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Assessment of the electron-proton energy relaxation rates extracted from molecular dynamics
simulations in weakly-coupled hydrogen plasmas
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Electron-proton energy relaxation rates are assessed using molecular dynamics (MD) simulations in weakly-
coupled hydrogen plasmas. To this end, we use various approaches to extract the energy relaxation rate from
MD-simulated temperatures, and we find that existing extracting approaches may yield results with a sizable
discrepancy larger than the variance between analytical models, which is further verified by well-known case
studies. Present results show that two of the extracting approaches can produce identical results, which is
attributed to a proper treatment of relaxation evolution. To discriminate the use of various methods, an empirical
criterion with respect to initial plasma temperatures is proposed, which can self-consistently explain the cases
considered. In addition, for a transient electron-proton plasma, we show that it is possible to extrapolate
the Coulomb logarithm from that derived by initial plasma parameters in a single MD calculation, which is
reasonably consistent with previous MD data. Our results are helpful to obtain accurate MD-based energy
relaxation rates.

DOI: 10.1103/PhysRevE.107.015203

I. INTRODUCTION

Nonequilibrium two-temperature plasmas [1,2] are created
when ions are heated differently from electrons, followed
by plasma thermalization to achieve a uniform temperature
which is largely dominated by electron-ion collisions. Hence,
understanding the electron-ion energy relaxation is important
to evaluate the timescale of the nonequilibrium process, which
has found broad applications in, e.g., laser ablation [3], shock
waves [4,5], and inertial confinement fusion (ICF) [6], for a
wide variety of plasma conditions [2,7–11]. Due to the limit
of experimental and diagnostic techniques, early experiments
[4,7] have only inferred the existence of nonequilibrium two-
temperature plasmas by fitting the experimental data with a
two-temperature model (TTM) [4,12], thereby acquiring the
measured electron-ion energy relaxation rate. In recent years,
experimental efforts have been made to diagnose the time-
varying temperature of ions and electrons separately in the
plasma [2,9,13] (see a recent review for imploding plasmas
[14]), which can serve as direct evidence to validate theoreti-
cal models of relevance [15–33].

For various plasma conditions, multiple theoretical and
numerical treatments, such as the binary collision theory
[15,16], quantum kinetic theory [18,20,28], and molecular
dynamics (MD) simulations [17,22–26], have been used to
account for likely physical effects at different levels of ac-
curacy. Within a classical binary Coulomb collision picture,
Landau [15] and Spitzer [16] (LS) proposed the formula of
the electron-ion energy relaxation rate, which explicitly de-
pends on the plasma parameters [e.g., the number density of
electrons (ne) and ions (ni), the ionization state (z), etc.] as
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well as the Coulomb logarithm ln �. Within this model, the
key to determining the electron-ion energy relaxation rate is
the ln �. Strictly speaking, the ln � is a divergent collisional
integral and is usually approximated in practical applications.
For convenience, the lower (bmin) and upper (bmax) limits
of the integral has been suggested as ad hoc cutoffs, such
that it can be analytical expressed as ln �=ln(bmax/bmin).
In order to incorporate the physics of collision, correlation,
screening, diffraction, and quantum effects, a lot of variations
of bmax and bmin have been developed [17,20,21,24,32,34].
In most cases, bmax represents the Debye screening length
λD=

√
kBTe/(4πnee2), and bmin is the shortest distance of ap-

proach, bc=ze2/(kBTe). In Ref. [34], taking into account the
electrons’ degeneracy and ions’ contribution, bmax was chosen
to be the Debye-Hückel screening length λDH [34]. To roughly
consider quantum effects, bmin was represented by the electron
thermal wavelength λe =

√
2π h̄2/(mekBTe) when bc < λe. In

the Gericke-Murillo-Schlanges (GMS) model [20], bmax is
interpolated between λD and the radius of ionic sphere Rion =
(3/4πni )1/3, and bmin is interpolated between bc and λe, which
contains strong interactions when the dynamical collective
mode is dominant. It is to be noted that the GMS model has
been validated using a quantum kinetic approach for dense
aluminum plasmas. Recently, by using the effective potential
theory, the binary collision framework has been extended to
include the correlation effects [29], and the predicted relax-
ation rate showed a favorable agreement with measured data
in strong coupling regimes.

Compared to LS-type models, the form of energy relax-
ation rate becomes quite sophisticated based on the quantum
kinetic approach [18,31,33,35,36], though it can describe
quantum effects, strong collisions, and collective excitations.
If both ionic and electronic motions are treated classically
with the inclusion of diffraction, screening, correlation, and
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collective effects, then the MD approach is well suited for
this purpose. As an efficient means, MD simulations have
been widely used to mimic the temperature relaxation process
between charged particles across coupling regimes [11,17,22–
26,37–43]. For a typical MD simulation, the time evolution
of temperatures of electrons and protons and their temper-
ature difference can readily be calculated, visibly reflecting
how quick electrons and ions relax in the time domain.
In this way, MD-simulated temperatures has directly been
used to evaluate the effect of screening [26], ionic correla-
tion [28], exchange interaction of electrons [40], temperature
anisotropy [44], coupled collective modes [38], and the sign
of the electron charge [42] in plasmas, which has significantly
deepened our understanding of the physics of electron-ion
energy relaxation. However, these tremendous MD temper-
ature data are difficult to be directly used, for instance, in
radiation-hydrodynamics simulations [45–48], in which the
electron-ion energy relaxation rate is required as a crucial
parameter. For this reason, the extraction of the electron-ion
energy relaxation rate from MD-simulated temperatures is im-
portant [23–25]; it thus needs a reliable extracting approach.

