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Depinning dynamics of confined colloidal dispersions under oscillatory shear
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Strongly confined colloidal dispersions under shear can exhibit a variety of dynamical phenomena, including
depinning transitions and complex structural changes. Here, we investigate the behavior of such systems under
pure oscillatory shearing with shear rate γ̇ (t ) = γ̇0 cos(ωt ), as it is a common scenario in rheological experi-
ments. The colloids’ depinning behavior is assessed from a particle level based on trajectories, obtained from
overdamped Brownian dynamics simulations. The numerical approach is complemented by an analytic one based
on an effective single-particle model in the limits of weak and strong driving. Investigating a broad spectrum
of shear rate amplitudes γ̇0 and frequencies ω, we observe complete pinning as well as temporary depinning
behavior. We discover that temporary depinning occurs for shear rate amplitudes above a frequency-dependent
critical amplitude γ̇ crit

0 (ω), for which we attain an approximate functional expression. For a range of frequencies,
approaching γ̇ crit

0 (ω) is accompanied by a strongly increasing settling time. Above γ̇ crit
0 (ω), we further observe

a variety of dynamical structures, whose stability exhibits an intriguing (γ̇0, ω) dependence. This might enable
new perspectives for potential control schemes.

DOI: 10.1103/PhysRevE.107.014603

I. INTRODUCTION

Colloidal dispersions play a pivotal role as model systems
in classical statistical mechanics [1]. They are furthermore
ubiquitous in everyday life and play a crucial role in numerous
applications such as surface coatings, lubricants or pharma-
ceutical products, to name a few. Whereas early research
mainly focused on equilibrium structures, phase behavior
and the impact of static perturbations (such as confinement
[2–6]), more recent studies are typically concerned with
nonequilibrium effects such as dynamical phase transitions,
spatiotemporal structures and nonlinear macroscopic prop-
erties. This occurs, e.g., by application of shear flow [7–9]
or time-dependent electric [10] or magnetic fields [11]. The
presented study is concerned with a colloidal system subject
to both spatial confinement and oscillatory shear.

Earlier studies of (strongly) confined colloidal disper-
sions exposed to shear flow have focused mainly on static
shearing [12,13]. In particular, in monodisperse systems of
dense colloidal layers, shear leads to effects like depinning in
combination with structural changes [14–16], nonmonotonic
constitutive flow curves [16], and nontrivial thermodynamic
signatures [17]. Additional effects occur in more complex
systems, e.g., laning transitions in trilayers [18] or den-
sity fluctuations in bidisperse systems [16]. Furthermore,
extensive research has been dedicated toward driven two-
dimensional (2D) colloidal systems, which can also be seen
as a form of (extreme) confinement. Prominent examples
are monolayers driven over substrates by external forces
[19,20] and circular “nanoclutches” [21–23], i.e., ringlike
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configurations of a finite number of colloids, which are
sheared by the application of torques.

Here we are interested in the impact of oscillatory shearing,
which, for confined colloidal systems, has not received much
attention so far [24]. It is, however, commonly applied in bulk
systems [8,25,26], where it is used to characterize rheological
properties like storage or loss moduli [27]. Often reported
phenomena in bulk systems include shear banding [28,29],
shear thinning [7,30,31] and shear thickening [7,32,33], to
name a few. Particular attention has been recently devoted
to amorphous solids under oscillatory shear and the impact
of the yielding transition [34–38]. While oscillatory shear-
ing generally leads to more complex behavior compared to
static shearing, it should also allow access to system-intrinsic
timescales by analyzing the system’s response to different
shearing frequencies. Beyond these issues, we note that oscil-
latory drive in colloidal systems has also been used to study
synchronization phenomena such as mode locking [39]. The
present system adds a further factor due to the presence of
spatial confinement.

In the present paper we are concerned with monodisperse,
dense colloidal dispersions, which are confined to a narrow
slit-pore and exposed to oscillatory shear acting parallel to
the confining walls. By performing overdamped Brownian
dynamics (BD) simulations in the absence of a solvent, we
aim at understanding the complex collective translational and
structural dynamics on the particle level. We regard this as a
necessary first step before examining the system’s rheological
properties, which we leave for a future study.

We specifically restrict our research to systems consisting
of only two particle layers, so called “bilayers,” where the slit-
pore width and particle density are tuned such that both layers
exhibit a squarelike in-plane structure in the absence of shear
[2,3]. In these systems, the application of static shear leads
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to three nonequilibrium steady states at small, intermediate
and large shear rates [15,16]. While the first state is referred
to as “pinned” state, where both layers are locked into each
other, the second and third state correspond to disordered and
ordered “running” (“depinned”) states, respectively, where the
two layers move in opposite directions past each other. In
addition to these differences in the translational behavior, each
state features a distinct in-plane layer structure.

Under oscillatory shear, as we show here, the system
alternates periodically between the above mentioned states.
Interestingly, the question which state is included in a cy-
cle turns out to strongly depend on the applied shear rate
amplitude and frequency. One main goal in this study is to
unravel these dependencies over a large range of parameter
combinations, yielding a nonequilibrium state diagram.

Another goal of this paper is to explore various system-
specific (intrinsic) timescales and their interaction with the
oscillation period of the externally applied shearing protocol.
One essential type of timescale in this context are “settling
times,” which denote the time span between the onset of
oscillatory driving and the occurrence of stable periodic orbits
of certain dynamical observables. Interestingly, we find that
these settling times can drastically increase in regions close to
the dynamical depinning transition, similar to the relaxation
times observed for depinning under static shear [40].

