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In the case of media comprised of impermeable particles, fluid flows through voids around impenetrable
grains. For sufficiently low concentrations of the latter, spaces around grains join to allow transport on macro-
scopic scales, whereas greater impenetrable inclusion densities disrupt void networks and block macroscopic
fluid flow. A critical grain concentration p, marks the percolation transition or phase boundary separating these
two regimes. With a dynamical infiltration technique in which virtual tracer particles explore void spaces, we
calculate critical grain concentrations for randomly placed interpenetrating impermeable toroidal inclusions;
the latter consist of surfaces of revolution with circular and square cross sections. In this manner, we study
continuum percolation transitions involving nonconvex grains. As the radius of revolution increases relative to
the length scale of the torus cross section, the tori develop a central hole, a topological transition accompanied
by a cusp in the critical porosity fraction for percolation. With a further increase in the radius of revolution, as
constituent grains become more ringlike in appearance, we find that the critical porosity fraction converges to
that of high-aspect-ratio cylindrical counterparts only for randomly oriented grains.
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I. INTRODUCTION

Fluid flow and charge transport in porous media are of
practical and fundamental importance in a variety of set-
tings. In the case of materials comprised of impermeable
grains, fluid flow is through irregularly shaped void spaces
surrounding the impenetrable particles rather than through
well delineated channels. The concentration of the constituent
grains determines the degree of fluid flow or charge trans-
port in the medium. With increasing volume density p (i.e.,
where p = N/V) of impermeable barrier particles, void re-
gions among grains are more likely to be smaller truncated
volumes with no access to the rest of the system. Bulk level
transport ultimately ceases beyond a critical concentration p,.
The shift from system spanning void networks admitting fluid
flow on a macroscopic scale to isolated volumes whose finite
size precludes bulk permeability is a percolation transition,
a genuine second-order phase transition with all of the con-
comitant hallmarks and singular behavior [1]. The percolation
threshold is customarily specified with ., = p.vg and ¢, =
e~ (vp being the volume of the interpenetrating grains), with
¢, the critical porosity fraction.

Discrete percolation phenomena as well as continuum per-
colation involving overlapping particles are amenable to a
variety of techniques such as the Hoshen-Kopelman algorithm
[2] for identifying connected clusters and thereby determin-
ing if a system percolates. However, while the flow of fluid
through spaces between inclusions offers a natural way to de-
scribe percolation phenomena for porous materials made up of
impenetrable grains, the geometry of networks of connected
voids is in general difficult to anticipate a priori.

Void percolation transitions have previously been studied
in the context of interpenetrating particles with a vari-
ety of geometries. Due to the high degree of symmetry,
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determining if assemblies of randomly placed spheres contain
system spanning contiguous void volumes (and therefore if
the disorder realization percolates) is amenable to Voronoi
tessellation [3—6]. More generally, extrapolation to the contin-
uum limit of discretized systems with an ever finer mesh has
been used in the case of randomly placed spheres [7,8], ellip-
soids [9,10], and aligned cubes [11]. For a geometrically exact
approach applicable to a broader range of grain shapes, we use
virtual tracer particles to dynamically infiltrate void spaces,
where interactions with grains involve specular reflections off
of the surfaces of impermeable inclusions. Dynamical simu-
lations in this fashion have been reported previously in the
context of randomly placed spheres [12—17] and for the case
of convex solids such as the platonic solids, cylinders, cones,
and ellipsoids [18]. For a computationally efficient large-scale
treatment, we report on simulations in which virtual tracer
particles begin their journeys at the center of a large cubic
assembly of grains, with linear trajectories interrupted by
collisions with and specular reflection from the surfaces of
impenetrable inclusions (i.e., as in the Lorentz gas model
[12,19-22]).

Common to previous studies of void percolation phenom-
ena is the convexity of constituent grains. In this work we
calculate percolation thresholds and study critical behavior for
situations in which the impermeable particles are nonconvex.
In particular, we consider percolation phenomena involving
torus-shaped grains bounded by surfaces of revolution about
an axis of symmetry (i.e., tori with square and circular cross
sections). Moreover, in this work we examine porous media
made up of randomly oriented inclusions as well as assemblies
of tori with their axes of symmetry aligned. In addition to the
novelty inherent in their manifestly nonconvex geometry, the
study of toroidal grains offers the opportunity to examine how
void percolation is influenced by the change in topology as the
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FIG. 1. Cutaway view of tori of circular cross section with
(a) / =047, (b) 7, = 0.5, and (c) 7/, = 0.53.

genus increases from zero to one. This transition is marked
by the appearance of a central hole as solid cylinders become
annular cylinders for tori with square cross sections while
a symmetrically placed pair of cone-shaped indentations on
a spheroidal surface above and below the equatorial plane
merge and yield a doughnut shape for tori with circular cross
sections as illustrated in Fig. 1. In the case of the latter, when
grains are randomly oriented, singular behavior in the form
of a cusp in the critical porosity fraction ¢, accompanies the
appearance of a central hole. We find that ¢, then sharply
decreases beyond this geometric shift as broadening central
channels provide additional connections among void volumes.
Examples of porous media considered in this work appear
in Fig. 2 for toroidal grains of circular cross section and in
Figs. 3(a) and 3(b) for tori of square cross section. Linear
counterparts for the former and latter include cylinders and
square prisms [e.g., as shown Figs. 3(c) and 3(d)]. Although
critical porosity fractions for cylinders have been reported on
previously [18], here we calculate percolation thresholds for
voids surrounding randomly placed square prisms.

