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Impact of interfacial rheology on finger tip splitting
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Fluid-fluid interfaces, laden with polymers, surfactants, lipid bilayers, proteins, solid particles, or other
surface-active agents, often exhibit a rheologically complex response to deformations. Despite its academic
and practical relevance to fluid dynamics and various other fields of research, the role of interfacial rheology in
viscous fingering remains fairly underexplored. A noteworthy exception is the work by Li and Manikantan [Phys.
Rev. Fluids 6, 074001 (2021)], who used linear stability analysis to show that surface rheological stresses act to
stabilize the development of radial viscous fingering at the linear regime. In this paper, we perform a perturbative,
second-order mode-coupling analysis of the system and investigate the influence of interfacial rheology on
the morphology of the fingering structures at early nonlinear stages of the dynamics. In particular, we focus
on understanding how interfacial rheology impacts the emblematic finger tip-widening and finger tip-splitting
phenomena that take place in radial viscous fingering in Hele-Shaw cells. We describe the viscous Newtonian
fluid-fluid interface by using a Boussinesq-Scriven model, and derive a generalized Young-Laplace pressure
jump condition at the fluid-fluid interface. In this framing, we go beyond the purely linear description and use
Darcy’s law to obtain a perturbative mode-coupling differential equation which describes the time evolution of
the perturbation amplitudes, accurate to second order. Our early nonlinear mode-coupling results indicate that
regardless of their stabilizing action at the linear regime, interfacial rheology effects favor finger tip widening,
leading to the occurrence of enhanced finger tip-splitting events.
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I. INTRODUCTION

When a less viscous fluid displaces a more viscous one
in the narrow passage between two close parallel plates of
a Hele-Shaw cell, the fluid-fluid interface becomes unstable,
leading to the phenomenon of viscous fingering [1]. In a
classical work, Saffman and Taylor [2] studied the viscous
fingering problem in a rectangular Hele-Shaw cell (longitudi-
nal flow in a rectangular channel) where air invades glycerine.
In such a rectangular geometry, pressure is applied at one of
the edges of the channel, pushing a fluid against the other.
As a result, the initially flat interface separating the fluids is
destabilized by a pressure gradient and the interface deforms,
developing small lobes growing in the form of “fingers” [3–6].
For the typical high viscosity contrast situation studied by
Saffman and Taylor, fingered structures compete dynamically,
eventually leading to the formation of a single, round-tipped,
steady-state finger.

A different pattern-forming scenario arises when the flow
takes place in a radial Hele-Shaw cell setup [7–11], where the
less viscous fluid is injected under constant injection rate at
the center of the cell and drives radially the more viscous fluid.
Under these axisymmetric constant fluid injection conditions,
the initial fluid-fluid interface is circular, until the front be-
comes deformed, and a few small fingerlike protrusions arise.
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As these fingers continue to grow, they widen increasingly
and destabilize in the front part of the structures in such
a way that their tips split into two parts. This tip-doubling
process characterizes the so-called tip-splitting phenomenon.
As the split fingers keep advancing, both secondary branches
will also become progressively wider until they destabilize
again, ultimately forming highly ramified, complex treelike
patterns. In contrast to the rectangular Hele-Shaw flow case,
this traditional radial displacement presents multiple stages of
instability, with no true steady state attainable. In addition,
unlike the rectangular geometry situation, in which the single
finger normally does not split at its tip, the radial Hele-Shaw
flow geometry is markedly characterized by the occurrence of
nonlinear finger tip-splitting events.

Since the seminal work by Saffman and Taylor [2], the
viscous fingering instability has been the object of exten-
sive studies due to its connection to a variety of natural
phenomena and industrial processes, with prominent exam-
ples in enhanced oil recovery [12], flow in porous media
[13], carbon sequestration [14], and many others [1]. As a
matter of fact, over the past 60 years, the viscous finger-
ing (or Saffman-Taylor) problem has become an archetype
for studying interfacial instabilities occurring in other related
moving boundary problems, including dendrite solidification
[15], fluid mixing [16], microdischarges in plasmas [17], and
biodynamics of cell fragmentation [18], just to mention a few.

Over the years, investigators have analyzed the effects of
a large number of variations of the traditional radial viscous
fingering problem. Among many other interesting modifica-
tions, theoretical and experimental studies have incorporated
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the presence of non-Newtonian [19,20], miscible [21–23], and
reactive [24,25] fluids, the effect of magnetic [26,27] and
electric [28,29] fields, time-dependent injection rates [30–34],
suspended particles [35,36], the influence of centrifugal and
Coriolis forces [37,38], the impact of wetting effects [39,40]
and fluid inertia [41–43], as well as the consideration of fluid
displacements in geometrically modified Hele-Shaw cells
[44–49]. Most of these studies focused on two central points:
(i) Try to understand how these various changes influence the
morphology and nonlinear dynamics of the pattern-forming
structures and (ii) examine possible ways to control, suppress,
or enhance the development of fingering patterns, in particu-
lar, the growth of finger tip splitting.

Very recently, Li and Manikantan [50] examined a topic
that has been considerably underappreciated in the viscous
fingering literature: the impact of interfacial rheology stresses
on the radial Saffman-Taylor problem. Although it is well-
known that, in general, surface-active agents (for instance,
polymers, surfactants, lipid bilayers, proteins, and solid parti-
cles) act to stabilize interfaces against rupture and coalescence
in a number of industrial and natural processes [51–59], a
quantitative description of the influence of interfacial rhe-
ology in confined radial Hele-Shaw cell flows was indeed
lacking. In such types of systems [50–59], the in-plane fric-
tion that appears when the molecules or particles within the
interface slide past each other produces viscous dissipation
(or interfacial viscosities), leading to complex interfacial rhe-
ology.

In Ref. [50], Li and Manikantan used a Boussinesq-Scriven
model [60–62] and described the fluid-fluid interface as a
two-dimensional, compressible Newtonian fluid with intrinsic
surface shear and dilatational viscosities. By looking only at
small deformations from a uniformly radial sourcelike flow,
they considered the simplest possible flow setup in which
the unit normal vector pointed only in the radial direction
to the interface. By assuming that the vector velocity is pre-
dominantly in the radial direction and that the radial velocity
component needs be continuous at the interface, they derived
a Young-Laplace boundary condition for the problem. This
boundary condition expresses the normal stress balance at
the interface and takes into account the action of interfacial
rheology effects.

By performing a linear stability analysis, Li and Manikan-
tan [50] indicate that at the linear regime, interfacial rheology
effects tend to stabilize the radial viscous fingering insta-
bility. Physically, one has that the normal flow stretches or
dilates the fluid-fluid interface, which in turn is resisted by
the interfacial viscosity. Their linear results show the slowing
down of the growth rate of the instability for larger interfacial
rheology effects, suggesting that the emerging fingers would
get thicker as a result of the action of such surface rheological
stresses.

Despite the useful information and significant advances
obtained in Ref. [50] about the role of interfacial rheology
effects on the linear stability of the fluid-fluid interface in
radial viscous fingering, their purely linear perturbation theory
does not allow one to investigate how the intrinsically nonlin-
ear finger tip-splitting phenomenon is influenced by surface
rheological effects. However, it is well-known that a nonlinear
perturbative mode-coupling theory permits the prediction and

capture of key morphological elements in many interfacial
pattern formation problems [1,6,9,63–68]. Motivated by the
stimulating linear stability results obtained in Ref. [50], in this
paper we employ a perturbative, second-order mode-coupling
analysis to examine how interfacial rheology stresses affect
the emblematic tip-splitting events in radial Hele-Shaw cells.
Our current weakly nonlinear study complements the linear
investigation carried out in Ref. [50], and extends it to early
nonlinear stages of the flow.

