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Modeling three-dimensional bait ball collective motion
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Collective motion of animal groups such as fish schools and bird flocks in three-dimensional (3D) space are
modeled by considering a topological (Voronoi) neighborhood. The tridimensionality of the group is quantified.
Apart from the patterns of swarming, schooling, and milling, we identify a 3D bait ball around the phase
transition boundary. More significantly, we find that by considering a blind angle in this topology based model,
an individual interacts statistically with six to seven neighbors, consistent precisely with the previous field
observations of the starling flocks. This model could be expected to enable more insightful investigation on
realistic collective motion of shoals or flocks.
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I. INTRODUCTION

Collective motion is a widespread phenomenon in biologi-
cal systems, which has been attracting increasing interest from
different scientific communities, spanning from biologists and
neuroscientists to physicists and mathematicians [1–4]. From
a biologist’s point of view, the characteristics of biological
systems are not all the same, and even single individuals
do not always respond the same way to stimuli. However,
physicists have been trying to build a single unified model of
collective behavior in biology, which is clearly not possible.
We must acknowledge that the goal of physical model is to
explicate general principles of how global properties can arise
from local interactions, and perhaps to constrain what kinds
of properties are possible. In this context, in 1995 Vicsek
et al. [5] proposed a simple self-propelled particles (SPP)
model, which considers identical particles moving at a con-
stant velocity and interacting locally by trying to align their
neighbors [6,7]. Built upon a constant swimming speed and
an autocorrelation of the angular speed (turning angle per unit
time), a persistent turning walker (PTW) model was proposed
[8,9], which was then further developed by considering an ad-
ditional frontal preference in the stimulus/response function
to account for the angular weighting of interactions (a more
intelligent sensory strategy). Multistability and intermittence
between schooling and milling were observed [10–12].

The most critical step in the aforementioned models is to
determine the interacting range, or the neighbors an individual
agent tends to align with. As previously reviewed [13], there
have been three main definitions of neighborhood on which
the interactions are calculated. First, the metric neighborhood,
where all individuals within a specified distance are taken into
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account [14–16]. Second, the topological neighborhood that
remains invariant with respect to density changes, which can
be achieved either by considering a fixed number of neighbors
according to their proximity (K nearest neighbors) [17] or by
using the first shell of a Voronoi tessellation [18–20]. The third
approach is derived from visual processing considerations,
corresponding to a dynamical selection of the neighborhood
based on selective attention to motion [21,22]. Based on 22
flocking events of the starling flocks, it was found that each
bird interacts approximately with 7 ± 1.5 closest neighbors
[23], irrespective of the density of the flock. However, we
should also note that in fish schools, experimental studies
suggest that each individual interacts with a smaller number
of influential neighbors [24–28].

Natural collective motions are generally run in 3D space,
such as fish school whirling and starling flocking. Though
the original Vicsek model was confined in 2D space, its ex-
tension to 3D space appears to be straightforward [29–33].
Since the variations of the Vicsek model usually consider
metric neighborhood with periodic conditions, their 3D sim-
ulations found similar behaviors in terms of disorder-order
transition as that in two dimensions, such as the occurrence
of density waves [30], and the aggregation of particles (phase
separation) [31,32]. Dividing a sphere centered at an indi-
vidual into zones of repulsion, orientation, and attraction,
and considering a blind volume, Couzin et al. [34] proposed
a self-organizing model of group formation in 3D space.
With this model, different collective behaviors of swarm,
torus (milling), and parallel group (schooling) were exhibited
[34,35]. Similar phase transition behaviors have also been
identified in 2D space [10,12,36]. Although some researchers
have done a lot of research on 3D collective behaviors,
most of them depend on the metric interaction or the n
closest neighbors [18,29,37,38], which cannot fully cover
the observations in nature, such as “bait ball” [13]. The
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understanding of collective motions in 3D space is still not
adequate.

