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Fluctuating diffusivity emerges even in binary gas mixtures
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Diffusivity in some soft matter and biological systems changes with time, called the fluctuating diffusivity.
In this work, we propose a novel origin for fluctuating diffusivity based on stochastic simulations of binary
gas mixtures. In this system, the fraction of one component is significantly small, and the mass of the minor
component molecule is different from that of the major component. The minor component exhibits fluctuating
diffusivity when its mass is sufficiently smaller than that of the major component. We elucidate that this
fluctuating diffusivity is caused by the time scale separation between the relaxation of the velocity direction
and the speed of the minor component molecule.
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I. INTRODUCTION

Brownian motion is widely observed in soft matter sys-
tems, and standard Brownian motion is described by a simple
stochastic process known as the Wiener process [1,2]. In
this process, the mean square displacement (MSD) increases
linearly with time and is accompanied by a Gaussian dis-
placement distribution [3,4]. Although this simple Brownian
motion is fully understood, a new type of Brownian motion
has been recently reported; although the MSD is proportional
to time, the displacement distribution deviates from the Gaus-
sian distribution [5–8]. This motion is known as Brownian
(or Fickian), yet non-Gaussian diffusion and cannot be de-
scribed by the simple Wiener process. This process can be
successfully described by the Langevin equation with the
time-dependent fluctuating diffusivity [8]

dR(t )

dt
=

√
2D(t )ξ(t ), (1)

where R(t ) denotes the position of the Brownian particle, D(t )
denotes the fluctuating diffusivity, and ξ(t ) is Gaussian white
noise. The fluctuating diffusivity obeys a stochastic process
independent of R(t ). The first and second order statistical
moments of ξ(t ) are given as 〈ξ(t )〉 = 0 and 〈ξ(t )ξ(t ′)〉 =
Iδ(t − t ′), where 〈· · · 〉 represents the statistical average and
I is the unit tensor.

The origins of the fluctuating diffusivity in soft matter
and biological systems can be classified into two categories
[9]. The first origin is a spatially and/or temporally het-
erogeneous environment [10,11]. For instance, particles in
supercooled liquids (glass formers) [12–14], colloidal sus-
pensions [7,15,16], biological systems [5,6,17,18], and active
matter [19,20] exhibit fluctuating diffusivities, owing to their
heterogeneous environments. The second origin is the fluc-
tuation in the conformational degrees of freedom. That is,
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the diffusivity can fluctuate depending on the fluctuations
of the conformation or orientation of a molecule [8,21,22].
Examples include the center of mass of an entangled polymer
[8] and rod-like particle solution [22].

Here, one question may arise: Are there only two origins of
fluctuating diffusivity? In this study, we demonstrate that the
third origin of fluctuating diffusivity exists by investigating
simple gas systems, i.e., binary gas mixtures comprising hard
spheres with different masses, in which the fraction of one
component is sufficiently small. These systems do not possess
a heterogeneous environment nor conformational degrees of
freedom, which are known to be the origins of fluctuating dif-
fusivity. The gas molecules are assumed to be spherical and do
not have any internal degrees of freedom. They are randomly
distributed in space, and there is no spatial correlation. Even in
such systems, the fluctuating diffusivity causing Brownian yet
non-Gaussian diffusion emerges under specific conditions. We
elucidate that the observed fluctuating diffusivity originates
from the separation of time scales of two relaxation processes
of the minor component; the velocity direction relaxation and
speed relaxation.

