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The multifaceted appearance of soft robots in the form of swimmers, catheters, surgical devices, and drug-
carrier vehicles in biomedical and microfluidic applications is ubiquitous today. Jellyfish-inspired soft robotic
swimmers (jellyfishbots) have been fabricated and experimentally characterized by several researchers that
reported their swimming kinematics and multimodal locomotion. However, the underlying physical mechanisms
that govern magnetic-field-induced propulsion are not yet fully understood. Here, we use a robust and efficient
computational framework to study the jellyfishbot swimming kinematics and the induced flow field dynamics
through numerical simulation. We consider a two-dimensional model jellyfishbot that has flexible lappets,
which are symmetric about the jellyfishbot center. These lappets exhibit flexural deformation when subjected
to external magnetic fields to displace the surrounding fluid, thereby generating the thrust required for propul-
sion. We perform a parametric sweep to explore the jellyfishbot kinematic performance for different system
parameters—structural, fluidic, and magnetic. In jellyfishbots, the soft magnetic composite elastomeric lappets
exhibit temporal and spatial asymmetries when subjected to unsteady external magnetic fields. The average speed
is observed to be dependent on both these asymmetries, quantified by the glide magnitude and the net area swept
by the lappet tips per swimming cycle, respectively. We observe that a judicious choice of the applied magnetic
field and remnant magnetization profile in the jellyfishbot lappets enhances both these asymmetries. Furthermore,
the dependence of the jellyfishbot swimming speed upon the net area swept (spatial asymmetry) is twice as high
as the dependence of speed on the glide ratio (temporal asymmetry). Finally, functional relationships between
the swimming speed and different kinematic parameters and nondimensional numbers are developed. Our results
provide guidelines for the design of improved jellyfish-inspired magnetic soft robotic swimmers.
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I. INTRODUCTION

Soft robotics has been one of the most significant re-
cent topics in the soft matter community due to the broad
range of emerging applications in microfluidics and biomed-
ical engineering [1–3]. From targeted drug delivery [4], to
robotic surgery [5], to small-scale manipulation and labeling
[6], small-scale flexible robotic swimmers have witnessed an
increasing demand [7,8] owing to their swimming versatil-
ity, ergonomics, the possibility of miniaturization, adaptive
surrounding fluidic interactions, and ability of multimodal
locomotion [9,10].

Soft polymers or elastomer matrices are often embedded
with multifunctional stimuli-responsive second-phase filler
materials to induce cross-domain energy transduction [11],
resulting in smart elastica [12]. For example, soft com-
posites with exceptional magnetoresponsive features have
been developed for shape-morphing applications [13,14] and
flexible multifunctional composites have been fabricated
by combining shape memory polymers, electroactive poly-
mers, pneumatic or electrical components together with soft
matrices [15]. However, tethered electroactive and thermore-
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sponsive soft robots are prone to local heating and low system
efficiency due to additional onboard compartments and intri-
cate wiring systems.

In contrast, magnetic actuation is a noncontact mode ma-
nipulation, which is often preferred for in vivo biomedical and
microfluidic applications [16,17]. Untethered actuation and
noninvasive remote control with high precision have paved the
way for the development of magnetic soft robotic swimmers
[18,19] for use in drug delivery, catheterization, endoscopy,
and laparoscopic surgery [20,21]. These miniature soft robots
have been shown to exhibit adaptive and multimodal locomo-
tion under external magnetic fields [22].

For instance, terrestrial locomotion has been demonstrated
for bioinspired soft magnetic millirobots [23]. Magnetic soft
robots have been successfully employed as efficient aquatic
carrier vehicles to exhibit versatile locomotion and adaptive
swimming dynamics [24,25]. In most cases, these flexible
robots are inspired by nature [26], ranging from miniature
microtubule-based structures such as cilia [27] and flagella
[28], to spermatozoa [29] and jellyfish [30]. In general,
soft robotic swimmers have a strong biological inspiration
from fish [31,32], squids [33], turtles [34], and jellyfish
[35,36].

In a marine environment, jellyfish are arguably the most ef-
ficient aquatic swimmers [37], because they require the lowest

2470-0045/2023/107(1)/014607(18) 014607-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3310-2172
https://orcid.org/0000-0001-5632-9727
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.014607&domain=pdf&date_stamp=2023-01-18
https://doi.org/10.1103/PhysRevE.107.014607


PRAMANIK, VERSTAPPEN, AND ONCK PHYSICAL REVIEW E 107, 014607 (2023)

cost of transport and energy expenditure (per unit mass) dur-
ing their locomotion [38]. This has been a strong motivation
for the recent development of jellyfishbots [9,39,40]. For in-
stance, a soft jellyfishbot was fabricated using hard magnetic
neodymium-iron-boron (NdFeB) microparticles embedded
within a soft silicone elastomer [9]. Its ability to shape morph
under external magnetic actuation and its swimming kinemat-
ics have been recently reported [40]. Similarly, a biomimetic
jellyfish-inspired robot has been fabricated using shape mem-
ory alloy [41] and soft pneumatic composites [42].

However, these studies have primarily focused on fabri-
cation techniques or experimental characterization to esti-
mate swimming performance. Clearly, there is a need for
a fundamental understanding and numerical modeling of
their magnetic-field-induced propulsion. Studies have been
performed using computational fluid dynamics-based opti-
mization and control to estimate the swimming kinematics
of flexible robotic fish [7] and soft robotic sperm [43]. The
nonlinear coupled interactions between inertia, viscosity, and
elasticity have been studied for highly deformable robotic
actuators within a fluidic network [44,45].

In other studies, the discrete elastic rod method was used
to predict the structural kinematics of soft robotic swimmers
[46], the propulsion of compliant magnetic nanowires has
been analyzed using a bead-spring model to incorporate both
the large deformation geometric nonlinearity and the asso-
ciated hydrodynamic interactions [47], and the multiphysics
coupling behavior of a magnetically propelled fish-inspired
robotic swimmer has been studied using COMSOL [48]. In ad-
dition, several efficient numerical techniques have been used,
such as the finite element method [49], boundary element
method [27], and lattice Boltzmann method [50] (to name
a few), for predicting the overall system dynamics and spa-
tiotemporal evolution of the state variables.

Although several modeling approaches have been under-
taken, a robust computational model involving multiphysics of
large-deformation two-way fluid-solid coupling with a com-
plete Navier-Stokes implementation, while simultaneously
solving for the magnetodynamics, has never been used to
study the swimming kinematics of robotic swimmers. This
is the aim of the present paper and the objectives are to
(a) understand the swimming kinematics and magnetic-field-
induced locomotion of an experimental system of a soft smart
jellyfishbot reported in a recent study [40]; (b) perform a
rigorous computational design through numerical simulation
using a coupled computational multiphysics model involving
the magnetics, solid mechanics, fluid dynamics, and large
deformation fluid structure interaction (FSI) [51]; (c) develop
functional relationships between different kinematic variables
and nondimensional numbers; and (d) explain the jellyfishbot
locomotion based on the spatial and temporal breaking of
symmetry.

We discuss the underlying physical mechanisms that gov-
ern the magnetically actuated jellyfishbot through the use of
a robust fluid-structure interaction magnetodynamics model
that allows the jellyfishbot to be able to handle large Reynolds
number flows incorporating solid and fluid inertial effects
[52]. We explain the relative contribution of inertial, magnetic,
viscous, and elastic forces in determining the jellyfishbot
swimming kinematics.