To support the BD simulations and to interpret certain
aspects of the observed collective behavior, we establish a
close connection to an effective single-particle model. Specif-
ically, we utilize a forced Adler-type equation [41], which
we investigate analytically and numerically. Similar (deter-
ministic and stochastic) problems have been investigated
in studies of single colloidal particles that are driven over
periodic substrates in one or two dimensions [39,42–46]
with either static [F (t ) = F ] [42–44] or modulated forces
[F (t ) = F + F0 cos(ωt )] [39,45,46]. In our single-particle in-
vestigations, we focus on (pure) oscillatory driving [F (t ) =
F0 cos(ωt )], which is a subproblem of modulated driving
(F = 0). However, lacking full analytical solutions, previous
studies [39,45,46] have typically only been concerned with
transport properties like average particle velocities 〈ẋ〉, which
always vanish without a constant force, as long as the sub-
strate is symmetric and the system is noise-free. Here we
rather take a closer look at the forced oscillation’s ampli-
tudes and centers. The latter have, in fact, been studied in
several applications in the field of laser physics [47,48]. There
it was found that systems tend to oscillate around one of
few fixed points [48], of which some are stable and some
are unstable. The stability of these fixed points furthermore
depends not only on the underlying periodic potential but
also on driving amplitude F0 and frequency ω. Here we show
that swapping a fixed point’s stability can, in some cases, be
related to the properties of the entire many-particle system,
e.g., the layer structure, while transport is effectively zero.
Moreover, we demonstrate that the depinning diagram of the
full many-particle system displays strong similarity with that
of the single-particle system, showing that the latter captures
an important part of the physics.

The rest of this paper is organized as follows. In
Sec. II A we describe the model of our many-particle sys-
tem and the details of our BD simulations. In Sec. II B we

FIG. 1. Front-view snapshot of the bilayer system confined in
a narrow slit-pore environment. Top and bottom layer particles are
colored yellow and blue, respectively. The confining walls (gray
bars) extend infinitely in x and y directions. The linear shear velocity
profile is indicated by arrows, pointing in the x direction. Rendered
with OVITO [49].

motivate an effective single-particle model and present an-
alytical solutions in limiting cases. We then proceed by
analyzing the many-particle dynamical behavior under os-
cillatory shear (Sec. III B), including an analysis of settling
times (in Sec. III C). Finally, Sec. III D is devoted to the
time-dependent structural transitions within the particle lay-
ers. We close with concluding remarks and suggestions for
future research in Sec. IV.

II. MODEL AND SIMULATION DETAILS

A. Sheared slit-pore many-particle system

We consider a colloidal dispersion of spherical macroions
immersed in a solvent consisting of much smaller fluid
molecules, as well as salt- and counterions. The dispersion is
confined to a narrow slit-pore environment, consisting of two
plane-parallel soft walls with distance Lz and infinite extent
in the x and y directions (see Fig. 1). Following previous
studies [15,16,50], we assume that the macroions interact via
a combination of screened Coulomb (Yukawa) and repulsive
(soft-sphere) interaction potentials, while the interaction of
the macroions with the confining walls of the slit-pore is
modeled via an integrated soft-sphere potential [51]. We drive
the system out of equilibrium by applying an oscillatory shear
flow within the solvent. In the subsequent paragraphs we first
present the equation of motion, followed by a discussion of
parameters and quantities of interest.

1. Equations of motions

We perform overdamped BD simulations in three dimen-
sions, where the ith macroion’s position ri (i = 1, . . . , N) is
determined by the equation of motion

ṙi = μFi + μ�i + ushear
i , (1)

which we solve numerically by employing the integra-
tion algorithm from Ermak [52]. Here, Fi(r1, . . . , rN ) =
−∇iUtot (r1, . . . , rN ) is the total conservative force resulting
from particle-particle and particle-wall interactions acting on
particle i. The particle-solvent coupling is contained implicitly
via the mobility μ, the stochastic Brownian force �i(t ) and the
shear flow ushear

i (zi, t ). In the following, we discuss in more
detail the various terms entering Eq. (1).

To start with, we define the total potential energy as

Utot = 1

2

∑
i

∑
j �=i

[UY(ri j ) + USS(ri j )] +
∑

i

Uwall(zi), (2)
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where the Yukawa potential UY(ri j ) and the soft-sphere po-
tential USS(ri j ), both depending on the particle distance ri j =
|ri − r j |, are the particle-particle interaction potentials and
Uwall(zi ) is the particle-wall interaction potential. The Yukawa
potential arises within the framework of the Derjaguin-
Landau-Verwey-Overbeek (DLVO) approximation [51]. It
describes, on a mean-field level, the electrostatic interaction
of the macroions which is screened by salt- and counterions
in the solvent, yielding

UY(ri j ) = εYd
e−κri j

ri j
. (3)

In Eq. (3), κ is the inverse Debye screening length, εY is the
interaction strength and d is the particle diameter. The soft-
sphere potential accounts for the steric repulsion between the
macroions and is chosen as the repulsive part of the Lennard-
Jones potential,

USS(ri j ) = 4εSS

(
d

ri j

)12

, (4)

where εSS is the soft-sphere interaction strength. Following
previous studies [15,16], the particle-particle interactions are
truncated for distances ri j > rc = 2.96d and shifted accord-
ingly to ensure continuous energies and forces [15,53].

The particle-wall interaction is modeled via an integrated
soft-sphere potential, where the wall is assumed to consist of
homogeneously distributed wall particles with mean diameter
d . Integrating Eq. (4) over a half-space for upper and lower
wall (located at z ≷ ±Lz/2), the particle-wall interaction po-
tential reads

Uwall(zi ) = 4π

5
εwall

[(
d

Lz/2 − zi

)9

+
(

d

Lz/2 + zi

)9
]
, (5)

where εwall is the wall interaction strength. This kind of fluid-
wall interaction is widely adopted [3,50,54], although there
are different conventions in how to choose the prefactor. Here,
we stick with the definition from Ref. [3].

Within the framework of our BD simulations, the influence
of the solvent on the macroions leads to friction and noise
due to thermal fluctuations as well as to drag due to the
shear flow. The former two are described by the mobility
μ (or friction coefficient μ−1) and the stochastic Brown-
ian force �i(t ), which has zero mean, i.e., 〈�i〉 = 0, and
is delta-correlated, 〈�i(t )� j (t ′)〉 = 2 kBT

μ
δi jδ(t − t ′)1. Within

the integration scheme from Ermak [52], the stochastic force
leads to random, Gaussian-distributed displacements with
zero mean and variance 2D0�t for each spatial coordinate
after each time step. Here, D0 = μkBT is the short-time dif-
fusion coefficient and �t is the discretized time step size.
Furthermore, D0 defines the so-called Brownian time τB =
d2/D0, which we use as the reference timescale in our sim-
ulations, together with the length scale d (particle diameter)
and the energy scale kBT (thermal energy).