We label the regime in which the radius of revolution is
very large relative to the cross-section diameter or width as the
high-aspect-ratio limit since cutting and distorting the ringlike

FIG. 2. Randomly oriented tori for aspect ratios (a) # = 0.30,
(b) 7 = 0.50, (¢) 7; = 0.70, and (d) 7, = 0.95.

FIG. 3. Randomly oriented tori of square cross section for
(a) ri =0.70, (b) r{ =0.90, (c) cylinders for r, = 8, and (d) square
prisms for ry = 8.

toroidal grains into a linear shape yields very narrow square
prisms or cylinders in this regime. For the sake of a direct
comparison, we define the aspect ratio 5 for cylinders and
square prisms to be the ratio of the length to the diameter or
square side width. On the other hand, in the case of tori, one
has ra = mr/rp, or the ratio of the circumference of the circle
of revolution made up of the centers of the shapes of revo-
lution to the cross-section diameter or width, as appropriate.
We calculate percolation thresholds for aligned and randomly
oriented high-aspect-ratio toroidal grains as well as for the
linear counterparts, finding a convergence of critical porosity
fractions to a finite value. That small segments of high-aspect-
ratio tori resemble their linear counterparts suggests at least
the possibility that their ¢, values tend to a common critical
porosity fraction in this regime; we find that this occurs only
in the case of randomly oriented grains, while ¢, for tori with
their axes of symmetry aligned is significantly higher than that
of aligned linear counterparts in this limit. In the case of the
latter, the discrepancy is likely due to at least in part to the fact
that in spite of the alignment of the axes of symmetry, the
random orientation of small quasilinear segments of neigh-
boring ringlike tori in the torus equatorial plane precludes the
presence of long channels among aligned linear shapes such as
square prisms or cylinders of circular cross section that would
otherwise facilitate fluid flow on macroscopic scales.

II. METHODS AND TECHNIQUES
A. Overview

Single-parameter finite-size-scaling analysis has histori-
cally been an important tool in the study of critical behavior
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in percolating systems and continuous phase transitions
more broadly. In this framework, finite-size effects facilitate
rather than impede extrapolation to the thermodynamic limit,
and central to the analysis is the scaling form F (L, p) =
LAV g[L'"(p — p.)], where F is a thermodynamic observ-
able, g is a universal scaling function, L is the system size, and
A and v are critical exponents associated with F and the corre-
lation length &, respectively. This scaling analysis on a spatial
domain draws on knowledge of void networks not often read-
ily available, and for this reason we operate instead on the
temporal domain; we calculate time-dependent observables
such as the root-mean-square (rms) displacement &5 from
a randomly selected interstitial point at the center of a large
cube-shaped simulation volume. We consider a scaling form
Sems (0, 1) = t5r[t*(p — p.)] [1,23], where k = 1/d}, and x =
1/d,, are anomalous diffusion exponents for unrestricted mo-
tion averaged over all void networks for k and diffusion only
through system spanning void clusters for x. Here d;, and d,
are fractal dimensions of the former and latter random walks
[1,23]; r(y), where y = t*(p — p.), is a scaling function. Uni-
versal scaling arguments yield k = (v — 8/2)/2v + u — B)
and x = 1/2v + u — B), where v = 0.8764(12) [24], 8 =
0.41810(57) [24], and p are universal critical exponents
for percolation phase transitions. Although the dynamical
exponents k and x may deviate from their discrete lattice
counterparts kjx = 0.2001(7) and xj,c = 0.2998(4) [obtained
using Ui = 2.0009(10) [25]], universality theoretical argu-
ments posit that k/x = v — /2 = 0.667(1).

B. Dynamical infiltration

To implement the diffusive exploration of void networks,
we use a geometrically exact dynamical infiltration technique
in which virtual tracer particles follow linear paths and inter-
act with impenetrable inclusions via specular reflections. This
approach, validated in the context of porous media comprised
of a variety of convex grain shapes, also has the advantage
of requiring only information local to the path of the tracers,
allowing access to larger system sizes while permitting a
computationally efficient approach. The principal observable
we calculate is 8,5, the rms displacement from the start of
the tracer trajectory. The latter encompasses on average at
least 107 scattering events from impermeable grains, and we
consider 50000 disorder realizations for each inclusion con-
centration we sample. To optimize computational efficiency,
in terms of both the speed of the calculations and memory
usage, we subdivide the simulation volume into cube-shaped
voxels (similar to Verlet cells [20]). The virtual tracers prop-
agate along their linear trajectories given by X = Xy + 0f,
with Xy the starting point and |9| = 1 for the (unit) veloc-
ity magnitude until either reaching the nearest voxel wall or
colliding with a grain, whichever is closest. In the event of
the latter, specular reflection is implemented and the virtual
tracer trajectory resumes with a new velocity Dnew = Dol —
2(Dod * o Jlioe, Where iy is the local (unit) normal direction
at the intersection point and ¥4 is the previous velocity. The
identical total dwell time for each trajectory (i.e., equal to the
tracer path length since |d| = 1) is of sufficient duration to
encompass on average at least 107 interactions of tracers with
grains.