The present paper is organized as follows: the compu-
tational framework for the coupled multiphysics problem is
presented in Sec. II. The magnetodynamics large-deformation
FSI model, along with appropriate boundary conditions and
solution techniques, is discussed. The results of numerical
simulations are reported in Sec. III. The jellyfishbot lappet
material properties and swimming kinematics are discussed.
Section IV addresses the influence of the structural, flu-
idic, and magnetic properties on the kinematic performance.
Section V presents the nondimensional numbers and their
correlation with jellyfishbot kinematic parameters. Here, the
functional relationships between the different kinematic pa-
rameters are reported as well. Finally, Sec. VI concludes the
paper.

II. COMPUTATIONAL FRAMEWORK

The jellyfishbot lappets are considered to be composed of
silicone elastomer impregnated with hard magnetic NdFeB
microparticles in equal mass ratios of 1:1 (please refer to
[9] for details). During fabrication, strong external magnetic
fields are exerted to generate a remnant magnetization profile
Mr along the lappet length s. Magnetic body torques are gen-
erated due to remnant magnetization in the flexible lappets.
The uniform magnetic field acts directly upon the jellyfishbot
in an untethered and remote manner. This allows them to
deform and displace the surrounding fluid and exhibit net
propulsion (see Fig. 1).

The jellyfishbot lappets are intended to deform in a flexural
manner when subjected to uniform external magnetic fields;
there are no spatial gradients for this field. In addition (for the
sake of simplicity), we assume that the jellyfishbot soft robotic
swimmer is essentially composed of only the two symmetric
lappets—where one end of each lappet is free, while the other
ends are connected to each other at the jellyfishbot center,
which ideally constitutes the jellyfishbot body (here, a point in
space). And then, these lappets could be visualized as highly
flexible cantilever beams that can vertically translate [9,40].
Furthermore, both the lappets are (permanently) magnetized
throughout their entire length using sinusoidal profiles of the
remnant magnetization [see Fig. 2(a)]. Subject to external
magnetic actuation, the generated body torques (equivalent to
the local magnetic moments) act upon the lappets.

However, the field does not move with the jellyfishbot.
Rather, it is uniform and has the same strength every-
where throughout the computational domain of interest.
The jellyfishbot is maneuvered through a viscous fluid and
spatiotemporally controlled by an external time-varying (un-
steady, but uniform) oscillating magnetic field along the y
axis (Fig. 1), during which the lappets undergo flexural defor-
mation to displace the surrounding fluid and generate thrust
required for locomotion.

When the system of interest involves multiple physical do-
mains such as magnetics, fluid dynamics, and solid mechanics
along with large deformation FSI, closed-form analytical so-
lutions are not obtainable. One has to resort to numerical
techniques and computational models in order to obtain nu-
merical solutions of the coupled sets of nonlinear partial
differential equations. In the present paper, magnetics, fluid
mechanics, and solid dynamics are strongly coupled and act
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FIG. 1. Left: Solid and fluid domains, jellyfishbot—magnetic, solid, and fluid properties. Center: Note that the initial, undeformed
configuration (without the magnetic field) is a flat plate. Right: Schematic representation of the jellyfishbot trajectory, boundary conditions,
and the streamlines in the fluid. The external oscillating magnetic field is a uniform unsteady field in the y direction with no spatial gradient,
shown by the two-sided blue arrow.

coherently to influence the evolution of structural kinemat-
ics and flow dynamics. To address this complexity, we use
a robust two-dimensional computational model [52] using a
fixed-grid fictitious domain method to account for the multi-
physics involved in these magnetically actuated jellyfishbots.

We aim to understand the relative importance of the in-
dividual system parameters on jellyfishbot swimming speed,
and also study the interplay of inertia, viscous, magnetic, and
elastic forces that dictate the jellyfishbot swimming kinemat-
ics. Appropriate boundary conditions in the form of no-slip,
no-penetration, and traction continuity are enforced using La-
grange multipliers at the fluid-solid interface. The velocity of
the fluid is equated to that of the solid at the interface using a
point-collocation technique [53].

A. Solid dynamics

The jellyfishbot consists of two equal-sized lappets that
are modeled as a discrete assemblage of two-dimensional ho-
mogeneous, isotropic, linearly elastic Euler-Bernoulli beams.
The lappets are slender with a very high slenderness ratio;
specifically, L/h = 1000, where L and h represent the lap-
pet length and thickness, respectively. Since the jellyfishbot
lappets undergo large deformation, the strain is geometrically
nonlinear and the beam curvature is high. These factors co-
herently lead us to choose a nonlinear form for the axial
strain [see Eq. (2)], which is a standard formulation often

used in nonlinear finite element analysis for nonlinear strain
terms [54].

Geometric nonlinearity is taken into account using an up-
dated Lagrangian formulation. The principle of virtual work
is used as the starting point for the finite element formulation
[55]. The virtual work of the external forces at time t + �t
(δW t+�t

ext ) is equated to the virtual work of the internal forces
(δW t+�t

int ). The internal virtual work is written as [49]

δW t+�t
int =

∫
V

(σδε + ρ(üδu + v̈δv))dV. (1)

Here, ρ represents the beam density, σ and δε represent the
axial stress and virtual strain in the beam element, and dV rep-
resents the elemental volume. The Lagrangian displacement
components for the beam elements along the horizontal and
vertical directions are denoted by u and v, respectively. The
first component at the right-hand side in Eq. (1) represents the
potential energy in the beam element due to the mechanical
deformation that the jellyfishbot lappets undergo. The second
term (which is a product of the beam density, acceleration,
and elemental volume) accounts for the kinetic energy of the
beam element. Correspondingly, the nonlinear axial strain ε

in the beam is given by

ε = ∂u

∂x
+ 1

2

(
∂v

∂x

)2

− y
∂2v

∂x2
. (2)

(a) (b)

FIG. 2. (a) Variation of jellyfishbot remnant magnetization Mr with respect to the curvilinear axis s; the black arrows indicate the direction
of Mr at specific segments along the jellyfishbot length. (b) Variation of B0 with time t indicating different phases of jellyfishbot swimming
kinematics.
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The external virtual work is represented as

δW t+�t
ext =

∫ (
fxδu + fyδv + Nz

∂δu

∂x

)
Adx

+
∫

(txδu + tyδv)bdx. (3)

Here, fx and fy are the magnetic body forces in the axial
and transverse directions, respectively, A represents the cross-
sectional area of the beam element, Nz denotes the magnetic
body couple in the out-of-plane direction, tx and ty represent
the surface tractions, and b is the out-of-plane thickness. The
principle of virtual work is linearized [56] and discretized to
obtain

δpT
(
K�p + Mp̈t+�t − Ft+�t

ext + Ft+�t
int

) = 0. (4)

Here, the K matrix combines both the material and geo-
metric stiffness, M denotes the mass matrix, Ft+�t

ext and Ft+�t
int

represent the external and internal force vectors, respectively,
�p is the nodal displacement increment vector, and p̈ denotes
the nodal acceleration vector.

Temporal discretization of the nodal acceleration vector is
performed using Newmark’s algorithm [57] such that Eq. (4)
can be written in terms of the beam velocity. Newmark’s inte-
gration scheme has often been used in finite element analysis
to model dynamical systems [58]. Here we use it to integrate
Eq. (4). It is an explicit method that guarantees unconditional
stability and second-order accuracy for nonlinear systems
[59]. This allows us to use a larger time step.