In a previous study, Glosli et al. [23] employed the MD
method to simulate electron-proton temperature relaxation in
dense hydrogen, and they extracted the Coulomb logarithm
ln � by a direct exponential fitting to the temperature differ-
ence of electrons and protons. By comparing with MD-based
ln �, the accuracy of the analytical models was examined and
they found that the GMS model and Brown-Preston-Singleton
(BPS) model [21] quantitatively followed the MD results for
ln � � 1. In a parallel study for the same system, Jeon et al.
[24] also carried out MD simulations using a screened po-
tential, but the MD technique here was different from that
of Glosli et al. [23]. In particular, they fitted transformed
MD data by using a simple linear function, and their ex-
tracted ln � agreed reasonably well with the LS model and
were larger than those calculated from quantum kinetic theory
by ∼30%. Subsequently, Dimonte and Daligault (DD) [25]
presented MD results for positron-proton plasmas in a wide
range of coupling regimes. Although their MD setups were
generally consistent with those in Ref. [23], they fitted MD
temperatures to three different analytical solutions and sorted
out the value that provides the best fitting to the temperature
difference. In this way, they have established an analytical
relationship between ln � and the plasma parameter g, i.e.,
ln � = ln(1 + 0.7/g) (hereafter, we entitle it the DD model),
where g is defined as a ratio of the Coulomb energy of elec-
trons and ions at a distance of λD to the thermal energy, which
is simply reduced to the ratio of bc to λD. It is found that it
precisely follows the BPS model for weakly coupled plasmas.

As described above, there have been several different ex-
tracting approaches used in previous MD simulations [23–25],
where the authors used to choose one of the extracting meth-
ods in their favor. In this situation, a question raised is whether
or not various extracting approaches can yield convergent
results for the same set of plasma parameters, which is quite
essential. If the discrepancy from extracting approaches re-
mains higher than the statistical error of MD simulations
(3%–5%), one must work with caution to obtain reliable
energy relaxation rates. In a recent study [45], Xu and Hu
have shown that a discrepancy of ∼5%–15% in the electron-

ion energy relaxation rates between analytical models would
result in substantial variances for the neutron yield in ICF
simulations, which has obviously pointed out the importance
of the accuracy of the electron-ion energy relaxation rate for
ICF implosion performance. We shall show in the following
that in certain cases, electron-proton energy relaxation rates
extracted by various approaches will differ significantly with
a discrepancy that is comparable or even larger than that in
Ref. [45]. On the other hand, MD-extracted energy relaxation
rates typically serve as the benchmark in the classical limit,
e.g., Vorberger and Gericke [35] have directly cited previous
MD results to compare with quantum kinetic theory in order
to examine the emergence of coupled collective modes in
MD simulations. Hence, incorrect assessment of electron-ion
energy relaxation rates in MD simulations might inhibit the
evaluation of newly developed theoretical models.

As can be seen, a general agreement among existing
extracting approaches has not yet been reached for MD sim-
ulations, though they have already been used in many studies
over the years. In this paper, we provide a definite answer
to this problem in weakly-coupled hydrogen plasmas. The
objective of the work is to show the impact of extracting
approaches of MD simulations on the ln �, e.g., clarifying
whether existing extracting approaches are convergent. Our
results show that two of the extracting approaches always
yield identical results, while various extracting approaches
are convergent only in particular cases. Furthermore, a series
of case studies in Refs. [23–25] has been reexamined. And
in most cases, we find that extracting approaches result in
appreciable uncertainties, which largely exceed the MD sim-
ulations’ statistical error. To discriminate various extracting
approaches, we present an empirical criterion of initial plasma
temperatures. Finally, combined with two of the extracting
approaches, we show that it is possible to extrapolate other
Coulomb logarithms in a single MD calculation, which agrees
well with independent MD simulations by varying plasma
parameters.

The article is arranged into the following parts. Section II
briefly introduces key aspects of MD simulations and illus-
trates three extracting approaches in more detail. Section III
presents systematic MD results and analyzes the applicability
of extracting approaches. Finally, a conclusion is drawn in
Sec. IV.

II. THEORETICAL METHODS

A. Details of MD simulations

In the present work, the energy relaxation process between
electrons and protons in weakly-coupled hydrogen plasmas
is simulated by using classical molecular dynamics [49]. A
collection of charged particles is restrained inside a cubic
domain. Periodic boundary conditions are used in the mi-
crocanonical ensemble. The Coulomb force acted upon each
particle is directly computed within a large radius centered
at the desired particle, i.e., R0 = 50 bohr, which suffices to
yield convergent results in the present study. The interaction
between electron and proton is described by a quantum sta-
tistical potential (QSP) [17,50,51], approximately accounting
for the quantum diffraction effect in Coulomb collisions [50],
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thereby avoiding the numerical divergence at short distances
for electron-proton pairs. Newton’s equations of motion are
numerically integrated using the velocity-Verlet algorithm. A
fixed time step is adopted, ranging from 10−7 for an initial
temperature of electrons, T 0

e ∼ keV, to 10−4 femtoseconds (fs)
for T 0

e ∼ a few tens of eV, which is small enough to conserve
the total energy (�E/E � 0.1%).