Finally, we model the drag from the shear flow as
ushear

i (zi, t ) = γ̇ (t )ziex, describing a (spatially) linear gradient
profile in the z direction with flow in the x direction. This
ansatz follows previous studies [8,14–16], where hydrody-
namic interactions are neglected. This is typically justified
by the conjecture that hydrodynamic interactions affect only

the timescales but not the overall behavior of these systems
[15,16].

We justify the assumption of a linear shear velocity profile
by the fact that the colloidal particles are located far enough
from the walls. That is, the Coulomb repulsion between the
real, charged colloids and charged walls is sufficiently strong,
i.e., corresponding to large εwall in our coarse-grained model
(for a more detailed discussion of the underlying charged
system, see, e.g., Ref. [3]). Thus, it seems safe to assume that
the motion of the colloids is not directly coupled to that of the
wall particles. Note, however, that close to the walls the real
flow profile can be nonlinear [55]. In addition, the assump-
tion of a linear shear profile might also break down for fast
shearing, because the flow field might then no longer be able
to adapt to the wall movement instantaneously. We leave the
consideration of hydrodynamic interactions for future studies,
as it would go beyond the scope of this work.

In this study, we apply an oscillatory, harmonic shear pro-
tocol with shear rate

γ̇ (t ) = γ̇0 cos(ωt ), (6)

where γ̇0 is the shear rate amplitude and ω the frequency.
The shear rate is chosen such that the corresponding shear
strain γ (t ) = γ̇0

ω
sin(ωt ) disappears at time t = 0. Thus, we

start the simulation from an initially unsheared system. The
initial equilibrium configuration was relaxed beforehand in
the absence of shear flow (γ̇ = 0) for 100 Brownian times
[16].

2. Parameters

Following previous studies [16], we consider a strongly
confined colloidal dispersion with macroion density ρ =
0.85d−3 (volume fraction φ = ρ π

6 d3 ≈ 0.45) and wall dis-
tance Lz = 2.2d . Under these conditions, the macroions form,
in equilibrium, two crystalline layers with quadratic in-plane
order and area density ρarea = 1

2ρLz ≈ 0.94d−2 (area frac-
tion φarea = ρarea

π
4 d2 ≈ 0.73) [2]. Considering a total of N =

1058 macroions, we use a system box with side lengths Lx =
Ly = √

N/ρLz = 23.79d , applying periodic boundary condi-
tions in the x and y directions.

Regarding the interaction potentials, we stick to the same
model parameters as in Ref. [16], i.e., the interaction strengths
εY = 123.4kBT , εSS = εwall = 1kBT as well as the inverse
Debye screening length κ = 3.216d−1. These were chosen
based on real suspensions of charged silica pellets [50]. The
particle-particle interactions are truncated beyond a cutoff
radius rc = 2.96d and are shifted accordingly [15].

Throughout this study, we consider shear rate amplitudes
in the range γ̇0τB = 2.14 × (101 . . . 103), spanning two orders
of magnitude around the known critical depinning shear rate
γ̇ crit

0 τB ≈ 214 for this system at constant shearing [16]. Sim-
ilarly, we consider shearing frequencies in the range ωτB =
5.15 × (10−1 . . . 104), spanning five orders of magnitude. The
discretized time step size is chosen smaller than �t � 10−5τB

for each simulation individually, depending on the shear rate
amplitude and frequency (for details, see Appendix A 1).

To account for remaining finite-size effects in system-
integrated observables like the center-of-mass positions of
each layer (see below), we carry out simulations for 10–100
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realizations, each starting from the same initial configuration.
Further, each simulation is carried out for 10-100 oscilla-
tion periods τω = 2π/ω, depending on the settling time for
each specific parameter combination (γ̇0, ω) (see discussion
in Sec. III C and Appendix A 4).

3. Quantities of interest

In this section we define various system-averaged observ-
ables that we use to characterize the (macroscopic) state of the
system. It is important to note that all of these quantities are
functions of time due to the explicit time dependence of the
driving. Hence, the system does not approach a (nonequilib-
rium) steady state, which could be described by a simple time
average. Instead, for each simulation we compute different
(noise) realizations (identical settings but different random
seeds), which we refer to as ensembles. In later sections, we
then analyze the following quantities based on their individual
noise realizations as well as their ensemble average 〈· · · 〉, both
of which keep their time dependence.

As mentioned in the previous section, we are dealing with
a system of two crystalline particle layers. Under strong shear,
these layers eventually start moving in opposite directions.
Following previous studies [16], we describe this movement
by calculating center-of-mass layer positions

Rm = 1

Nm

N∑
i=1

Hm(zi)ri, (7)

where m is the index of the bottom (m = 1) and top (m = 2)
layer, Nm = ∑N

i Hm(zi ) is the number of particles in the mth
layer and Hm(zi ) is the layer identification function, which we
define as

Hm(zi ) =
{

1, if ẑm−1 < zi < ẑm,

0, else. (8)

Here, ẑm denotes the boundary between the mth and (m + 1)th
layer. In our bilayer system, the boundaries are located at
ẑ0 = −Lz/2, ẑ1 = 0, ẑ2 = Lz/2. Finally, we are interested in
the relative motion of the layers

�R = R2 − R1. (9)

To evaluate the lateral structure within the layers, we calcu-
late (intralayer) angular bond order parameters. Specifically,
we define the order parameter [15] of the ith particle with
symmetry n (= 4, 6) by

ψn,i = 1

NNN
i

∣∣∣∣∣∣
NNN

i∑
j

einθi j

∣∣∣∣∣∣ (10a)

= 1

NNN
i

∣∣∣∣∣∣
N∑

j=1

G(zi, z j )�(rNN − ri j )e
inθi j

∣∣∣∣∣∣, (10b)

where the sum over j only counts the NNN
i =∑N

j=1 G(zi, z j )�(rNN − ri j ) nearest neighbors of particle
i within the same layer and θi j is the enclosing angle between
the connection vector ri j and the x axis. Another particle j
is considered a nearest neighbor if it is located within the
nearest neighbor radius rNN, which is chosen as the location
of the first minimum of the (instantaneous) pair correlation

function (see Appendix A 2). To ensure only particles within
the same layer are counted as nearest neighbors, we define
the function G(zi, z j ) = ∑NL

m=1 Hm(zi)Hm(z j ), which is one if
both particles i and j are located within the same layer and
zero if not.

