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Data-driven constitutive relation reveals scaling law for hydrodynamic transport coefficients
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Finding extended hydrodynamics equations valid from the dense gas region to the rarefied gas region remains a
great challenge. The key to success is to obtain accurate constitutive relations for stress and heat flux. Data-driven
models offer a new phenomenological approach to learning constitutive relations from data. Such models enable
complex constitutive relations that extend Newton’s law of viscosity and Fourier’s law of heat conduction by
regression on higher derivatives. However, the choices of derivatives in these models are ad hoc without a clear
physical explanation. We investigated data-driven models theoretically on a linear system. We argue that these
models are equivalent to nonlinear length scale scaling laws of transport coefficients. The equivalence to scaling
laws justified the physical plausibility and revealed the limitation of data-driven models. Our argument also
points out that modeling the scaling law could avoid practical difficulties in data-driven models like derivative
estimation and variable selection on noisy data. We further proposed a constitutive relation model based on
scaling law and tested it on the calculation of Rayleigh scattering spectra. The result shows our data-driven
model has a clear advantage over the Chapman-Enskog expansion and moment methods.
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I. INTRODUCTION

Multiscale physics is widely encountered in fluid dynamics
[1], soft matter systems [2], and quantum chemistry [3]. One
of the typical multiscale physics problems is rarefied gas
dynamics [4]. Rarefied gas flow simulation is known to be
difficult due to the nonnegligible dynamics at the mesoscopic
scale. Simulation resolving these scales is computationally
expensive for continuous and transitional flows, such as
the direct simulation Monte Carlo (DSMC) [5] method. In-
stead, extended hydrodynamics equations at a coarse-grained
macroscopic scale are efficient substitutes to reduce the
computational cost. What lies within the heart of extended
hydrodynamics is constitutive relations. Constitutive relations
summarize mesoscopic scale dynamics as macroscopic phe-
nomena, such as viscosity and heat conduction. Traditionally
they are modeled by perturbation or polynomial expansion
around the equilibrium of dense gas. The perturbation models,
such as the Burnett-type equations [6,7], utilize high-order
spatial derivatives according to the Hilbert-Chapman-Enskog
expansion [8—10]. However, difficulties exist in stability [11]
and nonguaranteed convergence [12]. The polynomial expan-
sion methods are represented by the Grad moment method
[13] and its extensions [14] modifying the equilibrium dis-
tribution with orthogonal polynomials. Nevertheless, issues
appear in unphysical solutions [15] and hyperbolicity [16].
The traditional methods’ perturbation or expansion nature
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limits their viability near dense equilibrium, constraining their
applicable Knudsen number range [14].

Data-driven models offer a new phenomenological ap-
proach to obtaining machine-learned constitutive relations
from data. Compared to perturbation or expansion from exist-
ing theory, data provide an alternative source of information
and are expected to expand the applicable range of extended
hydrodynamics equations [17]. There have been attempts to
learn constitutive relations from mesoscopic results [18] or
to find proper moment equations [17]. Data-driven models
are also used in related areas such as learning the unknown
governing of physical systems [19-22], simulating physical
dynamics [23-25], and solving the Boltzmann equation [26].
These attempts have validated the concept of data-driven mod-
eling. However, the advantage over traditional models like
Chapman-Enskog and the Grad moment method has not been
established yet. Limitations for data-driven models include
derivative estimation [27], determining input quantities (vari-
able selection) [21], and modeling across a range of Knudsen
numbers. Besides, the rather ad hoc linear or neural net-
work regression in data-driven models lacks a clear physical
explanation.

In this paper, we seek the physical explanation of data-
driven models by investigating linear systems. We focus
on the conservation laws and analyze data-driven constitu-
tive relation models that extend Newton’s viscosity law and
Fourier’s heat conduction law. We argue that these linear
models are equivalent to nonlinear length scale scaling laws
of viscosity and heat conduction coefficients. These length
scale scaling laws describe the change of viscosity and heat
conduction coefficients, as we are concerned with dynamics
at different length scales described by Knudsen numbers. The
equivalence between data-driven constitutive relations and
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scaling laws justified the physical plausibility of data-driven
models.

Based on our argument, we propose modeling scaling laws
explicitly in data-driven models. In doing so, we could involve
high-order derivatives implicitly in constitutive relations with-
out calculating them. It helps to avoid practical difficulties
in data-driven models like derivative estimation and variable
selection. We further modeled the constitutive relation based
on our proposal.

We apply our model to calculate the Rayleigh scattering
spectra as the numerical benchmark. The Rayleigh scattering
have been well studied [28] and used in Lidar wind measure-
ment [29]. However, it remains difficult to correctly model the
spectra shape in the transition region for today’s extended-
hydrodynamic equations [30]. The numerical results show
that our data-driven model can capture the spectra shape at the
transition region. To our knowledge, it is the first time that the
data-driven hydrodynamic model significantly outperforms
the traditional Chapman-Enskog expansion and Grad moment
methods.

II. METHODS

We consider the linearized extended hydrodynamics for
one-dimensional (1D) homogeneous rarefied ideal gas. The
hydrodynamics equations govern the dynamics of gas. The
most important hydrodynamics equations are mass, momen-
tum, and energy conservation laws. They form a 1D linear
system of density p, velocity v, and temperature T, respec-
tively. The nondimensionalized linear system for conservation
laws is
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in which Kn is the Knudsen number describing how rarefied
the gas is. Detailed descriptions of nondimensionalization
and the definition of the Knudsen number are given in
Appendix A.

However, the hydrodynamics equations are not closed with
two extra unknown terms: the stress o and the heat flux ¢ that
encodes the mesoscopic dynamics. To close the equations,
constitutive relations that model the stress and the heat flux
with known quantities are necessary.

A. Data-driven constitutive relations and its equivalence
with scaling laws

We adopt a general form of data-driven constitutive re-
lations consisting of derivatives of various orders similar
to other data-driven models for physical systems [19-24].
It is also motivated by the Hilbert-Chapman-Enskog expan-
sion. The Hilbert-Chapman-Enskog expansion is a systematic
way to generate constitutive relations for conservation laws
at small Knudsen numbers. The leading order of expan-
sion yields the well-known Newton’s law of viscosity and
Fourier’s law of heat conduction and defines the viscosity

coefficient uy and heat conduction coefficient xy. However,
they are not valid for rarefied gas effects at large Knud-
sen numbers [31]. For large Knudsen numbers, higher-order
expansions extend the capability of constitutive relations
by incorporating high-order spatial derivatives of density,
velocity, and temperature. If we consider linear systems,
these high-order spatial derivatives are combined linearly by
coefficients determined by the Hilbert-Chapman-Enskog ex-
pansion. However, the Hilbert-Chapman-Enskog expansion
guarantees neither convergence nor stability of the system [6].
Similar to the Hilbert-Chapman-Enskog expansion, we con-
sider constitutive relations’ linear combinations of high-order
spatial derivatives. However, we aim to determine combi-
nations coefficients via a data-driven regression approach.
Therefore we adopt the following general form of the data-
driven constitutive relation:
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where x is the nondimensional spatial coordinate, and
ay, by, ¢y, dy, e, f, are unknown regression coefficients. The
constitutive relation (2) has the same functional form obtained
from Hilbert-Chapman-Enskog expansion since both are com-
binations of high-order spatial derivatives. But the regression
coefficients in (2) are to be determined via a data-driven
approach.

There are practical difficulties in directly applying consti-
tutive relation (2). First is the problem in variable selection.
This problem arises because we have only limited data in prac-
tice to determine the infinitely many regression coefficients
in (2). Consequently, we could determine only a selected
subset of regression coefficients. Choosing the best subset
of regression coefficients is a challenging variable selection
problem we wish to avoid. The second problem is density
estimation. Constitutive relation (2) contains high-order spa-
tial derivatives, which are difficult to estimate in practice.
A naive attempt at estimating high-order spatial derivatives
using the finite difference method requires a highly dense
mesh and is very sensitive to noise. It completely fails on
data generated by the DSMC method since they contain strong
statistical noise. Finally, constitutive relation (2) does not
guarantee the stability of hydrodynamic equations. The reason
is there are no constraints on entropy production yet to re-
spect the second law of thermodynamics. Fortunately, it turns
out that reformulating the problem in the Fourier space with
proper constraints on entropy production enables us to bypass
the practical difficulties in variable selection and derivative
estimation.