In this paper, our main task is to use a perturbative ap-
proach to derive a differential equation for the interfacial
perturbations amplitudes using Fourier analysis, but going
beyond the level of linear stability analysis in which the
Fourier modes do not couple, and focusing on second-order
contributions. In addition to going up until second order, and
by taking into account the perturbed (noncircular) shape of the
evolving fluid-fluid interface, we derive a modified version of
the Young-Laplace boundary condition originally calculated
in Ref. [50] [their Eq. (10)]. We generalized it by adding two
important modifications: First, we consider that the unit nor-
mal vector at the perturbed interface may point in an arbitrary
direction, having both radial and azimuthal components. On
top of this, as a consequence of considering a generic normal
vector, we assume a flow setup more general than the one
considered in Ref. [50] and propose that the velocity of the
two-dimensional fluid that describes the interface is approx-
imately the average of the inner and outer fluid velocities
evaluated at the interface. Then, we use Darcy’s law to derive
an equation of motion for the fluid-fluid interface, including
the effects of interfacial rheology. Such a nonlinear differen-
tial equation is utilized to investigate how surface rheological
stresses impact the development of finger tip-splitting events.
Our theoretical results show that, despite their stabilizing na-
ture at the linear regime, surface rheological stresses induce
an enhanced growth of finger tip splitting at initial nonlinear
stages of the dynamics.

It should be noted that the theoretical studies reported in
Ref. [50] and in this paper are not just merely academic,
but have connections with some real applications involving
the development of interfacial instabilities in the presence of
surface-active elements. One emblematic example is oil re-
covery [12]. It is well-known that viscous fingering is a major
factor in reducing oil recovery from underground petroleum
reservoirs. On the other hand, it is also known that crude oil is
a complex mixture of different compounds, being constituted
of hydrocarbons, asphaltenes, resins, traces of metals, etc.
[56]. These structures are interfacially active and can strongly
couple to hydrodynamic forces, being capable of altering the
stability of oil-in-water or water-in-oil emulsions [54]. Thus,
it is of scientific and technological importance to understand
how to control the growth of patterns under the presence of
such rheologically complex interfaces during oil extraction.
Other interesting examples are linked to the investigation
of pattern-forming interfaces in certain biological systems,
such as living cells and biofilms [69–71], where a range of
problems relate interfacial rheology, dynamics, and structure.
These practical and interdisciplinary examples add to the po-
tential impact of the theoretical analyses performed here and
in Ref. [50]. For additional fluid mechanical, soft matter, and
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FIG. 1. A schematic of the radial viscous fingering problem in
a Hele-Shaw cell of gap thickness b. The inner (outer) fluid has
viscosity η1 (η2). The fluids are separated by a structured, rheological
interface. Fluid 1 is injected into the cell, previously filled with fluid
2, with constant injection rate Q. The time-dependent unperturbed,
circular interface (dashed circle) has radius R(t ), and the interface
perturbation is denoted by ζ (θ, t ), where θ is the azimuthal angle.
The deformed interface is represented as R(θ, t ) = R(t ) + ζ (θ, t ).
The rheological interface has surface tension γ , surface shear vis-
cosity ηs, and dilatational viscosity κs.

biomedical systems, and more details about possible targeted
processes involving instabilities in structured interfaces, we
refer the reader to Refs. [55,59], and references therein.

II. GOVERNING EQUATIONS AND THE SECOND-ORDER
MODE-COUPLING DYNAMICS

We split our theoretical formulation into two subsections.
In Sec. II A, we present the governing equations for two-
fluid flows in a Hele-Shaw cell, considering the influence of
interfacial rheology. In Sec. II B, as discussed in the Introduc-
tion, to capture the influence of interfacial rheology on the
tip-splitting mechanism, we extend the linear stability anal-
ysis of Ref. [50] by deriving a second-order, mode-coupling
differential equation for the time evolution of the interface
perturbation.

A. Governing equations for Hele-Shaw flows
with interfacial rheology effects

We consider a radial Hele-Shaw cell of constant gap
spacing b containing two immiscible, incompressible, and
Newtonian viscous fluids (Fig. 1). The viscosities of the inner
fluid (fluid 1) and the outer one (fluid 2) are denoted as η1

and η2, respectively. To describe the rheological interface be-
tween fluids 1 and 2, we adopt the Boussinesq-Scriven model
[50,59–62], where the interface is a continuous isotropic, and
compressible, two-dimensional Newtonian fluid with surface
tension γ . In addition, excess viscous stresses within the inter-
face are described by two intrinsic surface viscosities, surface
shear viscosity ηs, and dilatational viscosity κs. These inter-
facial viscosities result from the in-plane friction that arises
when the surface-active entities (molecules, particles, etc.)
within the interface slide past each other. In this context, ηs

expresses resistance against stretching deformation, while κs

results when the interface resists expansion and compression.

It is worth mentioning that while the apparent surface di-
latational viscosity might arise due to finite adsorption or
desorption time [50,72], the intrinsic surface dilatational vis-
cosity κs is a property of the surface-active agent. Besides,
ηs and κs are, respectively, the two-dimensional version of
the fluid viscosity and dilatational viscosity that appear in the
constitutive relation between stress and strain rate [Eq. (7)].

In this setup, fluid 1 is injected at the center of the Hele-
Shaw cell at a constant injection rate Q (area covered per unit
time), displacing fluid 2, which initially fills the region be-
tween the Hele-Shaw plates. During this injection process, the
viscosity difference-driven Saffman-Taylor instability induces
deformations of the initially circular fluid-fluid interface. In
this scenario, the ultimate goal of Secs. II A and II B is to
derive a nonlinear differential equation for the evolution of
these interface perturbations.

We begin the presentation of the governing equations by
introducing the gap-averaged Darcy’s law [1,2],

u j = − b2

12η j
∇p j, (1)

which describes the effectively two-dimensional Hele-Shaw
flow, and the incompressibility condition for the bulk fluids,

∇ · u j = 0, (2)

where the index j is 1 for the displacing fluid and 2 for the
displaced one. In Eqs. (1) and (2), u j = u j (r, θ ) and p j =
p j (r, θ ) denote the gap-averaged velocity and pressure field
of fluid j = 1, 2, respectively. Here (r, θ ) are the usual polar
coordinates centered at the injection point, where θ represents
the azimuthal angle. By inspecting Eq. (1), one readily ver-
ifies the irrotational nature of the flow (∇ × u j = 0) so one
can define a velocity potential φ j , where u j = −∇φ j . From
Eq. (2) and the definition of φ j , one can see that the velocity
potentials obey Laplace’s equation:

∇2φ j = 0. (3)

We proceed by describing the perturbed interface between
fluids 1 and 2 as r = R(θ, t ). To obtain the equation of motion
for R = R(θ, t ), first we rewrite Eq. (1) in terms of φ j . Then,
we subtract the resulting expression for j = 1 from the one
for j = 2, with both equations evaluated at r = R, and divide
by the sum of the two fluids’ viscosities. This computation
results in the dynamic equation for R given by

A

(
φ1 + φ2

2

)
R

−
(

φ1 − φ2

2

)
R

= −b2(p1 − p2)R
12(η1 + η2)

, (4)

where A = (η2 − η1)/(η2 + η1) is the viscosity contrast. By
examining Eq. (4), we verify that we need to relate both the
velocity potentials φ j |R, as well as the pressure jump across
the interface (p1 − p2)|R with the interfacial perturbations.
The former is obtained from Eq. (3) together with the kine-
matic boundary condition [1], which connects the velocity of
the fluids with the motion of the interface itself:

∂R
∂t

=
(

1

r2

∂r

∂θ

∂φ j

∂θ
− ∂φ j

∂r

)
R

. (5)

Equation (5) manifests the fact that the normal components of
the fluids’ velocities are continuous across the interface.
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To determine the pressure jump in Eq. (4), we will follow
similar steps to those of Ref. [50]. It is worth mentioning that
the interfacial rheology affects the interface dynamic Eq. (4)
only through (p1 − p2)R. We begin by describing the two-
dimensional Cauchy’s momentum conservation equation at
the interface [73,74],

ρs
Du
Dt

= n · (σ2 − σ1) + ∇s · σs, (6)

where D/Dt is the material derivative, u is the fluid velocity
at the interface, ρs is the surface mass density, n is the unit
normal vector pointing towards the outer fluid, and σ2 − σ1 is
the hydrodynamic stress jump across the interface. Also, ∇s =
Is · ∇ is the surface gradient operator, with Is = I − nn being
the surface identity tensor. In Appendix A, we show some
useful identities involving ∇ and ∇s in polar coordinates.
Equation (6) is the two-dimensional analog of the volumet-
ric conservation equation for the momentum. It expresses
the condition of the momentum balance at every point on
the dividing interface. In this equation, the surface Reynolds
transport theorem is used to obtain the term on the left-hand
side. On the other hand, the first contribution on the right-hand
side (RHS) is a consequence of the contact with the bulk
fluids. Finally, the last term is equivalent to the divergence
of the stress tensor in a three-dimensional media, representing
the internal forces within the interface. Thus, σs is the stress
tensor on the interface, which is given by [55,61]

σs = γ Is + τrheo, (7)

where τrheo quantifies the deviatoric relationship between
stresses and strain rates on the interface.