An overall rescaling of the simulation volume and its con-
tents has no impact on the status of the system with respect to
percolation since n = pvg remains constant. Nonetheless, in
practical terms, a change in the relative size of grains and the
voxels is consequential due to the effect on the computational
burden of propagation of tracers through the void network. If
the impermeable inclusions are too small relative to the vox-
els, the large number of grains contained or shared by cubic
cells erodes the advantage of dividing the system into smaller
subvolumes. However, this circumstance may be mitigated
with a dilation of the size of the system and its contents with
the voxel edge length held constant; with the number density
p decreasing, the mean number of inclusions encompassed in
or sharing cubic cells decreases. In the other extreme, with
voxels dwarfed by very large grains, the benefit of having very
few grains overlap a cube-shaped cell is offset by the small
distances traversed by virtual tracer particles as they travel
from one cubic cell to the next. Rescaling the grains while the
voxel dimensions (with unit edge lengths) remain fixed, across
the range of geometries and aspect ratios we consider, we find
computational efficiency to be optimized when on average on
the order of a dozen inclusions overlap with a voxel.

It is computationally expedient to consider spheres circum-
scribed about inclusions, since in checking for interactions
with impermeable inclusions, many candidates are elimi-
nated with a comparatively small computational investment if
spheres circumscribing the grain are not penetrated by tracer
trajectories, with the task of finding intersections with the
geometrically more intricate inclusions themselves reserved
for the small share of candidates not ruled out in this manner.
In addition, the sphere radius rg is comparable to the grain’s
dominant length scale and thus serves as a dilation factor,
scaled up from unity as needed to keep the number of grains
in contact with a voxel on the order of a dozen.

We operate in the vicinity of the percolation transition
where system spanning void networks encompass only a small
fraction of the total interstitial volume in the porous medium,
of which an even smaller subvolume is explored by virtual
tracers. A typical case with only voxels visited by tracer
particles highlighted (small red cubes) is shown in Fig. 4,
where the large green cube indicates the simulation volume
as a whole. The fact that tracer particles only infiltrate a small
portion of the simulation volume presents an opportunity to
reap a significant computational advantage, which we exploit
by only requiring that voxels visited by the tracers and neigh-
boring cells (i.e., voxels which in principle could contain a
grain in contact the cell occupied by the tracer) be populated
with randomly placed impermeable inclusions.

The manner in which voxels are populated differs depend-
ing on whether the cell is invaded by a virtual tracer or is
neighbor to a voxel entered by a tracer particle. Voxels are
deemed blank until impermeable grains are introduced by rig-
orously sampling Poissonian statistics which can be achieved
with a lookup table in conjunction with stochastic input. In
this vein, one considers a cubic cell subdivided into N sub-
volumes V/N, where V is the voxel volume. The probability
of strictly zero grain occupancy Py ~ (1 — pV/N)V tends to
Py = e *V in the continuum limit; similar logic for exactly
m inclusions yields P, = (pV)"e *Y /m!, with m! being a
combinatorial factor. Since ) ", P,, = 1, these probabilities
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FIG. 4. Voxels visited by tracer particles shown in red for 107
interactions of virtual tracers with tori of circular cross section for
71 = 0.70. Small red cubes are voxels visited by tracer particles; the
simulation volume is indicated by the large green cube.

cumulatively span the unit interval, with the voxel occupancy
conveniently and objectively determined with random num-
bers sampled uniformly over the interval [0,1].

If a virtual tracer enters a blank cell, then it and each of
the neighboring voxels are populated with inclusions if the
latter are blank. Subsequently, all grains in contact with the
cell occupied by the tracer particle are identified (along with
those in the cell itself) in the event that the tracer returns to the
same cell as frequently occurs. On the other hand, if a virtual
tracer enters a voxel previously occupied as a neighboring
cell, one need only populate blank cells which neighbor it
with randomly placed grains and identify inclusions in contact
with the voxel. Operating in this way with a suitable rescaling
of the grain dimensions significantly improves computational
efficiency, particularly in the high-aspect-ratio regime, while
also reducing memory usage to the degree that we consider
in this work cubic simulation volumes 1000 unit lengths on
a side and containing 10° voxels (each in contact with on
the order of a dozen inclusions) in total. For all geometries
considered and with trajectories encompassing at least on the
order of 107 collisions with grains, no tracers have exited
the simulation volume, which is effectively infinite for our
purposes.

In this work we calculate percolation thresholds and study
critical behavior for tori with circular and square cross sec-
tions. For the latter, we also report results for the linear
counterpart, square prisms; critical porosity fractions for
cylinders with circular cross sections have been previously
calculated [18]. Finding intersections of tracer trajectories
with candidate impermeable grains and identifying neigh-
boring grains in contact with a cube-shaped voxel draws on
details of the inclusion geometry. Virtual tracers diffusing
through void networks interact with the nearest impermeable
inclusion, tantamount to finding the minimum travel time for
the trajectory X = Xy + 0.