Now we reformulate the constitutive relations with the help
of the Fourier transform and entropy production constraints.
The Fourier transform allows us to convert the derivatives in
constitutive relations into algebraic expressions. Meanwhile,
constraints on entropy production eliminate undesired terms
and imaginary parts that appear in the Fourier transformation.
The outline of the reformulation is as follows: First, the en-
tropy constraint reduces the constitution relations to the form
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that stress o consists of only velocity derivatives and heat flux
g consists of only temperature derivatives. This is because the
stress and velocity, the same as heat flux and temperature,
must be correlated to produce nonincreasing entropy as

. q o
s = —ﬁaxT — ?axv, (3)
where s is the entropy change rate per volume [32, p. 372].
The only possibility is that stress depends on velocity only,
the same as heat flux depending on temperature, since density,
velocity, and temperature, which are statistically independent
[33, p. 343]. Second, the nonincreasing constraint on the
entropy production eliminates undesired imaginary parts in
the Fourier transform of constitutive relations. This constraint
requires that each Fourier mode of the density, velocity, and
temperature must produce nonnegative entropy. It is neces-
sary if we wish the linear system to be stable. As a result,
constitutive relations are expressed as a summation of infinite
polynomial series in the Fourier space. Finally, collecting
and reformulating the summation in the constitutive relations
leads to the following constitutive relations in the Fourier
space:

& (k) = —ik%”“ (i)a(m, (k) > 0,
Glk) = —ikKIE:)T(k), (k) >0, (4)

where (i is the viscosity coefficient, k is the heat conduction
coefficient, k is the nondimensional wave number for each
Fourier mode, and & (k), §(k), v(k), T (k) are corresponding
spatial Fourier transforms of o, g, v, T. The detailed deriva-
tion from the constitutive relation (2) to (4) is shown in
Appendix B. The derivation also shows that the functions
wu(k), k (k) are even functions that satisfy the natural con-
straints o = limy_,o (k) and kg = limy_ o k (k). As we will
discuss later, they describe the length scaling law for viscosity
and the heat conduction coefficient. Therefore we have shown
that the data-driven constitutive relation (2) transformed into
the form (4) containing scaling laws under the constraint of
nonincreasing entropy. This established the equivalence be-
tween data-driven constitutive relations and scaling laws.

The functions w(k), k(k) are the length scaling laws of
viscosity and heat conduction coefficients. They describe the
relative change of viscosity and heat conduction coefficients
w.r.t. length scale changes of the system. This is because
k is closely related to the Knudsen number Kn = [/L that
characterizes the length scale of a rarefied gas system, in
which [ is the mean-free path of gas molecules and L is
the representative length scale of the system. In particu-
lar, as defined in Appendix A, the Knudsen number of a
Fourier mode is proportional to its nondimensionalized wave
number k

Kn o [k|. ®)

Therefore the even functions w(k), k (k) are also functions
of the Knudsen number and hence are length scaling laws.
These scaling laws could be measured experimentally [34].
However, we cannot use such experimental results directly
because the definition of the Knudsen number is not unified
but varies according to the experiment setting. Alternatively,

scaling laws could be learned through a data-driven approach
from data like fluctuation spectra [35] containing information
on viscosity and heat conduction.

Scaling laws w(k), k (k) in (4) are much easier to be deter-
mined than regression coefficients in (2). These coefficients
may lead to divergence at large Knudsen numbers, making
it ill-conditioned to determine regression coefficients valid
for large Knudsen numbers. Instead, we could learn scaling
laws w(k), k (k) uniformly from data at various Knudsen num-
bers without worrying about convergence. Learning scaling
laws also eliminates the demand in variable selection, which
refers to choosing a subset of regression coefficients. It is
because all regression coefficients are now summarized in the
function w(k), k (k). Moreover, learning scaling laws is robust
against noisy data since it avoids using estimated derivatives
in constitutive relations (2). Therefore learning the scaling
laws, compared to regression coefficients in (2), avoids prac-
tical difficulties in convergence issue, variable selection, and
derivative estimation.

B. Modeling scaling laws using neural network

One difficulty that remains is that learning scaling laws
from data turns out to be a nonconvex optimization problem
that is difficult to solve. We overcome it by approximating
scaling laws w(k), (k) using neural networks, taking advan-
tage of their stochastic optimization technique designed for
nonconvex optimizations [36].

Neural network modeling functions w, x must be con-
strained to obtain correct asymptotics and symmetry for
hydrodynamics. Asymptotically, the function values of u,
must be specified to the equilibrium values (g, ko at Kn =
0 to guarantee the constitutive relation’s consistency with
the Navier-Stokes equation. In addition, we couple x and u
together,

_ kg pul) - p 2 (6)

2m Pr 3
to constrain the Prandtl number Pr to the Chapman-Enskog
result Pr = % While this coupling is not necessary, we find
it accelerates the learning process without undermining the
accuracy in practice. As for symmetry, homogeneity in space
also requires the scaling laws to be even functions of k. Homo-
geneity means there is no preferred direction in space. Hence
the direction in space coordinate or the corresponding wave
number k should not make a difference in the scaling laws.
For the 1D case, the direction of k is its sign. Therefore, the
scaling laws must be even functions independent of the sign
of k.

To satisfy all these constraints, we design the following
nondimensional constrained neural network for p satisfying

M(Kn) = ‘3—‘% with the architecture

Kk (k)

M(Kn) = {1 + W, - tanh[W, - H(20Kn)]},
Hx)=1xx <1, [l—-3.x>1, )

in which Kn are proportional to |k| as in (5), and W, W, are
the 1D weight vectors of the neural network, with the activa-

tion function tanh acting elementwise on the vector input. The
function M (Kn) is even and satisfies M (0) = ‘3—‘ and M'(0) =

015104-3



CANDI ZHENG, YANG WANG, AND SHIYI CHEN

PHYSICAL REVIEW E 107, 015104 (2023)

Scattered EM wave

Scattering
w; + o,
i "4

[>T
LIk, + k()i

Iw) « (8p*) (k(w), »)
Density fluctuation
spectra of gas

Intensity I(w)

Frequency @;

Incident EM wave

. Wave vector K.
Intensity / !

Gas with density
fluctuation 8p

FIG. 1. Rayleigh scattering of electromagnetic (EM) waves with
wave vector k; and frequency w; through gas with density fluctuation
8p. 1 is a unit vector. The intensity /(w) of scattered EM wave with
frequency shift w is the Rayleigh scattering spectra. The Rayleigh
scattering spectra are proportional to and determined by the density
fluctuation spectra {§0%). Therefore to compute the Rayleigh scatter-
ing spectra, we need only to compute the density fluctuation spectra
of gas.

0. It guarantees the consistency with the Navier-Stokes (NS)
equation. With the modeling of the scaling laws, we are pre-
pared to investigate the capability of scaling laws in describing
rarefied gas dynamics.

C. Rayleigh scattering as benchmark case

We will test the capability of scaling laws u, x in de-
scribing rarefied gas dynamics by calculating the Rayleigh
scattering spectra. The Rayleigh scattering describes the re-
fraction of electromagnetic (EM) waves passing through
media with stochastic density fluctuation [37-39]. Such fluc-
tuation usually appears as density fluctuation waves and
happens spontaneously with the thermal motion of gas
molecules. The Rayleigh scattering spectra are defined as the
intensities /(w) of scattered EM waves after the Rayleigh
scattering with frequency shifts w, as shown in Fig 1. They
are proportional to the density fluctuation spectra of gas

I(@) o (3p%) (k(w), w), ®)

where k is the wave number change of the scattered EM wave-
determined observation position and incident wave frequency,
and (8p?) is the density fluctuation spectra, which describes
the intensity of density fluctuation waves at each wave number
k and frequency w. A detailed description on the relation be-
tween the Rayleigh scattering spectra and density fluctuation
spectra is shown in Appendix C. As a consequence of the
proportionality between the Rayleigh scattering spectra and
density fluctuation spectra, calculating the Rayleigh scattering
spectra needs only to compute the density fluctuation spectra
of the gas media.