For Newmark’s integration scheme, the range of these
parameters is as follows: 0 � γ � 1 and 0 � β � 0.5. We
consider Newmark’s integration parameters γ = 1.0 and β =
0.5 for our present paper, which is a standard and optimized
choice made by several researchers to achieve numerical
stability and convergence [60–62]. For more details on the dis-
cretized equations of motion for the solid mechanics model,
see [62].

B. Magnetostatics

In our paper, the jellyfishbot multifunctional composite is
considered to be a permanently magnetic material. The (rem-
nant) magnetization M of the jellyfishbot lappets is known
a priori in every beam element, and this value is a constant.
A change in the external magnetic field has no influence on
its magnitude. Furthermore, the constitutive relation consid-
ered here is Bo = μo(M + Ho), where Bo is the magnetic
flux density, Ho is the applied (prescribed) magnetic field,
and μo is the permeability of vacuum (with a constant value
of 12.57 × 10−7 N/A2). Next, we evaluate N, the magnetic
couple per unit volume, using the relation N = M×Bo.

The numerical simulations and computational analyses are
two dimensional. The only nonzero component of the mag-
netic body couple is the out-of-plane component Nz, which
is the source for the external virtual work in Eq. (3). Since
the applied magnetic field is uniform throughout the entire
computational domain, the magnetic body forces due to the
field gradients are zero.

C. Fluid mechanics

The flow field surrounding the swimming jellyfishbot is un-
steady and nonuniform. Therefore, we solve for the complete
Navier-Stokes equation involving the inertial, convection,
pressure, and diffusion terms. The fluid is assumed to be
Newtonian and incompressible. Considering the mass and
linear momentum balance, the physical behavior of the fluid
is captured through the following equations:

∇ · u = 0, (5)

ρ f [u̇ + (u · ∇ )u] = −∇p + 2μ∇ · D. (6)

Here, p represents the scalar pressure field, D denotes the
rate of deformation tensor, and u is the velocity field. μ and
ρ f represent the fluid viscosity and density, respectively.

Equations (5) and (6) are solved using Eulerian finite ele-
ments by a Galerkin method. The fluid domain is discretized
into quadrilaterals; in this paper, we use the Taylor-Hood
Q2Q1 elements, in which the velocity and pressure of the
fluid are interpolated quadratically and linearly, respectively
[63]. The velocity is calculated at the vertices, midsides, and
midpoint of the quadrilateral, while the pressure is calculated
at the vertices.

D. Fluid-solid coupling

The solid and fluid domains are coupled by imposing the
constraint that the velocity at the nodes of the solid beam is
equal to the velocity of the surrounding fluid:

u = ṗ. (7)

This coupling [Eq. (7)] is established with the help of
Lagrange multipliers’ mortar elements using the fictitious do-
main method. For further details on the Eulerian finite element
model and the coupling procedure, see [52,64].

E. Boundary conditions

The computational domain is two dimensional and has a
dimension of 5 mm (width) by 4 mm (height). The flow fields
and structural dynamics are symmetrical about the jellyfishbot
central (longitudinal) axis, which is also the axis of symmetry
for the problem definition. The jellyfishbot initial velocity is
assumed to be zero. It has an undeformed initial configuration,
in which the jellyfishbot is fully straight (like a flat plate) and
oriented horizontally.

The flow field is symmetric about the jellyfishbot center
due to both the structural and kinematic symmetries of the
jellyfishbot (see Fig. 1). Thus, symmetric boundary conditions
are imposed at the center line. The top end of the compu-
tational domain is traction free, and the bottom, left, and
right ends of the computational domain are considered no-slip
no-penetration boundaries. Although the magnetic field does
not vary in space, it still has a temporal variation as shown in
Fig. 2(b).

F. Solution procedure

The external magnetic actuation and, consequently, the
jellyfishbot propulsion are along the y axis (see Fig. 1). The
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FIG. 3. Convergence study on the reference case shown in
Figs. 1, 2, 4, and 5 to ensure the numerical framework is stable:
the system variable of interest (here, the normalized jellyfishbot
swimming speed C) asymptotically attains a constant value with an
increase in the number of beam elements (i.e., decreasing mesh size),
and increase in the number of time steps (i.e., decreasing time step).

magnetic body couple acting on the jellyfishbot is calculated
from the magnetic field. The magnetic body couple is fed as
an external load to the coupled solid-fluid model. This simul-
taneously solves for the jellyfishbot velocity, as well as the
velocity and pressure fields of the surrounding fluid. Next, the
jellyfishbot velocity is integrated using Newmark’s algorithm
to obtain its new position, and this procedure is repeated.

G. Implementation

The present paper was implemented using an in-house
FORTRAN code based on a finite element numerical frame-
work [27]. All the numerical simulations reported henceforth
were run on a high-performance computing cluster. To begin
with, we perform a numerical convergence study to ensure the
model stability (see Fig. 3).

As a starting choice, the number of beam elements con-
sidered is 100. The time step is chosen to be 0.1 ms. This
combination holds true for all the cases studied henceforth.
For numerical convergence, we vary the time step keeping the
mesh size constant, and vice versa. From Fig. 3, we observe
that with increasing the number of elements (decreasing the
mesh size) or decreasing the time step, the value of C asymp-
totically attains a constant value.

III. RESULTS AND DISCUSSION

A. System parameters

The geometric variables are the jellyfishbot lappet length
(L) and thickness (h); the material properties are Young’s
modulus (E ) and density (ρ); then, there is fluid viscosity (μ)
and its density (ρ f ). We also have the external magnetic field
(B0), remnant magnetization (Mr) with its tangential (Mr,t )
and normal (Mr,n) components, and the actuation frequency
( fm). The cycle time period (tref ) is the inverse of fm.

B. Kinematics

We perform two-dimensional simulations to study the jel-
lyfishbot kinematics, with the aim to provide a qualitative
comparison with real-life jellyfish and their experimental
counterpart. Their kinematic behavior, especially the bending

motion of the lappets and their asymmetric strokes, are similar
and we account for three distinct phases that exist during a
swimming cycle: relaxation, contraction, and glide. The iner-
tial effects give rise to the glide phase, which is prominently
present in both the experimental systems and the numerical
simulation results.

The lappet deformation behavior, consisting of the com-
bined spatial and temporal asymmetries, results in net
propulsion. In addition, the magnetic field used in the model
[see Fig. 2(b)] is similar to that used in experimental studies
[9,40]: it is assumed to be uniform throughout space (with
no spatial gradient) but varies with respect to time. Also, the
vortex fields generated (see Fig. 4) due to the jellyfishbot
lappet deformation have a strong qualitative agreement with
the experimental studies (see, e.g., [9,40]).

We study the strongly coupled FSI arising due to large
lappet displacement, jellyfishbot swimming, and propulsion
through the viscous fluid. The jellyfishbot swimming kine-
matics and the lappet trajectory for one complete swimming
cycle (for the reference case) are shown in Fig. 5. Here,
the values for the system parameters are E = 0.1845 MPa,
L = 2.0 mm, ρ = 1.7 × 105 kg/m3, h = 0.065 mm, μ = 0.1
Pa s, ρ f = 1500 kg/m3, and fm = 5.0 Hz. Furthermore, the
Reynolds number for the reference problem is 0.3. The vari-
ation of Mr with respect to length and the variation of
the external, untethered, unsteady, uniform, oscillating mag-
netic field B0 with time are shown in Figs. 2(a) and 2(b),
respectively.