To obtain (p1 − p2)|R from Cauchy’s momentum conser-
vation, first we substitute Eq. (7) into (6), and take the normal
component of the resulting expression, yielding

ρs
Du
Dt

· n − n · (σ2 − σ1) · n = ∇sγ · n − γ (∇s · n)

+ (∇s · τrheo) · n. (8)

The constitutive relation given by Scriven’s generalization of
the two-dimensional, compressible Newtonian approximation
proposed by Boussinesq [55,61] defines the surface stress
tensor τrheo as

τrheo = [(κs − ηs)∇s · u]Is + ηs[∇su · Is + Is · (∇su)T ],
(9)

where the superscript T denotes a matrix transpose. Note
that for highly viscous fluids confined in the geometry of
the Hele-Shaw cell, the Reynolds number is significantly low
[1], and hence one can safely neglect the contribution of the
fluid and surface-active agent inertia ρsDu/Dt in Eq. (8). Be-
sides, as explained in detail in Ref. [50], we make the typical
assumption that surface tension is spatially uniform, so the
Marangoni stress ∇sγ vanishes. Under these circumstances
and substituting Eq. (9) into Eq. (8), we obtain an expression
for the normal stress jump across the interface:

n · (σ1 − σ2) · n = −γ (∇s · n) − (κs − ηs)(∇s · u)(∇s · n)

+∇s · {ηs[∇su · Is + Is · (∇su)T ]} · n.

(10)

At this point, it is worth mentioning that in the framework
of the Boussinesq-Scriven model [60–62] employed here and
in Ref. [50], although the bulk fluids are incompressible
[Eq. (2)], the fluid-fluid interface is modelled as a compress-
ible fluid (i.e., ∇s · u �= 0) having viscosities κs and ηs [73,74].
In fact, as noted in Ref. [74], incompressible interfaces are
rare in practice, and most interfacial phases are generally
compressible.

In contrast to Ref. [50], we rewrite Eq. (10) in a format
much more compact given by

n · (σ1 − σ2) · n = −[γ + (κs + ηs)∇s · u]K, (11)

where K = ∇s · n is the interface curvature in the plane of
the Hele-Shaw cell. Note that the curvature in the direction
perpendicular to the plates (K⊥ = 2/b) was not considered
in Eq. (11) as it is nearly constant [75,76] and hence does
not significantly affect the interface motion. As commented
earlier, within the scope of the Boussinesq-Scriven model, the
fluid-fluid interface is described as a two-dimensional strip.
However, since K⊥ is nearly constant, one can simply keep
track of the fluid-fluid deformation just along an effectively
one-dimensional interface having in-plane curvature K. Also,
it is worth noting that the term ηs(∇s · u)K in Eq. (11) is
obtained by rewriting the last line of Eq. (10) as −2ηs(∇s ·
u)K. See Appendix B for details about this calculation. The
pressure jump across the interface, (p1 − p2)R, arises from
Eq. (11) using the stress tensor σ j for a viscous Newtonian,
incompressible fluid, which is given by contributions from
viscous normal stresses and pressure [77–80]:

σ j = −p jI j + η j[∇u j + (∇u j )
T ]. (12)

Substituting the stress tensor (12) into Eq. (11), we have

(p1 − p2)R = [γ + (κs + ηs)∇s · u]K
+ n · {η1[∇u1 + (∇u1)T ]

− η2[∇u2 + (∇u2)T ]}R · n. (13)

This equation illustrates how surface tension, viscous normal
stresses, and interfacial rheology yield a pressure jump across
the interface. The first term on the RHS, γK, is commonly
known as the Young-Laplace pressure boundary condition [1].
Also, by observing Eq. (13), one verifies that the interfacial
rheology contribution [the term with (κs + ηs) on the RHS of
Eq. (13)] yields an effective surface tension given by [γ +
(κs + ηs)∇s · u]. Finally, the last term of Eq. (13) represents
the balance of viscous normal stresses at the interface.

Note that we need the fluid velocity at the interface, u,
to compute the contribution of the interfacial rheology to
the pressure jump in Eq. (13). In this regard, the authors of
Ref. [50] take advantage of the fact that they are interested in
the linear stability analysis of the interface dynamic. In this
regime, as the interface perturbation is much smaller than the
interface radius, Ref. [50] assumes that the flow is predom-
inantly radial (i.e., ur � uθ ) in the pressure jump condition
[Eq. (13)]. Consequently, in Ref. [50] it is also considered
that the interface normal vector n ≈ er , where er is the unit
vector along the radial direction. Under these circumstances,
using the kinematic boundary condition [Eq. (5)], which im-
poses the continuity of the normal fluid velocities across the
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interface,

n · u1|R = n · u2|R, (14)

Ref. [50] computes u assuming it is equal to the radial pro-
jection of the velocities of fluids 1 and 2 evaluated at the
interface, i.e., u ≈ urer ≈ u1r |R er ≈ u2r |R er .

Nevertheless, as the interface perturbations grow, the az-
imuthal velocity uθ becomes relevant so one can no longer
assume that u and n point along er . In fact, they should
point in an arbitrary direction depending on the interface
deformation. This general situation will be considered here
since we intend to capture nonlinear effects of the interface
dynamics, and thus analyze the formation of viscous fingers
slightly larger than those of Ref. [50]. As a first approach to
considering an arbitrary n in the viscous fingering instability
under the influence of interfacial rheology, below we calculate
u assuming a flow setup slightly more general than the one
considered in Ref. [50].

First, notice that, in reality, the structured rheological in-
terface should be a thin layer, of small but finite thickness
(typically of the size of the species constituting it) whose ve-
locity field v matches u1 at the inner boundary (fluid 1-layer)
and u2 at the outer boundary (layer-fluid 2), namely,

v|r=R1 = u1|r=R1 and v|r=R2 = u2|r=R2 , (15)

where R1 and R2 are the positions of the inner and outer
boundaries, respectively. Therefore, given that the layer thick-
ness is much smaller than any length scale of the system
(basically a single layer of molecules thick), let us assume
that u can be calculated as the transversal average of v across
the layer.

To calculate the velocity field within the layer, v, let d
be the thickness of the thin layer between fluids 1 and 2.
Since d is significantly small, first assume that the inner and
outer boundaries of the layer are parallel (with normal vector
n). Then, define rn as the distance along n from the inner
boundary to an arbitrary point within the layer. In this manner,
rn = 0 and rn = d define the positions of the inner and outer
boundaries, respectively. From these definitions and using
the fact that d is extremely small, we rewrite the continuity
conditions of Eq. (15) as

v(rn = 0) ≈ u1|R and v(rn = d ) ≈ u2|R, (16)

where it was assumed that R j ≈ R, with j = 1, 2, on the RHS
of Eq. (15). In this framework, by examining Eq. (16) and
the continuity of the normal fluid velocities at the effectively
one-dimensional interface [see Eq. (14)], we verify that the
normal component of v is approximately constant along n,
i.e.,

n · v(rn) ≈ vn = u1n|R = u2n|R, (17)

where u jn = n · u j .
To calculate the tangential component of v, first recall that

in the description of an effectively one-dimensional interface,
the tangential projection of u j is discontinuous as one crosses
the interface, in contrast to the normal component of u j . This
discontinuity is extensively explored in the vortex-sheet for-
malism [3], where the vorticity on the interface is quantified

by the vortex-sheet “strength” s · (u1 − u2)R, with s being
the unit tangent vector to r = R(θ, t ). Note that s should
also be tangent to the inner and outer boundaries since they
are parallel and very close to each other. In this scenario,
from the continuity conditions (16), we see that, differently
from vn, vs = s · v cannot be a constant vector. Thus, as d is
significantly small, let us consider that vs is approximately
a linear function of rn, with boundary conditions given by
Eq. (16), i.e.,

vs(rn) ≈ (u2s − u1s)R
d

rn + u1s|R, (18)

where u js = s · u j . Notice that vs(0) = u1s|R and vs(d ) =
u2s|R.