In the case of square prisms, one need only check for
intersections with each of the six planar facets, subject to the

constraint that the intersection point is interior with respect
to the planes containing the five remaining facets. Finding
intersections of tracer trajectories with nonconvex grains such
as the toroidal inclusions we consider in this work is geomet-
rically more subtle. The randomly placed toroidal inclusions
we consider in this study are uniquely characterized by the
orientation of their axis of symmetry, the location of their
geometric center, and the length scales r; and r,. For tori with
square and circular cross sections, r, is the cross-section ra-
dius for the latter and half the edge length of the square
cross section for the former, while r; is the radius of rev-
olution in both cases. It is convenient to specify the shape
of tori of circular cross section in terms of the dimension-
less variable 7 = r{ /(7] + r2), where 7| = 0 corresponds to
spherical grains, while 7| = 1 is the high-aspect-ratio ring-
like limit for inclusions and 7; = 0.50 marks the topological
transition where the central hole appears with increasing 7.
Similarly, in the case of tori of square cross section we use
r{ = r1/rs, where ry is the radius of the circumscribed sphere,
or rf = 1/\/1 + (r2/r1) + (r2/r1)?. As in the case of tori of
circular cross section, the extreme ringlike limit is attained
as one approaches r{ = 1, while a cylindrical central channel
emerges for rf =1/ NG

As nonconvex objects, toroidal inclusions allow for the
possibility of multiple specular reflections from the same
grain, an element of the tracer dynamics which must be taken
into consideration for tori of both circular and square cross
sections. The former are annular cylinders with an upper and
a lower planar surface and inner and outer curved surfaces.
Only tracers scattered from the inner boundary may interact
in immediate succession with the same inclusion, bouncing
off the wall of the central hole until emerging from the cylin-
drical channel. On the other hand, tori with circular cross
sections are bounded by a single smooth surface and the tracer
path may cross the torus as many as four times or may avoid
contact with it altogether. As discussed in the Appendix, this
circumstance is unsurprising given that solving for ¢ involves
solving a quartic equation, which one may do analytically. In
the event that a tracer trajectory passes through a grain, the
point of contact is the nearest intersection corresponding to
the smallest value of 7.

Essential to the very modest scaling of the computational
burden (given an optimal choice of the dilation factor r)
with the grain aspect ratio is finding which inclusions in
neighboring voxels share the volume of the cell occupied by
the tracer. In the case of square prisms, one checks if any
of the eight prism vertices are interior to the voxel and vice
versa for the cell vertices and the prism interior, which would
indicate overlap among the voxel and the inclusion. Similarly,
edge segments of either polyhedron penetrating the interior
of the other also indicate contact among the cell and the
prism-shaped grain.

For inclusions with toroidal geometry, a straightforward
and tractable way to check for overlap with a voxel is to cir-
cumscribe the cubic cell with a sphere and check for overlap
among the sphere and the toroidal inclusions. For this purpose,
one operates in a coordinate system with the torus geometric
center at the origin and the z axis aligned with the grain’s
axis of symmetry. One then chooses the x axis such that the
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xz plane bisects the sphere circumscribed about the voxel. In
this manner, determining if the sphere and the torus overlap is
reduced to the task of checking to see if a circle overlaps two
squares or two circles for tori with square and circular cross
sections, respectively.

To calculate the percolation thresholds and study critical
behavior, we conduct dynamical infiltration simulations for
grain densities p in the vicinity of p.. Dwell times for vir-
tual tracers are such that tracers interact with impermeable
inclusions at least 107 times on average. Critical concentration
results obtained in this manner are in accord with an indepen-
dent set of simulations for a mean number of collisions (10°)
an order of magnitude lower.

C. Single-parameter temporal scaling analysis

As noted previously, finite-size-scaling analysis in the spa-
tial domain for a generic observable F, near p. posits a
form F(p, L) = LAVg[L'"(p — p.)], where A is the scaling
exponent for G at p., v is the correlation length exponent,
and g is a universal scaling function. Due to this scaling
form, plotting L=*/"F with respecttot = L'/V(p — p.) would
in principle yield a data collapse and an avenue for finding
the critical indices «, v, and p.. In a very similar spirit,
we use a scaling analysis with respect to time, we envisage
a scaling form 8,5 = t*r[t*(p — p.)], and we again benefit
from the data collapse phenomenon in which Monte Carlo
data in principle fall on a single curve when plotted with
respect to y = t*(p — p.) [i.e., the argument of the scaling
function r(y)] for p in the vicinity of p.. This analysis in
the temporal domain is compatible with the dynamical nature
of our simulations and lies at the heart of our calculation of
k, x, and the percolation threshold p.. Each trajectory used
to calculate the rms displacement §;n,s has an identical total
dwell time T'. We divide this time domain into 16 subintervals
and record 8,y at the end of each of these. Ultimately, we
average over 50 000 of these trajectories, each associated with
statistically independent realizations of disorder, and we do
this for nine evenly spaced p values centered about and within
a few percent of p,.

With a technique described elsewhere [17], we perform the
data collapse systematically and objectively by considering
a scaling function r(y) = Z;’z 1A jyj (our calculation is con-
verged with respect to n, e.g., with identical results obtained
for n =5 and 6) and optimizing with respect to the A; co-
efficients via linear least-squares fitting for a given choice of
Pe» X, and k. We then stochastically vary candidate values for
the latter three critical indices until the fit of the analytical
scaling to the Monte Carlo data is optimized in a least-squares
sense. The main graph in Fig. 5 shows an example of a data
collapse generated in this manner. The symbols in the legend
correspond to the subinterval times t; = iT /16, where T is the
total dwell time.