The density fluctuation spectra (§p%)(k, w) describe the
amplitude of density fluctuation waves caused by the collec-
tive motions of gas molecules. The wave number k in the
density fluctuation spectra specifies the wavelength of density
fluctuation waves. It also sets the Knudsen number of density
fluctuation waves since the wave number k is proportional to
the Knudsen number. Given a Knudsen number by specifying
k, the spectra (8p%)(k, w) could be calculated from macro-
scopic governing equations (1) using constitutive relation (4)
(details are given in Appendix D). Hence the values of scaling
laws u, « in the constitutive relation affect the shape of spectra
(8p°) as a function of . It means that the density fluctuation
spectra contain information on scaling laws which we aim to
extract by training the neural network models. In practice, we

train the neural network modeling scaling laws on density
fluctuation spectra data (802) dsme computed by the DSMC
method (Appendix E).

The density fluctuation spectra are not enough to confirm
the capability of scaling laws in describing rarefied gas dy-
namics. It is because there is the risk of overfitting. Overfitting
refers to the neural network learning the scaling law by rote
from density fluctuation spectra. In other words, the neural
network learns a scaling law that fails in predicting quantities
other than density fluctuation spectra. To eliminate the risk
of overfitting, we need to prepare test data to examine the
neural network’s generalization ability: the ability to predict
quantities that the neural network has not seen in the training
process.

We examine the generalization ability of the neural net-
work on test data consisting of velocity fluctuation spectra
(v*)(k, ®). Similar to density fluctuation spectra, velocity
fluctuation spectra describe the amplitude of velocity fluctua-
tion waves caused by the collective motions of gas molecules.
Velocity fluctuation spectra serve as ideal test data for the fol-
lowing reasons: first, velocity fluctuation is consistent with the
scaling law discussed in our paper since velocity fluctuation
also obeys the hydrodynamic equations (1); second, velocity
fluctuation corresponds to a different physical scenario com-
pared to density fluctuation. In detail, velocity fluctuations are
solved from the hydrodynamic equations with an initial condi-
tion [(D16) in Appendix D] completely different from density
fluctuation (DS8). The “consistent but different” characteris-
tic of velocity fluctuations makes them ideal for examining
the generalization ability of our neural-network-modeled
scaling laws.

D. Training the neural network on density
fluctuation spectra data

We train the neural network models for scaling laws on the
density fluctuation spectra data (§p%). Specifically, this refers
to learning the weight vectors Wy, W, in the neural network
(7) from data. This requires a loss function as the learning
target. In our case the loss function compares the difference
between the observed spectra (8 %) dsme and predicted spectra
(8p?). The former are training data obtained from the DSMC
computation (Appendix E), while the latter are the predictions
of the governing equation. We define the loss function for any
input weight vector W = W, W, as

L(W) = EguvEopr pokn | (807 dsme (Kn, @)
— (80%)(Kn, w; W)?, )

in which the predicted spectra (§p?) are a function on the
weight vectors W that depends on the neural network M (Kn).
The symbol Eg,~y represents taking the expectation nu-
merically by sampling Kn from a uniform distribution U.
Meanwhile, E,,~,|kn) represents taking the expectation by
sampling @ from a conditional distribution p(w|k), which is
proportional to the amplitude of the DSMC spectra. Sampling
w in this way makes the sample point lie more in the peak
region. After defining the loss function, we use the ADAM
[40] optimizer to minimize the loss function and determine
the weight vectors (Appendix F).
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FIG. 2. Flow chart of our model to calculate the density fluctua-
tion spectra (5.

We take extra caution with the finite domain effect of
the DSMC computed spectra data. The DSMC simulates gas
confined in 1D space of finite domain length L,;. However,
we aim to compute the density fluctuation spectra for Fourier
modes with infinite spatial span. Therefore, finite domain
length inevitably affects the spectra, especially for Fourier
modes with a wavelength comparable to domain length. Such
a finite domain effect is proportional to the mean-free path and
domain length ratio Ll—d, which vanishes as L; tends to infinity.
As a solution, we use a large domain length much greater
(>200 times) than the mean-free path of the gas, eliminating
the finite domain effect in the DSMC computed spectra.

In total, the numerical experimental setting could be
divided into two processes: inference and training. The infer-
ence process calculates the density fluctuation spectra using
the governing equations with the constitutive relations (4).
The constitutive relations contain neural networks M, K de-
fined in (6) and (7) with weights to be determined. The
training process determines the weights of neural networks
by minimizing the loss function (9). The flow chart (Fig. 2)
summarizes the entire procedure.

III. RESULTS

We compare the density fluctuation spectra calculated by
our model with the results of the NS equation and the Grad
13 method. For various Knudsen numbers, spectra (8,0%)(®)
are shown in Fig. 3 as a function of the nondimensionalized
frequency @. At a small Knudsen number, all models give
consistent spectra. However, at large Knudsen number, our
model result matches accurately with the DSMC result, while
the shape and amplitude of the NS equation and Grad 13
moments method deviate. Therefore, compared with the NS
equation and the Grad 13 method, our model gives the most
accurate spectra which are close to the DSMC result in both
shape and amplitude.

We test the generalization ability of our model performance
by predicting velocity spectra. The generalization ability en-
sures our model learns the rarefied dynamic physics rather
than being forced to reproduce the DSMC density spectra
data. As a linear benchmark, we predict the velocity fluc-
tuation spectra of rarefied gas. Our model predicted these
spectra in Fig 4(a), which matches with DSMC result much
better than the NS equation. Moreover, to demonstrate the
robustness of our model, we also plotted the 95% confidence
interval in Fig 4(b), estimated using multiple runs on ran-
domly sampled training data. We claim our model has a robust
generalization ability for rarefied gas fluctuations based on
these benchmarks.

Kn=0.015 Kn =0.06

DsSMC DSMC

NS 1.0 NS
~—— Ours Ours
Grad 13 Grad 13

< 8p? > (w)

DsSMC
NS

DSMC

NS
~—— Ours
Grad 13

—— Ours
——— Grad 13

N ]

FIG. 3. Comparison between spectra calculated using DSMC,
the NS equation, the Grad 13 method, and our model for various
Knudsen numbers. At a small Knudsen number, the spectra consist
of three peaks and correspond to entropy fluctuation and pressure
fluctuation. As the Knudsen number increases, these peaks disappear
gradually and blur into a bell shape. The result shows that our
model-calculated spectra match the DSMC result much better than
the NS equation and Grad 13 method, especially in the high Knudsen
number region.

The potential risk of our model overfitting the density fluc-
tuation spectra in training data is negligible. Overfitting refers
to the phenomenon that the neural network is too powerful
to remember the exact shape of spectra. However, given a
Knudsen number, our neural network models only the viscos-
ity scaling law, whose output is a number. Such a number is
not enough to record the exact shape of spectra, which is a
function of w. Hence it is impossible for our neural network
to learn the spectra by rote, making its potential risk of over-
fitting negligible. However, the negligible risk of overfitting
does not mean our model generalizes well to all situations.

25 DsSMC
/\\ / NS
=20 ' i 2
é ) / \ “‘( — Ours ’\3:
N / <
10 X
1N 7
/ \ =
V os 2 \§
A o
00
3 2 1 0 1 2 3
10 10
w Kn
(a) (b)

FIG. 4. (a) Test comparison between our model and NS equa-
tion predicted velocity fluctuation spectra with DSMC results at
Knudsen number Kn = 0.15. Though our model has never trained on
the velocity fluctuation spectra, it still outperforms the NS equation.
(b) The effective viscosity “(f") and its 95% confidence interval
(shadowed) of our model for Rayleigh scattering, compared with
the NS equation and results from nonlinear microchannel flow (IP,
Karniadakis). To compare microchannel flow and Rayleigh scatter-
ing results, we match their Knudsen number at effective viscosity 0.5
by multiplying a constant to the microchannel flow Knudsen number.
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As we will discuss later, our model does not generalize
to boundary regions. We demonstrate this by comparing our
model with results on microchannel flow [41,42] in Fig 4(b).
The effective viscosity ";% of our model has a similar trend
compared with microchannel flow results. However, it devi-
ates from microchannel flow even at small Knudsen numbers.
The reason is microchannel flow contain boundary region with
large flow property gradients. Flow properties in such bound-
ary regions are not governed by (1) and do not admit a Fourier
decomposition. Therefore our model could not describe flows
in boundary regions.