Jellyfish propulsion comprises three lappet motions (also
called strokes or phases), and these are characterized by the
up-and-down flexural beating of their elastomeric lappets.
From another viewpoint, these are also the recovery (upward
relaxation) and the effective (downward contraction) strokes,
respectively. In addition to this, there is the glide phase after
the completion of the recovery and effective phases, during
which the jellyfishbot propels forward without any noticeable
structural (lappet) deformation. The net displacement per cy-
cle is a sum of the contributions from the distances traversed
by the jellyfishbot during these three individual phases.

For the reference case, the displacement is shown for ten
cycles in Fig. 6(a) with tref = 0.2 s for one swimming cycle
in Fig. 6(b). Clearly, a steady state is observed with a constant
value of c = 2.07 mm/s. In this paper, we exclusively report
the steady-state velocities unless mentioned otherwise.

C. Symmetry-breaking mechanisms

For real-life aquatic jellyfish as well as jellyfishbots, the
spatial and/or temporal symmetry breaking of their flexible
lappets is essential for thrust generation and propulsion [66].
When the fluid displaced due to flexural deformation of the
lappets during the contraction (effective) stroke is higher than
that during the relaxation (recovery) stroke, it results in a
higher swept area during the former as compared to the latter.
This difference in the areas swept during these phases gives
rise to the “spatial asymmetry” and a net forward jellyfishbot
displacement. In other words, it is also the breaking of spatial
symmetry during which the flexible lappets have a nonrecip-
rocal motion for the contraction and relaxation strokes.
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(a) (0.025 sec, -1.90 mT) (b) (0.050 sec, 7.64 mT) (c) (0.075 sec, 10.27 mT) (d) (0.100 sec, 8.27 mT)

(e) (0.125 sec, 6.29 mT) (f) (0.150 sec, 4.30 mT) (g) (0.175 sec, -11.46 mT) (h) (0.200 sec, -11.46 mT)

FIG. 4. Chronological sequence of jellyfishbot configurations and surrounding vortex field through the streamlines and magnitude of the
vortex field; (·, ·) represents the applied magnetic field and the corresponding cycle time, respectively (t , B0). For an animation of the swimmer,
see movie S1 in the Supplemental Material [65].

The glide phase thereafter adds on to the jellyfishbot kine-
matics using inertial effects. When the time required for the
effective stroke is lower than compared to the recovery stroke,
a net forward jellyfishbot displacement is observed. This is
attributed to the breaking of the temporal symmetry, and is
referred to as “temporal asymmetry.” This occurs when there
is a predominant existence of the glide phase. Furthermore,

(higher) inertial effects contribute to an increased temporal
asymmetry [67]. Both these asymmetries are utilized by the
jellyfishbots for efficient and versatile locomotion and en-
hanced swimming performance.

The fluid dynamics also influence the asymmetries, and
they can potentially have an important contribution to efficient
jellyfishbot propulsion. By taking a close look at Fig. 4, we

(a) (0.025 sec, -1.90 mT) (b) (0.050 sec, 7.64 mT) (c) (0.075 sec, 10.27 mT) (d) (0.100 sec, 8.27 mT)

(e) (0.125 sec, 6.29 mT) (f) (0.150 sec, 4.30 mT) (g) (0.175 sec, -11.46 mT) (h) (0.200 sec, -11.46 mT)

FIG. 5. Chronological sequence of jellyfishbot configurations and surrounding velocity field through the streamlines and magnitude of
the velocity field; (·, ·) represents the applied magnetic field and the corresponding cycle time, respectively (t , B0). For an animation of the
swimmer, see movie S2 in the Supplemental Material [65].
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(a) (b)

FIG. 6. (a) Steady-state kinematics of the reference jellyfishbot swimmer of length L = 2.0 mm for ten cycles. (b) Jellyfishbot displacement
showing the three individual phases for one cycle (time period is 0.2 s).

observe a vortex ring generated during the contraction stroke,
which propagates down the lappets. As soon as the next cycle
starts, there is a generation of small vortices during the recov-
ery stroke. However, the Reynolds number here is relatively
small (from 0.1 until 0.7) and thus the inertial effects are
negligible. As a result, the vortices do not interact with one
another, and their influence upon the jellyfishbot swimming
kinematics is minimal.

D. Wall proximity

Another aspect that plays a significant role during jelly-
fishbot locomotion is the wall proximity. The jellyfishbot is
primarily intended to locomote through confined regions to
mimic the real-life situation of a soft robot swimming through
blood vessels or narrow vascular channels [10]. In such cases,
the assumption of no-slip no-penetration proximal boundaries
holds true, and the effect of wall proximity is important.

To investigate this, we perform numerical simulations for
a jellyfishbot of length L = 2.0 mm for different dimensions
of the computational domain, so that the horizontal proximity
of the left and right boundaries, and the vertical proximity of
the bottom boundary, are varied in the undeformed configu-
ration to understand the horizontal and vertical wall effects,
respectively. Our findings are plotted in Fig. 7.

We observe that the wall proximity has an important effect
on the swimming speed at small proximities (see Fig. 7).
We note that the jellyfishbot average speed asymptotically
converges upon increasing the vertical and lateral proximities,

FIG. 7. Variation of jellyfishbot average speed c with respect to
lateral and vertical proximity using a vertical proximity of 0.5 mm
for the lateral variation, and a lateral proximity of 1.5 mm for the
vertical variation.

beyond a value of approximately 1.5 mm. We use this value
of wall proximity for all the cases we study henceforth to
eliminate wall effects for the swimmer with L = 2.0 mm. It
is interesting to note that decreasing the lateral proximity
reduces the jellyfishbot speed, while the effect is the opposite
in the case of the vertical proximity.

The results show that, when a robotic swimmer is intended
to traverse through very narrow tubular channels whose di-
mensions are comparable to that of the swimmer dimensions,
the wall proximity and the wall’s cross-sectional morphology
have a very important role to play and, therefore, the boundary
effects should not be ignored. Although we do not discuss
the interface effects or locomotion near fluid surfaces in the
present paper, it would nonetheless be important to understand
its influence on the jellyfishbot swimming kinematics. How-
ever, we leave this to future work.

E. Swept area and glide

The area swept due to lappet deformation during individual
phases in a swimming cycle is directly proportional to the net
fluid area propelled (refer to [62] for details). We characterize
the shape and size of the swept areas using the normalized area
swept (NAS), defined as the ratio of the area swept by the tip
of the jellyfishbot (see Fig. 8) to the area of the circle with
diameter L/2. The swept area is computed using MATLAB by
evaluating the difference between the area under the curves for
the effective and the recovery strokes. Breaking of trajectory
symmetry gives rise to a nonzero value of net area swept per
swimming cycle. The area enclosed within the trajectory of

area
swept

jellyfishbot
lappettravel

FIG. 8. Schematic representation of the area swept by the jel-
lyfishbot lappets per swimming cycle: blue lines show the lappet
trajectory.
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(a) (b)

(c)

FIG. 9. Variation of C, NAS, and GR with respect to (a) E , (b) ρ, and (c) h.

the lappet tips is the net swept area. The other important
parameter is the displacement that the jellyfishbot spends in
the glide phase (g). This is characterized by the glide ratio
(GR), defined as the ratio of g to d , where d is the jellyfishbot
net steady-state displacement per swimming cycle. We also
introduce a nondimensional parameter C to represent the ratio
of the jellyfishbot average speed in a swimming cycle to the
value of c obtained for the steady-state swimming speed in the
reference case.