Finally, considering that u is the transversal average of
v(rn) = vnn + vs(rn)s across the interface layer, we have

u ≈ 1

d

∫ d

0
v(rn)drn = (u1 + u2)R

2
. (19)

Equation (19) tells us that, within the approach of an ef-
fectively one-dimensional interface, the fluid velocity at this
boundary is approximately the average of the velocities of
fluids 1 and 2. From now on, we will focus exclusively
on the effective one-dimensional interface r = R(θ, t ), using
Eq. (19) as the fluid velocity at this boundary. With this ex-
pression for u in hand, we can finally conclude our calculation
of the pressure jump in Eq. (13).

Substituting Eq. (19) into (13), at last we obtain (p1 −
p2)R in the desired format to compute the interface dynamic
equation via Eq. (4):

(p1 − p2)|R =
[
γ + κs + ηs

2
[∇s · (u1 + u2)]R

]
K

+ n · {η1[∇u1 + (∇u1)T ] − η2[∇u2 + (∇u2)T ]}R · n.

(20)

The contribution of interfacial rheology showed in Eq. (20)
can be rewritten in terms of the velocity potentials by using
u j = −∇φ j ,

[∇s · (u1 + u2)]R = −n2
r

r

(
∂φ1

∂r
+ 1

r

∂2φ1

∂θ2

)
− n2

θ

∂2φ1

∂r2

− 2nrnθ

(
1

r2

∂φ1

∂θ
− 1

r

∂2φ1

∂r∂θ

)

− n2
r

r

(
∂φ2

∂r
+ 1

r

∂2φ2

∂θ2

)
− n2

θ

∂2φ2

∂r2

− 2nrnθ

(
1

r2

∂φ2

∂θ
− 1

r

∂2φ2

∂r∂θ

)
, (21)

where nr and nθ denote the radial and azimuthal components
of the unit normal vector to the interface. The influence of
viscous normal stresses on (p1 − p2)R can also be expressed
in terms of φ j as

n · {η1[∇u1 + (∇u1)T ] − η2[∇u2 + (∇u2)T ]}R · n

= 2η2

[
n2

r

∂2φ2

∂r2
+ 2

nrnθ

r

(
∂2φ2

∂r∂θ
− 1

r

∂φ2

∂θ

)
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+ n2
θ

r

(
∂φ2

∂r
+ 1

r

∂2φ2

∂θ2

)]

− 2η1

[
n2

r

∂2φ1

∂r2
+ 2

nrnθ

r

(
∂2φ1

∂r∂θ
− 1

r

∂φ1

∂θ

)

+ n2
θ

r

(
∂φ1

∂r
+ 1

r

∂2φ1

∂θ2

)]
. (22)

A detailed derivation of Eq. (22) is given in Appendix A of
Ref. [81] (see also Appendix B in Ref. [50]). An equivalent
expression was originally obtained in Ref. [82] [see Eq. (4)
of this reference], but their expression misses the factors of 2
that multiply the terms nrnθ on the RHS of Eq. (22). In ad-
dition, it is worth pointing out that Refs. [81,82] investigated
the influence of viscous normal stresses on viscous fingering
instability without considering interfacial rheology.

Equation (20), jointly with Eqs. (21) and (22), offers a
generalization for Eq. (10) of Ref. [50], with the unit normal
vector having an arbitrary direction and the fluid velocity at
the interface being the average of u1|R and u2|R. We now
have all the central physical ingredients to properly investigate
the weakly nonlinear dynamics of the interface r = R(θ, t ).
This will be done in Sec. II B.

B. The mode-coupling dynamic equation

The goal of this section is to derive a second-order mode-
coupling equation for the deformed fluid-fluid interface r =
R(θ, t ). We begin representing R(θ, t ) as

R(θ, t ) = R(t ) + ζ (θ, t ), (23)

where ζ = ζ (θ, t ) is the interface perturbation and

R(t ) =
√

R2
0 + Qt

π
(24)

is the time-dependent unperturbed radius of the two-fluid
interface, with R0 being the unperturbed interface radius at
t = 0. To capture the early nonlinear stages of the dynamics
of R = R(θ, t ), we will consider terms up to second order
in ζ . Expanding the perturbation of the fluid-fluid interface in
Fourier series, we have

ζ (θ, t ) =
+∞∑

n=−∞
ζn(t ) exp (inθ ), (25)

where ζn(t ) are the complex Fourier amplitudes with inte-
ger wave numbers n. In this framing, the weakly nonlinear
evolution of the interface is described by a mode-coupling
differential equation for the perturbation amplitudes ζn(t ).
Note that in Eq. (25) the n = 0 mode is included to main-
tain the area of the perturbed shape independent of the
perturbation ζ . Then, mass conservation imposes that the
zeroth mode is written in terms of the other modes as ζ0 =
−(1/2R)

∑
n �=0 |ζn(t )|2 [9]. Note that the area constraint ex-

pressed by ζ0 couples the mode n = 0 with all other modes
n �= 0 and depends on the Fourier amplitudes squared, indicat-
ing that it is an intrinsically a nonlinear concern, not required
in linear stability analysis.

With the interface description given by Eqs. (23)–(25), we
turn our attention back to the dynamic equation of the inter-
face (4). The velocity potentials appearing on the left-hand
side of Eq. (4) are calculated from Eq. (3), whose solutions
are

φ j = − Q

2π
ln

(
r

R

)
+

∑
n �=0

φ jn(t )

(
r

R

)(−1)( j+1)|n|
exp (inθ ).

(26)

The velocity potentials become completely determined by ex-
pressing the Fourier amplitudes φ jn(t ) of Eq. (26) in terms of
the interface perturbation amplitudes ζn(t ) given in Eq. (25).
To this end, we use the kinematic boundary condition (5),
expanding it up to second order in ζ . Then, Fourier trans-
forming the resulting expression and solving it for φ jn(t )
consistently to second order, we obtain expressions for φ jn(t )
related to ζn(t ), and its time derivative ζ̇n(t ) where the over-
dot represents a total time derivative. With the solutions for
φ jn(t ) placed into Eq. (26), we substitute φ j into the interface
dynamic Eq. (4) and the pressure jump (20), always keeping
terms up to second order in ζ .

Now we need to plug the pressure boundary condition
(20) into Eq. (4), expressing K = ∇s · n in terms of ζ . As
mentioned earlier, K designates the interface curvature in the
plane of the cell [1], and it is related to R via

K =
R2 + 2

(
∂R
∂θ

)2

− R∂2R
∂θ2[

R2 +
(

∂R
∂θ

)2]3/2 . (27)

Finally, after substituting the solution (26) and Eq. (20) into
the equation of motion (4), we keep terms up to second-order
in ζ and Fourier transform. As a result, we obtain a dimension-
less mode-coupling differential equation for the perturbation
amplitudes (for n �= 0) given by

ζ̇n = λ(n)ζn +
∑
n′ �=0

{[F (n, n′) + FS (n, n′) + FR(n, n′)]ζn′ζn−n′

+ [G(n, n′) + GS (n, n′) + GR(n, n′)]ζ̇n′ζn−n′ }, (28)

where

λ(n) = 1

s(n)

{
1

2πR2
(A|n| − 1) − (A + 1)

2CaR3
|n|(n2 − 1)

− 1

12πR4
|n|(|n| − A) − Bq(A + 1)

48πR5
|n|(n2 − 2)

}

(29)

is the linear growth rate. Besides,

s(n) = 1 + 1

6R2
|n|(|n| + A) + Bq(A + 1)

24R3
|n|, (30)

Ca = 12η2Q

γ b
(31)
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is the global capillary number [81] which expresses a relative
measure of viscous to surface tension forces, and

Bq = κs

η2b
(32)

is a Boussinesq number which measures the relative strength
of surface viscous stresses to bulk (outer fluid) viscous stress.
As in Ref. [50], here we consider that the dilational viscosity is
much bigger than the surface shear viscosity, κs � ηs [83–85].
Notice that by taking the limit Bq → 0 in Eq. (28), the sur-
face rheology effects vanish, and one recovers the results of
Refs. [81,82]. In addition, observe that Ref. [50] defines the
Boussinesq number of Eq. (32) by using the symbol Bqb. In
this manner, Bq in Ref. [50] is a modified Boussinesq number
that is about 10–1000 times larger than our Bq as defined in
Eq. (32).