Finally, averaging the angular bond order parameter over a
whole layer and then across layers yields

ψn = 1

NL

NL∑
m=1

1

Nm

N∑
i=1

Hm(zi )ψn,i. (11)

By calculating ψn as function of time we monitor the degree
of n-fold symmetry of a given in-plane structure. A perfect
square or hexagonal lattice leads to ψ4 = 1 or ψ6 = 1, respec-
tively.

B. Driven single particle in a one-dimensional periodic potential

As we will show in Sec. III B, some aspects of the many-
particle dynamics, particularly the relative layer motion, can
be understood in terms of a simplified model involving a
single particle that is exposed to a periodic substrate potential
and actuated by a time-dependent force. In the following we
present this model in detail and discuss some analytical and
numerical results.

1. Equation of motion

Our simple model targets the dynamics of the x-component
of the relative center-of-mass position [see Eq. (9)], which
allows for a one-dimensional (1D) description of the resulting
“effective” particle. This particle is subject to an oscillatory
driving force Fdr (t ) = Fdr,0 cos ωt with amplitude Fdr,0 and
frequency ω, which mimicks the externally applied shear flow
in the many-particle system. Furthermore, we expose the par-
ticle to a sinusoidal substrate potential

Vsub(x) = Vsub,0

[
1 − cos

(
2π

a
x

)]
, (12)

with spatial period a and potential height 2Vsub,0. Compared to
a true particle in the top (or bottom) layer of the many-particle
system, this substrate potential represents the interactions of
the particle with the particles of the neighboring layer. This
analogy is expected to work well when the lateral structure is
strongly pronounced. A similar mapping from many-particle
to effective single-particle motion has been done in a previous
work for a constant driving force [16].

We describe the motion of the effective single particle via
the overdamped Langevin equation

ẋ = −Fsub,0 sin

(
2π

a
x

)
+ Fdr,0 cos(ωt ) + �(t ), (13)

where x is the (1D) position of the particle, Fsub,0 =
Vsub,02π/a is the amplitude of the substrate force and �(t )
is a stochastic Brownian force. In Eq. (13), all quantities
have been nondimensionalized as described in Sec. II A 1.
Note that colloidal particles driven over 1D periodic sub-
strates [described by Eq. (13) with varying Fdr (t )] have
been studied before, e.g., with static drive Fdr (t ) = Fdr (de-
terministically and with noise) [42,43] or modulated drive
Fdr (t ) = Fdr + Fdr,0 cos(ωt ) (in the deterministic [45] and
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stochastic case [39]). Here we focus on the case of oscillatory
drive alone.

Mathematically, Eq. (13) represents a stochastic, nonlinear
differential equation, which does not possess a full analytical
solution for the entire parameter space of (Fdr,0, ω) combina-
tions. In the following we focus on the deterministic case (� =
0), which has been shown to be useful already for static drives
[16]. This leaves us with a forced Adler-type equation [41],
which has been studied, e.g., in the context of mode-locking
in ring laser gyros [47] or in lasers with one or two stable
eigenstates [48].

2. Limiting cases

We first consider the case that the confinement of the par-
ticle by the potential barriers 2Vsub,0 dominates the impact of
the driving force. In this case (also studied in Ref. [48]), one
can linearize the substrate force [sin(2πx/a) ≈ 2πx/a] at the
potential minimum xmin = 0. For an initial position x(0) = x0

close to the minimum (|x0 − xmin| � a/2) this approximation
holds, since the particle stays close to the minimum. Thus, we
obtain the pinned solution

xpin(t ) = xpin
max sin(ωt − ϕ) + (x0 − xstc,0)e−t/τsub︸ ︷︷ ︸

xstc (t )

, (14)

where

xpin
max(Fdr,0, ω) = a

2π

Fdr,0

Fsub,0

1√
1 + (ωτsub)2

, (15a)

ϕ(ω) = −π

2
+ arctan(ωτsub), (15b)

xstc,0(Fdr,0, ω) = Fdr,0τsub

1 + (ωτsub)2
. (15c)

As revealed by Eq. (14), at long times the particle performs
a sinusoidal motion with amplitude xmax, driving frequency ω

and phase shift ϕ. This long-time solution is complemented
by a short-time correction (stc) term. The latter falls off expo-
nentially with decay time

τsub = 1

2π

a

Fsub,0
, (16)

which we subsequently call substrate relaxation time, as it de-
pends solely on parameters of the substrate potential [compare
Eq. (12)]. Furthermore, pure exponential decay is recovered in
the case of vanishing driving force Fdr,0 = 0 and small initial
displacements x0 �= 0, where the particle creeps down to the
potential minimum.

At larger driving amplitudes Fdr,0, the particle eventually
overcomes the potential barrier, yielding (temporarily) de-
pinned solutions. In the case of very large Fdr,0, the particle
behaves almost like a free particle (Fsub,0 = 0), which would
perform a sinusoidal motion

xfree(t ) = xfree
max sin(ωt ) + x0, (17)

with amplitude

xfree
max(Fdr,0, ω) = Fdr,0

ω
(18)

around its initial position x(0) = x0. For nonzero, but small
amplitudes of the substrate force 0 < Fsub,0 � Fdr,0, the

particle performs the same (fast) sinusoidal motion

xrun(t ) = xfree
max sin(ωt ) + x(t ) (19)

plus a (slow) modulation of the oscillation center (or period
average, denoted by the bar), which becomes constant at long
times [for details, see Appendix B, Eq. (B6)]. We denote
this behavior as the “running” case. Due to symmetry con-
siderations, the particle either oscillates around the potential
minimum (x = 0) or maximum (x = a/2), depending on the
combination of Fdr,0 and ω.

3. Depinning in the full parameter space

Given the analytical solutions for limiting cases discussed
in the previous paragraph, we now aim at determining the
critical driving amplitude at which the particle becomes (tem-
porarily) depinned upon increasing Fdr,0 from zero. We note
that in the limit ω → 0, i.e., for static drive, the critical force
is well known; here one has F crit

dr,0(ω → 0) = Fsub,0 [41]. For
finite ω, however, the characterization of depinning is not
straightforward.