II. SYSTEM

The dynamics of a single molecule A in another gas
molecule B is investigated as a model of binary gas mixtures,
where the fraction of molecules of gas A is sufficiently small.
The molecules A and B have different masses, mA and mB,
and sizes σA and σB, respectively. The system is in equi-
librium with inverse temperature β, and the number density
of molecule B is ρ. Molecule A moves ballistically until it
collides with molecule B. Molecule A instantaneously changes
its velocity by collision based on the conventional hard-sphere
interaction [23,24] as follows:

v′
A = vA − 2mB

mB + mA
(vA − vB) · r̂ABr̂AB. (2)

Here, v′
A is the velocity of molecule A after collision, vA and

vB are the velocities of molecules A and B before collision,
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FIG. 1. Mean square displacements (MSDs) of molecule A for
several mass ratios μ. The symbols are the KMC simulation data,
and the black solid curves represent the prediction by the Enskog
theory [Eq. (4)].

respectively, and r̂AB is the unit vector connecting the centers
of molecules A and B. Here, it should be mentioned that
this collision protocol is not crucial for the following results;
similar data will be obtained for other interaction potentials
such as the Weeks-Chandler-Andersen potential.

In gas systems, the dynamics of a molecule can be approx-
imately described as a Markovian stochastic process because
the dynamic correlations are weak [23,25,26]. Therefore, we
employ the kinetic Monte Carlo (KMC) method [27,28] to
simulate the dynamics of molecule A. Collision statistics are
required for implementing the KMC method. In hard-sphere
gas, the probability density of molecule A colliding with
molecule B with vB at r̂ and time interval s for a given vA

becomes

P(vB, r̂AB, s|vA)

= ρσ 2(vB − vA) · r̂AB

(
βmB

2π

)3/2

exp

(
−βmBv2

B

2

)

× exp[−F (vA)s]�[(vA − vB) · r̂AB]. (3)

Here, σ = (σA + σB)/2, F (vA) is the average collision fre-
quency of molecule A with velocity vA, and �(x) is the
Heaviside step function [collision does not occur for (vA −
vB) · r̂AB < 0]. Here, we emphasize that Eq. (3) does not de-
pend on the spatial position nor time; the statistics depend
only on the velocity of molecule A. The explicit expression
of F (vA), derivation of Eq. (3), and numerical scheme are
explained in Appendixes A and B. The dynamics of molecule
A can be characterized only by the mass ratio μ = mA/mB. We
employ dimensionless units by setting mB = 1, β−1 = 1, and
1/ρσ 2 = 1.

III. NUMERICAL RESULTS

Figure 1 shows the MSD 〈�R2(�t )〉, where �R(�t ) =
R(�t ) − R(0) and �t denotes the time lag. For comparison,

FIG. 2. Typical trajectories of molecule A during 0 � t � 106 τc

for (a)μ = 102 and (b)10−4 from the KMC simulation. The trajecto-
ries are mapped onto the xy plane. The colors represent the reduced
temporal displacement |R(t + �t ) − R(t )|/

√
〈�R2(�t )〉 with �t =

10 τc.

we have included the prediction by the Enskog theory [26,29]:

〈�R2(�t )〉 = 3τ 2
c

2μ

[
−1 + 2�t

τc
+ e−2�t/τc

]
, (4)

where τc is the crossover time from ballistic to diffusive re-
gions defined as follows:

τc =
√

9μ(μ + 1)/32π. (5)

The results obtained from the KMC simulations exhibit sim-
ple ballistic and diffusive behaviors in the simulated μ range,
and these results are almost perfectly reproduced by the En-
skog theory. We naively expect that the dynamics of molecule
A is simple Brownian motion with constant diffusivity for any
μ.

However, the dynamics of molecule A is not simple Brow-
nian motion for small μ. Figure 2 shows the trajectories
of molecule A for sufficiently large and small mass ratios
μ = 102 and 10−4. The observation time is T = 106τc, and
the trajectories are mapped onto the xy plane. The colors
express the magnitude of the scaled temporal displacement
for a time lag �t = 10τc. For μ = 102, the fast (red) and slow
(blue) areas are homogeneously distributed; this is consistent
with simple Brownian motion. By contrast, for μ = 10−4,
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FIG. 3. Self-part of the van Hove correlation functions of
molecule A for different time lags �t from the KMC simulation.
(a) μ = 102 and (b) 10−4. For convenience, the displacement is
normalized using the root MSD

√
〈�X 2(�t )〉. The solid black curves

represent the Gaussian distribution.

large clusters of fast and slow areas are clearly observed.
This implies that the dynamics of molecule A deviates from a
simple Brownian motion when μ is small. In what follows, we
present the results with typical mass ratios, μ = 102 and 10−4,
as the representative cases of simple Brownian motion and
nontrivial diffusion, respectively. Data for other mass ratios
are summarized in Appendix C.

