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Theory and modeling of nonperturbative effects in thermoviscous acoustofluidics
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A theoretical model of thermal boundary layers and acoustic heating in microscale acoustofluidic devices is
presented. Based on it, an iterative numerical model is developed that enables numerical simulation of nonlinear
thermoviscous effects due to acoustic heating and thermal advection. Effective boundary conditions are derived
and used to enable simulations in three dimensions. The theory shows how friction in the viscous boundary layers
causes local heating of the acoustofluidic device. The resulting temperature field spawns thermoacoustic bulk
streaming that dominates the traditional boundary-driven Rayleigh streaming at relatively high acoustic energy
densities. The model enables simulations of microscale acoustofluidics with high acoustic energy densities and
streaming velocities in a range beyond the reach of perturbation theory, and is relevant for design and fabrication
of high-throughput acoustofluidic devices.
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I. INTRODUCTION

Modeling and simulations of acoustofluidic devices
are used to optimize and develop designs of microscale
acoustofluidic devices. Traditionally, acoustofluidic models
have been based on perturbation theory [1–8], but in the Letter
[9] containing theory and experimental validation and which
is jointly submitted with this paper containing the detailed the-
oretical derivations, we present an iterative numerical model
that enables simulations of nonlinear acoustofluidics beyond
the amplitude limitations set by perturbation theory. The mo-
tivation for this theoretical development is the observation
in our previous theoretical and experimental work on ther-
moacoustic streaming [7,8] that the perturbative treatment is
pushed to its limit and beyond when moderate thermal gra-
dients are applied to a standard acoustofluidic device driven
in the MHz regime. In such thermoacoustofluidic devices, the
perturbation model can easily be challenged by the fast ther-
moacoustic streaming, which creates a significant convection,
and by heating from friction in the viscous boundary layers.
None of these effects can be captured by standard perturbation
theory.

As we pointed out in Ref. [9], the validity of perturbation
theory is mainly challenged in systems with a moderately high
acoustic energy density Eac � 400 J/m3, a desirable regime
to work in with applications aspects in mind, as it allows
for faster acoustofluidic handling of suspended particles [10]
and molecular suspensions [11]. In particular, the volumet-
ric throughput is often a limiting factor for clinical use of
acoustofluidic devices [12–15], so it is of general interest to
develop a model that allows for simulation of such devices
with a high Eac. Notably, Eac � 400 J/m3 can easily be ob-
tained in standard acoustofluidic devices, for which Eac ≈
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10–50 J/m3 × [Upp/(1 V)]
2

has been reported, Upp being the
voltage applied to the transducer [16–19], and higher Eac can
be obtained by optimized actuation schemes [20–22], such as
Eac = 1700 J/m3 reported in Ref. [23].

Nonlinear effects due to fast acoustic streaming have pre-
viously been studied numerically in gases with a model
using an ideal analytical pressure field [24]. Those models
include the nonlinear effects of changing the temperature
field by streaming-induced convection, but the nonlinear ef-
fect of acoustic heating and nonlinearities in the acoustic
fields themselves are not included. We note that the above-
mentioned MHz thermoacoustic streaming [7,8] is another
example of the growing number of fast (above 1 mm/s)
acoustic-streaming phenomena, others being absorption of
GHz ultrasound [25] and kHz vibrations of gas bubbles [26]
or sharp edges [27].

Numerical models in acoustofluidics can be categorized
as inviscid models [3], viscous models [1,5] and thermo-
viscous models [2,7], as well as full models [1,2] and
effective models [5,7]. The viscous models include the full
viscous fluid description but assume an adiabatic temperature
field governed by the pressure field and typically assume
temperature-independent material parameters. The thermo-
viscous models further include thermal boundary layers,
temperature-dependent material parameters, and heating cre-
ated in the viscous boundary layers. Full models require
numerical resolution of the thin boundary layers, and they
are therefore computationally expensive. In contrast, effective
models include analytical expressions for the boundary layers,
so a fine boundary-layer mesh is avoided, and they therefore
enable three-dimensional (3D) simulations.

In this work and Ref. [9], we build on and expand our
previous perturbative thermoviscous effective model [7] by
including heating due to the acoustic field, and by going be-
yond perturbation theory with the introduction of an iterative
scheme including quasisteady and acoustic fields to allow
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for higher acoustic energy densities. Two iterative thermovis-
cous models are developed and constitute the main result of
this work: a nonlinear full model and a nonlinear effective-
boundary-layer model. We have presented the main concepts
and the experimental validation of the full model in Ref. [9],
but here we provide a detailed derivation of it. The two models
are only valid when the higher order harmonics are negligible,
and the effective boundary conditions are valid only in the
limit where the thermal and viscous boundary layers are thin
compared to the characteristic length scales of the geometry.
The nonperturbative effects are important when either the
acoustic energy density Eac is high enough for the frictional
heating to create thermoacoustic streaming, as reported in
Ref. [9] with Eac ∼ 400 J/m3, or the streaming velocity is high
enough for the convective heat transport to be important as
observed in Ref. [8].

The outline of the paper is as follows. In Sec. II the ba-
sic assumptions and governing equations are presented. In
Sec. III we summarize our recent basic theory of the ther-
moviscous acoustic fields [7]. In Sec. IV the known theory
for the steady mechanical fields [7] is presented, and we
develop the theory for the steady temperature fields needed for
the present nonperturbative approach and supplement it with
the effective-boundary-layer model. In Sec. V we develop an
iterative procedure for computing nonlinear thermoacoustic
effects in an nonperturbative approach, and we briefly explain
how to implement it in the software COMSOL Multiphysics
[28]. In Sec. VI we validate the effective-boundary-layer
model, and present three model examples of nonperturbative
acoustofluidics in two dimensions, involving respectively in-
ternal acoustic heating (Sec. VI A) and thermal properties of
the surrounding solids (Sec. VI B) and the fluid (Sec. VI C), as
well as one example in three dimensions, involving thermoa-
coustic streaming driven by absorption of light (Sec. VI D).
Finally, we conclude in Sec. VII.

II. THEORY AND MODEL ASSUMPTIONS

Based on our previous approach [7], we consider an
acoustofluidic device consisting of an elastic solid contain-
ing a microchannel filled with a thermoviscous Newtonian
fluid and actuated by a piezoelectric transducer at a single
frequency in the MHz range. This time-harmonic actuation
establishes an acoustic field in the system, which in the fluid,
by the internal dissipation and hydrodynamic nonlinearities,
results in a time-averaged response that leads to acoustic
streaming. For simplicity, the piezoelectric transducer is left
out of the analysis and is represented only by an oscillating
displacement condition on part of the surface of the elastic
solid. The transducer could be taken into account in the nu-
merical model, by extending our previous transducer models
[6,22,29] to include temperature and thermal properties.

A. Governing equations

The response of the fluid embedded in the elastic solid to
the oscillating-displacement boundary condition is controlled
by the hydro-, elasto-, and thermodynamic governing equa-
tions of the coupled thermoviscous fluid and elastic solid. The
linear elastic solid is described in the Lagrangian picture by

the fields of the density ρ, the displacement u, the temperature
T , and the following material parameters: the longitudinal and
transverse sound speeds clo and ctr , the thermal conductivity
kth, the specific heat capacity cp, the ratio of specific heat
capacities γ = cp/cv , the thermal expansion coefficient αp,
and the isentropic and isothermal compressibilities κs and κT .
The velocity field is the time derivative of the displacement
field, vsl = ∂t u, so no advection occurs, and the governing
equations are the transport equations of the momentum den-
sity ρ∂t u and temperature T [30,31],

ρ∂ 2
t u = ∇ · σ, (1a)

∂t T + (γ − 1)

αp
∂t (∇ · u) = γ

ρcp
∇ · (kth∇T ) + P, (1b)

where P is any given external heat power density source, and
σ is the stress tensor, which for isotropic solids is

σ = −αp

κT
(T − T0)I + τ, (2a)

τ = ρc2
tr[∇u + (∇u)T] + ρ

(
c2

lo − 2c2
tr

)
(∇ · u)I. (2b)

The system is excited by a given displacement vector har-
monically oscillating with angular frequency ω and amplitude
uexc(sext ) on a part sext of the external surface of the solid far
from the fluid-solid interface

u(r, t ) = uexc(sext ) e−iωt , for r = sext. (3)

The fluid is described in the Eulerian picture by the fields
of the density ρ, the pressure p, the velocity v, the temperature
T , and the energy per mass unit ε, and by the following
material parameters: the dynamic and bulk viscosity η and ηb,
the thermal conductivity kth, the specific heat cp, the thermal
expansion coefficient αp, the ratio of specific heats γ = cp/cv ,
and the isentropic and isothermal compressibilities κs and
κT = γ κs. The governing equations are the transport equa-
tions for the density of mass ρ, momentum ρv, and internal
energy ρε [2,31,32],

∂tρ = −∇ ·(ρv), (4a)

∂t (ρv) = ∇ ·(σ − ρvv), (4b)

∂t

(
ρε + ρ

v2

2

)
= ∇ ·

[
kth∇T + v ·σ − ρv

(
ε + v2

2

)]
+ P,

(4c)

where P is any given external heat power density source, and
σ is the stress tensor,

σ = −pI + τ, (5a)

τ = η[∇v + (∇v)†] +
(
ηb − 2

3
η
)

(∇ · v)I. (5b)

Pressure p and temperature T are related to the internal
energy density ε by the first law of thermodynamics, and to
the density ρ by the equation of state [2,31,33],

ρdε = (ρcp − αp p) dT + (κT p − αpT ) d p, (6a)

dρ = −ραp dT + ρκT d p. (6b)

Like the density, any material parameter q has a tempera-
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ture and pressure dependency,
1

q0
dq = aT

q αp dT + ap
q κT d p, (7a)

aT
q = 1

αpq0

( ∂q

∂T

)
p
, ap

q = 1

κT q0

( ∂q

∂ p

)
T
, (7b)

where q0 is the unperturbed value of q. Note that here the vari-
ables are (T, p) and not (T, ρ) as in Refs. [2,7]. For a pressure
change d p accompanied by an adiabatic temperature change
dT = (γ − 1) κT

αp
d p, the adiabatic pressure dependency of a

parameter q is
1

q0
dq = aT

q αp dT + ap
q κT d p = ap,ad

q κs p1, (7c)

ap,ad
q = γ (γ − 1) aT

q + γ ap
q . (7d)

For steady temperature gradients and oscillating thermal
boundary layers, aT

q is relevant, and for bulk adiabatic pressure

waves, ap,ad
q is the relevant quantity. For water at T = 25 ◦C

and using Eqs. (6b) and (7), we compute the dimensionless
sensitivities aT

q , ap
q , and ap,ad

q from the T -ρ dependencies of
the parameters q listed in Ref. [2]:

aT
ρ = −1, aT

κs
= −10,

ap
ρ = 1, ap,ad

ρ = 1,

aT
η = −88, ap,ad

η = −1.3,

aT
ηb = −100, ap,ad

ηb = −1.1,

aT
kth = 8.4, ap,ad

kth = 2.3.