In this study, we evaluate the particle’s depinning behavior
based on its oscillation amplitude xmax in the long-time limit
(including an evaluation of the settling time, see Appendix A 3
and A 4). At any combination of Fdr,0 and ω, we classify
a long-time solution x(t ) as (temporarily) depinned, if the
particle covers a distance larger than one spatial period of the
substrate potential (2xmax > a). In this case, it crosses two ore
more potential wells/hills within each oscillation period. In
contrast, a pinned solution (2xmax � a) visits only one poten-
tial well/hill. Note that the choice of the threshold xmax = a/2
is arbitrary but, at the same time, plausible, as we will see
later on.

Due to the lack of a full analytical solution for the entire
(Fdr,0, ω) parameter space, we solve Eq. (13) (with � = 0)
numerically to obtain trajectories x(t ), which we then use
to calculate xmax in the long-time limit. Note that although
the long-time solutions are, in general, not sinusoidal, all of
them are τω-periodic and oscillate around either x = 0 or
x = a/2 (see also Fig. 10 and the corresponding discussion
in Appendix B).

In Fig. 2 we show the numerically obtained oscillation am-
plitudes xmax(Fdr,0, ω) in the form of a heatmap. We define the
critical driving amplitude F crit

dr,0(ω), which separates the pinned
(blue) and depinned (red) regions in the (Fdr,0, ω) parameter
space, as the contour line at xmax = a/2 (black dots). One
clearly observes a strong dependence on the frequency for
ωτsub � 0.4. Aiming to find a mathematical expression for
F crit

dr,0(ω), we first formulate an expression for the contour lines
at smaller xmax. In the pinned region, these contour lines (gray
dots) are well approximated by

F xmax,pin
dr,0 (ω) = Fsub,0

xmax

a/2π

√
1 + (ωτsub)2, (20)

which is obtained from Eq. (15a) by solving with respect
to Fdr,0. Equation (20) works well up to xmax � 0.1a (thin
gray lines), but starts to fail for larger xmax. However, it
still captures the contour lines’ shape (up to xmax = a/2)
quite well. Moreover, Eq. (20) describes the high-frequency
limit F xmax,pin

dr,0 (ω) → xmaxω correctly, independent of xmax.
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FIG. 2. Depinning state diagram of the deterministic single-
particle model in the (Fdr,0, ω) parameter space based on long-time
oscillation amplitudes xmax. Blue regions indicate constantly pinned
solutions (xmax < a/2), red regions (temporarily) depinned solu-
tions (xmax > a/2) and white regions the transition area in-between
(xmax ≈ a/2). Contour lines F xmax

dr,0 (ω) are drawn as dots for several
values of xmax/a (annotations). In the pinned region, the contour lines
are well approximated by Eq. (20) (thin solid lines). The contour line
labeled with F crit

dr,0(ω) at xmax = a/2 marks the critical driving force
amplitude [Eq. (22), thick solid line], which separates the pinned
and depinned regions. At large frequencies, F crit

dr,0(ω) becomes linear
(dash-dotted orange line), at slightly larger Fdr,0 than the first swap
of the particle’s oscillation center (see Appendix B) from x = 0 to
x = a/2 (dashed green line).

This goes along with our observation that, at large ω, the
particle motion always seems to approach the running solution
[Eq. (19)]. The contour line of a free (or running) particle (for
xmax = a/2) is drawn as dash-dotted orange line in Fig. 2.

Motivated by these observations we introduce a fit param-
eter α into Eq. (20), specifically

F xmax
dr,0 (ω) = α−1Fsub,0

xmax

a/2π

√
1 + (αωτsub)2. (21)

We find that as xmax approaches the depinning threshold a/2,
α changes from 1 to π . This leaves us with an approximation
for the critical driving amplitude at xmax = a/2,

F crit
dr,0(ω) = Fsub

√
1 + (πωτsub)2, (22)

shown as thick black line in Fig. 2. In the limit ω → 0, the
right side of Eq. (22) reduces to Fsub,0, consistent with the
known solution in the static case [41]. Eq. (22) represents a
very good description of our numerical results for both small
and large frequencies with minor deviations at intermediate
frequencies ωτsub ∈ [0.02, 0.4]. There, the real transition line
exhibits steps, which become less pronounced at larger fre-
quencies.

As a final note, the critical driving amplitude defined here
as contour line xmax = a/2 is consistent with the line of points,
where the particle’s oscillation center changes its stability
from x = 0 to x = a/2 for the first time (dashed green line,
compare Appendix B, Fig. 10).

At the end of this section, we briefly comment on the
effects of (weak) noise on the depinning behavior, i.e., � �= 0
in Eq. (13). Weak noise hereby means that the thermal energy
is assumed to be much smaller than the (substrate) potential

barrier (kBT/2Vsub,0 � 1). In this case, one could analogously
define a critical driving amplitude F crit

dr,0(ω) based on the con-
tour line 〈xmax〉 = a/2 (xmax becomes a stochastic variable,
hence the average). While the overall shape of F crit

dr,0(ω) stays
roughly the same in the presence of noise, F crit

dr,0(ω → 0) dips
below Fsub,0, as expected from earlier studies [19]. Addi-
tionally, the sharp transition from pinning (xmax � a/2) to
depinning (xmax > a/2) at small frequencies becomes smooth.
Apart from these effects, the overall behavior remains the
same.

III. SIMULATION RESULTS

We now turn to a discussion of our numerical results for
the colloidal bilayer system described in Sec. II A.