In MD simulations, the instantaneous temperature of the
plasmas is computed by Tα (t )=mα/3kBNα

∑Nα

j=1 v2
j (t ), where

the index α denotes the electron (e) or proton (p) and thus mα

is the corresponding mass. v j is the velocity of the jth particle
of species α, and Nα is the total number of species α. kB is
the Boltzmann constant. To obtain an initial nonequilibrium
plasma with disparate temperatures of electrons and protons
(T 0

e �= T 0
p ), we have performed the following three steps.

First, a large number of particles is generated with random
positions in the simulation cell, and initial particle velocities
are randomly sampled from the Maxwell-Boltzmann distribu-
tion at room temperature. Second, two Langevin thermostats
[52] are separately applied for electrons and protons in order
to rapidly heat them up to different temperatures. To ensure
the particles of the same kind are fully relaxed, it contin-
uously evolves more than 105 time steps. In this way, the
two-temperature electron-proton plasma can be well prepared.
Finally, by removing external thermostats, the system evolves
freely via Coulomb collisions during which charged particles’
collisions, diffraction, correlation, and screening are included
self-consistently. Thermal equilibrium is achieved with a com-
mon temperature for both electrons and ions. Within this
approach, we have been able to obtain consistent results in
previous studies [23–25,40].

To obtain statistically reliable MD data, we used more than
105 electrons and 105 protons for each MD simulation. By
varying the initial positions of the particles, it is found that the
uncertainty of ln � remains less than 5% (see the Appendix).
In the considered regime, it is a rather small statistical error,
compared to the discrepancy seen among various analytical
models of ln �. For this reason, multiple independent simula-
tions sampled with varied initial phase spaces are unnecessary
in our study. In addition, the ion mass scaling technique is em-
ployed to accelerate the entire relaxation process; specifically,
in most simulations, the mass ratio of protons to electrons is
102. The impact of the proton’s mass has also been examined.
It should be noted that in this study, MD-simulated energy
relaxation rates have been rescaled to the real mass ratio of
protons to electrons, which are the results presented in the
following.

B. Determination of energy relaxation rate

In our study, the key quantity is the electron-ion energy
relaxation rate ωei, which is typically formulated as

ωei = 4kB
√

2πmimeninez2e4

(mekBTi + mikBTe)
3
2

ln � = ω0
ei ln �, (1)

where ω0
ei is a prefactor, i.e., ω0

ei =
4kB

√
2πmimeninez2e4(mekBTi + mikBTe)−

3
2 . mi(me), ze(e),

ni(ne), and Ti(Te) represent the mass, charge, number density,
and temperature of the ions (electrons), respectively. The

number density satisfies the relation of ne = zni due to the
global charge neutrality of the plasma. In the following, we
briefly summarize three extracting schemes widely used in
MD simulations. Without loss of generality, the extracting
approach will be introduced for the plasma with an ionization
state of z. For the hydrogen plasmas (z = 1) considered here,
it is reduced to the electron-proton energy relaxation rate
ωep. It is to be noted that various schemes are distinguished
by either different simulation methods of identical plasma
conditions or different fitting procedures of identical MD
data.

1. Full relaxation dynamics

Assume that electrons and ions have distinct initial temper-
atures, e.g., T 0

e > T 0
i , and that they would fully relax towards

a common temperature Teq. This is described by the following
equations:

dTe

dt
= −νei(Te − Ti ) = − 1

τei
(Te − Ti ), (2a)

dTi

dt
= −νie(Ti − Te) = − 1

τie
(Ti − Te), (2b)

where the notation of the time variable t in Te and Ti is
neglected for simplicity, and the temperature relaxation rate
ν is defined as

νei = 8

3

√
2πmimeniz2e4

(kBTime + kBTemi )
3
2

ln � = ν0 ln �, (3)

where ν0 is a prefactor. The temperature and energy relaxation
rate is connected by the relationship of ωei=3/2kBneνei. For
hydrogen plasmas (z = 1), the relation of νei=νie is satisfied.
τei(τie) is referred to as the relaxation time of electrons (ions).
According to Eq. (2), the evolution of the temperature differ-
ence �T (t ) [defined as �T (t ) = |Te(t ) − Ti(t )|] obeys

d�T (t )

dt
= −(νei + νie)�T (t ) = −ν
�T (t ), (4)

in which the effective temperature relaxation rate is defined
as ν
 = (νei + νie) = (z + 1)νei, and its reciprocal τ 
 is the
relaxation time that was typically analyzed. By integrating
Eq. (4), �T (t ) can be analytically written as

�T (t ) = �T (t = 0) exp

[
−

∫ t

0
ν
(t ′)dt ′

]
. (5)

In previous studies [23,24,40], it was usually assumed that
the temperature relaxation rate is linked to the initial plasma
parameters, so its time dependency was approximately ne-
glected. Along this line, by using a time-independent effective
relaxation rate, a simplified expression �T (t ) = �T (t =
0) exp(−ν
t ) can be attained. If data of �T are available, for
instance, calculated in MD simulations, then ν
 (thus νei) can
be determined. As a result, the Coulomb logarithm is given as

(ln �)MD = ν


(z + 1)ν0
= 1

(z + 1)ν0τ 

. (6)

Obviously, ln � is associated with the exponential fitting to
full relaxation dynamics data.

An illustration of this approach is shown in Fig. 1(a) for
hydrogen plasmas initially with ni = ne = 1022 cm−3, T 0

e =
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FIG. 1. Comparison of MD simulation results with fitted results
by various schemes. (a) Full relaxation dynamics, (b) partial relax-
ation dynamics, (c) optimal fitting procedure. Note that (b) employs
a logarithmic y axis. In order to facilitate the comparison between
fitted and MD results, (c1) shows their difference. More details can
be found in the main text.