In this study, we propose a 3D model of collective behavior
based on the PTW model by considering the first shell of a
Voronoi tessellation as the neighbors. While it was stated that
the interacting neighbors determined by the Voronoi tessella-
tion (approximately 15 in three dimensions) cannot be tuned
in Ref. [25], we disagree with that statement. Actually, by
introducing a continuously varied rear blind angle, our model
simulates with five to eight neighbors, consistently in line with
the previous observations [23–25]. By varying the alignment
and noise intensities, we draw a comprehensive map in their
space, with different patterns of collective motions identified.
More importantly, we quantify the tridimensionality, which is
not available in the previous 2D studies.

II. NUMERICAL METHODOLOGY

If we characterize each individual by its position ri and
velocity ṙi, the dynamical equations of motion can be simply
written as

ri = [xi, yi, zi]
T (1)

and

ri,t+1=ri,t + �t · ṙi,t . (2)

We assume that each individual moves with a constant unit
speed along its orientation e||

i , which is written as

ṙi = e||
i = [e||

i,x, e||
i,y, e||

i,z]
T. (3)

It is updated by

e||
i,t+1 = RxRyRze

||
i,t + ∑

j∈Vi
fi j∣∣RxRyRze

||
i,t + ∑

j∈Vi
fi j

∣∣ , (4)

where Rx, Ry, and Rz are the rotation matrices with respect
to the three coordinate axes, and fi j is the repulsive force
avoiding collisions. The rotation matrices are defined as

Rx =

⎡
⎢⎣

1 0 0

0 cos(ωx�t ) − sin(ωx�t )

0 sin(ωx�t ) cos(ωx�t )

⎤
⎥⎦, (5)

Ry =

⎡
⎢⎣

cos(ωy�t ) 0 sin(ωy�t )

0 1 0

− sin(ωy�t ) 0 cos(ωy�t )

⎤
⎥⎦, (6)

Rz =

⎡
⎢⎣

cos(ωz�t ) − sin(ωz�t ) 0

sin(ωz�t ) cos(ωz�t ) 0

0 0 1

⎤
⎥⎦, (7)

where a visual representation of the rotations involved can
be seen in Fig. 1, in which the angular velocity ω can be
described as the sum of an attraction term, an alignment term,
and a noise, expressed as

[ωx, ωy, ωz]
T
i = 〈ρi j × e||

i +I||e
||
i × e||

j 〉 + Inη. (8)

Here, ρi j is a distance vector pointing from an individual
i to its neighbor j, I|| is the alignment intensity, In is the
noise intensity, and η is a random unit vector generated by a

FIG. 1. (a) Sketch of two interacting individuals (red), showing
the position ri and r j , the orientation e||

i and e||
j , the distance vector ρi j

pointing from individual i to its neighbor j, and the moving vector
for individual i from t − 1 (pink) to t (red). (b) Substep sketch of
Eq.(4), namely the rotation matrix and the repulsive force.

standard Wiener process, describing the spontaneous motion
of the individual, and modeling its “free will”. The attraction
and alignment terms [the first and second products at the
right side of Eq.(8)] are averaged over the Voronoi neighbors,
noted Vi, with a weight, (1 + ζ ), representing the individual’s
anisotropic perception of its environment, denoted by

〈◦〉 =
∑
j∈Vi

◦(1 + ζ )

/∑
j∈Vi

(1 + ζ ), (9)

with

ζ = e||
i · ρi j

|ρi j | . (10)

We note that (1 + ζ ) models continuously a rear blind angle
[10,12], which means that the individual does not get infor-
mation from neighbors falling in its blind zone. Following
the previous study [15], we introduce a short-range repulsive
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FIG. 2. The collective patterns exhibited by the model, with the snapshots of spatial individual distributions for (a) swarming at I|| = 0.2
and In = 1.8, (b) milling at I|| = 0.6 and In = 0.2, and (c) schooling at I|| = 2.5 and In = 0.5. For all simulations, β = 1.0, and the snapshots
are taken at the end of 10 000 time units. Note that the data from five sequential time instants are superposed to represent the moving directions.
For long-time dynamics, i.e., their evolution from randomly initialized positions and orientations in a 20 × 20 × 20 cubic box, see movies 1–3
provided in the Supplemental Material [39].

interaction exerted by the individual’s neighbors:

fi j = −β
ρi j

|ρi j |
(
1 + e

( |ρi j |
rc

−2
)) , (11)

where β measures the relative strength of repulsion with
respect to alignment and noise strength. As reported in the
previous study, the repulsive term is not necessary in a topol-
ogy based model [12]. Here, we set β = 1.0 and rc = 0.072
only to avoid the failure of Voronoi tessellation when In = 0,
as then the school would perfectly align itself into a line. We
should point out that the group is simulated in an open space,
therefore there is no boundary condition involved.