IV. DISCUSSION

Data-driven models modeling physics systems typically
learn PDEs consisting of derivatives of various orders
[19-24]. The general form of data-driven models for linear
constitutive relation is a linear regression of all derivatives
as in (2). We have given it a clear physical explanation by
pointing out the equivalence between the constitutive rela-
tion and scaling law for transport coefficients. Our discussion
also reveals that high-order derivatives enable constitutive
relations to model more accurate scaling laws. The reason
is additional terms of high-order derivatives in (2) con-
tribute additional polynomials terms to (B12) (Appendix B).
These additional terms make scaling laws in (4) more flexi-
ble and hence more accurate. Therefore scaling laws help us
explain how high-order derivatives contribute to constitutive
relations.

Scaling laws not only give a physical explanation but
also help to avoid practical problems in learning the con-
stitutive relation. Instead of regression on derivatives, we
suggest directly modeling the scaling functions. It helps to
avoid two major problems in regression on derivatives: deriva-
tive estimation and variable selection. Derivative estimation
encounters stability and accuracy issues for high-order deriva-
tives. Directly modeling the scaling functions avoids this
without undermining its flexibility. Variable selection from
infinite coefficients in (2) is difficult even if sparsity methods
are involved. Modeling scaling functions replaced these coef-
ficients with neural networks. In total, our argument suggests
a better formulation for data-driven modeling.

Our model is implicitly connected with the Grad 13 method
while avoiding its shortcomings by learning from data. Our
model implicitly relies on the Grad 13 one-particle distribu-
tion f(c) for gas molecule

3 1 5 Kn/c> 5
=/ 1+ZKH C,'Cj—gaijc Uij+ﬁ E—E ciqi ),
(10)

where ¢ is the nondimensional peculiar velocity, and fy is
the Maxwell distribution. This distribution is the most prob-
able form that admits arbitrary stress o and heat flux ¢ as
its moments, which is the prerequisite of modeling stress
and heat flux as in (2). However, as we have shown in the
result section, our model outperforms the NS equation and
the Grad 13 method using only three conservation laws. The
reason is our model uses the data-driven approach that learns
the rarefied gas dynamics from data points equally, which

converges uniformly for various Knudsen numbers. Contrar-
ily, higher-order perturbation or moment expansion benefits
little for more accurate spectra at large Knudsen numbers
[30], limited by their slow convergence rate at large Knudsen
numbers. In conclusion, by learning uniformly from data,
the data-driven approach has demonstrated a clear advantage
over the traditional Chapman-Enskog expansion and Grad’s
moment method in handling rarefied gas dynamics.

The implicit connection with the Grad 13 method also
reveals the limitation of our model. Distribution (10) is un-
suitable for strong non-Maxwellian dynamics, such as shock
waves [43]. Counterintuitively, a data-driven model requires
constraints rather than flexibility to resolve this, because
strong non-Maxwellian dynamics tend to have correlated
stress and heat flux that (10) cannot handle, due to ir-
regularly shaped distribution. Proper constraints on such a
correlation may be a future direction for data-driven strong
non-Maxwellian models.

Similarly, our model relates to the Hilbert-Chapman-
Enskog expansion hence bearing the same weakness at bound-
ary regions. Theoretically, we could determine the coefficients
in the constitutive relation model (2) by the Hilbert-Chapman-
Enskog expansion. Therefore our model could be treated as
a reformulation of it with data-driven enhanced convergence.
However, the Hilbert-Chapman-Enskog expansion fails in
boundary regions where the solutions have large gradients,
such as boundary, shock, and initial layers, because the resid-
ual of expansion is proportional to gradients [44, p. 238].
Hence our model also fails in such regions. Extending our
model to boundary regions demands solving additional con-
nection problems [44, p. 248] concerning the gradients of gas
flow, which changes the system equation. We expect those
gradients to affect the scaling laws of transport coefficients
by breaking the homogenous symmetry. Correspondingly, the
neural network will no longer be an even function on Knud-
sen numbers. Flow gradients may further introduce nonlocal
effects into scaling laws. Therefore extra equations describing
the such nonlocal effects of transport coefficients may be
required to extend our model to boundary regions.

Finally, we clarify our model’s valid scenario from a ma-
chine learning point of view. Similar to other data-driven
approaches, the training data scope limits our model’s via-
bility. Specifically, the limitation is in two aspects: the range
of Knudsen numbers and the governing equation. Our model
could capture physics only within the Knudsen number range
of the training data. In our case, it covers Knudsen numbers
from O to 0.25. Our model is unreliable outside this Knudsen
number range since it extrapolates the data. This limitation on
the Knudsen number range does not undermine the utility of
our model because we need only to train the model once on
the desired Knudsen number range before applying it to other
physical scenarios. As for the governing equation, our model
works only for physical scenarios governed by the system
equation (1). However, it admits different physical scenarios
that correspond to distinct initial conditions, such as velocity
fluctuation in our test data.

In the summary, we have argued that the data-driven re-
gression models for constitutive relations are equivalent to
length scaling laws of transport coefficients. Our argument
not only provides a theoretical justification for data-driven
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models but also helps to avoid practical problems. We further
modeled constitutive relations based on our argumentation.
On calculating the Rayleigh scattering spectra, our model sig-
nificantly outperforms the Chapman-Enskog expansion and
Grad moment methods. Our argumentation also reveals the
implicit assumption and limitation of data-driven constitutive
relations. Further constraints and modifications are necessary
for it to accommodate strong nonequilibrium dynamics and
boundary layers.
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APPENDIX A: THE GOVERNING EQUATION
AND ITS NONDIMENSIONALIZATION

In this Appendix we give hydrodynamics governing equa-
tions. Then we list the detailed nondimensionalization for
these conservation laws.

The hydrodynamics equations governing the macroscopic
dynamics of gases are equations of the gas statistical quan-
tities, such as the number density n, mass density p = mn,
velocities v, temperature T, stresses o, heat fluxes g, etc. The
most fundamental hydrodynamics equations are the conser-
vation laws for mass, momentum, and energy, as described
in [45]. In our paper we consider linearized hydrodynamics
equations for one-dimensional gas. These equations describe
small fluctuations of statistical quantities around a specific
equilibrium state of stationary gas with density pp and tem-
perature Ty. Specifically, one could obtain the linearized
conservation laws via the first-order expansion of the gas
density, velocity, and temperature at the equilibrium. Here
we omit the details of the expansion and give the linearized
system directly as

ap v
5 + % =0,
9 T 9p_ 05
of  9x  Ox ox’
30T 0p 15 9g

2 of + ox 4 ax’ Aab
in which we use quantities with overbars to represent the
nondimensionalized quantities.

In the main text, we omitted overbars for the simplicity of
notation. We also use nondimensionalized quantities with the
overbar omitted in Appendix B and Appendix D. However, we
use dimensionalized quantities in SI units in Appendixes C, E,
and F to simplify the computation and ensure the consistency
with references.