250 eV, and T 0
i = 50 eV; see case C in Table I. For this case,

we used 105 electrons and 105 protons in the MD simulations.
The thermal equilibrium is nearly reached with Teq ≈ 150 eV.
If �T (t ) computed from MD simulations is fitted by Eq. (5),
we obtain ν
 = 7.0 × 10−5 fs−1, and then, based on Eq. (6),
the calculated ln � is 4.38. According to Eq. (1), we obtain
the electron-proton energy relaxation rate ωei = 0.72 × 1016

W/(K m3).

2. Partial relaxation dynamics

As full relaxation dynamics calculations are computation-
ally demanding in most cases, an alternative approach is to
perform early relaxation simulations, which requires only a
fraction of the total simulation time of full relaxation. To mit-
igate the statistical fluctuation, partial relaxation simulations
call for a substantial number of particles, e.g., at least 106

electrons and 106 protons [24]. The temperature difference
follows an exponential attenuation law [see Eq. (5)], which
can be transformed into a linear relation,

ln[�T (t )] = At + B, (7)

with the slope A=−1/τfit and the intercept B=ln[�T (t = 0)].
The unknown coefficients in Eq. (7) can be determined by
fitting to the MD results [see Fig. 1(b)] and then the electron-
proton energy relaxation rate can be computed.

For weakly-coupled plasmas, the electron energy relax-
ation equation is written as

dEe

dt
= 3

2
kBne

dTe

dt
= −ωei(Te − Ti ). (8)

By substituting Eq. (2a) into it, it arrives at

ωMD
ei = 3kBne

2(z + 1)τfit
. (9)

According to the definition in Eq. (1), the Coulomb logarithm
is calculated by

(ln �)MD = ωMD
ei

ω0
ei

= 3kBne

2(z + 1)ω0
eiτfit

. (10)

It should be noted that the fitting procedure utilized in full
and partial relaxation dynamics is physically equivalent, but
they rely on distinct MD simulations. Figure 1(b) presents
results still for case C in Table I. Here, MD simulations are
run for 106 electrons and 106 protons; thereby, the temperature
fluctuation is properly suppressed within less than 200 fs,
which is far from the equilibrium time. Based on Eq. (7),
a linear fit is employed, showing a fairly good agreement
with the MD data. The fitted relaxation time is τfit = 17109.3
fs. Upon the use of Eqs. (9) and (10), ln � is calculated as
3.65, and the electron-proton energy relaxation rate attains
ωei = 0.6 × 1016 W/(K m3).

3. Optimal fitting procedure

For a conventional description of electron-proton temper-
ature relaxation, it supposes that the relaxation rate depends
only on the initial plasma conditions, as has been formulated
in Eq. (6), which may be inappropriate in certain situations. To
consider the possible temperature-dependent relaxation rate,
the temperature relaxation equation for electrons is modified
as [25]

dTe

dt
= −νei

(
T 0

e

)( Te

T 0
e

)−η

(Te − Ti ). (11)

To determine the choice of η, it is assumed that the
temperature-dependent relaxation rate νei(Te) has the same
power as νei(T 0

e ), but is divided into different components T 0
e

and Te, i.e., νei(Te) ∝ (T 0
e )−1.5+η(Te)−η. It is obvious that it is

exactly reduced to νei(T 0
e ) for Te approaching T 0

e . Typically,
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TABLE I. Electron-proton energy relaxation rates [in units of W/(K m3)] extracted from MD simulations (S1 to S3 in the sixth to eighth
columns stand for three extracting approaches in sequence described in Sec. II B) and calculated by well-established analytical models
[15,16,20,21,25] (from the ninth to 12th columns). The numbers included in brackets denote the power of 10. The first column labels the
cases under study. The number density of electrons (ne) and ions (ni), initial electron (T 0

e ), and ion (T 0
i ) temperatures are arranged into the

second to fifth columns. For cases A–C, the electrons are hotter than the ions, with ni = ne = 1 × 1022 cm−3. For cases D–F, the situation is
reversed for ni = ne = 3.35 × 1022 cm−3.

ne ni T 0
e T 0

i ωMD
ei , W/(K m3) Analytical ωei, W/(K m3)

Case cm−3 cm−3 eV eV S1 S2 S3 LS [15,16] GMS [20] BPS [21] DD [25]

A 58 50 0.34(17) 0.33(17) 0.32(17) 0.27(17) 0.45(17) 0.39(17) 0.42(17)
B 1022 1022 80 50 0.24(17) 0.23(17) 0.22(17) 0.20(17) 0.31(17) 0.28(17) 0.30(17)
C 250 50 0.72(16) 0.60(16) 0.60(16) 0.54(16) 0.79(16) 0.71(16) 0.82(16)
D 50 80 0.27(18) 0.31(18) 0.31(18) 0.22(18) 0.48(18) 0.39(18) 0.43(18)
E 3.35 × 1022 3.35 × 1022 50 500 0.18(18) 0.26(18) 0.26(18) 0.22(18) 0.47(18) 0.39(18) 0.43(18)
F 50 1000 0.05(18) 0.25(18) 0.25(18) 0.22(18) 0.47(18) 0.39(18) 0.42(18)

we suppose that the exponential factors of two components
are negative or zero, i.e., (−1.5 + η) � 0 and −η � 0, such
that 0 � η � 1.5 is obtained. For several specific η values, it
is analytically solvable with multiple mathematical manipula-
tions.