(8)

For ηb, we take only the temperature dependence into account,
because we have not found data for the pressure dependence.
These temperature dependencies imply that thermal gradients
may induce gradients in the listed parameters, including the
density and the compressibility. This leads to the appearance
of the inhomogeneous acoustic body force f ac previously
studied for both solute- and temperature-induced gradients
[7,8,11].

B. Separation of length and time scales

Acoustofluidic devices are typically driven at a frequency
f in the range from 1 to 50 MHz. The corresponding fast
acoustic time scale tac is thus

tac = 1

ω
= 1

2π f
= 3–160 ns. (9)

The timescale τ associated with the hydrodynamic and ther-
mal flow is slower. Following Ref. [11], we estimate for
a typical aqueous suspension in a channel of height H =
0.5 mm with kinematic viscosity ν = η/ρ, density ρ, and
relative density difference ρ̂ = 0.1 induced by concentra-
tion or temperature gradients that the following characteristic
timescales are all in the order of 10 ms: thermal relaxation
ttherm = H2/Dth, viscous relaxation tvisc = H2/ν0, inertial
motion tinert ≈ √

H/(gρ̂ ), and steady shear motion tshear ≈
ν0/(Hgρ̂ ), and thus τ is

τ ≈ ttherm ≈ tvisc ≈ tinert ≈ tshear ≈ 10 ms. (10)

The slow thermohydrodynamic and fast acoustic timescales
τ and tac are thus separated by at least four to six orders of

FIG. 1. (a) The temperature T1 = T xl,d
1 + T xl,δ

1 and velocity v1 =
vxl,d

1 + vxl,δ
1 across a fluid (xl = fl)–solid (xl = sl) interface with the

local normal vector ez and the local parallel vector e‖ (either ex or
ey). On the interface, the bulk fields T d

1 and vd
1 have a discontinuity

�T1 and �v1, respectively, due to the thin thermal (T xl,δ
1 ) and viscous

(vxl,δ
1 ) boundary layers. (b) Zoom-in on the thermal boundary layers

T fl,δ
1 and T sl,δ

1 with respective thicknesses δsl
t and δsl

t . (c) Zoom-in on
the viscous boundary layer vfl,δ

1 in the fluid with thickness δs.

magnitude, and we therefore solve the acoustic and steady
dynamics separately as in Ref. [11]. In this work we study
the steady limit of the slow timescale and describe any given
physical field Qphys as a sum of a steady field Q0 and a time-
varying acoustic field Q1e−iωt with a steady complex-valued
amplitude Q1,

Qphys(t ) = Q0 + Re(Q1e−iωt ). (11)

The steady fields set the density and compressibility, which
governs the acoustic fields. Conversely, the acoustic fields cre-
ates an oscillation-time-averaged acoustic body force f ac and
acoustic heating-power density Pac that enter the equations of
motion for the steady fields. A time average of a product of
two acoustic fields F1e−iωt and G1e−iωt is also a steady field,
which is given by

〈Re(F1e−iωt ) Re(G1e−iωt )〉 = 1
2 Re(F1G∗

1 ). (12)

Here, and in the rest of the work, the asterisk (*) denotes
complex conjugation. In contrast to perturbation theory [7],
we do not require that Q1 is much smaller than Q0, but we do
neglect higher harmonic terms with time dependence e±inωt ,
n = 2, 3, . . ..

Acoustofluidic systems exhibits dynamics on two length
scales, one set by the wavelength of the acoustic fields, and
one set by the viscous and thermal boundary layers. The
boundary conditions on the velocity field, stress, heat flux, and
thermal field at the fluid-solid interface result in the appear-
ance of thermal boundary layer of width δt in both the fluid
and the solid, and in a viscous boundary layer of width δs in
the fluid; see Fig. 1. These boundary layers are localized near
fluid-solid interfaces, and their dynamically defined widths
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are small compared to a typical device size or wavelength d
[31],

δs =
√

2ν

ω
, δt =

√
2Dth

(1 − X )ω
≈

√
2Dth

ω
, (13)

where Dth = kth

ρcp
and X is a nondimensional parameter, X = 0

for fluids and X = (γ − 1) 4c2
tr

3c2
lo
� 0.01 for solids. Typically,

δt � δs � 500 nm, more than two orders of magnitude smaller
than d ∼ 100 µm. We introduce the usual complex wave num-
bers ks and kt associated with the boundary-layer widths δs

and δt , respectively,

ks = 1 + i

δs
, kt = 1 + i

δt
. (14)

In our analysis, the timescale separation (11) of a given
field Q into a steady (subscript 0) and an acoustic (subscript
1) field is followed by a length-scale separation into bulk
(superscript d) and boundary-layer fields (superscript δ), such
that Q is represented by four fields,

Q0 = Qd
0 + Qδ

0 and Q1 = Qd
1 + Qδ

1. (15)

The bulk and boundary-layer fields are governed by separate
governing equations, but they are connected by the boundary
conditions at the fluid-solid interface. The boundary fields Qδ

are solved analytically and enter the final model only through
effective boundary conditions on the bulk fields Qd as in [5,7].

In the following, when needed for clarity, we use super-
scripts “fl” and “sl” to designate properties of the fluids and
the solids, respectively. When the context is clear, we often
suppress these superscripts to increase the readability of the
equations.

C. Boundary conditions

In the usual Lagrangian picture [7], the instantaneous posi-
tion s at time t of the oscillating fluid-solid interface is given
by s(s0, t ) = s0 + s1(s0)e−iωt , where s0 is the equilibrium po-
sition and s1 the acoustic displacement around s0. The velocity
V 0 of the interface is thus V 0(s0, t ) = ∂t s = V 0

1 e−iωt with
amplitude V 0

1 = −iωs1(s0). The superscript “0” denotes any
field defined on the fluid-solid interface. On the solid-fluid
interface, the no-slip and continuous stress conditions apply as
in Ref. [7], Eqs. (10) and (11). The velocity of the solid wall
at a given time and position must equal the Eulerian-picture
fluid velocity vfl,

vfl(s0 + s1e−iωt , t ) = V 0
1(s0) e−iωt = −iωu0

1(s0) e−iωt . (16)

This boundary condition must be obeyed separately for the
steady and acoustic fields (subscript 0 and 1, respectively), so
a Taylor expansion yields

v0(s0) = −〈(s1 · ∇)v1〉|s0 , (17a)

v1(s0) = V 0
1(s0). (17b)

Similarly, at a given position on the fluid-solid interface with
surface normal n, the stress σ must be continuous,

σsl
0 (s0) · n = σfl

0 (s0) · n + 〈
(s1 · ∇)σfl

1 (s0) · n
〉∣∣

s0
, (18a)

σsl
1 (s0) · n = σfl

1 (s0) · n. (18b)

Since the viscosity parameters η and ηb depend on the tem-
perature, the explicit expressions of the two stress boundary
conditions contain several terms.

Following Ref. [7], two sets of thermal boundary condi-
tions must be imposed. Similar to the velocity, the temperature
must be continuous across the solid-fluid interface. This con-
dition must be obeyed separately in the steady and acoustic
fields,

T sl
0 (s0) = T fl

0 (s0) + 〈
s1 · ∇T fl

1

〉∣∣
s0
, (19a)

T sl
1 (s0) = T fl

1 (s0). (19b)

Similar to the stress, the normal component −kthn · ∇T of
the heat flux must be continuous across the interface,

−kth,sln · ∇T sl(s0, t ) = −kth,fln · ∇T fl(s0 + s1e−iωt , t ).
(20)

We follow Eq. (7a) and expand kth,sl ≈ kth,sl
0 + kth,sl

1 with
kth,sl

1 = (∂T kth,sl
0 ) T1, but neglect the tiny gradients in n and s1.

The boundary conditions of the steady (T sl
0 ) and acoustic (T sl

1 )
parts of the heat flux thus become

−kth,sl
0 n · ∇T sl

0 (s0) − 〈
kth,sl

1 n · ∇T sl
1 (s0)

〉
= −kth,fl

0 n · ∇T fl
0 (s0) − 〈

kth
1 n · ∇T fl

1 (s0)
〉

−〈
s1 · ∇[

kth
0 ∇T fl

1 (s0)
] · n

〉
, (21a)

−kth,sl
0 n · ∇T sl

1 (s0) = −kth,fl
0 n · ∇T fl

1 (s0). (21b)

In the following sections, we present and derive the effec-
tive boundary conditions for the acoustic and steady fields. In
that process a local coordinate system is used at the fluid-solid
interface where ez is a normal vector of the interface pointing
into the fluid, and where ex and ey are both lying in the
interface plane; see Fig. 1.

D. Range of validity of the model

We briefly discuss the range of validity imposed by the
main assumptions. First, in this analysis, we study steady and
acoustic fields with the actuation frequency ω. So our model
is valid only when these fields are much larger than the higher
harmonic fields at frequencies 2ω, 3ω, . . .. The amplitudes
of the steady v0, the acoustic v1, and the 2ω-harmonic v2ω

velocities are given in Muller and Bruus [34] as

∣∣v0

∣∣ = Q2v2
bc

cs
,

∣∣v1

∣∣ = Qvbc,
∣∣v2ω

∣∣ = Q3v2
bc

cs
, (22)

where the physical velocity field corresponding to v2ω is given
as v

phys
2ω = Re[v2ωe−i2ωt ]. Here Q is the quality factor of the

resonance peak, given by the full-width-at-half-maximum �

of the resonance peak as Q = (2�)−1. Our model is valid
if |v1|2 
 |v2ω|2, implying an upper bound on the acoustic
energy density Eac = 1

4ρ0|v1|2,

Eac � ρ0c2
s

4Q2
≈ 103–105 J m−3, (23)

where Q = 100–1000 is typical for acoustofluidic devices. So
in systems with low Q factors the higher order harmonics are
important only at very high Eac.
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Second, due to low oscillatory advection, we assume
∇ · (q0v1) ≈ q0∇ · v1, where q0 is a parameter of the fluid.
This requires |q0∇ · v1| 
 |v1 · ∇q0|. At room temperature,
the validity of our theory is therefore limited by the most
temperature-sensitive parameter, the viscosity η0,

∣∣∇T0

∣∣ �
∣∣∣∣ η0kc

(∂T η)T0

∣∣∣∣ ≈ 5000
K

mm
. (24)

In conventional acoustofluidic systems, the temperature gra-
dient is well within this bound, as |∇T0| � 50 K/mm.