The second-order terms of Eq. (28) characterize the early
nonlinear stages of the interface dynamic. Among these func-
tions, FR and GR represent the contributions from interfacial
rheology, and FS and GS originate from viscous normal
stresses. The expressions for all the nonlinear mode-coupling
functions F , FS , FR, G, GS , and GR are given in Appendix C—
see Eqs. (C1)–(C6). In Eq. (28), lengths are rescaled by b
and velocities by Q/b. We emphasize that all dimension-
less parameters we use throughout this paper are consistent
with typical physical quantities used in real experiments of
injection-driven, radial Hele-Shaw flows [1,7,8,10,11,30].

Finally, to have a consistent second-order mode-coupling
equation, we replace the time derivative terms ζ̇n′ appearing
on the RHS of Eq. (28) by λ(n′)ζn′ + O(ζ 2

n′ ) to finally obtain

ζ̇n = λ(n)ζn +
∑
n′ �=0

{[F (n, n′) + FS (n, n′) + FR(n, n′)]

+ λ(n′)[G(n, n′) + GS (n, n′) + GR(n, n′)]}ζn′ζn−n′ .

(33)

This is the second-order mode-coupling equation for the fluid-
fluid interface in a radial injection-driven flow, taking into
account the action of interfacial rheology. We point out that,
over the years, fully nonlinear numerical studies for various
other pattern formation systems [67,68,86–90] have validated
the weakly nonlinear method used in this section. These fully
nonlinear studies reveal that the weakly nonlinear theory can
accurately describe the beginning of pattern formation, pro-
viding a reliable approach to predict fundamentally important,
fully nonlinear, pattern-forming mechanisms.

III. DISCUSSION

In this section, we utilize our perturbative, second-order
mode-coupling theory to examine how the finger tip-splitting
phenomena are influenced by interfacial rheology effects at
early nonlinear stages of radial Hele-Shaw flows. To do it,
we use the nonlinear, coupled differential equations for the
perturbation amplitudes [Eq. (33)] and rewrite the complex
interfacial perturbation given in Eq. (25) in terms of cosine
and sine modes

ζ (θ, t ) = ζ0 +
∞∑

n=1

[an(t ) cos nθ + bn(t ) sin nθ], (34)

where an(t ) = ζn(t ) + ζ−n(t ) and bn(t ) = i[ζn(t ) − ζ−n(t )]
are real valued. In addition, we have that

ζ0 = − 1

4R

∞∑
n=1

[
a2

n(t ) + b2
n(t )

]
. (35)

To generate the shape of the time-evolving interfacial patterns,
we consider the nonlinear coupling of a finite number of
Fourier modes, and from Eq. (33) obtain the corresponding
versions of the mode-coupling differential equations for the
mode amplitudes an(t ) and bn(t ). The time evolution for
an(t ) and bn(t ) gives the time evolution for the interface it-
self [from Eqs. (23) and (34)]. The resulting set of coupled
nonlinear differential equations for these real-valued ampli-
tudes is numerically solved by using the software package
MATHEMATICA 12.1.

It is well established from previous weakly nonlinear stud-
ies of the Saffman-Taylor problem [6,9] that the tip-splitting
mechanism in Hele-Shaw flows can be properly emulated
by considering the weakly nonlinear coupling of just two
particularly relevant Fourier modes: a fundamental mode n
and its first-harmonic 2n. Thus, in the context of such a sim-
plified perturbative mode-coupling picture, the tip-splitting
phenomena are produced by the nonlinear influence of the
fundamental mode n on the growth of the harmonic mode 2n.
Within this approach, the fundamental mode sets the overall
n-fold symmetric morphology of the pattern, while the first
harmonic mode 2n determines the specific shape of the finger
tips (namely, if the tips are narrow, wide, or if they split). In
Fig. 2, we use this simple mode-coupling scheme involving
only modes n and 2n to gain insight into how surface rheolog-
ical stresses act on the development of finger tip splitting at
early nonlinear dynamical stages of radial fingering.

Figure 2 illustrates the fluid-fluid interface time evolu-
tion for 0 � t � t f , considering the interaction of the Fourier
modes n and 2n, where the various interfaces of each pat-
tern are plotted in equal time intervals �t = t f /10, with t f

denoting the largest time before successive interfaces cross
one another [91]. This interface crossing is not observed
in high viscosity contrast radial Hele-Shaw cell experiments
[1,7,8,10,11,30]. Therefore, the largest time before crossing
is used as the upper bound time (t = t f ) for the applicability
of our perturbative description. The interfacial patterns por-
trayed in Fig. 2 are produced by considering the following
characteristic dimensionless parameter values: A = 1, Ca =
150, R0 = 3, and Bq = 0, 15, 30. The choice for this specific
viscosity contrast value (A = 1, where 0 < A � 1) is mainly
motivated by its wide use in radial viscous fingering experi-
ments [1,7,8,10,11,30], but also because such a large viscosity
contrast induces significant interface destabilization, favoring
the occurrence of tip-splitting events. Moreover, if Ca is too
small, the interface is quite stable against perturbations, mak-
ing its time evolution uninteresting. However, if Ca is very
large the interface becomes very quickly deformed, creating
difficulties for an accurate early nonlinear theoretical descrip-
tion, since the undesired (and, unphysical) interface crossings
occur rapidly. For these reasons, we have chosen a relatively
small value for the capillary number Ca = 150 (where typ-
ically O(10) � Ca � O(103) [1,7,8,10,11,30]). This is done
to prevent a sudden, excessive growth of the interface,
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FIG. 2. Time evolution of the weakly nonlinear interfacial patterns generated by solving Eq. (33) for 0 � t � t f , and three increasingly
larger values of the Boussinesq number (a) Bq = 0, (b) Bq = 15, and (c) Bq = 30. For a given Bq, the final time t f is the maximum allowed
time before unphysical interface crossings begin. These final times are (a) t f = 2754, (b) t f = 5087, and (c) t f = 6499. Interface profiles are
plotted in time intervals of t f /10, where the interface at t = t f is depicted by a thicker curve in black. The viscous outer fluid is represented by
the shaded region, and the inner fluid of negligible viscosity is represented by the white region. Here we consider the second-order nonlinear
coupling of cosine modes, where the fundamental mode n = nζ

max = 7, with its harmonic 2n = 14. The other flow parameters are A = 1,
Ca = 150, and R0 = 3. The initial perturbation amplitudes are an(0) = R0/2500 and a2n(0) = 0

leading us very quickly to a regime in which our perturbative
approach would not be valid (perturbatively, we must have
|ζn(t )|/R(t ) 	 1). We also note there is nothing particularly
special about the value we have taken for R0 [R0 = 3, where
O(1) � R0 � O(10)], other than it lies within of the range of
typical values used in the radial flow experiments mentioned
above. Finally, we point out that the values for the Boussinesq
number we use (Bq = 0, 15, 30) are fully consistent with the
corresponding magnitudes of Bq utilized in Ref. [50]. In this
framing, the final times are t f = 2754 [Fig. 2(a)], t f = 5087
[Fig. 2(b)], and t f = 6499 [Fig. 2(c)].