As an alternative approach, one may also de-
fine effective diffusion exponents with ke (2, %) =
In[8ms(2j)/8ms (#:)]/ In(2;/1;) or the secant line for the log-log
curve of 8,5 over the time interval [f;,;]. Percolation
thresholds indicated by the crossings are in accord with
data collapse results up to the Monte Carlo statistical error.
The inset of Fig. 5 displays a crossing of effective diffusion
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FIG. 5. Sample data collapse for randomly oriented tori of cir-
cular cross section for 7, = 0.75. The red line is an analytical curve,
while symbols represent Monte Carlo data corresponding to subinter-
val times t; = iT /16 (T being the total dwell time) as indicated in the
legend. The inset shows a crossing of effective diffusion exponents
with the vertical blue line indicating p. obtained from a quantitative
data collapse.

exponents with the vertical blue line representing the critical
concentration gleaned from a quantitative data collapse.

III. RESULTS AND DISCUSSION

A. Percolation thresholds and critical exponents

Unless stated otherwise, critical indices are calculated for
dynamical infiltration simulations in which each trajectory
involves at least 107 collisions with impermeable inclusions.
To calculate 8y, we consider 50000 trajectories, each of
which is associated with a statistically independent realization
of disorder. In Fig. 6, ¢, results are shown with respect to
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FIG. 6. Critical porosity fractions for aligned (closed squares)
and randomly oriented (open diamonds) tori of circular cross sec-
tion in the main graph and tori of square cross section in the graph
inset.
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TABLE 1. Critical indices for tori with circular cross sec-
tions with aligned axes of symmetry.

TABLE III. Critical indices for tori with square cross sec-
tions and aligned axes of symmetry.

;] ¢c kcoll kcross Xeoll I‘T ¢c kco]l kcmss Xeoll
0.05 0.0301(5) 0.18(1) 0.17(1) 0.25(1) 1/\/5 0.0357(4) 0.17(1) 0.18(1) 0.24(1)
0.10 0.0298(3) 0.16(1) 0.18(1) 0.23(1) 0.50 0.0355(3) 0.18(1) 0.18(1) 0.26(1)
0.15 0.0303(3) 0.18(1) 0.19(1) 0.24(1) 0.55 0.0371(4) 0.18(1) 0.18(1) 0.25(1)
0.20 0.0303(4) 0.18(1) 0.18(1) 0.24(1)  0.60 0.0404(5) 0.20(1) 0.20(1) 0.25(1)
0.25 0.0300(3) 0.16(1) 0.16(1) 0.24(1) 0.65 0.0439(2) 0.18(1) 0.17(1) 0.25(1)
0.30 0.0307(2) 0.18(1) 0.18(1) 0.24(1) 0.70 0.0478(5) 0.18(1) 0.20(1) 0.24(1)
0.35 0.0306(2) 0.17(1) 0.17(1) 0.24(1) 0.75 0.0521(5) 0.18(1) 0.18(1) 0.23(1)
0.40 0.0314(4) 0.18(1) 0.17(1) 0.23(1) 0.80 0.0563(7) 0.20(1) 0.20(1) 0.23(1)
0.45 0.0326(5) 0.20(1) 0.21(1) 0.24(1) 0.85 0.0584(7) 0.18(1) 0.20(1) 0.23(1)
0.475 0.0320(5) 0.16(1) 0.16(1) 0.23(1) 0.90 0.0603(10) 0.18(1) 0.20(1) 0.23(1)
0.50 0.0332(5) 0.17(1) 0.15(1) 0.22(1) 0.95 0.0617(11) 0.18(1) 0.19(1) 0.22(1)
0.525 0.0328(4) 0.17(1) 0.18(1) 0.23(1)

0.55 0.0338(6) 0.18(1) 0.19(1) 0.23(1)

0.60 0.0355(3) 0.16(1) 0.15(1) 0.22(1) . . . . .

0.65 0.0390(5) 0.19(1) 0.18(1) 0.23(1) sections, a prominent cusp in the ¢, curve is evident for
0.70 0.0409(6) 0.16(1) 0.18(1) 0.23(1) randomly oriented inclusions for 7'1 = 05, coinciding with the
0.75 0.0441(5) 0.18(1) 0.20(1) 0.23(1)  topological transition marked by the emergence of a central
0.80 0.0466(5) 0.18(1) 0.16(1) 0.22(1) hole with increasing 7;. For 7; > 0.5, the critical porosity
0.85 0.0486(6) 0.18(1) 0.19(1) 0.21(1) drops sharply before gradually rising, appearing to saturate at
0.90 0.0505(8) 0.21(1) 0.19(1) 0.23(1) ¢ = 0.038(1). The cusp feature is either significantly muted
0.95 0.0514(7) 0.20(1) 0.18(1) 0.20(1) or absent for the aligned counterparts.

7 for aligned and randomly oriented tori. The main graph
and inset show results in the case of tori with circular and
square cross sections respectively, and critical indices are
recorded in Tables I-IV. Closed squares correspond to aligned
toroidal grains, while open diamonds represent the randomly
oriented counterparts. In the case of tori with circular cross

TABLE II. Ceritical indices for randomly oriented tori with circu-
lar cross sections.