For η = 0, the solution is

Te(t ) = Teq + (
T 0

e − Teq
)

exp
[ − νei

(
T 0

e

)
(z + 1)t

]
, (12)

where the equilibrium temperature is given by

Teq = zT 0
e + T 0

i

z + 1
. (13)

For consistency with the formulation of other η, Eq. (12) is
rewritten as

νei
(
T 0

e

)
(z + 1)t = ln

[
Teq − T 0

e

Teq − Te(t )

]
. (14)

Similarly, for η = 1, it yields

νei
(
T 0

e

)
(z + 1)t = 1 − Te(t )

T 0
e

+ Teq

T 0
e

ln

[
Teq − T 0

e

Teq − Te(t )

]
, (15)

and for η = 1.5, we obtain

νei
(
T 0

e

)
(z + 1)t =

(
Teq

T 0
e

) 3
2

⎡
⎢⎣ln

⎛
⎜⎝

√
T

Teq
+ 1√

T
Teq

− 1

⎞
⎟⎠

− 2

(
T

Teq

) 1
2

− 2

3

(
T

Teq

) 3
2

⎤
⎥⎦

T =Te(t )

T =T 0
e

. (16)

To acquire νei(T 0
e ), time-dependent electron temperatures

Te(t ) computed in MD simulations are, respectively, fitted by
Eqs. (14)–(16). If done so, it is straightforward to calculate the
analytical �T (t ) for η = 0, 1, 1.5 according to fitted νei(T 0

e ),
where the total kinetic energy is assumed to be conserved.
This is reasonable for weakly-coupled plasmas in the present
study, but remains questionable for strongly-coupled plasmas.
The solution with the optimal fitting to �T (t ) will be consid-
ered as the desirable result for plasmas under study. Finally,

the Coulomb logarithm can be computed using Eq. (3),

(ln �)MD = νMD
ei

ν0
. (17)

Figure 1(c) exemplifies the optimal fitting approach for
case C. Figure 1(c1) examines the difference between MD
electron-proton temperature differences and its fitted values
for various η factors, and Fig. 1(c2) directly compares the
electron-proton temperature difference between MD and fitted
results. Applying Eqs. (14)–(16) to fit the MD simulation
data, the fitted νei are 3.62 × 10−5, 2.89 × 10−5, and 2.6 ×
10−5 fs−1, respectively. Figure 1(c1) clearly shows that η = 1
yields the most favorable agreement, corresponding to a value
of ln � = 3.61. Hence, the electron-proton energy relaxation
rate ωei = 0.6 × 1016 W/(K m3) is determined.

III. RESULTS AND DISCUSSION

A. Comparison with analytical models

We first show the impact of the extracting approaches on
the electron-proton energy relaxation rates. For this purpose,
we focus on the six cases which can be grouped into two
sets: (1) A–C cases for T 0

e > T 0
i , specifically, T 0

i = 50 eV
and T 0

e = 58, 80, and 250 eV; and (2) D–F cases for T 0
e < T 0

i ,
with T 0

e = 50 eV and T 0
i = 80, 500, and 1000 eV. The plasma

conditions, i.e., weakly-coupled plasmas, are well suited for
MD simulations. As for the extracting approach, it should be
mentioned that in all the cases considered in this work, we
have used η = 0, 1, 1.5 in the optimal fitting procedure to fit
the MD data separately, and it is found that η = 1 always gives
the most satisfactory fitted results, which are summarized in
Table I and Fig. 2. Three features are immediately observed in
Table I. First, the results given by the S2 method (partial relax-
ation dynamics) in all cases are identical to S3 (optimal fitting
procedure), implying that the two extracting approaches are
generally convergent regardless of plasma conditions. Second,
with increasing the temperature difference, the S1 method (full
relaxation dynamics) largely overestimates or underestimates
the rates compared to the other two methods. For instance,
the value, computed by the S1 method, is higher (lower) than
that by the S2 and S3 methods by ∼20% (∼80%) for case
C (F), which is much larger than the statistical error of MD
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FIG. 2. Time evolution of the electron and ion temperature for
MD simulations (solid square symbols), together with the fitting
results of full relaxation dynamics (S1, red curves) and optimal
fitting procedure (S3, green curves). For comparison, the analytical
LS (blue curves), GMS (pink curves), BPS (purple curves), and DD
(orange curves) results are shown. This illustration corresponds to
case F in Table I

simulations (∼5%). Third, the three extracting methods are
all convergent, i.e., the deviation is below the MD statistical
error, only for small temperature differences (cases A and B),
as expected.

In order to further illustrate the results deviation due to
the various extracting approaches, results from the LS, GMS,
BPS, and DD analytical models are included in Table I. It
should be noted that these four analytical models has been
used in Ref. [45], in which their influence on the ICF im-
plosion performance was evaluated. We have the impression
that for electron-proton energy relaxation rates extracted from
MD temperatures in certain cases, incorrect assessment might
bring considerable errors which are comparable to or larger
than the variance between analytical models. For case C, the
deviation due to the various extracting approaches is 0.12 ×
1016 W/(K m3), which is comparable to the deviation between
the BPS and DD models, larger than that between the GMS
and BPS models, but remains smaller than that between the
LS and other models. The comparison is even pronounced for
case F. All in all, we believe that the estimated error in the
electron-proton energy relaxation rates using the extracting
approaches may be far from negligible.