Now we describe the details of the nondimensionalization.
Suppose we aim to compute properties of the Fourier mode of
fluctuations with wave number k. In the nondimensionaliza-
tion process, it is nzatural to set the reference length scale as the

T

wavelength L = A of the Fourier mode. Correspondingly,

the reference timescale T = ——& o is the time used by the

B10O
sound wave to travel the distance of the reference length scale.
We denote explicitly the nondimensionalization of other quan-
tities here. The nondimensionalized time and spatial position

in the x direction are 7 = % and X = f The nondimension-

alized Fourier wave number and angular frequency are k =

kL = 2* and @ = wT. The nondimensionalized velocity (x

kol
direction com t), densit dt t 5. — Tu
ponent), density, and temperature are v, = 7+,

p="=~ ;0’)“, and T = T;OTO. Moreover, the nondimensionalized

stress and heat flux in the x direction are &,, = ﬁ /J—RJM,

Gx = ﬁqx, in which 1o and kg are the viscosity and heat

conduction coefficients at equilibrium satisfying the relations
Ko = et pr— 2
0= 2m Pt — 3°
We define the Knudsen number Kn in (A1) of the Fourier

mode of fluctuations with wave number kq as

l
n=——,
27 [1kol

_ [

kgTo po

in which [ is the mean-free path and pg, ko are the viscosity
and heat conduction coefficient of the gas at equilibrium. For
other Fourier modes with nondimensionalized wave number
k, their Knudsen number Kn(k) is proportional to k as follows:
_ l k|
Knk) = —— = —
2 /lkl 2w
Finally, we give the formula to change the reference length
scale. It is helpful to change the wave number kq of interest
to another wave number, which corresponds to changing the
reference length scale L to the wavelength of another Fourier
mode. Suppose a nondimensionalized physical quantity f
is obtained from its dimensionalized version f by f(¥) =
L—l) f(xL). Define the spatial Fourier transformation of f(X) as
g(/%), and the spatial Fourier transformation of f(x) as g(k).
Here we use the Fourier transformation in the symmetrical
form [46, Eq. (13.5)]. Then g(k) and g(k) satisfy

o0 = o -
SO=pri\1L)
With the help of (A4), we could easily handle Fourier transfor-

mation from one nondimensionalization of reference length
scale to other reference length scales.

(A3)

(A4)

APPENDIX B: THE EQUIVALENCE BETWEEN
DATA-DRIVEN CONSTITUTIVE RELATIONS
AND SCALING LAWS

This section shows the equivalence between (2) and (4) in
the main text. Before the derivation, we first discuss if the
constitutive relation (2) is well defined via dimension analysis.

As shown in the nondimensionalization process in Ap-
pendix A, our system’s only degree of freedom is the Knudsen
number. As a result, any nondimensional numbers, such as
the coefficients a, b, ¢, d, e, f in the data-driven constitutive
relation model (2), are functions depending on the Knudsen
number, which complicates our analysis. For simplicity, in this
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Appendix we use the nondimensionalization with ky =
which makes L = /. Under this nondimensionalization, the
Knudsen number of the system is fixed to Kn = 1, while
the nondimensionalized wave number k corresponds to the
“relative” Knudsen number of each Fourier mode. This nondi-
mensionalization makes the constitutive relation

00
d"v a" a"T
= - E _p +en— ),
a n 3)(” 9x"

n=1

< T an
q:_z<b 8n + ”an

n=1

7{
l ’

fn ) (B1)

well defined with coefficients a, b, c,d, e, f independent
of the global Kn. Note that this constitutive relation is
exactly (2).

We now show that the above data-driven constitutive rela-
tion (B1) is equivalent to the constitutive relation with scaling
laws (4) in the form

& (k) = —1kiuli )ok). k) >0
. (k) -
Q) = —ik= 2T (), k) > 0. (B2)

The constraint on entropy productlon is the key to achieving
the equivalence. According to [32], the total entropy produc-
tion rate of the conservation laws of the mass, moment, and
energy is

. q; 9ij v, 0vj\ 4

S —/ TZE)]T T (E)xj + 8x,~)d X, (B3)
in which we use Einstein’s summation convention with i, j €
{x,y, z} as the dummy indices. As a fundamental constraint,
the second law of thermodynamics requires the total entropy
change rate S > 0. However, it is not enough to deduce the
equivalence we desired.

Linearization of the system dramatically helps us by
simplifying the constraints. First, we could replace the tem-
perature 7" with the equilibrium temperature 7y as a first-order
approximation since 67 = T — Ty is a small quantity,

. q; oij (0v;  0V;\ 4
S~ | —=09,T — —+—)d’x > 0. B4
f 72 2To<axj Bx,-) * G
Second, the two terms for the velocity and temperature field
must be nonnegative separately,

dv; v,
[anras<o /aij(%+a—?)dx<0, (B5)
J 1

because we know from statistical mechanics that the de-
viations of velocity and temperature from equilibrium are
statistically independent [33], ilf we reduce our problem to the
1D case and denote v, as v, o, as o, and ¢, as gq. A Fourier
transformation on (B5) with the help of Paseval’s theorem lead
us to

/.q”(k)[ikT(k)]* dk <0 /&(k)[ikf)(k)]* dk <0, (B6)
in which the letter with a tilde represents the Fourier transform
of corresponding function in x and * indicates the complex

conjugate. Finally, the fluctuation of statistical quantities gen-
erally behaves like white noise that spreads over the entire
spectra. Therefore the linear system should be stable for each
wave number k, which means the entropy production from
each wave number must be nonnegative:

GUOIKT (k)" < 05 & (k)[ikv(k)]* < 0. (B7)

Now we discuss what constraint (B7) imposes on the con-
stitutive relations. First, stress o depends on the velocity field
v only, while the heat flux g depends solely on the temperature
field 7. This is the only way to ensure (B7) since density
p, velocity v, and temperature 7 fluctuations are statistically
independent [[32, p. 372], [33, p. 343]] with no guarantee
of their mutual products. Therefore the linear constitutive
relations (B1) reduce to the from

it 0" v,
0 = — Za”W’
n=1
= 9'T
Y b, (BS)
ax"

Q
I

under the condition of nondecreasing entropy. A Fourier trans-
formation of the above forms gives

G(k) == an(ik)'v(k),
n=1
q
G(ky ==Y ba(ik)"T (k). (BY)
n=1

Combining it with the constraint (B7) leads us to

> R *Ha, vl o0,

n=1

oo
> (kY b, | T (h))* < 0

n=1

(B10)

There should not be any imaginary part appearing in the left-
hand side of (B10). Hence all terms with odd powers on ik
vanish, and what remains is the following:

(Kay — k*as + kSas — KBaz -- )5 (k)* = 0,

(K*by — k*bs + ks — kBby - )T (k)* > 0,
ay=ay =+ =day = - =0,
bo=by=---=by, =---=0. (B11)

Substituting (B11) into (B9) and taking the derivative w.r.t. x
gives us the constitutive relation in Fourier space

do(k) = (K2ay — k*as + koas - - o = KM (k)d(k),
eq(k) = (K*by — k*bs + kSbs - - )T, = k2K (k)T (k),

(B12)

in which functions M, K are the infinite sum of series and
should be nonnegative even functions of k. Note that the
Knudsen number Kn(k) corres onds to the Fourier mode with
wave number k is Kn(k) = accordlng to (A2). Therefore
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functions M, K are even functions of Knudsen numbers and
hence are well defined in the sense of dimensional analysis.

Functions M, K are closely related to viscosity and heat
conduction coefficients. They could be rewritten in the
following form:

M) = 20
3 o

K(k) = x (k) (B13)
Ko

in which wu(k), k(k) are scaling laws of viscosity and heat
conduction coefficients satisfying ©(0) = o and x(0) = k.
Under this notation, w(k) = wo, k(k) = ko exactly corre-
sponds to the constitutive relation for the NS equation.

We could further deduce the stress and heat flux under the
same notation with (B13) by removing the spatial derivative in
(B12). The result is exactly (B2), which completes our deriva-
tion from (B1) to (B2). Hence we have shown the equivalence
between (2) and (4).

In addition, we introduce the constitutive relation under
the same nondimensionalization with Appendix A, which is
useful in the computation of spectra. Recall that we have used
the reference length scale L = [ in this Appendix instead of
L = 2% in Appendix A. If we change the reference length

kol
scale to L = % the constitutive relation (B12) will become
80 (k) = k*M (KKn)d (k),
8,71(1{) = k2K (kKn)T (k), (B14)
in which Kn = m This result could be derived with the
help of (A4). The merit of choosing L = 32X as the reference

kol
length scale is that the nondimensionalized k = 27 exactly

corresponds to the dimensionalized wave number kj. There-
fore we could substitute k with 27 everywhere if we are
interested only in the dynamics at wave number k.

