y). The upper panel depicts
PIMC results for the density using the PA, while the lower panel
shows the Kelbg density for different numbers of imaginary time
steps P. For both panels the insets have identical limits to highlight
the improved convergence behavior of the PA.

A = 0.1 Ha was introduced, while using the identical parame-
ters as in Fig. 5. The panels illustrate the difference in density
between the perturbed and unperturbed system for the same
number of imaginary time steps as in the previous figure. We
define this difference in units of the unperturbed UEG density
n0 as

�n(P) = npert.(P) − nunpert.(P)

n0
. (51)

Again, here the gray dashed vertical lines depict the position
of the ionic snapshot, and the upper (lower) panel shows the
results in the case of the PA (Kelbg). The depicted quantity
allows us to resolve the influence of the ions onto the re-
sponse to a perturbation (black line), and the interplay with
the propagator error. The main source of propagator error
is given by the approximate treatment of the contribution of
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FIG. 6. Change in the integrated density in the z direction due to
an external perturbation of A = 0.1 Ha for different P at N = 14,
� = 1, and rs = 4. The deviation is defined as �n = npert. (P) −
nunpert. (P) in units of the unperturbed UEG density n0. In the upper
panel the case of the PA is shown, while in the lower panel we depict
the Kelbg result for different propagator numbers P. The vertical gray
dashed lines show the ionic positions.

the electron-proton attraction to the total action. This error
is proportional to the commutators of the potential with the
kinetic terms in the Hamiltonian and thus proportional to
the corresponding gradients. Since the impact of the external
perturbation is comparably weak, these errors nearly cancel
between the perturbed and unperturbed calculations, and the
total propagator in n(P) is much smaller.

B. Fermion sign problem

The fermion sign problem constitutes the main computa-
tional bottleneck of our simulations. In Fig. 7 we show the
dependence of 〈Ŝ〉 on the particle number for a temperature of
� = 1 and the metallic density rs = 2. First and foremost, we
note that all curves exhibit a qualitatively similar exponential
decay with N ; cf. Eq. (37). Moreover, both the average sign

FIG. 7. The average sign 〈S〉 compared both with the Kelbg
potential (red crosses) as well as the PA (green circles) at metallic
densities rs = 2 and � = 1. Both curves exhibit an exponential decay
of the average sign with increasing particle number. The Kelbg result
has been calculated using P = 600 propagators, where the PA re-
quired only P = 200 propagators. Furthermore, the same conditions
have been studied for rs = 6. The magenta crosses shows the Kelbg
result at rs = 6 again with 600 propagators. For the PA we ran the
same calculations but for P = 200 (purple crosses) and P = 600
(yellow crosses).

of the Kelbg implementation as well as the PA are in excellent
agreement with each other. A similar result can be seen in
Fig. 8, where the sign exponentially decays with the inverse
temperature �−1. Since the value of the average sign is very
sensitive to the sampling of the permutation space [35], the
excellent agreement shows that both the PA and the Kelbg im-
plementation are sampling the canonical partition function Z
nearly identically. The only difference here is that the number
of propagators required for the PA (P = 200) is much lower
compared to the diagonal Kelbg potential (P = 600). Thus,
the PA has a distinct performance advantage over the Kelbg
pair potential.

Let us next consider the blue lines in Figs. 8 and 7, which
are depicting the average sign of the corresponding uniform
electron gas simulations at the same density, rs = 2.