;1 ¢c kcoll kcross Xeoll

0.05 0.0297(3) 0.16(1) 0.16(1) 0.24(1)
0.10 0.0302(3) 0.18(1) 0.17(1) 0.21(1)
0.15 0.0295(7) 0.15(1) 0.18(1) 0.22(1)
0.20 0.0305(3) 0.17(1) 0.18(1) 0.24(1)
0.25 0.0307(3) 0.17(1) 0.16(1) 0.24(1)
0.30 0.0315(4) 0.18(1) 0.19(1) 0.24(1)
0.35 0.0318(4) 0.17(1) 0.18(1) 0.23(1)
0.40 0.0331(5) 0.17(1) 0.18(1) 0.24(1)
0.45 0.0345(5) 0.17(1) 0.15(1) 0.23(1)
0.475 0.0358(1) 0.17(1) 0.16(1) 0.21(1)
0.50 0.0371(3) 0.16(1) 0.16(1) 0.20(1)
0.525 0.0344(8) 0.15(1) 0.15(1) 0.22(1)
0.55 0.0338(7) 0.18(1) 0.19(1) 0.23(1)
0.60 0.0355(4) 0.16(1) 0.15(1) 0.22(1)
0.65 0.0367(4) 0.17(1) 0.16(1) 0.23(1)
0.70 0.0381(16) 0.21(1) 0.18(1) 0.22(1)
0.75 0.0371(7) 0.17(1) 0.17(1) 0.20(1)
0.80 0.0376(6) 0.17(1) 0.19(1) 0.22(1)
0.85 0.0375(7) 0.17(1) 0.16(1) 0.21(1)
0.90 0.0378(4) 0.17(1) 0.18(1) 0.21(1)
0.95 0.0386(4) 0.19(1) 0.21(1) 0.21(1)

The appearance of a central hole for 7, = 0.5 as cone-
shaped dimples above and below the equatorial plane merge
suggests an explanation for the ¢. cusp in the case of ran-
domly oriented grains with circular cross section. The sharp
increase in ¢, as one approaches 7, = 0.5 from the left is
consistent with the upper and lower concave depressions be-
ing sheltered pockets of space, which enhances the critical
porosity fraction. On the other hand, immediately to the right
of the 7 = 0.5 boundary, the incipient central hole serves as a
channel uniting the upper and lower voids, abruptly enhancing
the overall permeability of the system and hence accounting
for the sudden drop in ¢, with increasing 7;.

The critical porosity fraction for aligned tori with circular
cross sections does not exhibit a prominent cusp as in the
case of the randomly oriented counterparts. In addition, as
71 increases toward unity (i.e., in the regime of ringlike or
high-aspect-ratio grains), ¢, for aligned toroidal inclusions
ultimately saturates at a markedly higher porosity fraction

TABLE 1V. Critical indices for randomly oriented tori with
square Cross sections.

r T ¢c kcoll kcross Xeoll

1/v/35 0.0449(4) 0.16(1) 0.17(1) 0.21(1)
0.50 0.0458(4) 0.17(1) 0.17(1) 0.23(1)
0.55 0.0475(5) 0.17(1) 0.18(1) 0.22(1)
0.60 0.0490(5) 0.17(1) 0.17(1) 0.22(1)
0.65 0.0504(8) 0.17(1) 0.15(1) 0.21(1)
0.70 0.0519(4) 0.19(1) 0.20(1) 0.23(1)
0.75 0.0524(5) 0.18(1) 0.18(1) 0.22(1)
0.80 0.0526(6) 0.18(1) 0.18(1) 0.22(1)
0.85 0.0533(9) 0.16(1) 0.19(1) 0.20(1)
0.90 0.0521(9) 0.16(1) 0.16(1) 0.20(1)
0.95 0.0540(11) 0.19(1) 0.17(1) 0.21(1)
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TABLE V. Critical indices for square prisms with axes of sym-
metry aligned.

‘ASPQCt ratio ¢C kco]] kcross Xeoll

1 0.0380(3) 0.19(1) 0.17(1) 0.25(1)
3/2 0.0379(2) 0.19(1) 0.19(1) 0.26(1)
2 0.0379(5) 0.19(1) 0.19(1) 0.25(1)
5/2 0.0379(5) 0.19(1) 0.18(1) 0.26(1)
3 0.0378(4) 0.19(1) 0.21(1) 0.27(1)
4 0.0377(5) 0.19(1) 0.19(1) 0.25(1)
5 0.0379(5) 0.19(1) 0.20(1) 0.26(1)
6 0.0375(5) 0.18(1) 0.18(1) 0.27(1)
7 0.0381(3) 0.20(1) 0.18(1) 0.27(1)
8 0.0381(6) 0.20(1) 0.18(1) 0.28(1)

than for randomly oriented tori. A possible explanation for
both the absence of a cusp at the topological transition and
convergence to a higher ¢, as aligned tori become ringlike is
the tendency of neighbors above and below to shield the cone-
shaped dimples or central hole for 7 < 1/2 and 7 > 1/2,
respectively, thereby offsetting the potential enhancement to
overall permeability offered by the emergence of a conduit
through the grain. Similar reasoning may also explain why ¢,
for aligned grains exceeds that of randomly oriented counter-
parts in the high-aspect-ratio regime; again, the alignment of
the axes of symmetry of the tori may increase the likelihood
of the grain’s central hole being closed off from connected
void spaces, favoring a lower critical concentration than for
the randomly oriented counterparts.