Third, the effective boundary-layer theory requires the
boundary-layer width to be much smaller than both the bulk
wavelength, k0δ � 1, and the radius of curvature R of the
fluid-solid interface, δ � R � d (see Sec. II B), which is true
for MHz acoustics in water.

III. ACOUSTIC FIELDS

The acoustic part of thermoviscous acoustofluidics is thor-
oughly studied in Ref. [7] as the first-order fields in the
perturbative model. The governing equations of these fields
are the same for the perturbative and the iterative model, and
therefore the theory from Ref. [7] can be directly applied.
This is an effective theory, in which the thermal and viscous
boundary layers are given analytically and incorporated in
effective boundary conditions on the displacement field u1 =
(u1,x, u1,y, u1,z ) and pressure p1. The governing equations for
the bulk fields and the effective boundary conditions on the
solid-fluid boundary are given in Ref. [7], Eqs. (19), (20), (23),
(24), and (34), and they are briefly summarized below.

A. Governing equations in the bulk

As shown in Ref. [7], Sec. IV A, the acoustic pressure p1

in the bulk of the fluid is given by the Helmholtz equation,
derived from Eqs. (4) and (5), and the bulk velocity vd

1 and the
adiabatic temperature T d

1 follow from p1:

∇2 p1 = −k2
c p1, kc = ω

c

(
1 + i�fl

0c

)
, (25a)

v
d,p
1 = −i

1 − i�fl
0c

ωρ0
∇p1, (25b)

T d
1 = (γ − 1)

κs0

αp0
p1. (25c)

Further, as shown in Ref. [7] Sec. IV B, the displacement u1

in the solid is governed by the temperature-dependent Cauchy
equation, derived from Eqs. (1) and (2):

−ρ0ω
2ud

1 = ∇ · σsl,d
1 , (26a)

σsl,d
1 = −αp

κT
T1I + τ1, (26b)

τsl,d
1 = ρ0c2

tr[∇u1 + (∇u1)T ]

+ ρ0
(
c2

lo − 2c2
tr

)
(∇ · u1)I. (26c)

The boundary layers at the fluid-solid interface are incorpo-
rated analytically through two effective boundary conditions.

First [see Ref. [7], Eq. (34a)], the velocity must be continuous
across the interface, here imposed on ∂z p1 in the fluid,

∂z p1 = i
ωρ0

1 − i�s

(
V 0

1z − i

ks
∇ · V 0

1

)
− i

ks

(
k2

c + ∂2
z

)
p1

+ i

kt

αp

κT
k2

0 T fl,δ0
1 , for z = 0, (27a)

where T fl,δ0
1 is the boundary-layer temperature field given in

the following subsection. Second [see Ref. [7], Eq. (34b)], the
stress must be continuous across the interface, here imposed
on σd,sl

1 in the solid,

σsl,d
1 · ez = −p1ez + iksη0

(
vsl,d0

1 + i

ωρ0
∇p1

)
. (27b)

The effective boundary conditions (27) enable 3D simula-
tions with a coarse mesh, because the boundary layer does not
need to be resolved numerically.

B. Analytical form of the boundary layers

The analytical solution for the boundary layers was in
Ref. [7] used to set effective boundary conditions on the
acoustic fields and the steady streaming field. Here we also
need them to derive the effective boundary conditions for
the steady temperature field. The analytical solution of the
temperature boundary layer in the fluid T fl,δ

1 and solid T sl,δ
1

is given in Ref. [7] Eq. (29) as

T fl,δ
1 = − Z̃

1 + Z̃

[
T sl,d0

1 (x, y) − T fl,d0
1 (x, y)

]
eikfl

t z, (28a)

T sl,δ
1 = + 1

1 + Z̃

[
T sl,d0

1 (x, y) − T fl,d0
1 (x, y)

]
e−iksl

t z, (28b)

Z̃ = kth,sl
0 ksl

t

kth,fl
0 ksl

t

=
√√√√kth,sl

0 csl
p0 ρsl

0

kth,fl
0 cfl

p0 ρfl
0

. (28c)

Here, the superscript “xl, d0” refers to fluid (xl = fl) or solid
(xl = sl), and to a bulk field (d) on the boundary (0) that
depends only on the local in-plane coordinates (x, y) and not
on the local perpendicular coordinate z.

The acoustic velocity v1 is split into three fields [see
Ref. [7], Eqs. (20a)]: the bulk velocity v

d,p
1 and the ther-

mal boundary-layer velocity vd,T
1 , both compressible gradient

fields in the Helmholtz decomposition (superscript d), as well
as the viscous boundary-layer velocity vδ

1,

v1 = v
d,p
1 + vd,T

1 + vδ
1. (29)

As derived analytically in Ref. [7], Eqs. (30) and (33b), vδ
1 and

vd,T
1 are given by

vδ
1 = vδ0

1 (x, y) eiksz, (30a)

vd,T
1 = αp0Dth

0 ∇T δ
1 = αp0kth

0

ρ0cp0
∇T δ

1 . (30b)

These analytical expressions are used in Sec. IV C to derive
the contribution from the acoustic fields to the boundary con-
dition of the steady thermal field.
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In terms of bulk and boundary fields combined with
Eqs. (6b) and (7a), the first-order density ρ1, viscosity η1, and
thermal conductivity kth

1 are written as

ρ1 = ρd
1 + ρδ

1, ρδ
1 = −ρ0αpT δ

1 ,

ρd
1 = ρ0κs p1, (31a)

η1 = ηd
1 + ηδ

1, ηδ
1 = η0aT

η αpT δ
1 ,

ηd
1 = η0ap,ad

η κs p1, (31b)

kth
1 = kth,d

1 + kth,δ
1 , kth,δ

1 = kth
0 aT

kthαpT δ
1 ,

kth,d
1 = kth

0 ap,ad
kth κs p1. (31c)

IV. STEADY FIELDS

The steady part of thermoviscous acoustofluidics contains
mechanical and temperature fields. The mechanical fields are
studied in Ref. [7], so the equations for the displacement u0

in the solid and pressure p0 and velocity v0 in the fluid, can
be carried over unchanged, and we just summarize the main
results below. However, we need to develop the theory for
the steady temperature field T0, both its bulk part T d

0 and its
boundary-layer part T δ

0 , as it is not treated in Ref. [7].

A. Mechanical bulk and boundary-layer fields

As |u0| � δ � d , the steady displacement field u0 is de-
coupled from both the steady thermal field and the acoustic
fields, and consequently

u0 = 0. (32)

The steady pressure p0 and streaming v0 are governed by the
the steady part of Eqs. (4a) and (4b),

0 = ∇ · vd
0 , (33a)

0 = −∇[
pd

0 − Ld
ac

] − ∇ · [ρ0v0v0] + η0∇2vd
0 + f d

ac.

(33b)

Here the time-averaged Lagrangian density Ld
ac and acoustic

body force f d
ac are given by Ref. [7], Eq. (52c),

Ld
ac = 1

4
κs|p1|2 − 1

4
ρ0

∣∣vd,p
1

∣∣2
, (34a)

f d
ac = −1

4

∣∣vd,p
1

∣∣2∇ρ0 − 1

4

∣∣p1

∣∣2∇κs

+
[

1 − 2aη(γ − 1)

β + 1

]
�ω

c2

〈
v

d,p
1 p1

〉
+ aηη0(γ − 1)k2

c

〈
sd

1 · ∇v
d,p
1

〉
. (34b)

The acoustic boundary layers, are taken into account ana-
lytically, and they only appear implicitly by imposing a slip
velocity vd0

0 on the bulk streaming field vd
0 given by Ref. [7]

Eq. (54) as vd
0 (so) = vd0

0 , with

vd0
0 = (A · ex )ex + (A · ey)ey + (B · ez )ez, (35a)

A = − 1

2ω
Re

{
vδ0∗

1 · ∇
(

1

2
vδ0

1 − iV 0
1

)
− iV 0∗

1 · ∇v
d,p
1

+
[

2 − i

2
∇ · vδ0∗

1 + i
(
∇ · V 0∗

1 − ∂zv
d∗
1z

)]
vδ0

1

}

+ 1

2η0
Re

(
ηd0

1 vδ0∗
1 + δt

δt − iδs
ηδ0

1 vδ0∗
1

)
, (35b)

B = 1

2ω
Re

(
ivd0∗

1 · ∇v
d,p
1

)
, (35c)

vδ0
1 = −iωu0

1 − vd0
1 , (35d)

ηδ0
1 = − Z̃

1 + Z̃
η0aT

η αp
(
T sl,d0

1 − T fl,d0
1

)
, (35e)

ηd0
1 = η0ap,ad

η κs p1, (35f)

where the expressions for vδ0
1 , ηδ0

1 , and ηd0
1 in terms of bulk

fields are obtained from Eqs. (16), (28a), and (31b).