To examine whether the dynamics of molecule A is
Gaussian, we calculate the self-part of the van Hove corre-
lation functions, which is defined as Gs(�X,�t ) = 〈δ[�X −
(X (t + �t ) − X (t ))]〉, where X (t ) is the position of molecule
A in the x direction at time t . Figure 3 shows Gs(�X,�t ) for
various �t . For μ = 102, Gs(�X,�t ) is Gaussian within the
simulated �t range. In contrast, for μ = 10−4, Gs(�X,�t )
deviates from the Gaussian distribution within an intermediate

FIG. 4. Ergodicity breaking (EB) parameters corresponding to
μ = 102 and 10−4 from the KMC simulation. The time lag is set
as �t = 10τc. The dotted lines indicate the fitting results to the
power-laws EB ∝ T −α and EB ∝ T −1.

time lag, 101 � �t/τc � 104. This deviation disappears for a
sufficiently large time lag �t/τc � 105. Therefore, Brownian
yet non-Gaussian diffusion appears for μ = 10−4 at the inter-
mediate time scale. This behavior is commonly observed for
μ < 1, as shown in Fig. 7 in Appendix C. The non-Gaussian
behavior can also be observed in the non-Gaussian parameter
(NGP) shown in Fig. 8 in Appendix C. The NGP exhibits
nonnegligible peaks for μ < 1.

To analyze the non-Gaussian behavior in detail, we calcu-
late the ergodicity breaking (EB) parameter [8,30] defined as
follows:

EB(�t, T ) = 〈[δ2(�t, T )]2〉
〈δ2(�t, T )〉2

− 1. (6)

Here, δ2(�t, T ) denotes the time-averaged MSD for the time
lag �t and finite observation time T :

δ2(�t, T ) = 1

T − �t

∫ T −�t

0
[R(t + �t ) − R(t )]2dt . (7)

The dependence of the EB parameter on �t was theoreti-
cally proven to be weak when T � �t [8]. Therefore, we
set �t/τc = 10 and calculate the EB parameter as a function
of T for T/τc � 102. Figure 4 displays the observation time
dependence of the EB parameter, which simply exhibits a
decay EB ∝ T −1 in the entire T range for μ = 102. This
implies that the dynamics of molecule A follows a Gaussian
process. In contrast, for μ = 10−4, the EB parameter exhibits
a shoulder before the Gaussian decay EB ∝ T −1. This is also
observed for other sufficiently small mass ratios, μ � 1, as
shown in Fig. 9 in Appendix C. The existence of this shoulder
can be attributed to the fluctuating diffusivity [8], and the
characteristic crossover time τEB from the shoulder to the
EB ∝ T −1 decay can be interpreted as the relaxation time
of the fluctuating diffusivity [8]. The crossover time τEB for
μ = 10−4 is estimated from the two curve fittings EB ∝ T −α

where 0 < α < 1 for short T and EB ∝ T −1 for long T re-
gions. The obtained τEB for μ = 10−4 is approximately equal
to the time scale at which the van Hove correlation function
becomes Gaussian.
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FIG. 5. Correlation functions of the velocity direction Cd (�t )
and speed Cs(�t ) of molecule A [Eqs. (8) and (9)] for μ = 10−4 and
102 from the KMC simulation.