APPENDIX C: RAYLEIGH SCATTERING
AND DENSITY FLUCTUATIONS

In this Appendix we introduce the Rayleigh scattering
spectra and show that it is proportional to the density fluc-
tuation spectra. Rayleigh scattering was discovered by Lord
Rayleigh in the nineteenth century. It is the reason for the blue
color of the sky in the daytime and at twilight. Specifically,
Rayleigh scattering is due to the refraction of electromagnetic
(EM) waves passing through media with density fluctuations.
Such a fluctuation leads to changes in the dielectric constant,
hence generating refracted EM waves. This Appendix gives
only a rough introduction emphasizing the physical picture of
Rayleigh scattering and its connection to density fluctuation
spectra. One can refer to [37-39] for a detailed treatment
of the Rayleigh scattering spectra. In addition, we do not
use nondimensionalization in this Appendix for simplicity in
discussing the related electrodynamics.

Rayleigh scattering describes the refraction of incident EM
waves passing through gas media with stochastic density fluc-
tuation § p. We consider the incident electromagnetic wave as

a plain EM wave with given wave vector k;,
Eine = § exp(ik; - r + iwit),
€0W;
il = YO 1)

where &, is the polarization vector, k; the incident wave vector,
w; the incident wave frequency, c is the speed of light in vac-
uum, and € is the dielectric constant of gas. The propagation
of the incident wave is governed by Maxwell’s equations in
matter without a source [38, Eq. (10.21)]. We approximate
the permeability u of gas with the permeability of the vacuum
1o since they are very close for most materials. Under this
approximation, Maxwell’s equations reduce to

V.-D=0,
1 3°D
c? 912’
in which D = €E, and € is the dielectric constant of gases.
This equation governs the propagation of the incident wave in
gas media.

Now we analyze how the stochastic density fluctuation
dp affects the propagation of the incident wave Ei,.. The
dielectric constant of gases € is a known function of the gas

density. Therefore small fluctuations § p in the gas density lead
to the perturbation in € and E:

VXVXxE=-— (C2)

de
e(r,t) =¢ey+e(r,t)+--; e(r,t) = %(,00)5,0(1'%),

E(r,t) =Eij(r,t) + Ei(r,t) +---, (C3)

in which py is the equilibrium density of gas. Substituting the
above expansion in to (C2) yields perturbation equation of
different orders obtained via perturbation theory in [37].
Specifically, the first-order perturbation of the electric field
E; could be calculated by solving the following Helmholtz
equation:
€0 32])1
VD, - 2 or

in which D; = ¢oE;| + ¢/ Ey.

Under specific scenarios, we could find analytical solutions
to (C4) with the help of the Born approximation. Specifically,
we consider observing the EM wave at position r scattered
from gases of a certain volume V centered at the origin. In
addition, we assume €; = §p = 0 outside the volume V. The
distance between the observation position r and the volume
V is so large compared to the radius of the volume V that it
allows us to adopt the Born approximation [39, Eq. (117.4)]
[48, Egs. (10.53), (10.73)] to compute the electric field

= —V X V X (E]Einc) (C4)

A 2 iks
—f x f x § wpe""

2] c?

Ei(r,wr) =

g](kf — k,', wfr — a),')
(C5)

in which E;(r, wy) is the Fourier transform of E(r, ) w.r.t.
time, ky = \/eowys/c, Ky = k¢, F is the unit vector along
the direction of r, and r = |r|, € (K, w) is the Fourier trans-
formation of the function €(r, ) w.r.t. spatial and temporal
coordinate. We call E; the electric field of the scattered EM
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wave, whose amplitude is proportional to the perturbation of
the dielectric constant.

Next, we define the Rayleigh scattering spectra as the in-
tensity spectra of the scattered electric field E; and connect
it to the density fluctuation spectra. The Rayleigh scattering
spectra refer to the intensity spectra I of the scattered EM
wave E;,

2
I(r, wp) = (E})(r, 0f) = guzl(r, wp)l?, (C6)

in which we assume E; is a periodic function in time with
period T and (E?) is the spectra of E; w.r.t. time.

We next explain the definition of spectra in (C6). The
spectra of a real function f(¢) with period T is defined as

(@) = (FLFE)f (s + D),
1 z z

V2rT /_g dsf_g dtf(s)f(s +1)e™™, (C7)

in which (), represents the ensemble average w.r.t. s de-
fined as (f(s)); = %ffg f(s)ds, and F; represents the
Fourier transformation for periodic function w.r.t. ¢ defined as
Fi(f)w) = ﬁ f_i f()e " dt. The Wiener-Kinchin theo-
rem [46, p. 450] simplifies the definition (C7) to

V2

T

(@) = ——If (@), (C8)
where f (w) = F:(f)(w) is the Fourier transformation of f.
Similarly, the spectra for vector valued function v(¢) with

period T are

V2r

T V()%

(V) (@) = (FIv(s) - V(s + D)y =

(C9)

which is exactly the definition we used in (C6).

We are ready to show that the Rayleigh scattering intensity
spectra (C6) is proportional to the density fluctuation spectra.
The term |E;(r, a)f)l2 in (C6) could be calculated from (C5)
as

6|2 sin(y 2wt
20472 I Flen ey — ki wop — o),
(C10)

|E (r, wp)|* =

where i is the angle between r and &,. The perturbation of
the dielectric constant €, is proportional to the perturbation of
density 8o by its definition in (C3), hence we have

2

&k, o) = <ai> 187k, )| (C1D)
ap

in which §p(k, w) is the Fourier transformation of §p(r, t) in

both the spatial and temporal coordinates.

Equation (C11) establishes the connection between in-
tensity spectra (C6) and the density fluctuation spectra.
Assuming §p(r, t) to be periodic in time with period T and
noting that it vanishes outside volume V, the explicit formula

for §p as the Fourier transformation of §p is
1 T/2 3 ) X
spk, w) = —/ dt/ dr’sp(r, t)e e T,
Q2 Jorp My
(C12)

Note that §p is equal to the Fourier transform of the periodic
extension of §p with unit cell V. Therefore we could treat §p
as if it were a periodic function in space, and hence define
the density fluctuation spectra by extending (C9) to both the
spatial and temporal coordinates

d+1

Qm) >
TV

in which d is the spatial dimension of volume V. Finally, we
get the intensity spectra / of the scattered EM wave E; in
terms of the density fluctuation spectra by combining (C6),
(C10), (C11), and (C13):

2 . 2 4 2
v 3 1o Slniw ) (9_€> (8p%) B, 5k),
Nt 2¢4r? I

(8p*)(, k) = 185(k, w)|* (C13)

I(I’, a)f) =

ap
(C14)

in which 6k = k; — k;, w = 0y — w;.

The Rayleigh scattering intensity spectra (C14) follow the
well-known a);“- frequency dependence, which means blue
light (high wy) is scattered more strongly than red light (low
wy). This frequency dependence is responsible for the blue
color of the sky in the daytime and at twilight. Moreover,
the most intense scattering happens at ¥ = 7 when one ob-
serves the scattering light in the direction perpendicular to the
incident wave. Therefore the zenith is bluer than the sky at
the horizon in the daytime. However, the detailed shape of
the intensity spectra I proportionally depends on the density
fluctuation spectra (8,%), which is determined by the hydro-
dynamics of gases in the scattering region.

APPENDIX D: CALCULATING THE DENSITY
FLUCTUATION SPECTRA

This Appendix computes the density fluctuation spectra
(8p%)(w, k) introduced in the previous Appendix. For simplic-
ity, we omit the § symbol throughout this section, making the
notation consistent with Appendix A. Moreover, we nondi-
mensionalize the density fluctuation spectra as a function of
the Knudsen number Kn and the nondimensionalized w in the
form (p?)(w, Kn). The computation largely follows [32, pp.
373-377].

First, we investigate the symmetries of spectra that we shall
exploit in computing the density fluctuation spectra. For a real
function f(¢) with period T, its correlation function

(FH@) = (F&)f (s + 1)),

is an even function satisfying (f2)(—¢t) = (f2)(¢). This could
be deduced from the definition of ensemble average (C7) in
the previous section. It also holds when T tends to infinity if
f is a stationary process.

The spectra (f 2)(w) defined in (C7) are exactly the Fourier
transformation of the correlation function (f2)(¢). From now
on we distinguish them by denoting the spectra (f?)(w) as
(f?)., while keeping the notation (f2) for (f2)(¢).