IV. PARAMETRIC STUDY

We perform a parameter sweep for all the system parame-
ters and analyze how the jellyfishbot kinematics in terms of C,
NAS, and GR change accordingly, and in doing so, we aim to
strike the optimum kinematic performance for each individual
parameter. For all the cases studied, the reference swimmer is
used as a basis, and we vary one parameter at a time.

First, the structural properties are discussed, wherein the
effects of jellyfishbot lappet compliance, density, and thick-
ness are elaborated. Then, the influence of viscosity and
density of the surrounding fluid is studied. Finally, the de-
pendence of the jellyfishbot kinematics upon the external
magnetic field and remnant magnetization is explained.

A. Structural properties

Young’s modulus of the jellyfishbot lappet is varied to
understand its influence upon the swimming kinematics [see
Fig. 9(a)]. High lappet compliance results in large deforma-
tion subject to the same magnetic actuation. Not only does
this generate larger swept areas in each cycle, but it also gen-
erates a higher thrust. Consequently, this leads to an increased
kinematic contribution during the glide phase. High stiffness
corresponds to higher flexural rigidity, which hinders large

lappet deformation to displace the surrounding fluid. With
increasing stiffness, the lappet deformation reduces and this
decreases the net area swept. Thus, the jellyfishbot traverses
a lower distance per cycle with a reduction in its swimming
speed as well.

For very low values of lappet stiffness, excessive structural
deformation is observed. This causes the soft robotic swimmer
to self-coil. This coiled lappet morphology further results in a
floppy swimmer, that is unable to reopen its lappets, or show
any characteristic jellyfishbot kinematics [indicated by x in
Fig. 9(a)]. Also, it does not exhibit a steady-state motion. The
value of C (0.8) for the floppy swimmer is obtained in the
first cycle. Hence, it is important to come up with an opti-
mum value of the lappet Young’s modulus (E = 0.1845 MPa),
wherein both the glide and swept areas (and, consequently,
the average speed) are maximum [see Fig. 9(a)]. Note that
the normalized swimming speed C scales more strongly
with the glide ratio GR than with the normalized swept
area NAS.

Inertia is linearly proportional to the density, of a given
system volume. Thus, density affects the distance traversed
by the jellyfishbot through inertial effects. The jellyfishbot is
able to swim a greater distance during the glide phase with
an increase in inertia [see Fig. 9(b)]. When the density of the
swimmer is of the same order as that of the surrounding fluid,
inertial effects are negligible. This is when spatial asymmetry
is the only driving force for forward propulsion since temporal
asymmetry is insignificant. However, when the lappet density
is considerably higher than that of the surrounding fluid, iner-
tial effects become dominant, and we observe a higher average
speed [see Fig. 9(b)].

With an increase in inertia, not only the net swept area
increase but also the glide displacement is higher; this is at-
tributed to inertia gained by the jellyfishbot in the contraction
phase. Further, the area swept during the contraction phase
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(a) (b)

FIG. 10. Variation of C, NAS, and GR with respect to (a) μ and (b) ρ f .

is considerably higher than that during the relaxation phase,
due to inertia gained from the earlier cycles. Note that the
normalized swimming speed C scales more strongly with the
glide ratio GR than with the normalized swept area NAS.

An increase in lappet thickness results in an increase in
flexural rigidity [see Fig. 9(c)]. The lappet deformation de-
creases with increased thickness due to reduced compliance.
This leads to a reduction in the areas swept during the individ-
ual phases. Thus, spatial asymmetry provides the jellyfishbot
with insufficient net area swept to exhibit any considerable
forward propulsion. Thus, we observe a decrease in the jelly-
fishbot kinematic performance.

Very low values of lappet thickness mean extremely high
lappet flexural compliance. This leads to an excessive and
nonuniform structural deformation of the jellyfishbot. This
results in a coiled jellyfishbot morphology, which is inca-
pable of any further locomotion or swimming kinematics (a
floppy swimmer, denoted by x). The value of C for the floppy
swimmer (0.38) is only obtained in the first cycle; no steady-
state swimming speed is reached. Consequently, an optimum
lappet thickness for the best jellyfishbot kinematics could
be estimated from Fig. 9(c). The effects of lappet thickness
and lappet stiffness are similar because both these parameters
affect the lappet flexural rigidity. The bending stiffness scales
with h3E , which ultimately determines the lappet structural
deformation. Thus, Figs. 9(c) and 9(a) have a similar variation.

B. Fluid properties

Fluid viscosity strongly influences the jellyfishbot lappet
deformation, since this dictates the resistance offered by the
surrounding fluid during the lappet movement in the relax-
ation and contraction phases. During the glide phase, the
jellyfishbot traverses through the fluid without any notice-
able structural deformation under Stokes drag, and this is
when the fluid viscosity plays a dominant role. It retards
the jellyfishbot momentum and this directly reflects upon the
swimming speed. With an increase in μ, the contribution from
the glide phase decreases considerably, and vice versa. This is
in conjunction with the observation in Fig. 10(a). Note that
the normalized swimming speed C now scales more strongly
with the normalized swept area NAS than with the glide
ratio GR.

We observe a gradual speed reduction with an increase
in viscosity because the swept areas decrease owing to less
lappet deformation. The surrounding fluid resists the lappet

deformation to a higher extent. Even if the lappets move in a
similar trajectory as the reference case, the resulting flow dy-
namics are not the same and do not influence the jellyfishbot
propulsion to a major extent. Thus, the jellyfishbot kinematic
performance reduces. With low values of fluid viscosity, drag
and fluid resistance decrease. For a value of viscosity as low as
0.02 Pa s, lappet self-locking and vulnerability of early lappet
closure become possible, further leading to an uncharacteristic
jellyfishbot locomotion (denoted by x). The relatively high
value of C for the floppy swimmer (2.75) is only obtained in
the first cycle; no steady-state swimming speed is reached.

When the fluid viscosity is very low, the lappets deform
excessively and often get locked during the contraction phase.
Only when the magnetic field is reduced, the lappets can
spring back. This intermediate locked structure due to the
self-closure of the deformable lappets is referred to as “self-
locking” [see Fig. 11(a)].

The jellyfishbot propels forward by pushing the surround-
ing fluid backward using its deformable lappets. The area
swept by the lappets during one swimming cycle is propor-
tional to the quantity of fluid displaced by the lappets [62].
Furthermore, the jellyfishbot swimming speed increases when
the normalized area swept NAS is higher (due to spatial asym-
metry, as explained earlier). The flow patterns are quite similar
for all the cases analyzed. Hence, during the parametric study,
we only report the value of NAS with a systematic variation
in all the different system parameters.

The jellyfishbot kinematics is negligibly influenced by the
density of the surrounding fluid. The effects are minimal,
and we observe the variation of fluid density to affect the
jellyfishbot swimming speed by less by 2% [see Fig. 10(b)].

direction of travel self−locking

uncharacteristic
trajectory

self−locking

(a) (b)

FIG. 11. Schematic representation of the jellyfishbot undergoing
ephemeral closure of flexible lappets, or self-locking, when the fluid
viscosity is too low (a) or the magnetic field is too high (b).
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(a) (b)

(c) (d)

FIG. 12. Variation of C, NAS, and GR with respect to (a) B0, (b) Mr,t , (c) Mr,n, and (d) fm.