To generate the patterns illustrated in Fig. 2, we fol-
low Ref. [92] and choose the fundamental mode to be the
mode of largest interfacial amplitude when Bq = 0, as given
by linear stability analysis, i.e., n = nζ

max taken at time t f ,
and obtained by maximizing the linear perturbation ampli-
tude ζn(t ). For the parameters considered in Fig. 2, we find
that n = nζ

max = 7, therefore 2n = 14. It has been shown
in Ref. [9] that when only the modes n and 2n are con-
sidered at second order, there is no coupling between the
sine mode amplitude b2n and the cosine mode amplitude
an, so the growth of b2n is uninfluenced by an. In this
way, for the purposes of our simplified mode-coupling pic-
ture shown in Fig. 2, the finger tip-splitting phenomenon
can be described and captured by considering the cou-
pling of the cosine mode amplitudes. Therefore, without
loss of generality, in the pattern-forming structures displayed
in Fig. 2, just cosine modes are considered and bn(t ) =
b2n(t ) = 0. Moreover, to ensure that the morphological fea-
tures of the patterns depicted in Fig. 2 are spontaneously
induced by the weakly nonlinear dynamics and not im-
posed by a large initial amplitude for the cosine harmonic
mode 2n, we set the initial (t = 0) harmonic mode amplitude
to zero [a2n(0) = 0]. In this way, at t = 0 only the funda-
mental mode n has a nonzero, but small amplitude given by
an(0) = R0/2500. Under these circumstances, and utilizing

Eq. (33), the equations of motion for the cosine amplitudes
for modes 2n and n are

ȧ2n = λ(2n)a2n + 1
2
(2n, n)a2

n (36)

and

ȧn = λ(n)an + 1
2
(n, 2n)ana2n, (37)

where


(n, p) = F (n, p) + FS (n, p) + FR(n, p)

+ λ(p)[G(n, p) + GS (n, p) + GR(n, p)]. (38)

The time evolution of the amplitudes an(t ) and a2n(t )
is obtained by numerically solving the coupled nonlinear
differential equations (36) and (37). Within the scope of
second-order mode coupling, it is known that an enhanced
tendency of the fingers to get wider (narrower) occurs when
a2n < 0 (a2n > 0) [9]. Therefore, a negative growth for the
cosine amplitude of the first harmonic mode 2n would mean a
tendency toward finger tip-splitting formation.

In Fig. 2, we illustrate the weakly nonlinear pattern mor-
phologies that arise if surface rheological effects are neglected
[Fig. 2(a)] or taken into consideration [Fig. 2(b) and Fig. 2(c)]
under the simplified scenario in which only cosine modes n
and 2n are present. As one can see by examining Fig. 2(a) for
the situation in which interfacial rheology is neglected (Bq =
0), we have the formation of a sevenfold pattern whose overall
shape is determined by the fundamental mode n = 7. As time
advances, one observes that the growing fingers widen, ulti-
mately leading to the emergence of fingered structures having
flat tips that are about to split. These finger tip-widening and
-flattening processes are provoked by the enhanced nonlinear
growth of the first-harmonic mode 2n, preluding the occur-
rence of finger tip splitting. These findings are in line with
the theoretical predictions of Ref. [9], as well as with the
experimental results of Refs. [1,7,8,10,11,30].

015103-8



IMPACT OF INTERFACIAL RHEOLOGY ON FINGER TIP … PHYSICAL REVIEW E 107, 015103 (2023)

We proceed by inspecting Fig. 2(b), which displays the
interface evolution when interfacial rheology is taken into
account and Bq = 15. The most evident feature of the pat-
tern depicted in Fig. 2(b) is that although we still have the
formation of a seven-fingered structure, contrary to what
happened in Fig. 2(a), now the fingers get wider and wider
and eventually bifurcate at their tips, clearly exhibiting the
occurrence of finger tip splitting. These finger tip-splitting
events have been induced by the action of surface rheological
stresses.

It should be pointed out that in Fig. 2(a) t f = 2754 and
that in Fig. 2(b) t f = 5087. Thus, in Fig. 2(b), when surface
rheological stresses are present, one can evolve the interface
dynamics up to larger times, still avoiding the undesirable
crossing between successive interfaces. This is the reason why
the pattern obtained in Fig. 2(b) for Bq = 15 has a larger
size than the one shown in Fig. 2(a) for Bq = 0. This overall
stabilizing effect introduced by interfacial rheology stresses is
entirely consistent with the linear stability results of Ref. [50],
where it has been found that surface rheological stresses tend
to stabilize radial fingering at linear stages of the flow. Never-
theless, if on one hand it is true that interfacial rheology slows
down the growth of the pattern as a whole, on the other hand
the delayed fingers become more bifurcated than those gener-
ated when Bq = 0. Therefore, the analysis of Figs. 2(a) and
2(b) indicate that regardless of the stabilizing role detected by
linear theory, at the nonlinear level such surface rheological
stresses enhance the tip-splitting instability.

These conclusions are reinforced by the examination of
Fig. 2(c), which presents the pattern evolution for a larger
Boussinesq number (Bq = 30), for which t f = 6499. Indeed,
the most salient aspect of the pattern portrayed in Fig. 2(c)
is the rising of even stronger finger tip-splitting events than
those detected in Fig. 2(b). So, larger values of Bq result
in a larger pattern for which the resulting fingers are wider
and reveal an enhanced tendency toward finger tip-doubling
behavior.

Figure 3 compares the time evolution of the rescaled co-
sine amplitudes for the fundamental (first harmonic) mode
an(t )/R(t ) [a2n(t )/R(t )] related to the weakly nonlinear pat-
terns shown in Fig. 2, for three increasing values of the
Boussinesq number Bq = 0, 15, 30. First, we observe that
regardless of the value of Bq, the weakly nonlinear coupling
between modes n and 2n dictates the sign of the harmonic
mode, going negative despite its initial amplitude value being
zero [a2n(0) = 0]. This is precisely the sign of the harmonic
mode that leads to finger-tip broadening, finger-tip flattening,
and then to finger tip splitting [9]. In addition, notice that the
attenuated growth of the fundamental for larger values of Bq
allows one to evolve the patterns’ growth up to larger times
avoiding interfaces crossings, as commented on earlier in our
discussion of Fig. 2. However, by examining Fig. 3, it is dif-
ficult to conclude that when Bq > 0, the delayed fingers arise
more bifurcated than those for Bq = 0, as seen in the patterns
of Fig. 2. Instead, we see in Fig. 3 a translation of the curves
to longer times when higher values of Bq are considered, with
the ratio between the amplitudes of the first harmonic a2n and
the fundamental mode an not changing significantly.

The enhancement of finger tip splitting when surface
rheological effects are more intense can be quantitatively

FIG. 3. Time evolution of the rescaled cosine interfacial ampli-
tudes for the fundamental mode an(t )/R(t ) (dashed curves) and for
the first-harmonic mode a2n(t )/R(t ) (solid curves) associated with
the weakly nonlinear patterns illustrated Fig. 2, for increasing values
of the Boussinesq number: Bq = 0, 15, 30.

verified in Fig. 4. Here, this is illustrated with a parametric
plot expressing the behavior of a2n(t )/R(t ) relative to
an(t )/R(t ) as time advances in the interval 0 � t � t f for the
pattern growth situations depicted in Fig. 2. This particular
type of plot (for which time t is the parameter) is useful
to compare pattern morphologies for situations involving
different values of the Bq, since an(t )/R(t ) is associated
with the average size and overall n-fold symmetry of the

an t R t

a 2
n
t
R
t

FIG. 4. Behavior of a2n(t )/R(t ) with respect to an(t )/R(t ) for
the pattern evolutions depicted in Fig. 2, for different values of
the Boussinesq number: Bq = 0, 15, 30. The vertical dashed line is
drawn for an(t )/R(t ) = 0.05.
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patterned structures, while a2n(t )/R(t ) is linked to the specific
shape of the finger tip (i.e., if the tips are wide and split or
if they are narrow and get sharper). By examining Fig. 4,
it is evident that as an(t )/R(t ) is increased, a2n(t )/R(t )
tends to become more and more negative, favoring finger tip
widening and tip splitting. By inspecting Fig. 4, one can also
see that, for any given value of an(t )/R(t ), the corresponding
value of a2n(t )/R(t ) is more negative for larger Bq. This
can be easily identified in Fig. 4, for instance, by following
the intersection points (open circles) of the vertical dashed
line for an(t )/R(t ) = 0.05 with the curves for different
Bq. These remarks support our conclusions extracted from
Fig. 2, indicating that interfacial rheology effects delay the
occurrence of tip-splitting events, but when these events do
take place, they are more intense for larger values of the
Boussinesq number Bq.

Irrespective of the relevance of the weakly nonlinear pre-
dictions extracted from the analysis of Figs. 2–4, the scenario
contemplated in these plots is somewhat idealized, in the way
that just two particular modes are present (fundamental n
and its first-harmonic 2n) and specific initial conditions are
considered, resulting in the emergence of fairly symmetric
n-fold patterns for which finger tip splitting ultimately arises
as a prevalent morphological feature.