IV. ORIGIN OF THE FLUCTUATING DIFFUSIVITY

When μ is sufficiently small, i.e., μ � 1, the velocity of
molecule A is significantly larger than that of molecule B, i.e.,
|vA| � |vB|. Under such a condition, the motion of molecule
A is similar to that in a matrix of immobile obstacles such as
Lorentz gases [23,31–34]. The speed of molecule A is nearly
unchanged by a few collisions, whereas the velocity direction
is randomized. Therefore, we expect that the relaxation times
of the speed and velocity direction of molecule A will be con-
siderably different if μ is small. We calculate the correlation
functions corresponding to the velocity direction Cd (�t ) and
speed Cs(�t ):

Cd (�t ) =
〈

V (�t )

|V (�t )| · V (0)

|V (0)|
〉
, (8)

Cs(�t ) = 〈|V (�t )||V (0)|〉 − 〈|V |〉2

〈|V |2〉 − 〈|V |〉2
. (9)

Figure 5 displays Cd (�t ) and Cs(�t ) obtained from the KMC
simulations. The figure clearly reveals that the relaxation of
Cs(�t ) (filled red symbols) is significantly slower than that
of Cd (�t ) for μ = 10−4 (open red symbols). This behavior
is commonly observed if μ is sufficiently small as shown in
Figs. 10 and 11. The relaxation times of the direction τd and
speed τs can be estimated from Cd (�t ) and Cs(�t ), respec-
tively. The estimates scaled by τc [Eq. (5)] are summarized
in Fig. 12. For μ = 10−4, τd is found to be comparable to τc,
whereas τs is much longer than τc. In addition, τs is of the
same order as τEB, which strongly implies that the relaxation
of the fluctuating diffusivity in the binary gas mixtures is
related to that of the speed of molecule A. Here, it should
be emphasized that such a timescale separation between the
velocity direction and speed is not present without ballistic
motion. Thus, the mechanism of the fluctuating diffusivity
observed for purely diffusive motions in some heterogeneous
environments [5,7,17,35] is different from that in our system.

Based on the above results, we propose a possible scenario
for the emergence of fluctuating diffusivity in our binary gas
mixture with μ � 1. At the intermediate time scale τd � T �
τs, molecule A diffuses because its velocity direction changes
randomly. The speed of molecule A remains approximately
constant, |vA(t )| ≈ vA, and thus the diffusion coefficient can
be described by a function of constant as D(t ) = D(vA). At

11

FIG. 6. Theoretical prediction of the scaled self-part of the van
Hove correlation function Gs(�X,�t ) of the molecule A (ochre
curve). For comparison, the KMC simulation results with μ = 10−4

for different time lags [Fig. 3(b)] are shown with symbols and the
Gaussian distribution is displayed with the black curve.

the long timescale T � τs, D(t ) starts to fluctuate temporarily
owing to the fluctuations of |vA(t )|. At the very long time
scale T � τs, the fluctuation of the diffusivity is smeared out
and the Gaussian normal diffusion with the effective diffusion
coefficient Deff = 〈D〉 is observed. Therefore, the origin of
the fluctuating diffusivity in our system is the separation of
the relaxation timescales of the velocity direction and speed.
This scenario also explains the clusters observed in Fig. 2;
they reflect the persistence of the molecule A speed within the
timescale τs.

To validate the proposed scenario, we theoretically calcu-
late the van Hove correlation function of molecule A with
μ � 1. At the intermediate timescale τd � T � τs, the dy-
namics of molecule A can be virtually described as a mobile
particle in dilute fixed spherical obstacles. Then the diffu-
sion coefficient is calculated as D(|vA|) = |vA|/3π [23]. The
probability density of the displacement of molecule A under a
given speed vA = |vA| is Gaussian:

P(�X ; �t |vA) = 1√
4πD(vA)�t

exp

(
− �X 2

4D(vA)�t

)
. (10)

In equilibrium, vA obeys the Maxwell-Boltzmann distribution:
PMB(vA) = 4πv2

A(2π )−3/2 exp(−v2
A/2). By taking the equilib-

rium average of Eq. (10) with respect to vA, we have the
van Hove correlation function Gs(�X,�t ) at the intermediate
timescale τd � �t � τs:

Gs(�X ; �t ) =
∫ ∞

0
dvAP(�X ; �t |vA)PMB(vA). (11)