Since the MD simulations can directly provide the tem-
perature of electrons and protons, it is instructive to make a
comparison between the fitted results and MD temperatures.
As an illustrative example, we select case F with very hot
protons and cold electrons, which is useful to test the validity
of the various extracting approaches. Figure 2 presents the
calculated results alongside the analytical models. As can be
seen in the entire time evolution, the S3 method (optimal
fitting procedure) provides the best agreement with the MD
simulations. In contrast, other methods and models follow
the MD temperatures only before 30 fs. From the figure, we
see that the S1 method (full relaxation dynamics) predicts
a much slower electron-proton relaxation process than MD
simulations, yielding a relaxation time of 7123.2 fs, which

is longer than that of MD by about a factor of 5. This is in
accordance with the results listed in Table I.

Obviously, for analytical models, it predicts faster relax-
ations than MD results, in which the GMS, BPS, and DD
models show very similar results. We notice that these results
are at variance with the Glosli et al. [23] results, where the
BPS model was favorable. This can be attributed to the differ-
ence of plasma conditions. In Ref. [23], during temperature
relaxation, the electron temperature is decreased by 43%,
resulting in a variation of the plasma parameter g between
0.28 and 0.66, a coupling regime with slow variations of
relaxation rates [25,37], while in the present study, for case
F, the electron temperature is increased by a factor of 9.5
from the initial to equilibrium state, which leads to a broad
alteration of g by orders of magnitude and thus the relaxation
rate is violently modified. As a result, the BPS model fails to
predict the MD results in our case. We shall return to this point
later in Sec. III C.

B. Case studies revisited

In this section, we shall reexamine a variety of case studies
in hydrogen plasmas reported in prior calculations [23–25].
Since numerical setups differ in Refs. [23–25] and our sim-
ulations, such as particle numbers and time steps, we do not
intend to benchmark against their numerical results. Instead,
we would like to figure out, for the plasma conditions involved
in these studies, whether the energy relaxation rates are con-
siderably affected by the extracting approaches. As the S2 and
S3 methods can yield identical results (see Table I), we adopt
either of them to compare with the S1 method.

We calculated nine cases considered in the work of Glosli
et al. [23], with the temperature ranging from 10 to 600 eV
and the electron density from 1020 to 1024 cm−3. Our results
are collected in Table II. We see that in the majority of cases,
the relative errors due to various extracting approaches are
appreciable, i.e., higher than 15%, which comfortably exceeds
the statistical error of MD simulations. This observation does
not contradict that in Ref. [23] because Glosli et al. used a
rather small particle number, which is at least two orders of
magnitude smaller than the present calculations. Therefore, it
is not surprising that their results were often accompanied by
sizable statistical errors, as clearly seen in Fig. 2 in Ref. [23].
For example, for case 1, Ref. [23] obtained an absolute statis-
tical error of 19.4%–31.6%, which entirely hides the impact of
the extracting approaches (15.5%). This is true for other cases.
The systematic results have revealed a general trend. The
larger the initial temperature difference, the more pronounced
the impact of the extracting approach.

We also considered three cases presented by Jeon et al.
[24], using a temperature of 80–1000 eV and a density of
1022–1023 cm−3. It is found that the influence of the extracting
approach is trivial such that it can be properly neglected,
which is similar when increasing the temperature and its dif-
ference. It should be mentioned that Jeon et al. [24] used the
partial relaxation dynamics (denoted by S2 here), which is
as accurate as the optimal fitting results (S3) in Table I. In
addition, two cases from Dimonte et al. [25] have also been
recalculated and we observed similar results.
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TABLE II. Electron-proton energy relaxation rate ωei [in units of
W/(K m3)]. For dense hydrogens, plasma parameters are consistent
with those used by Glosli et al. [23], Jeon et al. [24], and Dimonte
et al. [25]. Results are shown only for the S1 and S3 methods (the
sixth and seventh columns) because S2 is basically identical to the S3

method, as can be seen in Table I. The numbers included in brackets
denote the power of 10. The last column, defined as �=|ωei(S1) −
ωei(S3)|/ωei(S3), indicates the deviation of the S1 from S3 method.
The number density of electrons (ne), initial electron (T 0

e ), and ion
(T 0

i ) temperatures are arranged into the third to fifth columns.

Case ne T 0
e T 0

i ωei

Source cm−3 eV eV S1 S3 �

1 10 20 0.32(14) 0.38(14) 15.5%
2 1020 30 60 0.82(13) 1.02(13) 19.4%
3 100 200 0.17(13) 0.23(13) 24.3%
4 10 20 0.12(18) 0.14(18) 12.2%

Ref. [23] 5 1022 30 60 0.48(17) 0.56(17) 15.2%
6 100 200 0.13(17) 0.16(17) 17.5%
7 30 60 0.10(21) 0.11(21) 9.8%
8 1024 100 200 0.50(20) 0.58(20) 15.1%
9 300 600 0.18(20) 0.22(20) 17.4%
1 2.4 × 1022 80 100 0.103(18) 0.108(18) 4.4%

Ref. [24] 2 2.7 × 1023 400 500 0.143(19) 0.149(19) 4.0%
3 7.6 × 1023 800 1000 0.44(19) 0.46(19) 4.3%
1 9 × 1020 15 12 0.16(16) 0.15(16) 6.2%Ref. [25]
2 15 3 0.20(16) 0.16(16) 24.8%