(D1)
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We could describe the spectra (f2),, in terms of a one-sided
Fourier transformation since the correlation function (f2)(t)
is even. Specifically, we define the one-sided Fourier transfor-
mation of (f2)(t) as

(5 (w) = (fA)(@)e ™ dt. (D2)

l o0
N2 ./0
It is enough to obtain the full spectra (f?),(w) because the
even correlation function (f2)(t) gives us the property

(A (@) = 2Re[(f) ()], (D3)

in which Re represents the real part of complex numbers. Note
that the one-sided Fourier transformation we use here is just
the complex version of the Fourier cosine transformation. The
one-sided Fourier transformation also has the property

(39 (w) = iwgl(w) — j(TO_; (D4)

if g vanishes at infinity.

Another important property of the correlation is that the
correlation (fg) = (f(s)g(s + 1)), between periodic function
f and g is a linear functional acting on g. It commutes with
the derivation 9 w.r.t. g:

(fog) = a(fg). (D5)

Consequently, the stress o(v) and heat flux ¢(T) as linear
functionals of v and T in the form of (BS) satisfy

(fo () =o((fv),
{(fa(T)) = q((fT)) (Do)

because o, g are linear combinations of spatial derivatives 9,
which satisfies (D5).

With these properties, we are ready to compute the density
fluctuation spectra from the linear system (A1) and constitu-
tive relation (4). Taking the correlation between density p and
the governing equation (A1), we obtain the linear system

3(p?) 8(pv>_0
ot ax
d{pv) d(pT) 8<p2>__ do ({pv))
ot + dx + ax Kn ax
2
3 9(pT) 3</>>:_§Kn3q(<pT>)_ D7)
2 ot ox 4

The above linear system governs the correlations of density
with density, velocity, and temperature. However, the initial

J

ikN, m[—2k*A (Kn)B,(Kn) — 3ik2wA;(Kn) — 2ik%wB; (Kn) — 2k 4 3]

conditions for the linear system are required to determine the
correlations completely.

The initial conditions of (D7) describe the two-point cor-
relations of densities, velocities, and temperatures between
two simultaneous locations separated by distance x at r = 0.
Such a correlation vanishes if the distance x is nonzero since
changes in one place require time to propagate to another.
Therefore initial conditions should be the delta function §(x)
multiplied by some amplitude constants. These amplitude
constants could be determined by the fluctuation theory in
statistical mechanics. The initial condition for (p2)(0, x) could
be deduced from [32, Eq. (88.2)] with nondimensionalization
and DSMC’s Monte Carlo effects considered. As for {(pv)
and (pT), they vanish at + = 0 since fluctuations of density
p, velocity v, and temperature 7' are statistically independent
[[32, p. 372], [33, p. 343]]. Therefore we have

N.ss
(0)(0, x) = =L 5(x),
PoL

(ov)(0,x) =0,
(pT)(0,x) =0, (D8)

in which m is the mass of gas molecule, N,y is the effective
number of molecules per particle used in the DSMC simula-
tion taking its Monte Carlo fluctuation into account, py is the
equilibrium gas density, and L is the reference length scale
used in the nondimensionalization.

To solve the linear system (D7), we take the Fourier trans-
form on the spacial coordinate and the one-sided Fourier
transformation on the temporal coordinate. With the help of
the constitutive relation (B14) we obtain

. . mN, ¢
iw(p)}, +ikipv)}, = —2L

2w poL’
iw(pv)) , +ik(pT)}  +ik(p®) ) = —k*A(Kn)(pv) [,

3
S10(0T) ]+ ik(pv) )\ = —K*Bu(Kn)(oT) ),
(D9)

in which we define A;(Kn)=KnM(kKn), B;(Kn)=
LKnK (kKn), and fif for arbitrary function f(r,x) is
obtained by taking the one-sided Fourier transformation
on time coordinate ¢ and the Fourier transform on space
coordinate x.

Finally, the solution of (§ pz)x « 1s a function of the Knud-
sen number Kn and the frequency  only:

(0°)} —pn (Kn) =

it does not depend on k because the nondimensionalized wave
number k will be fixed to 27 by choosing the reference length

scale L = ‘% if we consider the Fourier mode at wave number

ko. The density fluctuation spectra (p?)(w, Kn) is two times
the real part of (D10) according to (D3). This concludes the
derivation of density fluctuation spectra for the constitutive
relation (B14).

(27 )2 pol—2k*wA (Kn)Bi(Kn) — 3ik2w?Ar(Kn) + 2ik* By (Kn) — 2ik2w?By(Kn) — 5k20 + 3w3]’

; (D10)

(

Next we determine the density fluctuation spectra for the
NS equation and the Grad 13 moment method. The density
fluctuation spectra computed from the NS equation could be
obtained by simply replacing Ay, By in (D10) by

Ar(Kn) = $Kn;  B(Kn) = 2Kn. (D11)
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As for the Grad 13 method, o and g are unknown quantities
determined by two additional equations for the stress and heat
flux [30, Eq. (35)] as

Kno,o + %8xvx + %axq = —0,
Knd,q + 9,0 + 39, = —3q. (D12)

J

io(p?) ] + ik{pv)} =

Note that the nondimensionalization used in [30] differs
for stress and heat flux; specifically we have o) = 0Kn,
g6 = S qKn.

We apply the one-sided Fourier transformation on time and
Fourier transformation on space coordinates to the linear sys-
tem again. The resulting governing equations for correlations
of density between density, velocity, temperature, stress, and
heat fluxes for the Grad 13 method are as follows:

MNesy

27 pol.’

io(pv)} +ik(pT)]  +ik(p®) ), = —ikKn(po)} .,

3
5ia)<'0T>:u_.k + ik(/)vx);k + ik(PQ);k = O»

. + 4~ +
ioKn(po) [ + glk(PUx)w,k +

. 4 . 2. 2
iwKn(pg)? , + Elk(pa);k + glk(pﬂ;ﬁ,k =—=(pq)} -

8 .
Elkmq);k = —(po)} >

: (D13)

The spectra are hence calculated in the same way as the NS equation and linear constitutional relation model. The result for the

Grad 13 method is

mN,gek[—36ik*Kn? + 189ik2Kn’w? + 165k*Knw — 20ik? — 45iKn’w* — 75Kne? + 30iw?]

(80} pn (Kn)

Finally, we compute the velocity fluctuation spectra as the
test data. Taking the correlation between velocity v and the
governing equation (Al) gives

- (27)2 po[135k*Kn?w — 75ik*Kn — 234k2Kn’w3 + 240ik>Knw? + 50k2w + 45Kn’w’ — 75iKnw* — 30w3]’

(D14)

(

The initial condition for this linear system is obtained fol-
lowing a similar argument with the density spectra case.
At time t = 0, the only nonvanishing correlation function
is (v?), which is proportional to 8(x). The initial condition
for (v2)(0, x) we used here is deduced from [32, Eq. (88.5)]
with nondimensionalization and DSMC’s Monte Carlo effects
considered:

o Ty =0 (vp)(0,x) =0,
N,
d(v?) | d(wT)  d(vp) do ((v?)) W2)(0, x) = 22 5 (v,
TR R MR pol.
39(T) | d(vp) _ _gK dg((vT)) 015 (vT)(0,x) =0, (D16)
2 ot x4 ax
|
. _ . 2
<”2>Z,k:2n (Kn) = iNfrmwk[3w — 2ik=Bi(Kn)] D17)

The velocity fluctuation spectra (v?)(w, Kn) are two times the
real part of (D17) according to (D3).

APPENDIX E: DSMC CALCULATION DETAILS

We use the DSMCOF program by Bird [51, pp. 251-256]
to simulate the fluctuation of a 1D homogeneous gas. Its
geometry is a 1D gas of unit cross section between two-
plane specularly reflecting walls that are normal to the x

B (27)2 po[ —2k*wA (Kn)By (Kn) — 3ik2w?Ar(Kn) + 2ik*By(Kn) — 2ik2w?Bi(Kn) — 5k%w + 3w3]’

(

axis. The computation domain between these two planes
has spatial span 4.8 m in the x direction and is divided
uniformly into 1281 cells. Each cell contains eight sub-
cells utilized in determining collision pairs in the DSMC
computation.