We numerically calculate Eq. (11) and show the result in
Fig. 6. The theoretical prediction by Eq. (11) reasonably
agrees with the KMC simulation result. This result supports
our scenario on the fluctuating diffusivity; the fluctuating dif-
fusivity in our system originates from the separation of the
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FIG. 7. Self-part of the van Hove correlation function of molecule A for (a) μ = 100, (b) 10−1, (c) 10−2, and (d) 10−3 from the KMC
simulation. The displacement is normalized using the root mean square displacement

√
〈�X 2(�t )〉. The solid curves represent the Gaussian

distribution.

relaxation timescales between the velocity direction and the
speed. The tail of Gs(�X ; �t ) from the Gaussian distribution
has been observed in several systems. The tail in Eq. (11) can
be approximately calculated using the saddle point method:

Gs(�X ; �t ) =
√

3

4π

|�X |
�t

exp

⎡
⎣−3

(
3�X 2

8
√

2�t

) 2
3

⎤
⎦

× (for �X � 1). (12)

Thus we find that the tail is not the exponential nor the
stretched Gaussian distributions, which are often observed in
glass-forming liquids [12,13,36,37] or some biological sys-
tems [6,10,17,19,20].

V. RELATION TO OTHER SYSTEMS

The motion of molecule A with μ � 1 can be considered
to be similar to that in the Lorentz gas model [31], which
has been widely investigated as a dynamic model for light
gas molecules in spatially fixed obstacles [23,32–34]. In the
Lorentz gas model, only the velocity direction changes and
the speed remains unchanged at any timescale. Thus, the

mechanism that causes the fluctuating diffusivity observed in
our system cannot be realized in Lorentz gas systems.

Our results suggest that fluctuating diffusivity emerges if
the mass contrast is large: μ � 1. To the best of our knowl-
edge, there is no experimental report on the non-Gaussian
behavior and fluctuating diffusivity in gas systems. However,
we speculate that fluctuating diffusivity can be realized in
experiments for binary gas mixtures. For instance, in the bi-
nary gas mixture of helium and radon [38], the mass ratio is
μ ≈ 0.018. For such a mass ratio, the non-Gaussian behavior
originating from fluctuating diffusivity can emerge as shown
in Fig. 8 in Appendix C. We expect that the non-Gaussian
behavior will be observed if elaborated and precise measure-
ments are performed. Although the kinetics of gases [26] may
be considered as almost fully understood, our results imply
that they are not yet understood.

VI. CONCLUSION

In this study, we identified an origin of fluctuating dif-
fusivity, which is neither environmental heterogeneity nor
conformational degrees of freedom. Fluctuating diffusivity
emerges in simple binary gas mixtures with mass and fraction
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FIG. 8. Non-Gaussian parameter of molecule A defined as
3〈�R4(�t )〉/5〈�R2(�t )〉2 − 1 with various mass ratios from the
KMC simulation.

contrasts when the mass of the minor component molecule is
sufficiently small in comparison to that of the major compo-
nent. We showed that fluctuating diffusivity originates from
the timescale separation between the relaxation times of the
velocity direction and the speed of the minor component
molecule. Our findings open a new modeling path for fluc-
tuating diffusivity. They will also shed light on the kinetic
behavior of gas systems from a new aspect. We hope that the
predicted non-Gaussian behavior and fluctuating diffusivity
will be experimentally observed in the future.
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APPENDIX A: COLLISION STATISTICS

The kinetic Monte Carlo (KMC) method requires collision
statistics as inputs. In the present case, the probability density
of a collision for molecule A is required, which can be derived
based on the gas kinetic theory [23,39,40]. We employ the
following assumptions on our system:

(1) The dynamics of molecule A obeys a Markovian
stochastic process.

(2) Molecule B is homogeneously distributed in space.
From assumptions one and two, the collision rate at which
molecule A with velocity vA collides with molecule B with
velocity vB can be expressed as follows:

ρσ 2(vA − vB) · r̂AB�[(vA − vB) · r̂AB], (A1)

where �(x) denotes the Heaviside step function [no collision
occurs when (vA − vB) · r̂AB < 0].