FIG. 8. Average sign 〈S〉 as a function of the degeneracy parame-
ter � = 1 for N = 14 particles at metallic density rs = 2. The Kelbg
(red) and the PA (green) results show the expected increase of the
average sign. The PA used P = 200, and the Kelbg calculations were
run with P = 600 propagators.
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The sign of the UEG simulations in Fig. 7 is consistently
increased compared to the snapshot results. This is caused by
the decrease in uniformity of the hydrogen system, since the
presence of protons causes an increased localization of the
electronic imaginary time paths around them. In particular, the
probability to form a permutation cycle is proportional to the
distance between two beads of different particles. For the case
of the UEG, the paths are uniformly distributed and, therefore,
the average sign follows the exponential decay proportional
to the particle number; see Eq. (37). Nonetheless, the protons
positions in the snap-PIMC simulations induce a nonunifor-
mity in the electronic imaginary time paths. At rs = 2 the
somewhat increased localization of electronic paths therefore
increases the acceptance probability of an exchange cycle.
We want to further study how localization around the protons
affects the average sign. For this reason the purple curve in
Fig. 7 illustrates the average sign of the hydrogen snapshot
at rs = 6 using P = 600 propagators with N = 14 particles
at � = 1. As a comparison, the magenta and yellow line
show results for the same conditions at P = 600 using Kelbg
and PA, respectively. All three curves are in good agreement
with each other. We can observe in all three lines a severe
snapshot dependency, since at the low density of rs = 6 a
significant increase of the localization around the protons is
occurring. If two protons are close to each other, then the
electronic paths around the ions will be closer together as well
and therefore increase the probability of an exchange cycle
being sampled. However, in the case where the protons are
farther away from each other, the probability for an exchange
cycle being accepted decreases. Therefore, one observes an
oscillation around the exponential decay of the sign at rs = 6
due to the snapshot dependency. We strongly suspect that the
inclusion of dynamical ions in PIMC would possibly lead to
a more severe sign problem associated with the formation of
molecules.

C. Impact of the density parameter rs

In order to show how the density parameter influences the
imaginary-time paths in the PIMC simulations, we show in
Fig. 9 a hydrogen snapshot at rs = 2 (top) and rs = 6 (bottom)
for N = 20, P = 200, and � = 1. The imaginary-time paths
are useful to gain a qualitative understanding of the electronic
behavior of the system. The top panel at rs = 2 shows more
disordered paths compared to the bottom panel, where the
electronic paths are substantially localized around some of the
ions. This result shows heuristically the emergence of bound
states for lower density and sufficiently low temperatures,
since the path localization gives a measure for the estimated
electronic density. Nevertheless, we stress that PIMC does not
make the artificial distinction between bound and free states.

A more quantitative picture of the density induced in-
creased localization around the ions is depicted in Fig. 10 for
N = 14 and identical parameters as in the previous figure.
The figure visualises the electronic density for a hydrogen
snapshot along the z axis in units of the unperturbed UEG
density. For this run, the PA was used using P = 600 prop-
agators. The figure clearly indicates an increased electronic
density around the ion positions with an increasing value for
rs. We especially find the strong localization difference at

FIG. 9. Configurations from pair approximation PIMC simula-
tions of a hydrogen snapshot with N = 20, θ = 1, and P = 200
for rs = 2 (top) and rs = 6 (bottom). The green spheres denote the
ion positions, and the blue paths depict the imaginary-time paths
of the electrons. At rs = 6, the localization of the electron paths
around the ions is substantially increased compared to rs = 2. This
heuristically indicates the emergence of bound states around the ions
at lower density. The top panel has been taken from the Supplemental
Material of Ref. [33].

rs = 2 compared to rs = 4. As already stated for Fig. 9, this
illustrates how electrons start to localise around the protons
for decreasing densities, which would result in bound states
in a simplified single-particle picture.

D. Impact of the temperature parameter �

The impact of temperature on the electronic density along
the z coordinate is shown in Fig. 11 for a snapshot with
N = 14, rs = 2 and different � values. An increase in tem-
perature clearly leads to the trend of the snapshot density
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FIG. 10. Comparing PIMC results for the density along the z
direction for the same fixed ion snapshot with N = 14 at θ = 1 for
different values of the density parameter rs. The dashed vertical lines
show the z coordinates of the ions.

converging towards the UEG density. This can be explained
by the fact that with increasing temperature the influence of
the ions becomes the less dominant, since thermal excitations
are getting stronger than the electron-ion interaction.

E. Comparison to DFT

Our exact PIMC solutions to the many-electron problem
in the external ion snapshot potential put us into the unique
position to benchmark the accuracy of thermal DFT calcu-
lations for exactly the same Hamiltonian. This is shown in
Fig. 12 for the density (integrated over x and y) along the
z direction; we reiterate our earlier point that the electronic
density constitutes the central observable within DFT, and its
importance can hardly be overstated. In the upper panel, the
red dots show our PIMC results obtained within the PA in
units of the unperturbed UEG density at rs = 2. The green
line shows the resulting real-space density from DFT using
LDA. Evidently both results are in excellent agreement with
each other. This somewhat changes at rs = 4 depicted in the

FIG. 11. Comparing PIMC results for the density along the z
direction for an ion snapshot of N = 14 at rs = 2 for different values
of the reduced temperature θ . The dashed vertical lines show the z
coordinates of the ions.