B. Steady temperature fields

The steady temperature field T0 is given as the time-
averaged terms of Eqs. (1b) and (4c) in the solid and
fluid, respectively. The time averaged terms either consist
of steady fields a0 or terms with time-averaged products
〈a1b1〉 of two acoustic fields a1 and b1. All terms of
the latter type are collected as an acoustic power Pac. In
the fluid, neglecting small terms by using v0 · σ11 � 〈v1 ·
σ1〉, ρ1v0 � ρ0v1, ∇ · 〈ρ0v0 + ρ1v1〉 = 0, ε11 + 1

2 |v0|2 +
1
2 |v1|2 � ε0, εd

1 = cp0T d
1 − αp0T0

ρ0
pd

1 = 0, εδ
1 = cp0T δ

1 , and

|v0 · σ0| � |kth
0 ∇T0|, the steady part of Eq. (4c) becomes

0 = ∇ · (
kth

0 ∇T fl
0

) − cpρ0v0 · ∇T fl
0 + Pfl

ac + P, (36a)

Pfl
ac = ∇ · (〈

kth
1 ∇T fl

1

〉 − 〈p1v1〉 + 〈v1 · τ1〉
− ρ0cp0

〈
T fl

1 v1
〉) − cp〈ρ1v1〉 · ∇T fl

0 . (36b)

In the solid there is no advection, and the T0 part of Eq. (1b)
is controlled by thermal diffusion alone,

0 = ∇ · (
kth

0 ∇T sl
0

) + Psl
ac + P, (37a)

Psl
ac = ∇ · 〈

kth
1 ∇T sl

1

〉
. (37b)

In both the solid (sl) and the fluid (fl), the steady tempera-
ture field and the time-averaged acoustic power are separated
into a bulk (d) and a boundary (δ) term,

T xl
0 = T xl,d

0 + T xl,δ
0 , Pac = Pd

ac + Pδ
ac. (38)

The boundary-layer temperature fields T fl,δ
0 and T sl,δ

0 are de-
fined as the response to Pδ

ac, and all three fields are required to
go to zero far away from the boundary.

The two bulk and two boundary-layer fields are linked
by the boundary conditions (19a) and (21a) at the fluid-solid
interface, which impose continuity of the temperature and of
the heat flux density. The first is

T fl,d0
0 + T fl,δ0

0 + 〈
s1 · ∇T fl

1

〉 = T sl,d0
0 + T sl,δ0

0 , (39a)

and the second is

kth
0 n · ∇(

T fl,d
0 + T fl,δ

0

) + 〈
kth

1 n · ∇T fl
1

〉 + 〈
s1 · ∇(

kth
0 ∇T fl

1

) · n
〉

= −kth,sl
0 n · ∇(

T sl,d
0 + T sl,δ

0

) − 〈
kth,sl

1 n · ∇T sl
1

〉
. (39b)
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Thus, the steady bulk solid and fluid fields T sl,d
0 and T fl,d

0 can
be matched at the interface by using the analytical form of the
boundary-layer fields T sl,δ

0 and T fl,δ
0 .

C. Steady boundary-layer temperature fields

In the fluid, the boundary-layer T fl,δ
1 is driven by Pδ

ac
of Eqs. (36b) and (38). We neglect the convection term
cp0(ρ0v0 + 〈ρ1v1〉)∇T in the boundary layer, because it
contains only one gradient ∝ δ−1 and thus is a factor kδ

smaller than the viscous term ∇ · 〈v1 · τ1〉 containing two
gradients ∝ δ−2. Moreover, in the boundary layer we have
∇ · [kth

0 ∇T fl,δ
0 ] ≈ kth

0 ∂2
z T δ

0 , so the governing equation for the
steady boundary-layer temperature field T fl,δ

0 therefore re-
duces to

kth
0 ∂2

z T fl,δ
0 = −Pδ

ac (40a)

Pδ
ac = ∇ · (〈

kth
1 ∇T1

〉fl,δ + 〈v1 · τ1〉fl,δ

−〈p1v1〉fl,δ − ρ0cp0〈T1v1〉fl,δ
)
. (40b)

The notation 〈· · · 〉δ denotes all the terms that contain at least
one boundary-layer term T δ

1 or vδ
1. The first-order boundary-

layer fields are known analytically (see Sec. III B), so we can
evaluate the four terms in Pδ

ac. We integrate Eq. (40a) once
from z = ∞ to z = 0 to find the normal derivative ∂zT

fl,δ
0 ,

and twice to find the value T fl,δ
0 . We describe each field at

z = 0 as a surface field (with superscript “0”), which depends
only on x and y, multiplied by the exponential z dependence
given analytically in Sec. III B. The reduction and integration
of the four terms is straightforward but tedious as shown in
Appendix A. The normal gradient ∂zT

fl,δ
0 at the fluid-solid

interface becomes [Eq. (A13)]

∂zT
fl,δ0

0 = Re

(
1+i

4Dth
0

{
1−i

2

δsω

cp
vδ0

1 ·vδ0∗
1 − δtωαp0

cpρ0
p0

1T δ0∗
1

− δs

δs + iδt

[
δt∇‖T δ0

1 · vδ0∗
1,‖ − (1 − i)T δ0

1 vδ0∗
1,z

]

− iT δ0
1

[
vd,T 0∗

1,z + (1 + i)vd,p0∗
1,z − δtωκs p0∗

1

]

− δt∇‖T δ0
1 ·vd,p0∗

1,‖ + δtω
kth,δ0

1 +kth,d0
1

kth
0

T δ0∗
1

})
,

(41a)

where all quantities are evaluated in the fluid. The boundary-
layer heat flux kth,fl

0 ∂zT
fl,δ0

0 is dominated by the first term
vδ0

1 ·vδ0∗
1 which is a factor of αp0T0 � 10 larger than the terms

including the boundary layer temperature field T δ0
1 . The two

last terms including kth
1 are smaller by a factor of γ − 1 and

are therefore important only for gases and not liquids. The
result Eq. (A15) for the boundary-layer interface temperature
T fl,δ0

0 is

T fl,δ0
0 = δt

4Dth
0

Re
{

− δ2
s ω

2δt cp
vδ0

1 · vδ0∗
1 + δtωαp0

cpρ0
p0

1T δ0∗
1

+ i
δ2

s

(δs + iδt )2

[
δt∇‖T δ0

1 · vδ0∗
1,‖ − (1 − i)T δ0

1 vδ0∗
1,z

]

− T δ0
1

[1 − i

2
vd,T 0∗

1,z + (1 + i)vd,p0∗
1,z − δtωκs p0∗

1

]

+ iδt∇‖T δ0
1 · v

d,p0∗
1,‖ −δtω

(1 + i)kth,δ0
1 +2kth,d0

1

2kth
0

T δ0∗
1

}
.

(41b)

Again, the first term vδ0
1 ·vδ0∗

1 originating from the viscous
boundary layer is the leading term.

In the solid, the boundary layer field T sl,δ
0 is governed by

Pδ
ac of Eqs. (37b) and (38) as

0 = −∇ · (
kth,sl

0 ∇T sl,δ
0 + 〈

kth,sl
1 ∇T sl

1

〉δ)
, (42)

which, when using ∇2T sl,δ
0 � ∂2

z T sl,δ
0 , gives the following dif-

ferential equation for the boundary-layer field T sl,δ
0 :

kth,sl
0 ∂2

z T sl,δ
0 = −∇ · 〈

kth,sl
1 ∇T sl

1

〉δ
. (43)

The right-hand side is similar to ∇ · 〈kth
1 ∇T fl

1 〉δ in the fluid
boundary layer, which contributes with terms of the type
kth

1 T δ∗
1 in Eqs. (41a) and (41b). These terms in the fluid domain

can be directly transferred to the solid domain, which results
in the following normal heat flux and temperature in the
boundary layer on the solid side of the fluid-solid interface:

∂zT
sl,δ

0 = 1

2δt
Re

[
(1 + i)

kth,δ0
1 + kth,d0

1

kth
0

T δ0∗
1

]
, (44a)

T sl,δ
0 = −1

4
Re

[
(1 + i)kth,δ0

1 + 2kth,d0
1

kth
0

T δ0∗
1

]
, (44b)

where all quantities are evaluated in the solid. For a fluid-solid
interface these terms are negligible compared to the leading
term in the fluid boundary layer. They can be important for
certain gas-solid interfaces.

D. Steady bulk temperature fields

The steady bulk temperature field T fl,d
0 in the fluid is gov-

erned by the long-range bulk terms of Eq. (36),

0 = ∇ · (
kth

0 ∇T fl,d
0

) − cpρ0v0 · ∇T fl,d
0 + Pd

ac + P, (45a)

Pd
ac = ∇ · (〈

kth,d
1 ∇T d

1

〉 − 〈
p1v

d,p
1

〉 + 〈
v

d,p
1 · τd

1

〉)
− cp

〈
ρd

1 v
d,p
1

〉 · ∇T d
0 . (45b)

Similarly, T sl,d
0 in the solid is governed by the long-range bulk

terms of Eq. (37),

0 = ∇ · (
kth

0 ∇T sl,d
0

) + Pd
ac + P, (46a)

Pd
ac = ∇ · 〈

kth,sl
1 ∇T sl,d

1

〉
. (46b)

Here P is an external heat power source from fields not in-
cluded in the model, such as heat generated by light absorption
or by Joule heating from electric currents. The bulk fields
T sl,d

0 and T fl,d
0 are connected at the fluid-solid interface by the
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Dirichlet and Neumann boundary conditions (39a) and (39b).
We choose to apply the Dirichlet condition (39a) on T fl,d

0
in the fluid and therefore write

T fl,d
0 = T sl,d

0 − T fl,δ0
0

− 1
2 Re

[
s1 · ∇T fl,d∗

1 − kfl
t (s1 · n)T fl,δ0∗

1

]
. (47)

All fields on the right-hand side can be expressed in terms of
bulk fields: the acoustic boundary-layer fields T fl,δ

1 and T sl,δ
1

through T fl,d
1 and T sl,d

1 by Eq. (28), the steady boundary-layer
fields T fl,δ

0 and T sl,δ
0 through T fl,δ

1 , T sl,δ
1 , T fl,d

1 , T sl,d
1 , and p1 by

Eqs. (31), (41b), and (44b), and finally s1 through u1 by the
simple identification s1 = u1(s0). Consequently, T fl,d

0 is given
solely by steady and acoustic bulk fields, a crucial point in the
implementation of a numerical simulation involving only bulk
fields, which avoids the numerically demanding resolution
of the narrow boundary layers. Note how the boundary-layer
fields result in a discontinuity in the bulk temperature across
the fluid-solid interface; see Fig. 1(b).

Conversely, the Neumann boundary condition (39b) is en-
forced on the temperature field T sl,d

0 in the solid. Together
with the evaluation of the steady boundary layer terms in
Eqs. (41a) and (44), it becomes

kth,sl
0 n · ∇T sl,d

0 = kth,fl
0 n · ∇T fl,d

0 + kth,fl
0 ∂zT

fl,δ
0

+ 1

2
Re

[
kfl

t kth,fl
1 T fl,δ∗

1 − 2i

δ2
t

kth,fl
0 (s1 · n)T fl,δ∗

1

]
.