The inset of Fig. 6 shows critical porosities in the case
of toroidal grains with a square cross section with open dia-
monds and filled squares representing ¢, results for randomly
oriented and aligned inclusions, respectively. For r{ in the

vicinity of 1/+/5 with an incipient cylindrical central channel,
¢. for systems made up of aligned grains exceeds that of
media comprised of randomly oriented grains. However, this
ordering is reversed with increasing r{ with a crossing in
the ¢, curves near r{ = 0.75. Ultimately, the critical porosity
fraction saturates beyond 0.060 if the impermeable inclusions
are aligned and near 0.053(2) for randomly oriented grains.

In contrast to the case of tori of circular cross section, there
is no cusp feature for either aligned or randomly oriented
grains of square cross section. The absence of a sharp decrease
in ¢, with increasing r{ may be due to the abrupt appearance
of a central hole with no cone-shaped indentations above or
below the equatorial plane. In the absence of these void pock-
ets the emerging central channels thus have a significantly
diminished role in expanding navigable connected volume
networks.

As 7y and r{ approach unity with ringlike shapes for tori of
circular and square cross sections, one also attains the high-
aspect-ratio regime where small segments of toroidal grains
resemble the linear counterparts, cylinders and square prisms,
respectively. Although percolation thresholds for aligned and
randomly oriented cylinders have been previously calculated
[18], in this work we calculate critical indices for elongated
(noncubic) square prism shaped grains; results for a variety of
aspect ratios r5 appear in Tables V and VI with ¢, displayed

TABLE VI. Critical indices for randomly oriented square prisms.

ASpeCt ratio ¢c kcoll kcross Xeoll

1 0.0449(5) 0.17(1) 0.19(1) 0.23(1)
3/2 0.0461(14) 0.18(1) 0.21(1) 0.23(1)
2 0.0465(7) 0.16(1) 0.17(1) 0.22(1)
5/2 0.0483(8) 0.16(1) 0.17(1) 0.22(1)
3 0.0485(11) 0.18(1) 0.19(1) 0.22(1)
4 0.0505(7) 0.19(1) 0.19(1) 0.24(1)
5 0.0515(7) 0.17(1) 0.19(1) 0.22(1)
6 0.0519(5) 0.17(1) 0.18(1) 0.23(1)
7 0.0519(3) 0.17(1) 0.18(1) 0.23(1)
8 0.0523(6) 0.18(1) 0.18(1) 0.22(1)
10 0.0524(5) 0.17(1) 0.17(1) 0.22(1)
15 0.0535(4) 0.19(1) 0.19(1) 0.23(1)
20 0.0534(4) 0.16(1) 0.15(1) 0.23(1)

in the graph in Fig. 7. Closed squares and open diamonds
represent aligned and randomly oriented grains, respectively.
While ¢, in the case of randomly oriented grains increases
monotonically with r, ultimately saturating in the vicinity of
0.052(5), the critical porosity fraction for aligned counterparts
appears (at least up to Monte Carlo error) to be constant
at 0.0379(5) (the dashed horizontal line indicates this mean
value) with respect to the aspect ratio (for a significant range
of ra values) of prism-shaped inclusions. The markedly lower
¢, values for the aligned case may be due to the presence of
channels flanked and sheltered by parallel rectangular facets,
uninterrupted void conduits which tend to be disrupted in the
case of randomly oriented square prisms.

Among toroidal grains and linear counterparts of both cir-
cular and square cross sections, as is evident in Figs. 8(b)
and 8(d), the critical porosity fractions for randomly oriented
toroidal grains and corresponding ¢, results for linear inclu-
sions converge. On the other hand, as may be seen in Figs. 8(a)
and 8(c), for aligned inclusions critical porosity fractions are
smaller for toroidal grains than for linear counterparts in the
small-aspect-ratio regime where the tori have a more compact
structure. However, the ¢, curves cross for ro ~ 1 with the
critical porosities for tori rising monotonically and eventually
saturating at a significantly higher value than for the linear
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0.040 ¢

0.030f g

'

Critical Porosity Fraction

0.020

0.00 5.00 10.00 15.00 20.00
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FIG. 7. Critical porosity fractions for aligned (closed squares)
and rotated (open diamonds) square prisms.
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FIG. 8. Critical porosity fraction versus aspect ratio for
(a) aligned tori of circular cross section and cylinders, (b) randomly
oriented tori of circular cross section and cylinders, (c) aligned tori
of square cross section and square prisms, and (d) randomly oriented
tori of square cross section and square prisms.

counterparts. The variation of the orientation of small quasi-
linear segments of ringlike tori in the equatorial plane likely
disrupts long narrow channels which remain intact for aligned
cylinders and prisms in the high-aspect-ratio regime, thereby
elevating ¢, for aligned tori.

B. Validation of dynamical infiltration simulations

We have checked to see that our results are converged with
respect to the lengths of the dynamical infiltration trajectories.
In this vein, we have conducted studies in which virtual tracers
interact with constituent impermeable grains a mean of 10°
times (i.e., short runs) with constituent grains for the sake
of comparison with results gleaned for dwell times an order
of magnitude longer (referred to here as long runs) with at
least on average 107 collisions of tracers with impermeable
inclusions. As in the case of the results mentioned in the con-
text of the longer runs, critical indices obtained in the case of
the shorter runs involve averaging over 50 000 distinct trajec-
tories corresponding to statistically independent realizations
of disorder. We consider the results of short and long runs
in juxtaposition to check on convergence with respect to the
trajectory dwell time. The graphs in Fig. 9 display ratios of p.
gleaned from long runs to the critical concentration calculated
from short runs for each geometry considered in this work.
In general, the ratios are consistent with unity (indicated by
dashed horizontal lines) up to Monte Carlo statistical error.