III. RESULTS

We consider a group with 100 individuals. They are
randomly distributed in a 20 × 20 × 20 cubic box (in di-
mensionless length units). This dynamic system is solved
numerically using an explicit scheme with time step �t =
10−2. Evolving after a few dimensionless time units, the group

reaches a statistically steady state, exhibiting a discernible lo-
comotive pattern. Here, depending on the values of alignment
intensity I|| and noise intensity In, three different patterns can
be identified. They are “swarming”, as shown in Fig. 2(a),
exhibiting a disordered sparse group without preferential ori-
entation; “schooling”, as shown in Fig. 2(c), exhibiting a
highly coordinated collective motion; and “milling”, as shown
in Fig. 2(b), which forms a “vortex” with each individual
following an approximately circular trajectory. We refer the
reader to the videos provided in the Supplemental Material
[39] which clearly illustrate the emergence of different (col-
lective) patterns from randomly initialized distributions.

The three different locomotive patterns can be character-
ized more precisely by two global order parameters P and M
defined as

P = 1

N

∣∣∣∣∣
N∑

i=1

e‖
i

∣∣∣∣∣, M = N

∣∣∑N
i=1 er

i × ṙi

∣∣∣∣∑N
i=1 er

i

∣∣∣∣∑N
i=1 ṙi

∣∣ , (12)

where N is the number of individuals, er
i is the unit vector

directed along the segment going from the mass center of the

FIG. 3. Contour plots of P, M, D1, and D2 in the (In, I||) parametric space: (a) the polarization P with the dashed yellow line of P = 0.5
marking the phase transition to a highly coordinated schooling pattern as I|| is high; (b) the milling M identifying a milling pattern at the bottom
left corner from the rest regimes, with M = 0.5 (the dashed cyan line); (c) the dimension indicator D1 gives a value of 0.1 for a planar spatial
structure, while 1.0 for a sphere, and here, the superposition of the lines for P = 0.5 and M = 0.5 separates the swarming pattern to the bottom
right of the space; (d) the distance D2 indicates the spatial distance of the group (the average distance from individuals to the group center). A
hundred simulations are run for each pair of In and I|| with 10 000 time units, and the last 1000 time units are taken out for averaging.
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FIG. 4. Time histories of P, M, and D1 at (In, I||)=(0.0,0.7), corresponding to a milling pattern, with two different individual numbers of
N = 100 (blue lines) and N = 400 (red lines), while keeping group density the same. It demonstrates the independence of individual number
in this topological neighborhood based model.

group to the ith individual. Moreover, we introduce another
two parameters D1 and D2 to characterize, respectively, its
threedimensionality and compactness. D1 is calculated by
projecting normally to a unit sphere centered at the mass
center of the group, with its value representing a ratio between
a summation of projected area and the sphere’s area. It is
easy to understand that when the individuals are distributed
uniformly in the space, D1 tends to be unity, therefore its

FIG. 5. Snapshots of two distinct milling patterns simulated
with 400 individuals: (a) a flat milling structure at (In, I||)=(0.2, 0.6),
with D1 = 0.283 and D2 = 5.02; (b) a bait ball at (In, I||)=(0.2, 0.9),
with D1 = 0.585 and D2 = 4.01. Here, the snapshots are taken at
the end of simulations, and D1 and D2 are averaged over the last
1000 time steps. Note that the views are adjusted according to their
rotating axes for clearer presentation and more appropriate compar-
ison. Please see movies four and five provided in the Supplemental
Material [39] for the long-time dynamics of (a) and (b) respectively.