(48)

Similar to Eq. (47), all fields on the right-hand side of Eq. (48)
can be expressed in terms of steady and acoustic bulk fields
through T fl,δ

1 , T sl,δ
1 , T fl,d

1 , T sl,d
1 , and p1 by Eqs. (31), (41a), and

(44a), and by using s1 = u1(s0). Consequently, ∂zT
fl,d

0 is given
solely by steady and acoustic bulk fields.

In summary, the bulk temperature fields are governed by
Eqs. (45) and (46) together with the effective boundary con-
ditions (47) and (48), in which the boundary-layer fields are
taken into account analytically and expressed in terms of bulk
fields. The boundary conditions on the outer surfaces could
either be a Dirichlet boundary condition, such as Peltier ele-
ments or heat sinks, a no-flux boundary condition as for an
air interface, or a combination such as air cooling and solids
made of glass or polymer with a thermal diffusivity similar to
water.

V. AN ITERATIVE PROCEDURE TO ACCOUNT FOR
NONLINEAR EFFECTS

The separation of timescales leaves us with one set of equa-
tions presented in Sec. III for the acoustic fields p1 and u1,
and another set presented in Sec. IV for the steady fields v0,
p0, T sl

0 , and T fl
0 . These steady and acoustic fields impact each

other through the temperature-dependent material parameters,
the acoustic body force f d

ac, the acoustic power Pac, and the
effective boundary conditions, in which the boundary-layer
fields are taken into account analytically but appear only
implicitly through expressions involving only bulk fields. As
described in the following, the combined set of equations can
be solved by a self-consistent iterative procedure, in which the

coupled acoustic and steady fields are solved in an iterative
sequence until convergence is obtained.

The steady fields v0, p0, T sl
0 , and T fl

0 are computed from
the governing equations (33), (45), and (46) in the bulk with
the effective boundary conditions (35), (47), and (48). The
acoustic fields p1 and u1 are computed from the governing
equations (25) and (26) with the effective boundary conditions
(27).

The equations are implemented in COMSOL Multiphysics
[28] using the Weak Form PDE Interface, and the effective
boundary conditions are set using the Dirichlet Boundary
Condition Interface (Eq. (3) for the actuation u1 = uexc,
Eq. (35) for the slip velocity vd

0 = vd0
0 , and Eq. (47) for the

temperature T fl,d
0 in the fluid) and the Weak Contribution

Interface [Eq. (27) for the pressure gradient ∂z p1 and the stress
σsl,d

1 , and Eq. (48) for the heat flux kth,sl
0 n · ∇T sl,d

0 on the
solid]. The iterative solver is implemented using the Segre-
gated Solver with two steps: Step 1 computes the steady fields
v0, p0, T sl

0 , and T fl
0 based on the current value of the acoustic

fields, and Step 2 computes the acoustic fields u1 and p1 based
on the current value of the steady fields. The segregated solver
then runs until convergence is obtained.

The benefit of the iterative setup compared to the tra-
ditional perturbation setup [1,5–7] is that nonperturbative
effects are included. In the steady fields there are two
dominating nonperturbative effects in typical microscale
acoustofluidic devices: (1) Thermal convection proportional
to v0 · ∇T0, which dominates over thermal diffusion pro-
portional to ∇2T0, when |v0| � Dth

0 /d ≈ 0.3−1.5 mm/s for
d = 100−500 µm. Note that for larger systems convection
becomes important at lower velocities. This limit is easily
reached in typical experiments [8]. (2) Acoustic heating,
which is due to the viscous dissipation Pδ

ac in the viscous
boundary layer, and which may lead to temperature gradients
in the bulk large enough to result in a significant acoustic
body force proportional to |p1|2∇T0 through the temperature-
dependent compressibility and density [see Eq. (34b)] that
drive an acoustic streaming, which at sufficiently high acous-
tic energy densities dominates over the usual boundary-driven
Rayleigh streaming.

The thermal convection will become important when the
thermal Péclet number Pe = |v0|d/Dth is similar to unity,
which occurs at |v0| ∼ Dth/d . For water in a system with
a characteristic length d = 0.5 mm, the convective flow is
important at |v0| � 300 µm/s. The inhomogeneous acoustic
body force due to acoustic heating is important to include,
when it is dominant compared to the traditional Eckart stream-
ing,

1

4

∣∣p1

∣∣2∣∣∇κT (T0)
∣∣ � �ω

c2
0

∣∣〈vd
1 p1

〉∣∣. (49)

By using |v1| ≈ 1
ωρ0

k0|p1|, ∇T0 = d−1�T0, and the thermal

dependency of the compressibility aT
κ . Here d is the length

scale over which the temperature field varies with �T0, this
will typically be determined by the geometry. Then the ther-
moacoustic term is dominant when

�T0 � 4�k0d

αpaκs

. (50)

015106-8



THEORY AND MODELING OF NONPERTURBATIVE … PHYSICAL REVIEW E 107, 015106 (2023)

TABLE I. Physical parameters at 25 ◦C of the materials water, rapeseed oil, glass, and silicon used in the examples.

Parameter Symbol Unit Water [2] Rapeseed oil [35] Glass Silicon

Mass density ρ kg m−3 997 924 2230 2329
Thermal conductivity kth W m−1 K−1 0.61 0.17 1.14 149
Specific heat capacity cp J kg−1 K−1 4181 2197 800 750
Thermal expansion coefficient αp K−1 2.57 × 10−4 6.61 × 10−4 – –
Ratio of specific heat capacity γ – 1.011 1.0105 − −
Longitudinal sound speed clo m s−1 1497 1451 5600 8440
Transverse sound speed ctr m s−1 – – 3350 5860
Sound speed, cubic symmetry c12 m s−1 – – – 5360
Shear viscosity η Pa s 8.9 × 10−4 0.047 – –
Bulk viscosity ηb Pa s 2.485 × 10−3 0.17 – –
Compressibility κT Pa−1 4.52 × 10−10 5.14 × 10−10 – –
Thermal derivative of κs ∂T κs Pa−1 K−1 −1.12 2.66 – –

If k0d ≈ 1 then the thermoacoustic streaming becomes impor-
tant when �T0 ≈ 30 mK. The lower bound for �T0 in Eq. (50)
is computed for water, using the values listed in Eq. (8).

VI. MODEL VALIDATION AND EXAMPLES

Below, we implement and validate our self-consistent it-
erative procedure in COMSOL Multiphysics 5.6 [28], and we
study four specific examples of the mentioned nonperturbative
effects, which our model is able to predict. All simulations
are performed on a HP-G4 workstation with a processor Intel
Core i9-7960X at 4:20 GHz and with 128 GB RAM.

A. Example in two dimensions: Change of the acoustic
streaming due to internal acoustic heating

Our basic perturbative thermoviscous acoustofluidics
model has previously been validated both numerically [7] and
experimentally [8]. Therefore, we here choose our first ex-
ample to be a 2D system, where we can validate numerically
our iterative model with the effective boundary conditions
(47) and (48) with a full iterative model, where the boundary
layers are fully resolved. The chosen system is the rectangular

2D cross section of a long, straight water-filled microchannel
embedded in a silicon base and capped with a glass lid, with
the parameters listed in Table I. In the literature, this system
running with a horizontal acoustic half-wave resonance has
been widely used to separate particles in a flow-through device
and used in various studies both experimentally [16,17,19,36]
and numerically [1,2]. Moreover, in Ref. [9], we have pro-
vided experimental validation of the iterative model presented
below. The example aims to demonstrate three important
points: (1) validation of the effective model, (2) modeling the
internal acoustic heating in an acoustofluidic chip, and (3)
demonstrating nonlinear effects at high acoustic energies be-
yond perturbation theory, effects that are further investigated
by modeling and experiments in Ref. [9].

The model is a long straight silicon chip of width WSi =
3 mm and height HSi = 0.4 mm, inside which is placed a fluid
channel of width W = 375 µm and height H = 135 µm and a
capping Pyrex glass lid of height HPy = 1 mm; see Fig. 2(a).
Following Ref. [7], the actuation uexc on the bottom edge
of the silicon chip is set to uexc = ubot

1 (y) = 2d0
W y ez and the

temperature to T bot
0 = 25 ◦C.

FIG. 2. Simulation of the effective (left, “Eff”) and the full model (right, “Full”) at the horizontal half-wave resonance f = 1.929 MHz.
(a) The two-dimensional (2D) silicon-glass model with a water channel and the bottom-edge actuation uexc. (b) Color plot at the energy density
Eac = 28 J/m3 of the displacement |u1| and pressure p1 in the fluid. (c) Color plot at Eac = 28 J/m3 of the steady temperature field �T0 =
T0 − T bot

0 from 0 (black) to 8.7 mK (yellow). (d) Color plot at Eac = 2680 J/m3 of �T0 from 0 (black) to 230 mK (yellow). (e) Vector plot at
Eac = 28 J/m3 of the streaming v0 and color plot of its magnitude v0 from 0 (blue) to 34 µm/s (yellow). (f) Same as (e) but at Eac = 2680 J/m3

and with v0 from 0 (blue) to 4.0 mm/s (yellow).
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f = 1.929MHz

FIG. 3. Line plot at Eac = 28 J/m3 and f = 1.929 MHz of the
simulated steady temperature �T0 in the effective and full model
along the vertical red line y = 1

4Wfl shown in the inset. The corre-
sponding color plot of �T0 is shown in Fig. 2(c).

In Fig. 2(a) is shown the coarse mesh of the effective
model (422 elements) and the fine mesh (8362 elements) of
the boundary-layer-resolving full model that are needed to
fulfill a mesh-convergence criterium of an L2 norm less than
1% [1] for the steaming velocity v0 at Eac = 28 J/m3. For
Eac = 28 J/m3, the effective model takes 26 s and uses 2.1
GB RAM, whereas the full model takes 37 s and uses 5.1
GB RAM. The good agreement between the two models is
shown in Figs. 2(b)–2(f) by the color plots of the resulting
steady and acoustic fields computed from the effective (left
side) and full (right side) model at a low (28 J/m3) and a
high (2680 J/m3) acoustic energy density of Eac. Moreover,
the relative deviation between the two models in the computed
values of the resonance frequency and Q factor of the 2 MHz
half-wave resonance mode is less than 0.1%. Both models
show how the well-known four-roll Rayleigh streaming pat-
tern at the low Eac changes into a two-roll pattern at high Eac.
In the perturbative model, p1, and u1 are linearly dependent
on the actuation uexc, whereas T0, v0, and Eac ∝ d2

0 . Hence, the
spatial pattern of these fields is independent of uexc, but their
respective amplitudes are proportional to the amplitude d0 or
d2

0 . The perturbative model predicts that upon increasing Eac

from 28 to 2680 J/m3, the four-roll pattern of v0 in Fig. 2(e)
should remain unchanged, but its amplitude change from 34
to 3.3 mm/s. Clearly, the iterative model result for v0 shown
in Fig. 2(f) deviates both qualitatively and quantitatively form
the perturbation prediction with its two-roll pattern with an
amplitude of 4.0 mm/s, a clear display of the nonlinear effect
arising from acoustic heating in the boundary layers. Note that
the nonlinear effects from the heat convection is not strong
enough to bring about a significant qualitative change in �T0

increasing Eac from 28 J/m3 in Fig. 2(c) to 2680 J/m3 in
Fig. 2(d).