FIG. 12. Top (bottom): comparison of the density along the z
direction of an unperturbed snapshot with N = 14 unpolarized elec-
trons at rs = 2 (rs = 4) and θ = 1 between thermal DFT within LDA
(green crosses) and PIMC with the PA and P = 600 (red circles).

lower panel. In the vicinity of protons (gray dashed lines),
one can observe a small yet significant disagreement between
snap-PIMC and DFT. The reason for this is, that the employed
LDA functional is based on the ground-state UEG data from
Ceperley and Alder [68]. Therefore, it is not possible for
LDA to fully capture the impact of the inhomogeneity around
the protons. The KS-DFT overestimates the spreading degree
of the electronic density around protons due to the known
delocalization (self-interaction) error of commonly used XC
approximations in KS-DFT [69]. This failure is particularly
stark for the calculation with lower densities as it is demon-
strated for rs = 6 by Böhme et al. [33] (see the Supplemental
Material there). This demonstrates the importance of rigorous
benchmarks of commonly used XC functionals in the WDM
regime, in particular for lower densities. Recently a more
detailed analysis of the performance of various LDA, GGA,
and meta-GGA level XC functionals in the case of hydrogen
in terms of the density response function was reported by
Moldabekov et al. [70]. For rs = 2, since it is a metallic
density, the electrons behave qualitatively similar to a UEG
[33], and the DFT results are in much better agreement with
the snap-PIMC density.
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IV. SUMMARY, DISCUSSION, AND OUTLOOK

In this work, we gave a comprehensive introduction to
ab initio PIMC simulations of hydrogen snapshots in the
WDM regime. To avoid the notorious path collapse due to
the Coulomb attraction between electrons and protons, we
employ the pair approximation, which exhibits a favorable
convergence behavior compared to the simpler Kelbg poten-
tial. Furthermore, we do not impose any nodal restrictions on
the paths, which means that our simulations are afflicted with
the fermion sign problem. Still, simulations are feasible over
a substantial part of the relevant parameter space.

From a physical perspective, we find an increased elec-
tronic density around the proton positions for rs = 4 com-
pared to the metallic density rs = 2. A similar effect has been
observed for decreasing temperature. In addition, we have
compared our exact new snap-PIMC results for the electronic
density to thermal DFT calculations for the same snapshot and
found excellent agreement at rs = 2. However, the electronic
density using LDA significantly deviates from our results
especially in the vicinity of the protons at rs = 4. The reason
for this can be traced back to the fact that LDA stems from
UEG ground-state calculations and, by definition, cannot fully
account for ionic influences. We note that our PIMC results
constitute an ideal benchmark for the assessment of different
XC functionals [71,72], which will be pursued in more detail
in future works.

A key advantage of the snap-PIMC approach is the
straightforward access to the exact static electronic response
of hydrogen, as we have demonstrated in Ref. [33]. This opens
up the enticing opportunity to compute the exact XC kernel
of a real material in the WDM regime, which in turn can be
utilized in a number of applications such as linear response
time dependent DFT simulations. The latter, in turn, give one
access to the dynamic structure factor, which is the central
property in modern XRTS experiments [36,37].

Snap-PIMC can easily be extended beyond hydrogen, as
the computation of the two-body density matrix is possible
for all elements. However, one needs to keep in mind that the
Ewald sum requires charge neutrality, and therefore the re-
quired amount of electrons increases drastically. The fermion
sign problem then might make simulations computationally
unfeasible in the case of too heavy elements. Nevertheless,
we note that exact PIMC simulations of deuterium-tritium
mixtures and helium constitute a realistic prospect. We will
further investigate the possible extension of this approach to a
full two-component PIMC component, which would enable us
to capture the exact static response quantities including ionic
contributions.

Eventually we will extend the current setup two a full two-
component PIMC simulation of hydrogen, where the ions are
treated on the same footing as the electrons, i.e., are not fixed.
For example, this will allow us to compare to widely used
DFT-MD simulations with respect to different properties such
as energies and pressure. Additionally, this implementation
will enable the extraction of exact screened potentials [73],
which are a highly relevant object for the quantum statistics
of plasmas.
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