The required probability density for collision
P(vB, r̂AB, s|vA) can be decomposed into the product of
three factors. The first factor is the cumulative waiting-time
distribution of molecule A with velocity vA. Owing to the
Markovian nature of the dynamics, this factor becomes an
exponential distribution. The second factor is the probability

FIG. 9. Ergodicity breaking (EB) parameter of molecule A for
various μ from the KMC simulation. The dotted lines represent the
curve fittings according to the power laws EB ∝ T −α and EB ∝ T −1

at the short and long-time regions. The shoulder and the crossover
behavior can be observed only for μ = 10−3 and 10−4.

density of the velocity of the colliding molecule B, which is
the Maxwell-Boltzmann velocity distribution. The third factor
is the collision rate, given by Eq. (A1). For the calculation of
the first factor, the probability density of the waiting time s is
required:

P(s|vA) = F (vA)e−F (vA )s. (A2)

Here, F (vA) is the average collision frequency and is ex-
pressed as follows:

F (vA) =
∫

dvBd r̂AB ρσ 2(vB − vA)

· r̂AB�((vB − vA) · r̂AB)PMB(vB; mB)

= ρπσ 2

√
α

[(√
α|vA| + 1

2
√

α|vA|
)

erf (
√

α|vA|)

+ 1√
π

exp(−α|vA|2)

]
, (A3)

where α = βmB/2. The first factor is the probability of no
collisions occurring during time s, which is calculated as
follows [41]:

�(s|vA) =
∫ ∞

s
ds′ P(s′|vA) = e−F (vA )s. (A4)

The second factor is simply expressed as

PMB(vB; mB) =
(

βmB

2π

)3/2

exp

(
−βmBv2

B

2

)
. (A5)

The probability density P(vB, r̂AB, s|vA) can be expressed as

P(vB, r̂AB, s|vA) = �(s|vA)PMB(vB; mB)ρσ 2(vA − vB)

· r̂AB�[(vA − vB) · r̂AB]. (A6)

Equations (A6), (A4), and (A5), give Eq. (3) in the main text.

APPENDIX B: NUMERICAL SCHEME
FOR KMC SIMULATION

The collision-based dynamics of molecule A can be sim-
ulated using the KMC method [27,28] with Eq. (A6) as
the input. The initial velocity of molecule A is sampled
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FIG. 10. Direction correlation function of molecule A, Cd (�t ),
for various mass ratios μ, from the KMC simulation.

based on Maxwell-Boltzmann distribution. The probability
density of the initial velocity represented in dimensionless
units is

PMB(vA; μ) =
( μ

2π

)3/2
exp

(
−μv2

A

2

)
, (B1)

where μ is the mass ratio mA/mB, the same as in the main text.
Since Eq. (B1) is a Gaussian distribution, vA can be sampled
using the Box-Muller method [42].

For the time evolution of the system, sampling of the
stochastic variables vB, r̂AB, and s are required. However,
the simultaneous sampling of these variables is technically
difficult. Therefore, we decompose the probability density
P(vB, r̂AB, s|vA) into several conditional probability densities
as follows:

P(vB, r̂AB, s|vA) = P(r̂AB|vB, s, vA)P(vB|s, vA)P(s|vA),

(B2)

where P(r̂AB|vB, s, vA), P(vB|s, vA), and P(s|vA) are defined
as follows

P(s|vA) =
∫

dvBd r̂AB P(vB, r̂AB, s|vA)

= F (vA)e−F (vA )s, (B3)

FIG. 11. Speed correlation function of the molecule A, Cs(�t ),
for various mass ratios μ, from the KMC simulation.

P(vB|s, vA) =
∫

d r̂AB
P(vB, r̂AB, s|vA)

P(s|vA)

= ρπσ 2|vA − vB|PMB(vB; mB)

F (vA)
, (B4)

P(r̂AB|vB, s, vA) = P(vB, r̂AB, s|vA)

P(vB|s, vA)P(s|vA)

= 1

π

vA − vB

|vA − vB| · r̂AB�[(vA − vB) · r̂AB].