The effective boundary condition for the streaming veloc-
ity v0 was already validated in Ref. [7], so here we thus just
need to validate the effective boundary conditions (45) and
(46) on the steady temperature field T0. This in done in Fig. 3,
showing excellent quantitative agreement between line plots
of T0 for the full and the effective model.

We end the example by discussing the physics that causes
the difference from the linear case with four flow rolls to

FIG. 4. (a) Color plot from 0 (black) to 8.7 mK (yellow) at Eac =
28 J/m3 and f = 1.929 MHz of �T0 from Fig. 2(c) zoomed in on
the fluid domain. (b) Same as (a) but for Eac = 9000 J/m3 and a
color scale from 0 (black) to 2375 mK (yellow). (c) Line plot of the
normalized temperature rise �T0/max(�T0) along the vertical line
at y = 0 shown in the inset. (d) Same as (c) but along the horizontal
line through the center of the microchannel shown in the inset.

the nonlinear case with two flow rolls. At the low acoustic
energy density Eac = 28 J/m3, the acoustic pressure p1 and
displacement u1 field as well as the steady temperature T0 and
streaming field v0 are shown in Figs. 2(b), 2(c), and 2(e). The
source of the spatial inhomogeneities in T0 in the fluid is the
heat generation due to friction in the viscous boundary layer in
the fluid at the top and bottom of the channel, and the different
heat fluxes resulting from the relatively small values of the
heat conductivity of water and glass compared to the large one
of silicon. The latter ensures efficient transport of heat away
from the bottom edge of the channel. Consequently, heating
occurs only at the top of the channel near the glass lid, thus
establishing a relatively large temperature gradient across the
channel. In Figs. 4(a) and 4(b) the resulting temperature fields
are shown for low (28 J/m3) and high (9000 J/m3) Eac, respec-
tively. In both cases, the temperature is clearly larger at the
center of the top edge of the channel. However, for the high-
Eac case, the increased acoustic streaming is distorting the
temperature field, as it induces a downward heat convection,
which stretches the high-temperature region along a larger
portion of the vertical center axis. The temperature boundary
condition (47) results in nearly equal bulk and boundary layer
temperature fields at the fluid-solid interface, T fl,d0

0 ≈ T fl,δ0
0 ,

so the gradients in the temperature field are governed by the
effective boundary condition on the heat flux (48).
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The streaming fields v0 for Eac = 28 and 2680 J/m3 are
shown in Figs. 2(e) and 2(f), respectively. First, we see that
the full and effective model result in the same v0. Second,
it is clear that at a low Eac, the streaming is dominated by
boundary-driven streaming, whereas at high Eac, it is domi-
nated by the bulk-driven streaming induced by the acoustic
body force f d

ac of Eq. (34b). When gradients in density and
compressibility are created by the temperature gradient, and
the Eckart streaming is neglected, f d

ac becomes

f d
ac = − 1

4 (|p1|2∂T κs,0 + |v1|2∂T ρ0)∇T0. (51)

The temperature gradient ∇T0 and |p2
1| both scale with Eac,

so f d
ac, and thus the streaming scales with E2

ac. In compari-
son, the boundary-driven Rayleigh streaming scales with Eac.
Consequently, the bulk-driven streaming spawned by f d

ac will
become dominant at sufficiently high Eac. We study further
this nonlinear behavior and transition both numerically and
experimentally in Ref. [9].

Finally, we note that it is important that the device con-
sists of a silicon base with a glass lid and not a pure glass
chip, because the spatial asymmetry of T0, induced by the
widely different thermal conductivities of the two materials,
results in a skew-angled acoustic body force f d

ac that drives
a strong thermoacoustic streaming v0. The modeling of the
transition into the nonlinear regime has not been captured
by the previous perturbation models in the literature [2,5,7],
because it requires a nonperturbative model that allows for
Eac-dependent spatial patterns of the fields as discussed in
connection with Fig. 2.

B. Example in two dimensions: The influence of the thermal
properties of the surrounding solid

The analysis of the silicon-glass system of Fig. 2 revealed,
how the two-roll thermoacoustic streaming driven by the non-
linear acoustic body force f d

ac at high values of Eac stems
from the up-down asymmetry of T0 due to the widely different
thermal conductivities of the materials above and below the
channel. To study this phenomenon further, we now strongly
reduce the asymmetry of T0 by substituting the silicon base by
a glass base, leaving all other features unchanged, as sketched
in Fig. 5(a). Here only the fixed temperature T bot

0 = 25 ◦C
of the heat sink at the bottom edge, breaks the up-down
symmetry. Tuning the frequency to the horizontal half-wave
resonance at 1.893 MHz [see p1 in Fig. 5(b)], the spatial
patterns in Figs. 5(c) and 5(e) of the temperature T0 and
the streaming v0 at Eac = 25 J/m3 remain mainly unchanged,
when increasing Eac by a factor 80 to 2000 J/m3 in Figs. 5(d)
and 5(f). The field amplitudes are enhanced by the same factor
80, from 16 mK to 1.25 K for �T0 and from 30 µm/s to 2.4
mm/s for v0. Clearly this is the perturbation regime. T0 is no
longer confined to the water domain as in Figs. 2(c) and 2(d),
but spreads out more evenly to the surrounding glass domain
due to the comparable values of the thermal conductivities
of these materials. Consequently, the resulting temperature
gradient in Figs. 5(c) and 5(d) is relatively small, and the
resulting nonlinear acoustic body force f d

ac is so weak that
the usual four-roll boundary-driven streaming dominates v0 in
Fig. 5(f) over the two-roll thermoacoustic bulk-driven stream-
ing, which is dominant in Fig. 2(f). This demonstrates that

FIG. 5. Study at frequency f = 1.893 MHz. (a) Sketch of the
2D model of the glass chip with a fluid channel. (b) Color plot
at the energy density Eac = 25 J/m3 of the displacement |u1| and
pressure p1 in the fluid. (c) Color plot at Eac = 25 J/m3 of the steady
temperature field �T0 = T0 − T bot

0 from black (0) to yellow (16 mK).
(d) Color plot at Eac = 2000 J/m3 of �T0 from black (0) to yellow
(1.25 K). (e) Vector plot at Eac = 25 J/m3 of the streaming v0 and
color plot of its magnitude v0 from blue (0) to yellow (30 µm/s). (f)
Same as (e) but at Eac = 2000 J/m3 and with the color scale of v0

from blue (0) to yellow (2.4 mm/s).

because the inhomogeneous acoustic body force f d
ac depends

on T0, it depends on the thermal properties of the surrounding
solid and of the placement of heat sink.

C. Example in two dimensions: The influence of the
temperature dependency of the fluid properties

The thermal properties of water are distinct compared to
most other liquids. In this section, we study the effect of sub-
stituting the water in Fig. 2 by rapeseed oil, leaving all other
aspects unchanged; see Fig. 6. We chose to study rapeseed
oil, because its sound speed is close to that of water, which
results in nearly the same horizontal half-wave resonance fre-
quency. However, in contrast to water, the its compressibility
increases and its sound speed decreases with temperature.
As a result, the inhomogeneous acoustic body force f d

ac
points towards the cold instead of the warm temperature
region. Rapeseed oil has sound speed c = 1451 m/s, com-
pressibility κT = 5.14 10−10 Pa−1, viscosity η = 0.047 Pa s,
and density ρ = 924 kg/m3. Moreover, αp = 6.61 10−4 K−1,
∂T ρ = −0.65 kg/(m3K), and ∂T c = −3.25 m/(s K) [35].
The frequency of the horizontal half-wave resonance is f =
1.860 MHz.

When comparing the simulation results of the water-
system in Fig. 2 with the oil-system in Fig. 6, we find nearly
the same qualitative and quantitative feature, with one notable
exception: The direction of the two-roll thermoacoustic bulk-
driven streaming at high Eac in Fig. 6(f) is opposite to the
corresponding one in Fig. 2(f), whereas the direction of the
usual four-roll bulk-driven streaming at low Eac in Fig. 6(e)
is the same as the corresponding one in Fig. 2(e). This is
as expected: the boundary-driven streaming in the perturba-
tion regime at low Eac is independent of the temperature

015106-11



JONAS HELBOE JOERGENSEN AND HENRIK BRUUS PHYSICAL REVIEW E 107, 015106 (2023)

FIG. 6. Study at frequency f = 1.860 MHz. (a) Sketch of the
2D model of the glass-silicon chip with a oil channel. (b) Color plot
at the energy density Eac = 25 J/m3 of the displacement |u1| and
pressure p1 in the fluid. (c) Color plot at Eac = 25 J/m3 of the steady
temperature field �T0 = T0 − T bot

0 from black (0) to yellow (95 mK).
(d) Color plot at Eac = 2855 J/m3 of �T0 from black (0) to yellow
(10 K). (e) Vector plot at Eac = 25 J/m3 of the streaming v0 and color
plot of its magnitude v0 from blue (0) to yellow (30 µm/s). (f) Same
as (e) but at Eac = 2855 J/m3 and with the color scale of v0 from blue
(0) to yellow (3.5 mm/s).

dependencies, whereas the thermoacoustic bulk streaming
dominating in the nonperturbative regime at high Eac depends
on the sign of the thermal coefficients aT

q of Eq. (7), which
have opposite sign for water and rapeseed oil.

D. Example in three dimensions: Nonlinear thermoacoustic
streaming driven by absorption of light

The effective boundary conditions greatly reduce the com-
putational memory requirements, which combined with the
iterative solver makes it possible to simulate highly nonlinear
effects in 3D systems. As an example, we choose the system
in which we previously did both experimental and numerical
studies of the temperature-gradient-induced thermoacoustic
streaming [8]. In that study, the applied perturbative model
was at the limit of its validity because of the high stream-
ing velocity. The application of the nonperturbative iterative
effective model on this system not only provides a demon-
stration example of the ability of the model to simulate 3D
systems, but it also allows us to examine specifically the
nonperturbative impact of thermal convection in the system
at high streaming velocities.