A. Depinning at static shearing (ω = 0)

As a reference for our subsequent discussion of oscillatory
shear [γ̇ (t ) = γ̇0 cos(ωt )], it is worth to briefly review its
depinning behavior under constant shear, which is recovered
formally at ω = 0. Earlier studies [15,16] discovered that the
sheared system exhibits different nonequilibrium steady states
in the long-time limit (t > 50τB), depending on the magni-
tude of γ̇0. Below a critical shear rate γ̇0 < γ̇ crit

0 ≈ 214τ−1
B ,

both particle layers are locked into each other (pinned states).
Consequently, the center-of-mass of each layer is at rest, and
thus, 〈�Rx〉 = const. [for definition of �Rx, see Eq. (9)]. On
the contrary, above γ̇0 � γ̇ crit

0 , the layers slide past each other
(depinned or running states) and 〈�Rx〉 increases with time.
This depinning transition is accompanied by a change of the
lateral structure of both layers. In the pinned state, particles
arrange in a crystalline structure with square in-plane order.
For depinned states, in contrast, this order fades off resulting
in a (fluidlike) disordered structure, followed by a recrystal-
lization with hexagonal order beyond a second critical shear
rate γ̇0 � γ̇ crit,2

0 ≈ 260τ−1
B .

B. Temporary depinning at oscillatory shearing

We now proceed toward the case of finite driving frequen-
cies (ω > 0), focusing first on the layer motion. Due to the
time-dependence of the applied shear rate, the system never
reaches a nonequilibrium steady state. Instead, we observe
an oscillatory motion of the center-of-mass of each layer that
becomes (in the ensemble average) periodic in the long-time
limit. In this situation, one has 〈�Rx(t )〉 = 〈�Rx(t + τω )〉,
where �Rx is the x component of the relative layer vector
defined in Eq. (9) and τω is the oscillation period of the shear
protocol. Exemplary results for �Rx(t ) are shown in Fig. 3(a).

For a given time interval (here usually τω), we can de-
termine whether the particle layers are pinned to each other
or not. To this end we monitor the oscillation amplitude of
the relative center-of-mass position A[�Rx(t )] [see Fig. 3(b)],
whose ensemble average saturates at a constant value xmax =
limt→∞〈A[�Rx(t )]〉 at long times (for details of the numer-
ical evaluation, see Appendix A 3). The characterization of
depinning via xmax is in analogy to our investigation of the
effective single-particle problem, see Sec. II B 3. We consider
the system as (constantly) pinned if xmax < a/2, a ≈ 1.034d
being the lattice constant of the equilibrium square lattice,
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FIG. 3. (a) Example trajectory of the relative layer motion
�Rx (t ) in the shear direction and (b) its amplitude A[�Rx (t )] at
γ̇0τB = 314, ωτB = 91.6. The bold, red line in each graph denotes
the ensemble average and the surrounding shaded area the fluctuation
range. The thin, blue line represents an example trajectory for a
single realization. The average oscillation amplitude increases over
the first couple of oscillation periods and saturates at a constant value
xmax within a confidence interval (dotted horizontal lines) after the
settling time ts (dashed vertical line). The saturated amplitude is then
taken as the time-average between [ts, T ] (dashed horizontal line),
T = 10τω being the total simulation time.

because then particles are (on average) not moving past neigh-
boring particles of the other layer. In contrast, if particles
do move past them, the system is temporarily depinned and
xmax � a/2.

By computing the value of xmax for a mesh of (γ̇0, ω)
parameter combinations, we are able to construct a de-
pinning state diagram, which is shown in Fig. 4 in the
form of a heatmap. Similar to (temporary) depinning in the
single-particle problem (see Sec. II B 3), pinning is gener-

FIG. 4. Depinning state diagram of the (stochastic) many-
particle system in the (γ̇0, ω) parameter space. Analogously to the
single-particle case (compare Fig. 2), blue (red) regions represent
constantly pinned (temporarily depinned) states. Gray regions have
not been computed. The critical shear rate amplitude γ̇ crit

0 (ω) (dots)
follows the contour line xmax = a/2 and is fitted by Eq. (23) (solid
line). The dashed lines are guides to the eye, indicating the scaling
with ω at very small and very large frequencies. The cross within the
diagram refers to the parameter combination shown in Fig. 3.

ally observed at small γ̇0 (blue color) and depinning at large
γ̇0 (red color). The transition from pinning to depinning
(where xmax(γ̇0, ω) ≈ a/2, white color) can be characterized,
similar to the case of constant shearing [16], by a critical
shear rate amplitude γ̇ crit

0 (ω), which now exhibits a frequency
dependence.

In the static limit, the critical amplitude required to induce
depinning is γ̇ crit

0 (ω = 0) ≈ 214τ−1
B [16]. From Fig. 4 we see

that this value is approached from above when we decrease ω

from finite values to zero. Note that ωτB = 0.52 is the smallest
frequency at which we were able to compute γ̇ crit

0 . There, it
assumes the value (221 ± 2)τ−1

B (labeled as γ̇ crit
0 (0) in Fig. 4).

Upon increasing ω, γ̇ crit
0 (ω) first increases only slightly

(with exponent 0.03) and later, for ωτB � 400, almost linearly
(with exponent 0.88). Below this crossover frequency, the
transition from pinned to depinned states happens suddenly,
indicated by a very slim (white) transition area. At larger
frequencies, in contrast, this transition happens smoothly, in-
dicated by a broader transition area.

Overall, one recognizes a strong similarity between the
state diagrams of the shear-driven colloidal bilayer and the
driven single particle (Fig. 2) discussed in Sec. II B 3, with
the shear rate amplitude essentially replacing the amplitude
of the oscillatory drive. This already shows that the single-
particle model captures important dynamical features of our
many-particle system, as long as we focus on the layer motion
alone.

Motivated by these analogies, we find that the functional
form of γ̇ crit

0 (ω) in the bilayer can be fitted by the function

γ̇ crit
0 (ω) = γ̇ crit

0,fit (0)
√

1 + (πωτrelax)2, (23)

which provides us with two fit parameters, the critical am-
plitude in the zero-frequency limit γ̇ crit

0,fit (0) ≈ (262 ± 4)τ−1
B

and the relaxation time τrelax ≈ (9.0 ± 0.2)10−4τB. Please
note that we deliberately didn’t fix γ̇ crit

0,fit (0) to the already
known value 214τ−1

B [16]. As a consequence, the fitted value
overestimates the true zero-frequency limit by about 20%.
Interestingly however, it approximately matches the transi-
tion shear rate from disordered to hexagonal steady states
γ̇ crit,2

0 τB = 260 in the case of constant shearing. Further, τrelax

can be interpreted as the many-particle equivalent of the sub-
strate relaxation time in the effective single-particle model
[see Eq. (16)]. This is also approximately the time that a shear-
distorted square lattice (γ̇0τB < 214) would need to return to
its equilibrium state if the external shearing was suddenly
stopped.