C. Magnetics

We vary the range of the magnetic field B0 to understand
its influence on the swimming performance. The absolute
difference between the maximum and minimum values of B0

for the temporal variation during one swimming cycle denotes
the range of B0. For the reference case [see Fig. 2(b)], the
value of this range is approximately 20 mT (as shown in
Fig. 12).By increasing B0, the jellyfishbots traverse greater
distances and exhibit enhanced average speeds due to higher
actuating loads. This is due to the increase in lappet defor-
mation, and larger swept areas of the lappet tip. However, we
observe this trend only until a certain value of B0, which is
approximately 30.5 mT [see Fig. 12(a)]. We refer to this value
of B0 as the optimum value of the magnetic actuation. Beyond
this, the jellyfishbot swimming performance decreases. This
is due to the extreme magnetoresponsiveness and large defor-
mation of the magnetic composite elastomeric lappets, which
lets them suck up the surrounding fluid in the subumbrella
region and move backward (downward) during the relaxation
phase. This also reduces the spatial as well as the temporal

asymmetry, thereby leading to a further decrease in the jelly-
fishbot swimming performance. Also, extreme cases of shape
morphing render the jellyfishbot vulnerable to self-locking.

The tangential (Mr,t ) and normal (Mr,n) components of
the magnetization vector are written as a linear combina-
tion of trigonometric and constant functions [see Eq. (8) and
Fig. 2(a)]:

Mr = M0 + M1sin(φ) + M2cos(φ). (8)

M0, M1, and M2 take default values of −30.37, −2.23,
and 32.12 kA/m, respectively, for Mr,t (for the left lap-
pet). For the right lappet, M0, M1, and M2 take default
values of 30.37, 2.23, and −32.12 kA/m, respectively. Simi-
larly, the respective reference values are −3.86, −26.25, and
−53.75 kA/m in the case of Mr,n (see [68] for details). Here,
φ is mathematically defined as a product of the phase (of
Mr along the lappet length, equal to 3.0 for the reference
case), and the normalized distance (s̄) of each node from the
jellyfishbot center [refer to Eq. (9)]. The phase is dimension-
less and so is s̄. The latter is zero at the jellyfishbot center

TABLE I. Influence of relative contribution of the relaxation, contraction, and glide phases, upon the jellyfishbot displacement per cycle
and average speed.

Identity Relaxation phase (%) Contraction phase (%) Glide phase (%) Ratio c (mm/s) C

S1 (reference case) 30 48.3 21.7 1.4:2.2:1 2.07 1
S2 60 18.335 21.665 3.3:1:1.2 2.19 1.06
S3 10 45 45 1:4.5:4.5 2.33 1.13
S4 40 20 40 2:1:2 2.17 1.05
S5 30 21.7 48.3 1.4:1:2.2 2.22 1.07
S6 15 15 70 1:1:4.7 1.53 0.74
S7 33.3 33.3 33.4 1:1:1 2.31 1.12
S8 50 0 50 1:0:1 2.36 1.14
S9 0 50 50 0:1:1 2.26 1.09
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(a) (b)

FIG. 13. Variation of (a) Mr,n and (b) Mr,t along the curvilinear axis s of the swimmer for different values of the phase.

(corresponding to s = 1 mm) and 1 at the end [corresponding
to s = 2 mm in Fig. 2(a)].

φ = phase ∗ s̄. (9)

The remnant magnetization (or, remanence) is a measure
of the magnetization in a material when the driving magnetic
field is zero. The difference between this value and the satura-
tion magnetization is assumed to be negligible even under the
application of external magnetic fields [68]. In other words,
the magnetization is assumed to be independent of the value
of B0 [69].

With this underlying assumption, we study the influence of
the magnitude of the remnant magnetization (Mr). In partic-
ular, we vary only its fixed component (M0), individually for
Mr,t and Mr,n, and observe its influence upon the jellyfishbot
swimming kinematics. With the increase in M0 for Mr,t , the
magnetoresponsiveness of the jellyfishbot lappets increases,
and the time taken to respond to the change in the external
field reduces consequently. Thus, the jellyfishbot swimming
kinematics improves [see Fig. 12(b)]. However, at a certain
value of M0 for Mr,t , we observe that the deformation of the
flexible jellyfishbot becomes so large that it leads to self-
locking, which prohibits it from swimming further after the
first cycle. Thus, too high or low a value of M0 for Mr,t reduces
the jellyfishbot swimming efficiency, and we have to choose
an intermediate for this magnetic property from Fig. 12(b).

The effect of Mr,n is discussed in Fig. 12(c). Here, the
effect is the opposite compared to that for Mr,t : increasing Mr,n

(approaching zero, and then beyond) leads to a decrease in the
swimming performance. Also, too high a negative value of
Mr,n leads to excessive lappet deformation and self-locking.
As a result, we have to choose an intermediate value for

FIG. 14. Variation of C, NAS, and GR with respect to phase.

optimal swimming behavior, i.e., approximately −25 kA/m
[from Fig. 12(c)].

It is important to note that when either the magnetic field or
the remnant magnetization is very high, the lappet deforma-
tion is high, inducing self-locking. Only when the magnetic
field is reduced or the next swimming cycle starts, the lappets
return to their relaxed state through an uncharacteristic spring-
back lappet motion. As also explained in Sec. IV B, we refer to
this intermediate locked structure obtained during self-closure
of the deformable lappets as “self-locking” [refer Fig. 11(b)].

Next, we analyze the effect of actuation frequency ( fm)
upon the jellyfishbot swimming kinematics. In doing so, the
ratio of the individual phases is kept the same for all the nu-
merical simulations performed, unless otherwise mentioned.
The relaxation, contraction, and glide phases account for 30,
48.3, and 21.7% of tref , respectively.

Until a certain value of fm, we note that the jellyfishbot
speed increases with an increase in the actuation frequency.
There is a time lag between the two cycles, which decreases
when fm increases. This time lag manifests itself in the
glide phase, which effectively enhances the jellyfishbot speed.
However, beyond a certain value, the swimming speed reduces
[see Fig. 12(d)].

It is observed that as fm increases, the jellyfishbot travels
shorter distances per cycle with low speeds since the actuation
load (per unit time) it receives per cycle decreases. For fre-
quencies larger than 10 Hz, the jellyfishbot deforms very fast,
and in an undulating manner, akin to a soft vibrating beam
or string. The jellyfishbot does not progress forward, and its
vertical displacement per swimming cycle is negligible. In ad-
dition, the contribution from the glide reduces to a negligible
quantity.

The jellyfishbot can ideally be perceived as a (vertically)
actuated cantilever beam, vibrating in a frequency range of 2–
20 Hz in mode shape 1. The lappet deformation is analogous
to the first mode deformation for a cantilever beam, which

corresponds to the (first) eigenfrequency fn = 3.52
√

EI
ρAL4 .

Plugging in the default parameter values (as considered for
the reference case), fn is calculated to be 71.64 Hz. We notice
that this value of fn is already considerably higher than the op-
erating range of frequencies in the present paper (maximally
20 Hz), so that resonance will not occur in the absence of
viscous damping, let alone in the presence of damping.

The relative contribution of the three phases (relaxation,
contraction, and glide) in a swimming jellyfishbot and its
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(a) (b)

(c) (d)

(e) (f)

(g)

(h)

FIG. 15. Variation of the remnant magnetization Mr with respect to the curvilinear axis s for different values of phase, and the correspond-
ing lappet trajectories: (a) phase = 1.875 (beam mode 1), (b) phase = 3, (c) phase = 4.694 (beam mode 2), and (d) phase = 7.855 (beam
mode 3).

forward propulsion is discussed now while keeping the fre-
quency the same. Its effect on the average swimming speed
is reported in Table I. We observe that the swimmer S8 has
the highest value of C. All jellyfishbots except S6 exhibit a
minimum average speed of 2.0 mm/s. For S6, the relaxation
and contraction phases are equal and considerably lower than
the glide phase (Table I). The variation in the duration of
individual phases gives rise to their individual dominance.