From this point onward, our major goal is to try to verify
the robustness of the weakly nonlinear results captured from
Figs. 2–4 by exploring more realistic pattern-forming circum-
stances. To do that, we follow a successful model originally
proposed by Cardoso and Woods [93] for evolving interfaces
in the linear stage (their model B), and extended by Miranda
and Widom [9] to the weakly nonlinear regime. This model
is in consonance with typical conditions of real experiments
in radial Hele-Shaw flows [1,7,8,10,11,30] and explores the
effect of a background level of noise (for instance, coming
from irregularities in the gap thickness b, inhomogeneities on
surfaces of the Hele-Shaw cell plates or even from thermal
or pressure fluctuations [91]) on the dynamics of the grow-
ing interface. Taking these issues into account, the model
describes the behavior of the interface separating the fluids,
assuming the presence of a constant low level of noise dur-
ing its entire evolution. In this framework, each participating
Fourier mode n is perturbed with a constant (in time) random
complex amplitude ζn(0) which contains an n dependent ran-
dom phase, whose magnitude |ζn(0)| is independent of n by
assumption. As the interface expands radially, it successively
reaches critical radii Rc(n) [obtained by setting λ(n) = 0]
for each mode n, such that only once a particular Rc(n) is
reached, the perturbation amplitude ζn starts to vary with time.
The predictions of this model are in good agreement with
experimental observations within the linear [93] and weakly
nonlinear [9] regimes.

Moreover, in all the interfacial patterns presented in the
remainder of this paper, we will not be restricted to include
only two Fourier modes, but more reasonably and more gen-
erally consider the participation of all Fourier modes which
lie within the band of unstable modes at time t = t f . Unless a
statement to the contrary is made, as we also did in Fig. 2,
in the rest of this paper we continue to consider a repre-
sentative set of dimensionless parameters Ca = 150, A = 1,
R0 = 3, which are in line with physical values commonly used

in many radial Hele-Shaw cell experiments [1,7,8,10,11,30].
Furthermore, in Figs. 5 and 6, we take the noise amplitude
|ζn(0)| = R0/750.

Under these circumstances, we consider a whole range of
participating Fourier modes 1 � n � 25. Recall that the mode
n = 0 is written in terms of the other modes via Eq. (35).
Although we illustrate our main results by focusing on a repre-
sentative set of parameters, the reproducibility of the results is
tested, generating them by using different initial conditions,
in particular, by changing the random phases attributed to
each mode [9,91,93]. By doing this, we can directly verify the
robustness of our weakly nonlinear results if such conditions
are changed.

Keeping in mind the important information given in the
previous paragraphs, in Fig. 5 we plot the second-order
interface evolutions, when interfacial rheology effects are ne-
glected [(a), (d), (g) for Bq = 0], and taken into account [(b),
(e), (h) for Bq = 15], and [(c), (f), (i) for Bq = 30]. To lend
support to our theoretical results, three distinct sets of random
phases are examined, a first (set I) for (a)–(c), a second (set II)
for (d)–(f), and a third (set III) for (g)–(i). It should be noted
that the representative patterns depicted in Fig. 5 have been
selected from a number of different sets of random phases.
We emphasize that, for all multiple sets of phases tested,
the general morphological features of the resulting fingers
are similar to those exhibited by the representative examples
shown in Fig. 5. The values of the final times t f for the patterns
generated in Fig. 5 are (a) 1076, (b) 1867, (c) 2423, (d) 983,
(e) 1726, (f) 2210, (g) 1144, (h) 1958, and (i) 2461. Note
that for each phase considered, the values of t f increase as
Bq is augmented. As already commented on earlier, this is
a consequence of the linearly stabilizing effect induced by
interfacial rheology effects [50], which have the tendency to
slow down interfacial pattern growth.

By scrutinizing the various structures displayed in Fig. 5,
we observe the formation of typical viscous fingering patterns
in which seven or eight main fingers of various sizes grow.
Interestingly, one can verify that for all three sets of phases
considered, some of the fingers tend to get increasingly wider,
and flatter at their tips as time advances. In particular, one can
notice that some of the flattened tip fingers begin to split via
a tip-doubling mechanism. This can been seen by focusing on
the fingers indicated by small arrows in Figs. 5(c), 5(f), and
5(i).

It is also clear that finger tip-widening and tip-splitting
phenomena are increasingly favored for larger values of the
Boussinesq number Bq. As predicted by the simplified situa-
tion discussed in Fig. 2, in Fig. 5 we also identify the forma-
tion of finger tip-widening and tip-splitting events induced by
the action of interfacial rheology effects. Nevertheless, differ-
ently from what happened in Fig. 2, where only two predeter-
mined Fourier modes interact in the absence of noise, in Fig. 5
tip-widening and -splitting events continue to be observed, but
now under much more realistic circumstances in which one
has the presence and nonlinear interaction of a full range of
unstable competing modes, as well as the action of random
noise. Our second-order mode-coupling results illustrated in
Fig. 5 reveal that interfacial rheology stresses play a twofold
role regarding interface growth in radial Hele-Shaw flows: If
at linear order these stresses act to restrain the overall growth
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FIG. 5. Time evolution of the weakly nonlinear interfacial patterns generated by solving Eq. (33) for 1 � n � 25, 0 � t � t f , and equal
time intervals �t = t f /10. The patterns are obtained for Bq = 0 [(a), (d), (g)], Bq = 15 [(b), (e), (h)], and Bq = 30 [(c), (f), (i)]. In addition,
the values of t f are (a) 1076, (b) 1867, (c) 2423, (d) 983, (e) 1726, (f) 2210, (g) 1144, (h) 1958, and (i) 2461. Three different sets of random
phases are used, set I for [(a)–(c)], set II for [(d)–(f)], and set III for [(g)–(i)]. The most prominent occurrences of finger tip-widening and finger
tip-splitting events in (c), (f), and (i) for the largest value of the Boussinesq number considered (Bq = 30) are indicated by small arrows. Here
A = 1, Ca = 150, and R0 = 3.

of the patterns, at the weakly nonlinear level they operate to
favor the occurrence of finger tip widening and tip splitting.

We conclude our discussion by demonstrating the im-
portance of developing a weakly nonlinear analysis of the
system to be able to predict and extract useful information
on the impact of interfacial rheology effects on the morphol-
ogy of the viscous fingering structures, in particular, on the

occurrence of finger tip widening, flattening, and splitting.
Figure 6 compares the linear [(a)–(c)] and weakly nonlinear
[(d)–(f)] time evolutions of the viscous fingering patterns for
the case of largest Boussinesq number (Bq = 30) utilized in
Fig. 5. In Fig. 6, all physical parameters and random phases
are identical to those used in Fig. 5. More specifically, in
Fig. 6 set I of the random phases is used in (a) and (d), set

015103-11



CONRADO, DIAS, AND MIRANDA PHYSICAL REVIEW E 107, 015103 (2023)

FIG. 6. Time evolution of the linear [(a)–(c)] and weakly nonlinear [(d)–(f)] interfacial patterns for 1 � n � 25, 0 � t � t f , and equal time
intervals �t = t f /10. The patterns are obtained for Bq = 30. Moreover, the values of t f are (a) 2462, (b) 2199, (c) 2435, (d) 2423, (e) 2210,
and (f) 2461. The sets of random phases utilized here are equal to those used in Fig. 5: Set I for (a) and (d), set II for (b) and (e), and set III
for (c) and (f). The rest of the physical parameters are the same as the ones employed in Fig. 5. By comparing the linear [(a)–(c)] with the
corresponding weakly nonlinear [(d)–(f)] structures, it is apparent that the nonlinear fingers are typically wider, having a greater tendency to
split at their tips due to the action of surface rheological stresses.

II in (b) and (e), while set III is employed in (c) and (f). For
each set of phases, the two resulting interfaces (linear and
weakly nonlinear) are plotted one below the other to facilitate
comparison between the patterns obtained by using the linear
and weakly nonlinear approaches. In addition, the values of
final times t f in Fig. 6 are (a) 2462, (b) 2199, (c) 2435, (d)
2423, (e) 2210, and (f) 2461.