value varies between zero and one. D2 is an averaged dis-
tance from each individual to the mass center of the group,
which can measure the scale of the group. In Fig. 3 we now
proceed to investigate the the (In, I||) parametric space. Here,
the schooling and milling patterns can be easily distinguished
from swarming by examining P and M, The group exhibits a
disordered swarming pattern when noise dominates over the
alignment rule, which emerges at the bottom right region of
the parametric space [see Fig. 3(c)], where both P and M are
small. At the bottom left corner of the parametric space, when
the alignment and noise are comparable, the group involves
into a milling pattern. When the alignment is strong compared
to the noise, the group members tend to move in the same di-
rections, which is known as the highly coordinated schooling

FIG. 6. Sketch of 3D Voronoi neighbors for a schooling pattern,
where (a) the red cell represents the focal individual, (b) the trans-
parent gray cells represent its first shell of Voronoi neighbors, and
(c) voronoi tessellation for the entire group.
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FIG. 7. The probability density of the average number of neighbors for different values of the parameters: (a) swarming for (In, I||) =
(1, 8, 0.2); (b) milling for (In, I||) = (0.2, 0.6); and (c) schooling for (In, I||) = (0.5, 2.5). Each histogram is the result of an average over 100
different simulations in the same set of parameters.

pattern. These patterns are consistent with the previous study
confined in a 2D space [12]. The schooling pattern presents a
three-dimensional uniformality according to D1, as shown in
Fig. 3(c), and more compact spatial distributions, seen from
Fig. 3(d). We note that in the current topological model the
number of individuals does not change the statistically steady
state much if we keep the group density the same. We demon-
strate this property by choosing a specific case and monitoring
the variations of P, M, and D1 with time, as shown in Fig. 4.
Clearly, the systems with individual numbers of N = 100 and
N = 400 show the same long-time behavior as when the group
density is fixed at 0.0125 per unit volume.

As observed in open water, a bait ball, or baitball, occurs
when small fish swarm in a tightly packed spherical formation
about a common center, which is believed to be a defensive
measure adopted by small schooling fish when they are threat-
ened by predators [40]. In 3D space, we observe two different
modes of this behavior, as shown in Fig. 5. At the center of the
milling pattern region according to Fig. 3, the group resembles
that of the 2D space, forming a flat milling structure, in which
the individuals move vortically around an central axis, though
which is a time varying vector. In contrast, near the boundary
of this milling region, the group tends to form a more spherical
ball, when a rotating axis cannot be identified. In Fig. 5, at
this specific instant, the flat, milling structure and the more
tridimensional, balling structure can also be distinguished by
D1. Clearly, the balling structure has a larger value of D1.
Also it has a more compact spatial structure, or a smaller D2,
comparing to the flat, milling structure.

In Fig. 6, we choose a specific case with a schooling pat-
tern to present the three-dimensional topology of the group
structure. For clarity, we enclose the simulated group with a
cubic box. We show a specific Voronoi cell [see Fig. 6(a)] and
its neighboring cells [the first shell of Voronoi tessellation, see

Fig. 6(b)]. The cell shown in Fig. 6(a) is a polyhedron with 15
facets. However, as we consider the blind angle, represented
by Eq. (9), the number of neighbors an individual actually
interacts with is around 4–8, which varies among different
patterns. As shown in Fig. 7, the individual in a milling
group interacts most likely with 5–6 neighbors, while that in a
schooling group interacts with 6–7 neighbors, falling exactly
in the range of field observations for starling flocks (7 ± 1.5
closest neighbors [23–25]).

IV. CONCLUSIONS

In summary, we propose a 3D numerical model for col-
lective motion, which can reduplicate the collective patterns
observed in the previous 2D studies, such as swarming,
milling, and schooling, and beyond that a more realistic
bait ball can be observed, differentiating from the flat, two-
dimensional milling structure. More significantly, this model
is well consistent with the field observations in terms of the
neighboring number an individual can interact with.

Future extension of the present work might be devoted to
the variations of group density. Intuitively, the system with
a higher density tends to form a more compact structure,
particularly for the balling pattern. Please see movies six and
seven provided in the Supplemental Material [39] simulated,
respectively, at (In, I||)=(0.0, 0.9) and (0.2, 1.3) with a higher
density of 0.05 per unit volume.
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