C. Some remarks

In previous sections, we have seen that the impact of the
extracting approaches is negligible in some cases, but remark-
able in other situations. We also found that it may be related
to the initial temperatures and its difference. For a better un-
derstanding, we analyze the time-dependent plasma parameter
g(t ), which is defined as [25] g(t )=ze2/λD(t )kBTe(t ), with
λD(t ) being the electronic Debye screening length at time t .
The results are shown in Fig. 3 for the cases presented in Ta-
ble I. To compare them on the same footing, g(t ) is normalized

0.0 0.2 0.4 0.6 0.8 1.0
10-2

10-1

100

F

E

D

C
B

g(
t)/

g(
t=
0)

Scaled time 

A

FIG. 3. Plasma parameters g as a function of time for cases A–F
analyzed in Table I. For a better comparison, g is normalized by its
value at t = 0 and the time is scaled to unity. The gray dashed line
indicates the normalized plasma parameter equal to 1 at any times.

by its initial value and the evolving time is scaled to unity.
Therefore, if g(t ) is approaching unity (the gray dashed line),
it means that initial plasma properties have been preserved in
the energy relaxation process.

In Fig. 3, for cases A–C (fixed T 0
i and increased T 0

e ), the
normalized g(t ) remains larger than 1, indicating that it relaxes
towards much stronger coupled electron-proton plasmas. The
situation is reverse for cases D–F (fixed T 0

e and increased T 0
i )

since it is all below unity. Among these cases, case A has
nearly preserved the initial plasma properties during the relax-
ations, so the extracting approach based on the initial plasma
parameters, i.e., full relaxation dynamics method (S1), is still
suited for it, which is demonstrated by the results in Table I.
Due to energy relaxations, electron-proton plasmas gradually
deviate from its initial coupling state; specifically, for cases B
and C, the plasmas’ coupling is getting enhanced, for which
the use of the S1 method is questionable. The variation of
plasma parameter is even more notable for cases D–F. As can
be seen, cases E and F rapidly lose the initial plasma coupling.
At the thermal equilibrium, the plasma parameter is reduced
by more than one order of magnitude.

On the other hand, the DD model [25] has verified a one-
to-one correspondence between the electron-proton relaxation
rate and the plasma parameter, which allows one to make a
rough evaluation on the varying plasma parameters. We select
case F as an example. At the scaled time t = 0, 0.1, 0.2,
0.4, 0.8, the energy relaxation rate correspondingly attains
(4.2, 0.57, 0.45, 0.38, 0.34)×1017 W/(K m3), implying that
a strong time-varying energy relaxation rate exists. Here, an
exponential fitting with a constant energy relaxation rate (S1)
to the MD data, generated by multiple distinct relaxation rates,
is thus difficult. In contrast, the partial relaxation dynamics
(S2) and the optimal fitting method (S3) are more physically
motivated since both have reasonably considered the time-
dependent nature of the energy relaxation rates during the
relaxations. First, the S2 method avoids the change of the
plasmas’ coupling strength because the MD simulations have
been propagated up to a small fraction of relaxation time,
for which an exponential fitting is indeed legitimate for the
given plasma conditions. Second, the S3 method introduces a
time-evolving relaxation rate, such that it can perfectly follow
the MD data over the entire time span (see Fig. 2), and thus
it is reliable to extract the relaxation rates in a wide range of
plasma parameters.

Next, we attempt to understand why the initial temperature
and its difference matter. We first make a qualitative analysis
based on the DD model. By definition, we know that the ini-
tial temperature determines the plasma coupling region since
g ∝ (T 0

e )−1.5 is satisfied. The change of energy relaxation rate
with respect to g is inversely proportional to g, thereby it
is proportional to T 0

e , i.e., dωei/dg ∝ |1/g| ∝ (T 0
e )1.5, relat-

ing the variation of the energy relaxation rate relative to the
initial temperature, while the initial temperature difference
(�T =|T 0

e -T 0
i |) determines the equilibrium temperature via

Teq=T 0
i ± z�T/(z + 1), which regulates the coupling of ther-

malized plasmas.
In order to discriminate the extracting approaches applied

in MD simulations, a simple criterion related to the initial
plasma temperatures is proposed as follows. It is assumed that
the energy relaxation rate during the electron-ion equilibration
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does not strongly alter, e.g., |(ωinit
ei − ω

eq
ei )|/ωinit

ei � α, where
ωinit

ei and ω
eq
ei denote the relaxation rates at the initial and

equilibrium time. α is a small fraction of 1. For T 0
i � T 0

e , we
can obtain the following relation using the formula of Eq. (1):(

Teq

T 0
e

)− 3
2

� 1 − α

1 + α
, (18)

where the variation of ln � is approximately equal to that of g,
which is valid when the initial temperature difference is small.
Replacing Teq by the explicit expression in Eq. (13) yields

T 0
i

T 0
e

�
(

1 + α

1 − α

) 2
3

(z + 1) − z. (19)

In this study, fully ionized hydrogen plasmas are considered,
i.e., z = 1. If we choose α = 0.05–0.1, it can be further sim-
plified as

T 0
i

T 0
e

� (1.1, 1.3), (20)

which means that the full relaxation dynamics method (S1)
is applicable only when the initial temperatures obey this
relation, beyond which the S1 method may result in substantial
discrepancies. In Table I, T 0

i /T 0
e for cases D–F is 1.6, 5.0, and

10.0, respectively, which is much larger than 1.3, so the S1

method fails in these cases. In Table II, all cases from Ref. [23]
retain a constant value of T 0

i /T 0
e = 2, which largely violates

the relation given by Eq. (20), and thus the use of the S1

method here is inappropriate. In contrast, those from Ref. [24]
get T 0

i /T 0
e = 1.25, which satisfies the proposed relation, indi-

cating that the S1 method is still valid, as demonstrated by
a small deviation relative to the S3 method. Similarly, it is
straightforward to derive a relation for T 0

i � T 0
e .