(B5)

F (vA) in dimensionless units becomes

F (vA) = π (|vA| + 1/|vA|)erf (|vA|/
√

2)

+
√

2π exp(−|vA|2/2). (B6)

Based on these decomposed probability densities, s, vB, and
r̂AB can be sampled sequentially. s can be sampled using the
inversion method [42] with Eqs. (B3) and (B6), respectively.

Equation (B4) can be rewritten with the relative velocity,
vr = vB − vA. Without loss of generality, the relative ve-
locity can be expressed by spherical coordinates according
to vr = vr cos φ sin θex + vr sin φ sin θey + vr cos θez. Here,
ex, ey, and ez are orthonormal basis vectors and ez is set to
ez = vA/|vA|. Subsequently, Eq. (B4) is reduced to

P(vr, θ, φ|s, vA) = 1

4(2π )3/2F (vA)
v3

r sin θ

× exp
[−(

v2
r

/
2+|vA|2/2+|vA|vr cos θ

)]
.

(B7)

Because φ is not included in Eq. (B7), φ can be sampled from
the uniform distribution. The conditional probability density
of vr is obtained by integrating Eq. (B7) over θ and φ as
follows:

P(vr |s, vA) =
∫

dθdφ P(vr, θ, φ|s, vA)

=
[

π

(2π )3/2|vA|F (vA)
exp

(
−|vA|2

2

)]

× v2
r exp

(
−v2

r

2

)
sinh (|vA|vr ). (B8)

vr can be sampled using the rejection method [42] with
Eq. (B8). The conditional probability density of θ is

P(θ |vr, φ, s, vA) =
∫

dφ
P(vr, θ, φ|s, vA)

P(vr |τ, vA)

=
[ |vA|vr

2 sinh (|vA|vr )

]

× sin θ exp (−vr |vA| cos θ ). (B9)

Subsequently, θ can be sampled using the inversion method.
vB is obtained from sampled vr , θ , and φ.

In a similar manner, Eq. (B5) can be simplified us-
ing spherical coordinates. Without loss of generality, r̂AB

can be expressed as r̂AB = cos φ′ sin θ ′ex′ + sin φ′ sin θ ′ey′ +
cos θ ′ez′ . Here, ex′ , ey′ , and ez′ are orthogonal basis vectors
and ez′ is set to ez′ = −vr/|vr |. Subsequently, Eq. (B5) can be
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FIG. 12. Direction and speed relaxation times τd and τs, and the
crossover time τEB from the KMC simulation data in Figs. 9–11. τEB

is estimated only for μ = 103 and 104.

expressed as

P(θ ′, φ′|vB, s, vA) = 1

π
cos θ ′ sin θ ′�(cos θ ′). (B10)

Equation (B10) does not depend on φ′. Therefore, φ′ can be
sampled from a uniform distribution, and θ ′ can be sampled
using the inversion method with Eq. (B10). r̂AB can be con-
structed from θ ′ and φ′.

APPENDIX C: ADDITIONAL SIMULATION DATA

In the main text, we showed the representative simulation
data only with mass ratios μ = 10−4 and 102. In this Ap-
pendix, we show the results with different mass ratios 10−4 �
μ � 102. The self-part of the van Hove correlation functions
of the molecule A with μ =(a)100, (b)10−1, (c)10−2, and
(d)10−3 are displayed in Fig. 7. The non-Gaussian parameters
against time lag with various μ are shown in Fig. 8. Fig-
ure 9 displays the EB parameters with various μ. Figures 10
and 11 show the time-correlation functions of the direction
and the speed of molecule A. From the data in Figs. 9–11,
we estimate the characteristic timescales for EB, direction,
and speed. The characteristic timescale for EB can be esti-
mated as the crossover time, as explained in the main text.
The characteristic time scales for the direction and time are
estimated as

τγ =
∫ ∞

0 d�t �tCγ (�t )∫ ∞
0 d�t Cγ (�t )

, (C1)

with γ = d, s. These estimates are displayed in Fig. 12.
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