Not only the magnitude of the remnant magnetization Mr

(as discussed earlier) but also its variation along the curvilin-
ear length s for different values of the phase [see Figs. 13(a)
and 13(b)] affects the jellyfishbot kinematic performance. The
phase of Mr dictates its periodicity. This affects the jellyfish-
bot lappet deformation and, consequently, the NAS and C.
With an increase in the phase, C improves to an optimum
value in the range 1–3, after which C starts to decrease (see
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TABLE II. Variation of jellyfishbot swimming efficiency for different fluids subject to a change in the external actuation frequency or
flexural rigidity per unit out-of-plane thickness.

Fluid system μ (Pa s) fm (Hz) EI (Pa m3) k (prefactor for B0) C

Castor oil 0.25 10 4.58 1.5 0.76
10 4.12 1.5 0.87
10 3.43 1.5 0.85

Reference fluid 0.1 10 4.23 1.0 1.75
5 4.23 1.0 1

Vegetable oil 0.035 10 4.58 1.5 1.76
10 13.39 1.5 1.02
10 6.52 1.5 1.57
5 5.72 1.2 1.78
5 3.6 1.2 0.81
5 4.58 1.2 1.71
5 6.52 1.2 0.65
5 11.10 1.2 1.20

Blood 0.004 5 4.58 0.8 1.28
5 5.72 0.8 0.99

Water 0.0008 5 12.24 0.7 1.10
5 13.39 0.7 0.80

Fig. 14). A phase value of approximately 3 is observed to
bring out the best jellyfishbot kinematics because then the
lappets sweep the highest possible area per swimming cycle
for the lappet deformation.

Different mode shapes characterized by varying the phase
correspond to specific trajectories. The lappets displace dif-
ferent quantities of the surrounding fluid, leading to distinct
swept areas, resulting in different values of C. The lappet
trajectories for different values of phase (that characterize the
different mode shapes [70]) are shown in Figs. 15 and 16.
For a phase of approximately 2, the lappet deformation is
equivalent to the first mode shape of an Euler-Bernoulli beam,
while for other phase values, we observe higher mode shapes.
These higher mode shapes sweep lower areas per swimming
cycle, because of the additional curvature along the lappet
length (see Figs. 15 and 16). A phase value of 3 sweeps
the maximum area, thereby giving rise to optimal jellyfishbot
kinematics.

Finally, we systematically vary Mr,t as well as Mr,n to
understand its effect upon the lappet trajectory and NAS in
Figs. 17 and 18, respectively. As discussed in Fig. 16, where
the phase was varied, here we manipulate the magnitude (M0)
of the remnant magnetization components (Mr,t and Mr,n) to

FIG. 16. Variation of C, NAS, and GR with respect to the phase
for different modes (i.e., lappet deformation).

observe their influence upon the lappet trajectory during one
swimming cycle. We find that all the lappet trajectories are
distinct dumbbell-shaped closed loops with a strong similarity
to the reference lappet trajectory (see Fig. 8). The value of
NAS, which is an important parameter that determines the
overall jellyfishbot swimming kinematics, keeps increasing
with the value of the remnant magnetization component.

D. Parameter optimization

In this subsection, we bring together our observations and
understanding from the previous sections to analyze some
real-life cases, wherein the jellyfishbot is assumed to traverse
through some viscous fluid under the application of an ex-
ternal magnetic field. We will choose specific values of the
different system parameters with the objective to achieve the
best swimming performance. There always exists a compe-
tition between the magnetic, elastic, and viscous forces, and
their interplay and relative dominance dictate the overall jel-
lyfishbot swimming kinematics.

We assume the fluid properties (μ, ρ f ) and the magnetic
properties (Mr) of the swimmer to be constant and optimize
the structural properties (flexural rigidity EI) of the swimmer
and the applied magnetic field (B0, fm). There is the freedom
to choose the value of lappet stiffness (or the lappet thickness)
to manipulate the flexural rigidity required to maximize the
net area swept for enhanced forward propulsion. Alternatively,
we can change the magnitude and frequency of the applied
external magnetic field. For the present analysis of jellyfishbot
swimming performance and design optimization, the follow-
ing fluids are chosen: water, blood, vegetable oil, the reference
fluid, and castor oil.

We explain the design strategy to optimize c for a given
fluid through Table II. To begin with, let us first optimize c in
the case of a highly viscous fluid, castor oil. Here, the fluid
viscosity is very high, which leads to increased resistance
during lappet deformation. Thus, the swept area decreases
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NAS  = 0.07 NAS  = 0.08

NAS  = 0.12 NAS  = 0.15

(a) (b)

(c) (d)

FIG. 17. Schematic representation of the lappet trajectories (for one swimming cycle) and the corresponding NAS for different values of
Mr,t : (a) 0.37 kA/m, (b) 15.37 kA/m, (c) 45.37 kA/m, and (d) 60.37 kA/m.

and this leads to a lower value of c. To compensate for that,
we decrease the value of EI to 4.12 Pa m3 and observe that
the lappets deform sufficiently enough to generate the thrust
required for forward propulsion.

Since the viscosity is high, the glide phase has less
contribution; hence, we would like to lower the time for
glide and we do so by increasing the external actuation fre-
quency to 10 Hz. Thus, the swimmer starts off the next
cycle without wasting the glide time without covering any
noticeable distance. Finally, to compensate again for the in-

creased viscous forces due to the enhanced frequency, we
increase the magnetic field by a prefactor (k) of 1.5 in
order to ensure considerable lappet deformation. However,
despite this optimization procedure, the maximal swimming
velocity is smaller than that of the reference swimmer
(see Table II).

Let us now discuss the scenario when the surrounding
fluid is either blood or water (a low-viscosity fluid). Here,
the jellyfishbot lappets experience minimum fluid resistance
or hindrance to their flexural deformation. Hence, they are

NAS = 0.09 NAS = 0.12

NAS = 0.13 NAS = 0.16

(a) (b)

(c) (d)

FIG. 18. Schematic representation of the lappet trajectories (for one swimming cycle) and the corresponding NAS for different values of
Mr,n: (a) 0.86 kA/m, (b) 10.86 kA/m, (c) 20.86 kA/m, and (d) 30.86 kA/m.
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FIG. 19. Optimized jellyfishbot swimming speed for a wide
range of viscous fluids.

very prone to early lappet closure and self-locking. Hence, we
increase the flexural rigidity to a higher value so as to mini-
mize the chance of lappet closure. However, this also brings
with it the chance of higher flexural vibration and low glide,
as discussed earlier. Of course, the increase in flexural rigidity
should remain modest so as not to sweep a lower area. Also,
the external magnetic field is reduced using prefactors k of
0.8 and 0.7 (for blood and water, respectively) to limit lappet
deformation. Using combinations of changing magnetic field
and flexural rigidity, it follows that, despite the much-lower
viscosity, the swimming performance cannot be increased
compared to the reference case, as can be seen in Fig. 19.