Dynamical exponent ratios k/x are plotted in the graphs
in Fig. 10 for each grain geometry considered in this work
with circles and squares indicating long and short run results,
respectively; again, Figs. 10(a), 10(c), and 10(e) pertain to
aligned grains, while Figs. 10(b), 10(d), and 10(f) correspond
to randomly oriented inclusions. The dashed horizontal lines
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FIG. 9. Critical concentration ratios for calculations with 107 and
10% interactions of virtual tracer particles with grains (a), (c), and (e)
aligned and (b), (d), and (f) randomly oriented. Results are shown
for (a) and (b) tori of circular cross section, (c) and (d) tori of square
cross section, and (e) and (f) square prisms.

indicate the 0.667 exponent ratio obtained from universal
scaling arguments. With trajectories encompassing an order
of magnitude more interactions with impermeable grains, k/x
results are generally in closer agreement with the universal
scaling result. Based on this trend, one may surmise that
increasing the dwell time even further would yield k/x results
in even closer accord with the 0.667 line. Nevertheless, as
may be seen in Fig. 9, critical porosities ¢, are converged with
respect to the dynamical infiltration trajectory dwell time.

IV. CONCLUSION

We have examined percolation phenomena for nonconvex
impermeable grains in the form of toroidal shapes of cir-
cular and square cross sections. In the case of the former,
when tori with circular cross section (or indeed, we expect,
with any concavity above and below the axis of symmetry)
are randomly oriented, the topological transition signaled by
the appearance of a central hole is also marked by a cusp
in the critical porosity fraction with incipient central holes
acting as channels to expand the network of void volumes.
We found convergence and saturation at a common value of
¢, for the randomly oriented tori and linear counterparts in the
high-aspect-ratio limit where cross-sectional length scales are
dwarfed by the central hole radius; however, this convergence
in the critical porosity fractions does not occur among tori
and linear counterparts in the case in which the grain axes
of symmetry are aligned. We also have calculated critical
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FIG. 10. Exponent ratios k/x with black closed circles and green
closed squares corresponding to calculations for 107 and 10° in-
teractions of virtual tracer particles with (a), (c), and (e) aligned
grains and (b), (d), and (e) randomly oriented inclusions. Results are
shown for tori of (a) and (b) circular cross section, (c) and (d) square
cross section, and (e) and (f) square prisms. Dashed horizontal lines
indicate the 0.667 ratio based on universal scaling arguments.

porosity fractions for square prisms for a wide range of aspect
ratios in the randomly oriented and aligned cases, finding no
variation in ¢, across this broad ra range.

We have achieved significant gains in computational ef-
ficiency by implementing an approach in which voxels
occupied by virtual tracers as well as neighboring cells are
populated with grains, which allows rescaling the inclusions
relative to voxels, thereby altering the mean number of grains
overlapping cubic cells. In this manner, with an optimal
choice of the inclusion dilation factor, the computational bur-
den remains essentially constant even in the high-aspect-ratio
regime. The improvements in computational efficiency have
permitted an increase in trajectory dwell times by an order of
magnitude, yielding tracer paths involving an average of 10’
collisions but with the same critical porosity fraction results
as in the case of the shorter runs, up to Monte Carlo statistical
error.
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APPENDIX

Toroidal grains of circular cross section are characterized
by the orientation unit vector & of the axis of symmetry, their
location X, and the major and minor axes r; and r, with the
former being the radius of revolution and the latter the cross
section radius. It is convenient to operate in terms of the
tracer particle position relative to the torus geometric center
A =X — %, where X = X + ¢ in seeking the time ¢ for the
virtual tracer particle to intersect with the toroidal surface. The
vector pane = r1[A — (A - #)i]/V A2 — (A - @) is aligned
with the projection of A onto the equatorial plane of the
torus and is on the circle of radius r;, the locus of centers
of circles of revolution. For an intersection with the surface
of the grain, one insists that |5 — Vplane| = 2. Squaring both
sides, isolating and squaring the radical expression, and in-
serting A=A+ 0t (where Ao =% — X.) yields a quartic
equation in ¢:

4N - D)
+[4R 02 + 442 —2(7F + 1)’ + 270 - 2]
+[4A5(R¢ - D) — 4(Ag - D) (1] + 13)
+8(0- ) (Ao - )]t + [AZ+ (=) =0. (Al

The roots may be found analytically [27], and for a computa-
tionally robust approach we introduce a shift in ¢ to eliminate
the linear term in Eq. (1) and then factor the resulting de-
pressed quartic into two readily soluble quadratic equations.
Fortuitously, this factorization involves solving a cubic equa-
tion, which always has at least one real root.

As in the case of tori with square cross sections, care must
be taken if a virtual tracer interacts with the same grain more
than once in succession. In such a situation, factoring out the
zero root yields a cubic equation, which also is amenable to
exact solution. Disposing of the zero root (whose physical
meaning is that the tracer particle has not left the surface) in
this manner avoids its confusion with a scattering event due to
limits on numerical precision. When the nearest intersection
point A has been identified, one then obtains the surface
normal, given by 7o = U, /r,, where the locally perpendicular
direction is v = A — Uplane-
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