The initial condition of our DSMC computation uses par-
ticle velocity sampled as in [51, p. 426] from the Maxwell
distribution at 7 = 300 K and zero mean velocity. The parti-
cle position is uniformly distributed in each cell. More details
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TABLE I. The coefficients and configuration used in DSMCOF
program in SI units.

Domain length 48m  Collision model VHS*
Power law® 0.5 Diameter® 3.5 x 107!% cm
Number of cells 1281 Mean-free path 1.8 x 1072 m
Simulation particles 128 100  Mean-free time 4 x 1075 s
Density 5 x 10~°kg/m* Temperature 300 K
Molecule mass 5x 107% kg Sound speed  371.56 m/s

Heat conduction 0.0214 kgm/s® /K Viscosity® 2.07 x 10~ kg/s/m
Time step size 4%x10°s Cellwidth 3.7 x 103 m
Subcells’ 8 Simulation time 4 x 107! s

*Variable hard sphere model

®The viscosity-temperature power law used in the variable hard
sphere model

“The reference molecule diameter

dThe heat conduction coefficient

®The viscosity coefficient

"The number of subcells per cell used in particle collision process

about the properties of the gas are given in Table I using SI
units.

The merit of the DSMC calculation is that no driven
physical conditions are required for simulating fluctuations,
because the DSMC method uses Monte Carlo samples to
mimic the real gas molecules. Hence statistical quantities
computed from such Monte Carlo samples naturally fluctuate
in the same way as the real gas except for an enlarged fluc-
tuation amplitude. Specifically, if one sample in the DSMC
simulation represents N, rr real gas molecules, the variances of
fluctuations in statistical quantities computed from the DSMC
simulation are N,y times larger than those of real gass. In
our DSMC computation we have 128 100 simulation parti-
cle samples representing gases of number density 10%° m~3;
therefore in our computation each sample particle represents
N.pr = 3.75 x 10" real gas molecules.

No global Knudsen number is defined for our DSMC simu-
lation of homogeneous gas since there is no mean flow across
the simulation domain. However, fluctuations in density, ve-
locity, and temperature exist and propagate according to
hydrodynamics with well-defined Knudsen numbers. Specif-
ically, the Knudsen numbers are defined for various Fourier
modes (phonons) of the fluctuations according to their wave-
length.

The molecular model is critical in DSMC calculations.
It describes how two molecule collide with each other and
determines the viscosity of the gas. The molecular model
gives the relation between two characteristic quantities of the
classical binary collision problem [[48, p. 376],[51, p. 331,[55,
p. 48]]: the impact parameter b and scattering angle 8. One of
the typical molecular models used in DSMC is the variable
hard or soft sphere model [51, pp. 40-42]

0 =2cos”! |:(dé>“:| (E1)

in which d is the effective diameter of the gas molecules and
o is a parameter mainly effecting the diffusion coefficient.
The diffusion parameter describes mass diffusion between
components of gas mixtures and is irrelevant in our single

species case. Therefore we use the default value « = 1 in the
DSMCOF program corresponding to the variable hard sphere
model. The effective diameter d varies with the relative veloc-
ity between colliding molecules according to [51, Eq. (4.63)]

o 1/2
d = dys ko) ()] , (E2)
r'(5/2 —w)

in which m is the mass of gas molecule, v, is the relative
velocity between the two colliding molecules, I' represents
the Gamma function, Ti.s is the reference temperature, diet
is the reference molecule diameter, and @ is a parameter
that determines how the viscosity coefficient changes w.r.t.
temperature. In our computation we use the default value m =
5% 1072 kg, Tt =273 K, and def = 3.5 X 10~'9 m in the
DSMCOF program. Note that (E2) differs from the Eq. (4.63)
in [51] since the latter uses the reduced mass m, = %m instead
of molecule mass m in our case.

The parameter w in (E2) determines the power law between
the viscosity coefficient © and the temperature 7 in the form
uox T® [51, Eq. (3.66)]. However, the viscosity coefficient
appears only in the stress as a production with the velocity
gradients. Such a change in viscosity is of second order §v3T
in the perturbation expansion and hence is not important in
our first-order linear case. As a result, we again use the default
value @ = 0.5 in the DSMCOF program.

We compute the viscosity coefficient and heat conduction
coefficient of our DSMC simulated gas using the Chapman-
Enskog theory [51, Eq. (3.73)]

5(a + 1)(a + 2)(wmkg) "/ (4kg /m)>~"2T
Ko = : ’

16aF(% — a))ar,,efvf";’e}

15k,
Ko = — g (E3)
4m

in which the reference total cross section o7 ,.r = ndrzef and

the reference velocity v, ,.r = ‘”‘B—T‘“l.
mI(5/2—w) =172

To ensure the resolution at relative large Knudsen numbers,
our DSMC computation uses the cell width as five times
smaller than the mean-free path of the gas, while the time
step is 10 times smaller than the mean-free time of the gas.
We compute the mean-free path and mean-free time from the
collision rate per gas molecule according to [51, Eq. (4.64)]

T\ V2o o\ 12
f= 4nn1/2dfef(—> <B—) (E4)

Tret m

in which n is the number density. The mean-free time of
gas molecules is ¢, = %, while the mean-free path of gas
molecules is [, = ,/ SlﬁﬂT t, ~ 1.281, in which [ is the mean-
free path used in nondimensionalization in Appendix A.
There is no need to worry about the convergence in the
mean flow since our computation simulates homogeneous
gas using homogeneous initial conditions. However, the finite
simulation domain in our DSMC computation may intro-
duce deviation in the spectra from theoretical results in
Appendix D. To eliminate this finite domain effect, we use
a domain length much (300 times) larger than the mean-free
path of the gas. Moreover, random perturbations that possibly
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appear in the initial condition are fully relaxed since we use
the total simulation time of 30 times more than the transverse
time of sound speed over the computational domain.

A snapshot will be stored for every five time steps. Then
the macroscopic quantities for each cell are calculated by av-
eraging corresponding quantities of particles in each cell. The
density fluctuation spectra used to train the neural network
are an ensemble average from 27 independent DSMC runs,
computed via discrete Fourier transformation using Eq. (C13).

APPENDIX F: NEURAL NETWORK TRAINING DETAILS

In this Appendix we adopt the dimensionalized quantities
instead of the nondimensionalized version in Appendix A
to make this section consistent with the DSMC computa-
tion, which is computed in SI units. In the dimensionalized
notation, the density fluctuation spectra are of the form
(6p*)(w, k), in which o is the frequency and the wave
number k. The wave number k directly determines the
Knudsen number of phonons (Fourier modes of p). Given
k, the spectra (p*)i(w) are a function of the angular
frequency w.

The training data set consists of a 40 000 (k, w, (p?)) tuples
draw, while the validation set consists of 400 such tuples.
We generate these tuples by drawing & uniformly from the

interval [0, ’;—’:J,/"BTTO] (corresponding to Kn € [0, 0.25]). Then

for a given k, we sample w from the range [—3ck, 3ck] (c is
the speed of sound) with the probability proportional to the
value of (p?)i(w) calculated using DSMC. The merit of such
a sampling strategy is that it emphasizes the peak region of the
spectra.

The common practice of choosing a test set is to sample
tuples of (k, w, (p?)) from the same distribution with the
training set. However, such a test set tests only how good
the neural network fits the density fluctuation spectra, not its
ability to generalize to other physics scenarios. Instead, we use
the model trained on density fluctuation spectra to predict the
velocity fluctuation spectra (v?)(w, k) to test its generalization
ability.

The function M is modeled as a fully connected neural
network without bias, as shown in the paper. The weights to
be trained are W ». These weights are initialized by Pytorch’s
default uniform initialization.

The loss is defined as the mean square difference be-
tween spectra (0*)psmc computed using DSMC and the
spectra (p?) predicted by the linear constitutiont rela-
tion model. The optimizer we use is the Adam optimizer
with learning rate o = 0.005, beta parameter 5; = 0.9 and
B> =0.999, and the parameter € = 1078, For each train-
ing epoch, the batch size for each step is 64. The training
process stops if the loss obtained on the validation set
increases.
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