However, as can be deduced from Fig. 19, for vegetable
oil, the viscosity is neither too high nor too low. Rather, it
allows for considerable lappet deformation and since the fluid
viscosity is not too high, the swimmer can glide through the
fluid to cover the extra distance in the glide phase (due to
temporal asymmetry). Both these aspects add to an increase
in the value of c. In this case, the optimal system parameters
are quite similar to that for the reference case (see Fig. 1); only
the magnetic field is increased by factors of 1.2 and 1.5 (for 5
and 10 Hz, respectively) and the flexural rigidity takes a value
of 5.72 Pa m3.

For a multiphysics problem such as this, there are ten
different system parameters that need to be optimized in order
to maximize the overall swimming kinematics. In essence,
this would require a multiobjective optimization methodology
with ten functional dependencies and several constraints as
well, which would require very high computational costs and
resources. Instead, we followed an intuitive, mechanics-based
optimization procedure to strike out the ideal balance between
the elastic, magnetic, and viscous forces so that a maximal
jellyfishbot swimming speed is achieved. Alternatively, to
reduce the number of independent parameters, a dimensional
analysis can be performed. This is the topic of the next section.

V. NONDIMENSIONAL NUMBERS AND KINEMATICS

We have a total of ten independent system parameters,
which take into account the effects of solid dynamics, fluid
mechanics, and magnetics (ρ, ρ f , L,W, h, E , tref , μ, Mr, B0).
Here, H represents the channel width (see Fig. 1). From
here on, we assume the phase to have a constant value of 1
throughout. We also change only the value of M0 (for both
Mr,t and Mr,n) when we vary Mr ; i.e., the values of M1 and M2

are held constant. There are four mutually independent base
dimensions: mass (M), length (L), time (T ), and ampere (A).

Following the Buckingham-π theorem, we, therefore, have a
total of six nondimensional terms.

A. Nondimensional numbers

The kinematic response of the jellyfishbot is charac-
terized using the following nondimensional numbers [62]:
the fluid number (ratio of viscous to elastic forces) Fn =
12μL3/Eh3tref , the inertia number (ratio of jellyfishbot inertia
forces to elastic forces) In = 12ρL4/Eh2tref

2, the magnetic
number (the ratio of magnetic forces to elastic forces) Mn =
12MrB0L2/Eh2, the flapping Reynolds number (the ratio of
inertia forces to viscous forces in the fluid) Rn = ρ f L2/μtref ,
the diffusion Reynolds number (the ratio of momentum dif-
fusion time to the jellyfishbot swimming cycle time) Dn =
ρ f (W − L)2/μtref , and the mass number M = ρ/ρ f .

During the effective and recovery strokes, the jellyfishbot
lappets push the fluid around it and propel it forward. The
momentum generated due to the jellyfishbot locomotion dif-
fuses from this region towards the channel walls. The relevant
length scales are L and W − L, and the relevant time scale is
tref . Dn signifies how long it takes for the momentum (gained
by the fluid due to jellyfishbot lappet motion) to further diffuse
into the fluid, whereas Rn quantifies the relative dominance of
the fluid inertia and viscous forces.

In our paper, the Reynolds number typically varies from
0.3 to 0.6. As a result, we observe a relatively low glide phase
for the jellyfishbot because the chosen default value of fluid
viscosity is relatively high (0.9 Pa s). However, for lower
values of fluid viscosity and thus a higher Reynolds number,
inertial effects will have a more prominent role during gliding.
This has been explained in the authors’ earlier work [67],
which shows a considerable glide phase at a higher Reynolds
number of 6.75.

The six nondimensional numbers mentioned above com-
pletely capture the physical behavior of the jellyfishbot and
the generated propulsion speed, which can be summarized as
C = C(Fn, In, Mn, Rn, Dn, M). From the data, we observe a
maximal correlation of C with In, Mn, and Rn. Hence, we focus
only on In, Mn, and Rn in Fig. 20(a).

It thus appears that the solid mechanics, fluid dynamics,
and magnetics describing the kinematics of the jellyfishbot
are best represented by In, Mn, and Rn. We, therefore, devise
a dimensionless number Yn that has a power-law relationship
with In, Mn, and Rn. We observe that Yn has an increasing
trend with C [as shown in Fig. 20(a)] and is thus capable of
describing the jellyfishbot kinematics as a function of most of
the system variables with a reasonably good correlation.

B. Kinematic correlations

There are two key kinematic contributions to the swim-
ming efficiency of jellyfishbots: (i) the effect of spatial
asymmetry represented by the swept area of the jellyfish lap-
pets and (ii) the effect of temporal asymmetry represented
by the glide phase. We, therefore, make an endeavor in this
section to collect the data from all the numerical simulations
(similar to the data used in the previous section) and investi-
gate the functional dependence of C upon GR and NAS.

From the data, we learn that high values of both NAS
and GR together give rise to enhanced values of C as both
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(a) (b)

FIG. 20. (a) Correlation of C with a power-law combination of In, Mn, and Rn. (b) Correlation of C with a linear combination of GR
and NAS.

the spatial and temporal symmetry contribute to the jelly-
fishbot locomotion. To capture that, the relative influence of
both NAS and GR upon C is studied by assuming a lin-
ear combination, showing that the dependence on NAS is
a factor 2 larger than on GR [see Fig. 20(b)]. Clearly both
jellyfishbots and their living counterparts utilize the physics
of spatiotemporal symmetry breaking during their versatile
locomotion and adaptive FSI when swimming through a
viscous fluid.

Finally, we discuss the feasibility of the jellyfishbot con-
sidered in the present paper for real-life applications. Our
reference jellyfishbot has a characteristic size of 2.0 mm, and
the typical diameter of human blood vessels varies from a few
micrometers (for capillaries) to approximately around 25 mm
(for the human aorta [71]). The arteries and veins have a
slightly higher diameter (≈4–5 mm). Therefore, the model
jellyfishbot could ideally swim through the veins, arteries, and
aorta, but not the capillaries (for which we require miniatur-
ization of the model jellyfishbot). Nonetheless, the jellyfishbot
could potentially cater to several biomedical applications as
well, such as endoscopy, laparoscopy, and a gastroretentive
drug delivery system and gastrointestinal tract imaging, all of
which have a much larger working space for the jellyfishbot
to steadily swim through.

VI. CONCLUSION

In this paper, we investigated the swimming dynamics of
a magnetically actuated jellyfish-inspired soft robotic swim-
mer by using a robust multiphysics finite-element approach
that captures the magnetodynamics and large deformation
fluid-structure interaction response. Compliant elastomers are
impregnated with hard permanently magnetic microparticles,
and the stimuli-responsive preprogrammed shape morphing
allows external actuation with high precision and accuracy.

We study the coupling between the magnetic load, shape
evolution, and fluid dynamics, and use these insights to com-
putationally design an untethered compliant robotic swimmer
with improved swimming performance through numerical
simulation, parameter identification, and design optimization.

We observe the swimming kinematics to be influenced the
most by the remnant magnetization, fluid viscosity, and lappet
flexural rigidity among all system parameters. The correlation
between the nondimensional average speed of the jellyfishbot
and the nondimensional numbers is investigated, showing that
the magnetic, inertia, and flapping Reynolds numbers are the
dominant dimensionless numbers that determine the swim-
ming performance.

In addition, we observe that the swimming speed is
largest when both the spatial and temporal asymmetries
contribute significantly to the jellyfishbot swimming per-
formance. Our results provide guidelines for the design of
improved jellyfish-inspired magnetic soft robotic swimmers
for future microfluidic and biomedical applications, such as
drug delivery, surgical devices, and carrier robots.
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