C. Settling time at the depinning transition

So far we have discussed the existence of temporary de-
pinning based on oscillation amplitudes xmax at long times.
Another interesting quantity is the settling time ts, which is
the time span between the onset of oscillatory shear and the
stabilization of xmax [for a visualization, see Fig. 3(b)]. A
detailed definition of ts can be found in Appendix A 4. Note
that we start shearing from an equilibrium square lattice.

From a physical point of view, the settling time can be
considered as another relevant timescale that interferes with
the relaxation time τrelax, introduced in Eq. (23). Results for
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FIG. 5. Settling time heatmap ts(γ̇0, ω). For the majority of pa-
rameter combinations (γ̇0, ω), the layer’s oscillatory movement has
settled within one oscillation period τω (white color). For shear rate
amplitudes γ̇0 closely above the critical amplitude γ̇ crit

0 (ω) (blue
circles), the settling time increases drastically (yellow to black color).
The inset shows two slices ts(γ̇0) for constant ω. Some frequencies
are highlighted by arrows. The cross within the diagram refers to the
parameter combination shown in Fig. 3.

ts(γ̇0, ω) are shown in Fig. 5. For the majority of (γ̇0, ω) com-
binations, the settling time adopts values below one oscillation
period (i.e., ts < τω), which cannot be resolved. Hence, the
long-time limit is reached almost instantaneously. In contrast,
for (γ̇0, ω) combinations closely above γ̇ crit

0 (ω), ts increases
drastically, oftentimes even beyond 67τω, which is the upper
measurable limit we set for this work. The steep left flank
of the function ts(γ̇0) (compare the inset in Fig. 5) indicates
that the settling time might even diverge upon approaching
γ̇ crit

0 (ω). This divergent behavior disappears, however, at fre-
quencies beyond ωτB > 700. Above this frequency the area
of increased ts starts to deviate from γ̇ crit

0 (ω) (toward smaller
γ̇0). For even larger frequencies, the settling time vanishes
completely beyond ωτB > 1400.

Note that the deviation from γ̇ crit
0 (ω) at large ω is connected

to a shift of the particles’ oscillation center, as well as a change
of the lateral structure (see Sec. III D). Hereby, the particles
tend to oscillate around the lattice sites of their adjacent layer
particles instead of their own, analogously to the behavior
seen in the effective single-particle problem (for details, see
Appendix B). Another striking similarity to the single-particle
case (compare Fig. 10) is the fact that there are two additional
small bands with increased settling time above γ̇ crit

0 (ω) in the
range ωτB ∈ [100, 400].

D. Structural transitions

Until now we have explored the center-of-mass motion
of the oscillating layers and, based on that, the depinning
transition. We now turn to the analysis of structural phenom-
ena within the layers that accompany the depinning. We note
that our focus here lies on the average type of structure, an
investigation of heterogeneities is beyond the scope of this
study.

For static shear [15,16], the layers of the present bilayer
system can adopt three kinds of structures: square (s), dis-
ordered (d), and hexagonal (h). All of these structures are
also encountered when applying oscillatory shear. For an il-
lustration in presence of depinning, see snapshots in Fig. 6.
We characterize these structures qualitatively by computing

FIG. 6. Top-view structure snapshots of a system with γ̇0τB =
769, ωτB = 51.5 (temporary depinning) at (a) t = 0, (b) t = 2.8τω,
and (c) t = 3.1τω. Particles in the upper and lower layer are colored
yellow and blue, respectively. The corresponding time dependence
of order parameters is given in Fig. 7. Rendered with OVITO [49].

angular bond order parameters ψn(t ) (details in Sec. II A 3)
for the symmetries n = 4 (square) and n = 6 (hexagonal). An
example of the time dependence of the ψn(t ) is shown in Fig. 7
for a (long-time) disordered-hexagonal state. For details of the
classification of “states,” see Appendix C.

Similar to the layer motion (see Fig. 3), the angular bond
order parameters develop an (on average) periodic orbit at
long times after an initial settling time (see Fig. 7). Note that
the corresponding “structural” settling time is usually larger
than the depinning settling time. Further note that the period
of the settled angular bond orbits is half of that of the applied
shear rate (〈ψn(t )〉 = 〈ψn(t + τω

2 )〉), because the formation of
a structure only depends on the modulus of the shear rate
(∝ | cos(ωt )|).

For the remainder of this section, we focus on the long-
time angular orbits. For this situation we can construct a
classification scheme (see Appendix C), which allows us to
relate the layer structure at each time to one of the three
structural classes (s/d/h). For an illustration of the different
behaviors, it is helpful to look at parametric (ψ4, ψ6) curves;

FIG. 7. Example trajectories of the angular bond order param-
eters ψ4(t ) (blue) and ψ6(t ) (orange) in a (long-time) disordered-
hexagonal state at γ̇0τB = 769, ωτB = 51.5. Dots represent data from
10 different ensembles and bold lines their ensemble average. The
dashed vertical line at t = 1τω indicates the settling time referring to
depinning. The oscillation of the angular bond curves does not settle
before t ≈ 3τω. The markers (squares, crosses, hexagons) refer to the
snapshots shown in Fig. 6.
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FIG. 8. Exemplary long-time parametric (ψ4, ψ6) curves of the
(a) square, (b) square-disordered, (c) square-disordered-hexagonal,
(d) disordered-hexagonal, (e) hexagonal, and (f) disordered dynami-
cal states. The four colored sectors represent the structures: square
(blue), disordered (green), hexagonal (red), and forbidden (gray).
The numbers in parenthesis indicate the amount of time, the particle
layers spend in the respective structure during a full oscillation period
τω. The coloring within the curves is mapped onto the current time
point within one half-period τω/2, indicating the orbit orientation.
Per diagram, every curve consists of 10 ensembles plotted on top
of each other, each for at least three oscillation periods (six half-
periods). The markers (square, cross, hexagon) refer to the snapshots
shown in Fig. 6.

for examples, see Fig. 8. At each timestep, a point is drawn
in the (ψ4, ψ6) phase space, colored based on the current time
within each half-period τω/2. During one such half-period,
a parametric curve may be located in only one sector of the
(ψ4, ψ6) plane or in multiple sectors. We refer to these situ-
ations as “pure” or “mixed” (dynamical) states, respectively
(details in Appendix C 2). For example, Fig. 7 refers to a
mixed disordered-hexagonal (dh) state.