For a large initial temperature difference, it explores a
wide range of plasma couplings during the relaxation, which
prohibits us from using a direct exponential fitting method,
but satisfactory fitted results can be obtained using an optimal
fitting procedure. As discussed above, Eq. (11) behaves ex-
cellently to describe electron-ion temperature relaxation; see
Fig. 2. If we assume Eq. (2a) is also applicable for a transient
plasma, then the following relation holds:

νei
(
T 0

e

)( Te

T 0
e

)−η

= νei(Te). (21)

Insert the explicit expression of νei, i.e., Eq. (3), into Eq. (21),
and it reads

ln �(Te) =
[

(Time + Temi )(
T 0

i me + T 0
e mi

)
] 3

2 (
Te

T 0
e

)−η

ln �
(
T 0

e

)
, (22)

where η can be unambiguously determined for the plasmas
considered in this study.

For the cases considered here, case F in Table I traverses a
broad coupling regime, which is illustrative to test the derived
relation. Using Eq. (22) in case F, it is simple to extrapolate
ln �(g < 0.1) from its initial value (g = 0.1). The present
results obtained by a single MD simulation (η = 1) are shown
in Fig. 4. As can be seen, it agrees reasonably well with the
independent MD data in Ref. [37] within statistical errors.

0.02 0.04 0.06
plasma parameter g

0.08 0.10
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

ln
Λ

 Present results
 Ref. [37]

FIG. 4. The Coulomb logarithm (ln �) vs the plasma parameter
(g). The solid curve is computed by a single MD simulation with ni =
ne = 3.35 × 1022 cm−3, T 0

e = 50 eV, and T 0
i = 1000 eV (case F in

Table I). Symbols are independent MD results reported in Ref. [37].

However, its extension into a much broader coupling regime,
e.g., evolving from strongly (initial low electron temperature)
to weakly coupled plasma, may be limited by the fact that the
optimal fitting method is invalid in this case, since a constant
η is inadequate.

IV. CONCLUSIONS

In this work, we have used molecular dynamics simulations
to investigate energy relaxation processes in weakly-coupled
hydrogen plasmas, in which the electron-proton energy relax-
ation rate is a crucial parameter. To assess it, we have used full
and partial relaxation dynamics and optimal fitting methods.
Our results have shown that convergent results are available
only in particular cases. In most situations considered in this
study, the existing extracting approaches yielded results with
considerable discrepancies, which are comparable or larger
than the variance between analytical models. To our surprise,
partial relaxation dynamics and the optimal fitting method
produced identical results, i.e., they are convergent regardless
of plasma parameters, which has been understood by the
evolution of the plasma parameter. To further support our
findings, we have reexamined several case studies reported
in previous studies [23–25]. In a few cases, it is within sta-
tistical errors (<5%). However, in most cases, the impact of
the extracting approaches is remarkable with a discrepancy of
∼10%–25%.

To discriminate the use of various methods, we have pro-
posed an empirical, but simple criterion with respect to the
initial plasma temperatures. It reveals that the full relaxation
dynamics approach may be applicable when a ratio of initial
ion temperature to electron is small than 1.3, beyond which
other methods should be used for accurate data. Finally, com-
bined with the full relaxation dynamics approach and optimal
fitting method, it is possible to extrapolate the Coulomb log-
arithm of transient electron-proton plasmas in a single MD
calculation, which agrees well with previous independent MD
data.

Our results are informative to obtain accurate MD-based
energy relaxation rates, which may find important applica-
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tions in radiation-hydrodynamics simulations. We emphasize
that the present results are meaningful for relatively accurate
MD simulations, as the statistical error there is negligible.
Otherwise, the impact of extracting approaches will be buried
under the statistical errors, which is exactly the case in
Refs. [17,23,39,40].
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APPENDIX: CONVERGENCE ON THE
PARTICLE NUMBER

To illustrate the result’s convergence on the particle num-
ber used in the MD simulations, a typical example for
hydrogen plasmas with ni = ne = 1023 cm−3, T 0

e = 55 eV,
and T 0

i = 45 eV is shown in Fig. 5. The number of electrons
and ions are simultaneously varied from 103 to 105. In line
with previous numerical calculations [23], for a given particle
number, 10 simulations are run by randomly generating initial
positions of particles. Once the simulation is completed, the
relaxation time is extracted. In this manner, one can obtain
an average relaxation time for 10 simulations as well as its
standard deviation, and thereby the Coulomb logarithm with
error bars can be acquired.
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FIG. 5. The Coulomb logarithm (ln �) vs the number of elec-
trons used in the MD simulations.

It is obvious that the smaller the simulated particle number,
the larger the statistical error of MD simulations, as expected.
Notably, for 1000 electrons, the absolute deviation is even
much larger than the average value, which is qualitatively
in agreement with that observed in Ref. [23] (1024 electrons
and 1024 ions were used). The tendency towards the conver-
gence is very clear when the number of electrons is increased
from 103 to 104. The maximum deviation for the number of
electrons of 104, 5 × 104, and 105 is 8.0%, 4.9%, and 4.0%,
respectively. As a consequence, the number of particles ex-
ceeding 105 electrons and 105 protons is sufficiently numerous
in order to yield MD data at a statistically reliable level.
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