By inspecting the linear patterns depicted in Figs. 6(a)–
6(c), one observes that despite the fact that the largest
Boussinesq number used in Fig. 5 has been utilized (Bq =
30), the spreading of the fingers and the splitting of their
tips are not clearly shown. As a matter of fact, regardless
of the action of interfacial rheology effects, most of the fin-
gers generated by purely linear theory are commonly narrow,
and sharp at their tips. On the other hand, by examining
the corresponding weakly nonlinear patterns presented in
Figs. 6(d)–6(f), one can see that the nonlinear evolutions lead
to the formation of wider fingers for which their tips become
more blunt as time progresses. Indeed, these weakly nonlinear
fingers spread, and some of them start to bifurcate, by splitting
at the tips. These remarks indicate that a purely linear theory is
not able to properly describe the basic, intrinsically nonlinear

phenomena of finger tip widening and finger tip splitting
involved in the pattern-forming process under the presence
of interfacial rheological effects. All these findings reinforce
the necessity and importance of developing a second-order
weakly nonlinear theory for this physical system.

IV. CONCLUDING REMARKS

In this paper, we have investigated the effects of interfacial
rheology on the morphology of the fingered structures that
arise in radial Hele-Shaw cell flows during the early nonlinear
stages of the dynamics. To tackle this nonlinear pattern for-
mation problem, we used the Boussinesq-Scriven model and
derived a generalized Young-Laplace pressure jump boundary
condition for this Hele-Shaw flow, taking into account the
effects of surface rheological stresses. Our derivation of such
a key boundary condition generalizes a previous version orig-
inally calculated in Ref. [50] [their Eq. (10)] which assumed
that the unit normal to the fluid-fluid interface pointed only
in the radial direction and that the radial components of the
fluid’s velocities were continuous at the interface. Differently
from what has been done in Ref. [50], we considered that the
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unit normal at the perturbed interface points in an arbitrary
direction (i.e., a unit normal having both radial and azimuthal
components). In this scenario, we considered a flow setup
a little more general than the one considered in Ref. [50].
This has been done by expressing the velocity of the two-
dimensional fluid that describes the interface approximately
as the average of the inner and outer fluid velocities evaluated
at the interface.

With the aforementioned generalized pressure difference
boundary condition in hand, we performed a second exten-
sion of the work by Li and Manikantan: In Ref. [50], they
employed a purely linear analysis of the problem, focusing
on the stability of the fluid-fluid interface against small per-
turbations. On the contrary, in this paper we carried out a
perturbative, second-order mode-coupling approach and con-
centrated our attention on examining how interfacial rheology
effects influence the morphology and early nonlinear dynam-
ics of the emerging fingered patterns. This is an important
step, since one must go beyond linear (first-order) analysis
to properly capture the most important, intrinsically nonlinear
morphological aspects of the radial viscous fingering patterns.
In this framework, and utilizing Darcy’s law, we derived non-
linear, coupled differential equations that describe the time
evolution of the interfacial perturbation amplitudes accurate to
second order. Our weakly nonlinear results show that surface
rheological stresses exert a dual role on the time evolution
of the interface. On one hand, they tend to hinder the overall
growth of the interface and delay the formation of interfacial
disturbances. On the other hand, we have also found that in-
creasing interfacial rheology effects favor finger tip-widening
phenomena, enhancing the occurrence and intensity of
the iconic finger tip-splitting events in radial Hele-Shaw
flows.

Despite the progress achieved in this paper and in Ref. [50],
many challenges still need to be addressed. A first theoret-
ical improvement for future, more complete modeling would
probably be to include the effects of interfacial surface tension
gradients or Marangoni stresses. Other possible theoretical
refinement would be to analyze an even more complex, struc-
tured interface and explore the influence of variable surface
viscosity (non-Newtonian) effects on the nonlinear pattern-
forming behavior of the system. An additional and certainly
welcome advancement would be the development of numer-
ical simulations that could allow checking the linear and
weakly nonlinear predictions presented here and in Ref. [50],
as well as to unveil still-unexplored pattern formation behav-
iors at fully nonlinear stages of the interfacial dynamics.
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APPENDIX A: USEFUL DERIVATIVES
IN POLAR COORDINATES

In all the following equations, we consider that the unit nor-
mal vector to the perturbed interface may point in an arbitrary
direction, having both radial and azimuthal components, i.e.,
n = nr êr + nθ êθ :

∇ = êr
∂

∂r
+ êθ

1

r

∂

∂θ
, (A1)

∇s = êrnθ

(
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(A2)

∇u = ∂ur

∂r
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Taking u = −∇φ, nr = 1, and nθ = 0 in all these equa-
tions [(A1)–(A10)], we recover the equations of Appendix A
of Ref. [50].

APPENDIX B: DERIVATION OF THE INTERFACIAL
RHEOLOGY CONTRIBUTION TO THE GENERALIZED

PRESSURE BOUNDARY CONDITION—EQ. (20)

In this Appendix, we derive the relation

{∇s · [∇su · Is + Is · (∇su)T ]} · n = −2(∇s · u)K, (B1)

which arises in the passage from Eq. (10) to Eq. (11) with ηs

being a constant. We begin writing Is in its matrix representa-

tion:
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1 0
0 1
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−

(
nr
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)(
nr nθ
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−nrnθ n2
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(B2)

From Eq. (B2), we express the left-hand side of Eq (B1) as
(∇s · �) · n, where

� = [∇su · Is + Is · (∇su)T ] =
(

�rr �rθ
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)
, (B3)

with �rθ = �θr . Using Eq. (A2), we have
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The computation of the RHS of Eq. (B4) requires the relations

∂θ (erer ) = eθer + ereθ , ∂θ (ereθ ) = eθeθ − erer,

∂θ (eθer ) = −erer + eθeθ , ∂θ (eθeθ ) = −ereθ − eθer, (B5)

and ∂r (eie j ) = 0, with i, j = r, θ . Thus, Eq. (B4) becomes
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and the contraction of this equation with the unit normal vector n can be written as

(∇s · �) · n = nrn2
θ

∂

∂r
(�rr − �θθ ) + nθ

(
n2

θ − n2
r

)∂�rθ

∂r
+ nθn2

r

r

[
4�rθ − ∂

∂θ
(�rr − �θθ )

]

+ nr
(
n2

r − n2
θ

)
r

[
(�rr − �θθ ) + ∂�rθ

∂θ

]
. (B7)

Note that the expression above depends only on �rθ and the difference �rr − �θθ . Now, calculating the components of � using
Appendix A, we have
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By inspecting Eqs. (B8)–(B10), we observe that

�rθ = nrnθ

n2
r − n2

θ

(�rr − �θθ ). (B11)

Substituting this relation into Eq. (B7), we obtain

(∇s · �) · n =
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To derive the relation (B1) from Eq. (B12), first notice that
by using Eqs. (B8) and (B9), the difference �rr − �θθ in
Eq. (B12) can be written as

�rr − �θθ = −2
(
n2

r − n2
θ

)
(∇s · u). (B13)

Besides, from Eq. (A10), we notice that the expression in the
brackets of Eq. (B12) is equal to ∇s · n. Finally, plugging ∇s ·
n and Eq. (B13) into Eq. (B12), we obtain the relation (B1):

(∇s · �) · n = {∇s · [∇su · Is + Is · (∇su)T ]} · n

= −2(∇s · n)(∇s · u). (B14)

APPENDIX C: EXPRESSIONS FOR THE NONLINEAR
MODE-COUPLING FUNCTIONS

In this Appendix, we present the expressions of the non-
linear mode-coupling functions of Eq. (28), F , FR, FS , G, GS ,
and GR:

F (n, n′) = 1

s(n)

{
A|n|

2πR3

[
1

2
− sgn(nn′)

]

− (A + 1)|n|
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2
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]}
, (C1)

FS (n, n′) = |n|
12πR5s(n)

[|n′| + n sgn(n′)

− A(n|n| sgn(n′) − n′2 + 1)], (C2)

FR(n, n′) = −Bq(A + 1)|n|
48πR6s(n)

×
{

3 + n2[1 + sgn(nn′)] − 7

2
n′2 − 5

2
nn′

}
,

(C3)

G(n, n′) = 1

Rs(n)
{A|n|[1 − sgn(nn′)] − 1}, (C4)

GS (n, n′) = |n|
6R3s(n)

{n sgn(n′) + |n′| − |n|

− A[n|n| sgn(n′) − 2nn′ + n′2 − 1]}, (C5)

and

GR(n, n′) = −Bq(A + 1)|n|
24R4s(n)

{n2[1 + sgn(nn′)] − 2

+ 2n′2 − 4nn′}. (C6)

Note that the sgn function equals ±1 according to the sign of
its argument.
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