The system, sketched in Fig. 7(a), is a glass-silicon-glass
chip with a long rectangular water-filled channel of width
Wfl = 760 µm and height Hfl = 360 µm, such that the top and
bottom of the fluidic channel is in contact with glass and the
sides are in contact with silicon. The chip is actuated anti-
symmetrically around the xz plane and symmetrically around
the yz plane at a frequency f0 = 0.957 MHz by uexc = utop

1 =
d0 ez for 0 < x < 1

2 LPZT and 1
2W < y < 1

2Wsl at the top sur-
face, which excites the half-wave resonance in the width of the
channel. Dye has been added to the water to absorb the light
from a light-emitting diode (LED). The absorbed light heats

Mesh:

z

x

y

1
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Lsys

1
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(a) Model

(b) T0 (c) p1, |u1|

f = 0.957MHz

FIG. 7. (a) Domain for simulating T0, p1, and |u1| in a quarter of
the glass-Si-glass system, actuated at the top (green) by uexc = utop

1 =
d0 ez for 0 < x < 1

2 LPZT, 1
2W < y < 1

2Wsl, and z = ztop. The system
is studied at the horizontal half-wave resonance in the channel at
f = 0.957 MHz. (b) Color plot of T0 from 20 ◦C (black) to 20.8 ◦C
(yellow) due to the absorption of light from an LED with P = 5 mW.
(c) Color plot of the acoustic displacement |u1| from 0 nm (blue) to
18 nm (yellow) in the solid, and the acoustic pressure p1 in the water-
filled 0.76 × 0.36 mm2 microchannel from 0 MPa (gray) to 1.2 MPa
(red).

up the water and induces a temperature gradient ∇T0, which
spawns an acoustic body force f d

ac [Eq. (51)] in the bulk, and
a heat sink keeps a fixed T0 = 20 ◦C at the silicon wall. As a
result, high thermoacoustic streaming and thermal convection
appear. In contrast to the 2D example of Sec. VI A, we keep
the acoustic energy density Eac constant in the 3D example
and vary only the power of the LED. The acoustic body force
f d

ac, and thus the streaming velocity v0, depends linearly on
∇T0. Consequently, if the thermal convection is negligible, v0

depends linearly on the LED power.
In the numerical model, we use symmetry planes and per-

fectly matched layers (PML) to reduce the size of the 3D
model. The LED is placed in the center of the channel, so both
the yz plane at x = 0 and the xz plane at y = 0 are symmetry
planes. On the yz plane all steady and acoustic fields are
symmetric, whereas on the xz plane the steady fields as well
as the ux and uz component of the displacement field are sym-
metric, and the acoustic pressure p1 and the uy component of
the displacement field are antisymmetric. The two symmetry
planes are used to reduce the system to a quarter as shown
in Fig. 7. The PML layer is used to dampen waves traveling
along the x-axis away from the center, and it allows us to
restrict the computational domain to the region closest to the
LED spot.
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(a) f = 0.957MHz (b) f = 0.957MHz (c) f = 0.957 MHz

P = 0mW
vmax = 0.2mm/s

P = 5mW
vmax = 0.9mm/s

P = 50mW
vmax = 5.6mm/s

v0 v0 v0

FIG. 8. Simulated streaming v0 at acoustic energy density Eac = 150 J/m3 and frequency f = 0.957 MHz for the LED power P = 0, 5, and
50 mW, respectively. The color plots from 0 mm/s (blue) to vmax (yellow) are the in-plane velocity of the respective planes, on the yz plane it
is (v2

0,y + v2
0,z )1/2, and likewise for the xy and xz planes. All arrows are unit vectors showing the direction of v0. (a) v0 for P = 0 mW showing

the usual four boundary-driven streaming rolls with vmax = 0.2 mm/s. (b) v0 for P = 5 mW showing a slightly dominant thermoacoustic
streaming flow with vmax = 0.9 mm/s driven by the acoustic body force f d

ac (51) in the bulk. (c) v0 for P = 50 mW completely dominated by
the fast streaming flow with vmax = 5.6 mm/s driven by the acoustic body force f d

ac in the bulk.

For the streaming v0, a boundary condition of no-slip is
used at the PML. This boundary condition is unphysical,
but it does not alter the streaming at the vicinity of the
LED spot. Further details on the implementation of the PML
layer and boundary conditions on the symmetry plane can be
found in the Supplemental Material [37].

The amplitude of the actuation displacement uexc is chosen
to fix the acoustic energy density to Eac = 150 J/m3 at x = 0,
and the LED is modeled to be a Gaussian beam centered at
x = y = 0 and with a width of 650 µm. With a LED power
of P = 5 mW, the resulting steady temperature field T0 and
acoustic pressure p1 and displacement field u1 are shown in
Fig. 7. T0 is highest at the bottom of the fluidic channel,
because the light is absorbed there, and the silicon side walls
keep the temperature of the channel sides low by transporting
the heat to a heat sink kept at 20 ◦C.

When the LED is off, v0 is dominated by the usual
boundary-driven streaming, but when it is on, v0 is domi-
nated by the thermoacoustic streaming driven by the acoustic
body force f d

ac. The transition from boundary- to bulk-driven
streaming is thoroughly studied in Ref. [8]. The resulting v0

for three different LED powers are shown in Fig. 8. Here
the solution computed in the quarter of the channel has been
mirrored in the two symmetry planes to obtain v0 in the full
channel. In Fig. 8(a) is shown the classical boundary-driven
Rayleigh streaming for zero LED power, P = 0 mW. In this
case, the streaming pattern contains four characteristic 2D
streaming rolls in the yz plane, similar to v0 in Fig. 2(e),
with almost no flow in the x direction. In Fig. 8(b) is shown
the streaming for moderate LED power, P = 5 mW, with a
maximum velocity of 0.9 mm/s, which recovers the 3D flow
pattern driven by the bulk acoustic body force f d

ac as observed
in Ref. [8]. In Fig. 8(c) is shown the streaming for high LED
power, P = 50 mW, with a maximum velocity of 5.6 mm/s.
This pattern looks like the one for P = 5 mW, but is slightly
deformed due to changes in ∇T0 and thus in f d

ac due to non-
linear thermal convection.

The temperature fields for P = 5 and 50 mW are shown in
Figs. 9(a) and 9(b) in the yz plane at x = 0. In the case of

FIG. 9. Convection due to high streaming velocities at f =
0.957 MHz. (a) The temperature field in the yz plane at x = 0 gener-
ated by the light absorption from a LED of power P = 5 mW ranging
from T0 = 20.0 ◦C (black) to T0 = 20.8 ◦C (yellow). (b) Same as
(a) but for P = 50 mW and a color range from T0 = 20.0 ◦C (black)
to T0 = 27.3 ◦C (yellow). (c) A line plot of the two normalized
temperature fields along a line at x = y = 0 shown in the inset. (d) A
line plot of the two normalized temperature fields along a line at
x = z = 0 shown in the inset. The differences in the two temperature
fields are due to convection.
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P = 50 mW, the streaming-induced convection has stretched
the temperature field up along the center axis and thereby
altering T0 and f d

ac. This stretching reduces the temperature
gradient and f ac along z, and therefore leads to the reduction
of v0 in the vertical yz plane relative to the one in the hori-
zontal xy plane seen when comparing Figs. 8(b) to 8(c). The
dependence of the �T0 profile on the LED power P is quan-
tified by the line plots of the temperature along the vertical
line y = x = 0 in Fig. 9(c) and the horizontal line x = z = 0
in Fig. 9(d). The line plots show that in this nonperturbative
regime, the heat convection from the hot to the cold region
is strong enough to alter the temperature profile. A similar
tendency is also observed in Fig. 4 for the 2D model.

When simulating convection-diffusion processes, the nu-
merical mesh needs to satisfy the stability condition Penum =
hmeshv0/(2Dth

0 ) � 1 on the numerical Péclet number Penum,
which restricts the size hmesh of the mesh elements. In this sys-
tem, with Dth

0 ≈ 2 × 10−7 m2/s and v0 = 5.6 mm/s, we find
hmesh � 40 µm. Consequently, in systems with a high stream-
ing velocity, a fine mesh is required in the bulk, which quickly
can make numerical 3D simulation computationally very ex-
pensive, even when using the effective boundary-layer model.
It is possible to numerically stabilize the diffusion-advection
equations to enable simulations with a coarser mesh, but this
we have not yet implemented in our simulation.

VII. CONCLUSIONS

We have presented a nonperturbative, effective boundary-
layer model for thermoviscous acoustofluidics, which enables
simulations of high acoustic energies in three dimensions.
The model differs from previous acoustofluidic models [2,5]
on two main points: (1) it takes the thermal boundary layers
into account analytically in the form of an effective bound-
ary condition for the steady bulk temperature field, which
enables 3D simulations of acoustic heating in thermoviscous
acoustofluidics, and which makes simulation of thermovis-
cous systems as computationally cheap as inviscid systems,
and (2) it relies on an iterative solver, which incorporate
nonperturbative effects and thus allows simulations at higher
acoustic energy densities beyond the perturbative regime of
conventional models.

General physical aspects and an experimental validation
of the full model is presented in Ref. [9], whereas here we
have given a detailed presentation of both the full and the
effective boundary-layer iterative model as well as studied
four simulation examples for typical acoustofluidic devices,
each emphasizing a particular physical aspect of the model,
thus demonstrating its potential. (1) In Figs. 2 and 3 of
Sec. VI A, the effective iterative model was validated against
its full-model counterpart. The internal acoustic heating due to
friction was shown in Figs. 2(c), 2(d), and 3 to be of the order
9−230 mK depending on Eac, and specific nonperturbative
effects was studied at Eac = 2680 J/m3 for v0 in Figs. 2(e)
and 2(f) and for T0 at Eac = 9000 J/m3 in Fig. 4. The material
dependency on the nonperturbative thermoacoustic streaming
was presented Secs. VI B and VI C. (2) By substituting the
silicon-glass system in Fig. 2 by the glass-glass system in
Fig. 5, it was shown how the thermoacoustic streaming re-
mained in the perturbative regime even at Eac = 2000 J/m3.

(3) By substituting the water in Fig. 2 by oil in Fig. 6, it
was shown how the thermoacoustic streaming in the nonper-
turbative regime at Eac = 2000 J/m3 changed its direction.
(4) Finally, the capability of simulating nonlinear effects in
3D systems in the nonperturbative regime was demonstrated
in Sec. VI D, which specifically focus on the importance of
convective heat transport in a acoustofluidic device with ex-
ternally controlled temperature gradients.

In many applications of acoustofluidic devices, as high
a throughput as possible is desired. Generally, an increased
acoustic energy density Eac will allow for an increased
throughput. Since the presented iterative model does allow
simulations at higher Eac in the nonperturbative regime, it will
likely contribute to an increased understanding of nonlinear
effects in acoustofluidics, including the four examples studied
in this work and the ones [25–27] mentioned in the introduc-
tion, and to an improved design capability of acoustofluidic
devices with a higher throughput.

ACKNOWLEDGMENT

This work was supported by Independent Research Fund
Denmark, Natural Sciences (Grant No. 8021-00310B).

APPENDIX: REDUCTION AND INTEGRATION

In this Appendix, we present the mathematical steps going
from Eq. (40) to Eqs. (41a) and (41b) for the heat flux and the
temperature in the fluid at the fluid-solid interface. Beginning
with Eq. (40), but suppressing the superscript “fl” for simplic-
ity, we have

kth
0 ∂2

z T δ
0

= −∇ ·(〈kth
1 ∇T1

〉δ+ 〈v1 ·τ1〉δ− 〈p1v1〉δ− ρ0cp0〈T1v1〉δ
)
,

(A1)

where each term 〈 · · · 〉δ contains at least one boundary layer
field T δ

1 or vδ
1. First, the four terms on the right-hand side are

evaluated and reduced one by one. Then they are integrated
with respect to z, once to find −kth

0 ∂zT δ
0 , and twice to find

T δ
0 , which both are needed for the boundary conditions in

Eqs. (39a) and (39b). Similarly, we repeatedly use in the
following that gradient terms are dominated by z derivatives of
boundary-layer fields T δ

1 , vδ
1, and vd,T

1 , as each such derivative
results in a factor (kcδ)−1 
 1. We also note that 〈(ip1)p1〉 =
〈(iT1)T1〉 = 0, and another helpful relation is found in Ref. [7],
Eq. (33a),

∇ · v1 = i(1 − i�s)ωκs0 p1 − iωαp0 T δ
1 , (A2)

revealing that ∇ · v1 depends not only on the bulk pres-
sure p1 but also on the boundary-layer temperature field T δ

1 .
Using this insight together with the exponentially decaying
boundary-layer fields from Eq. (30), we find for the pressure-
generated power,

∇ · (〈p1v1〉δ ) = (〈∇p1 · vδ
1

〉 + 〈
p1∇ · vδ

1

〉)
≈ ω

2

[
ρ0Re

(
ivd,p

1 · vδ∗
1

) + αp0Re
(
ip1T δ∗

1

)]
.

(A3)
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The first term, being of the order ωρ0v
2
1 ≈ ωκs0 p2

1, turns out to
be the dominant term. Likewise, for the heat-generated power,
we find that

∇ · (cp0ρ0〈T1v1〉δ )

≈ cpρ0
[〈∇T δ

1 · v1
〉 + 〈

T δ
1 (iωκs0 p1)

〉]
≈ cp0ρ0

2
Re

[∇T δ
1 · (

vδ∗
1 + vd,T ∗

1 + v
d,p∗
1

) − iωκsT
δ

1 p∗
1

]
.

(A4)

In the stress-generated power ∇ · 〈v1 · τ1〉δ , we keep only
terms ∂zv

δ
1, each producing a factor of (kcδ)−1 
 1. Thus, v1 ·

τ1 ≈ η0[v1z(∂zv
δ
1) + (v1 · ∂zv

δ
1)ez] gives

∇ · 〈v1 · τ1〉δ

≈ η0∇ · 〈
v1z

(
∂zv

δ
1

)〉 + η0∂z
〈
v1 · (

∂zv
δ
1

)〉
≈ η0

[〈(
∂zv

δ
1z

)2〉 + 〈∣∣∂zv
δ
1

∣∣2〉 + 〈
v1 · ∂ 2

z vδ
1

〉]
= η0

2
Re

[|ks|2vδ
1zv

δ∗
1z + |ks|2vδ

1 · vδ∗
1 − (k∗

s )2v1 · vδ∗
1

]
= ρ0ω

2
Re

[
vδ

1zv
δ∗
1z + vδ

1 · vδ∗
1 + ivd,p

1 · vδ∗
1

]
. (A5)

Here we have used that Re[ivδ
1 · vδ∗

1 ] = 0, and that ks = (1 +
i)δ−1

s implies the relations (k∗
s )2 = −i2δ−2

s , |ks|2 = 2δ−2
s , and

2η0δ
−2
s = ρ0ω.

The last term is the power generated by thermal con-
duction, which only contains the thermal boundary layer
characterized by the wave number kt = (1 + i)δ−1

t [Eq. (28)]

∇ · 〈
kth

1 ∇T1
〉δ ≈ 〈(

∂zk
th
1

)
∂zT

δ
1

〉 + 〈
kth

1 ∂ 2
z T δ

1

〉
= 1

2
Re

[
ktk

∗
t kth,δ

1 T δ∗
1 − (

kth,d
1 + kth,δ

1

)(
k∗

t

)2
T δ∗

1

]
= 1

δ2
t

Re
[
(1 + i)kth,δ

1 T δ∗
1 + ikth,d

1 T δ∗
1

]
. (A6)

For water, this term is a factor (γ − 1)akαp0T0 ≈ 10−2 smaller
than ωκs0 p2

1, as can be seen by using δ−2
t kth

1 ≈ ωρ0cpkth
1 /kth

0 ≈
ωρ0cpakαp0T1 = akωαp0

2T0 p1 and T1 ≈ (γ − 1)(κs0/αp0) p1.
So the power generated by thermal conduction can be ne-
glected in fluids, but it may be important for gases. Inserting
the power contributions (A3)–(A6) into Eq. (A1), we arrive at
the expression

kth
0 ∂2

z T δ
0

= −ωρ0

2
Re(vδ

1 · vδ∗
1 ) + ωαp0

2
Re(ip1T δ∗

1 )

+ cpρ0

2
Re

[∇T δ
1 · (

vδ∗
1 + vd,T ∗

1 + v
d,p∗
1

) − iωκsT
δ

1 p∗
1

]
− ωcpρ0

kth
0

Re
[
(1 + i)kth,δ

1 T δ∗
1 + ikth,d

1 T δ∗
1

]
, (A7)

where the first term is the leading term, which originates from
the viscous boundary layer. This expression is now integrated
from z = ∞ to z = 0 once to obtain the heat flux and twice
to obtain the boundary-layer temperature at the interface. The
fields in the boundary layer are well approximated by surface

fields that does not depend on the normal coordinate z but only
on the in-plane coordinates x and y, according to the following
separations:

pd
1 = pd0

1 (x, y), T fl,δ
1 = T fl,δ0

1 (x, y)r(z),

v
d,p
1 = v

d0,p
1 (x, y), T sl,δ

1 = T sl,δ0
1 (x, y)r∗(z),

vδ
1 = vδ0

1 (x, y)q(z), vd,T
1 = αp0Dth

0 ∇[
T fl,δ0

1 (x, y)r(z)
]
,

q(z) = eiksz, r(z) = eiktz. (A8)

Inserting this into Eq. (A7), we obtain

kth
0 ∂2

z T δ
0

= 1

2
ωρ0Re

{
− vδ0

1 · vδ0∗
1 qq∗ + i

αp0

ρ0
p0

1T δ0∗
1 r∗

+ cp

ω

[∇‖T δ0
1 · vδ0∗

1,‖ q∗ + iktT
δ0

1

(
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1,z q∗ + vd,T 0∗
1,z r∗)]r

+ cp
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[∇‖T δ0
1 · v
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1 v
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1,z − iωκsT
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1

]
r

− cp

kth
0

[
(1 + i)kth,δ0

1 r + ikth,d0
1

]
r∗T δ0∗

1

}
. (A9)

When integrating Eq. (A9) with respect to z, the xy-dependent
surface fields (superscript “0”) move outside the integral. Us-
ing the procedure of Ref. [5], we introduce the integrals I (n)

ab
of the integrand a(z) b(z)∗, where a(z) and b(z) are any of the
functions 1, q(z), and r(z):

I (n)
ab =

∫ z

dzn

∫ zn

dzn−1 · · ·
∫ z2

dz1 a(z1) b(z1)∗
∣∣∣∣
z=0

,

I (n)
ab ∝ δn, with δ = δs, δt and n = 1, 2, 3, . . . .

(A10)

Integrating Eq. (A9) once with respect to z thus gives

∂zT
δ

0

= 1

2Dth
0

Re

{
− ω
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T δ0∗

1

}
. (A11)

Inserting here the values of I (1)
ab given by

I (1)
r1 = −1 + i

2
δt , I (1)

rr = −1

2
δt , I (n)

ba = [
I (n)
ab

]∗
,

I (1)
rq = −1 + i

2

δsδt

δs + iδt
, I (1)

qq = −1

2
δs, (A12)

leads to ∂zT
fl,δ0

0 at the fluid-solid interface:

∂zT
fl,δ0

0 = Re

(
1+i

4Dth
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1−i

2

δsω
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]
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− iT δ0
1

[
vd,T 0∗

1,z + (1 + i)vd,p0∗
1,z − δtωκs p0∗

1

]
− δt∇‖T δ0

1 ·vd,p0∗
1,‖ + δtω

kth,δ0
1 +kth,d0

1

kth
0

T δ0∗
1

})
.

(A13)

To obtain the temperature T δ0
0 at the fluid-solid interface,

we integrate Eq. (A9) twice with respect to z. This is easily
done by changing I (1)

ab to I (2)
ab in Eq. (A11) followed by inser-

tion of the values

I (2)
r1 = i

2
δ2

t , I (2)
rr = 1

4
δ2

t ,

I (2)
rq = i

2

δ2
s δ

2
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, I (2)
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4
δ2

s . (A14)

The result for T fl,δ0
0 becomes

T fl,δ0
0 = δt
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{

− δ2
s ω
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T δ0∗
1

}
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(A15)

Again the first term is the leading term that originates from
the viscous boundary layer.
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