To proceed, we recapitulate the constant shear case, which
is recovered formally at ω = 0. Here, we observe pure square
states for γ̇0τB < 214, pure disordered states between 214 �
γ̇0τB < 260 and pure hexagonal states for γ̇0τB � 260 [15].
Note that in this case (ω = 0) one may speak of nonequi-
librium “steady” states because the order parameters indeed
become constant (at t → ∞).

For small but nonzero frequencies ω → 0 (for instance
ωτB = 9.16), we instead observe mixed states because the
absolute value of the shear rate γ̇ (t ) = γ̇0 cos(ωt ) crosses the

100 101 102 103 104

ωτB

102

103

γ̇
0
τ B

γ̇crit0 (ω)

s

sd

d

dh

h

sdh

γ̇crit0 (ω)γ̇crit0 (ω)

FIG. 9. Dynamical state diagram of the bilayer in the (γ̇0, ω)
parameter space. The observed dynamical states are square (s),
square-disordered (sd), disordered (d), disordered-hexagonal (dh),
hexagonal (h), and square-disordered-hexagonal (sdh). Markers
within the diagram refer to the parameter combinations shown in
Fig. 7 (circle) and Fig. 8 (crosses). The critical (depinning) shear rate
amplitude (dots in Fig. 4) is drawn for reference as dashed, black
line.

critical thresholds γ̇ crit
0 τB = 214 and γ̇ crit,2

0 τB = 260 during
each period, if γ̇0 is large enough. Specifically, for γ̇0τB < 214
we still observe pure square states [Fig. 8(a)], for 214 �
γ̇0τB < 260 mixed square-disordered (sd) states [Fig. 8(b)],
and for γ̇0τB � 260 mixed square-disordered-hexagonal (sdh)
states [Fig. 8(c)].

Upon increase of ω, one would expect to observe the same
three dynamical states, but at higher critical thresholds, sim-
ilar to the increase of the critical depinning shear rate with
ω [compare Eq. (23)]. Although we do indeed observe an
increase of these thresholds with ω, we also observe that, at
sufficiently large γ̇0 (and ω), the system stops returning to the
square state. Instead it forms a disordered-hexagonal (dh) state
[Fig. 8(d)]. Eventually, it even stops assuming the disordered
structure, forming a pure hexagonal state [Fig. 8(e)]. The latter
scenario can be seen, for instance, at ωτB ≈ 51.5, where the
particle layers assume the following dynamical states (with
increasing γ̇0): s (γ̇0τB < 265), sd (γ̇0τB < 380), sdh (γ̇0τB <

600), dh (γ̇0τB < 1000), h (γ̇0τB � 1000).
Performing simulations for a broad range of combinations

(γ̇0, ω), we can construct a dynamical state diagram, which
is shown in Fig. 9. From this diagram, we learn that the
aforementioned s-sd-sdh-dh-h sequence (encountered upon
increase of γ̇0), disappears above ωτB ∼ 70. First, the sdh-
state is dropped, then from ωτB > 120 onwards, the sequence
completely vanishes and we observe all kinds of dynamical
states, even purely disordered ones [Fig. 8(f)] and purely
square states at γ̇0 well above γ̇ crit

0 (ω). Interestingly, the alter-
nation between these dynamical states resembles the stability
changes of the oscillation centers in the effective single-
particle model, discussed briefly in Sec. II B and more detailed
in Appendix B.

Finally, we note that the structural details of some dy-
namical states depends not only on γ̇0 and ω, but also on
the simulation’s system size due to the appearance of het-
erogeneities in the (microscopic) structure. Test simulations
(see Appendix D) reveal that the amount of disorder tends
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to increase for larger systems. We plan to investigate these
dependencies further in a future study.

IV. CONCLUSIONS

Based on overdamped Brownian dynamics simulations we
have investigated a dense, colloidal bilayer system under the
influence of oscillatory shearing lateral to the confining walls.
Starting from a confinement-induced equilibrium structure
characterized by squarelike order and investigating a broad
range of shear rate amplitudes and frequencies, we have ob-
served and analyzed a variety of dynamical behaviors.

First, we find that the two layers temporarily depin from
each other above a frequency-dependent critical amplitude
of the applied shear rate, thereby generalizing the behavior
seen in the case of static shearing [15,16]. By comparison
with an effective single-particle model for the center-of-mass
dynamics of a layer, we have obtained an explicit expression
to describe this frequency dependence. This expression in-
volves a relaxation time, which gives an estimate for a shear
relaxation time.

Second, full depinning is reached only after a settling time,
which drastically increases near the transition between pin-
ning and depinning (and is thus also frequency-dependent).
This shows that system-intrinsic timescales indeed interact
with the externally applied shear frequency, as one would
expect.

Third, the (temporary) depinning is accompanied by com-
plex dynamical changes between different in-plane structures,
which we refer to as dynamical structures (or states). Which
kinds of dynamical structures form, again depends strongly
on both shear parameters, amplitude and frequency. At slow
driving (i.e., small frequencies), these structures are stable
against shear parameter changes across multiple orders of
magnitude. At fast driving, however, small changes of either
amplitude or frequency have strong impact on the resulting
dynamical state. Interestingly, in the latter case it is possible
to induce nonequilibrium ordered and disordered structures in
the layers, while the amplitude of the center-of-mass oscilla-
tion remains very small.

Our results can, in principle, be tested for real colloidal
systems. In fact, experiments on confined colloidal layers
under shear have been performed, e.g., in Ref. [56] for filmlike
systems and Refs. [21–23] for systems in a circular geometry.
So far, these experiments have been conducted under static
shear. However, particularly the circular geometry may also
be suitable to investigate oscillatory shear.

We note, however, that the predictive power of our simu-
lations might be somewhat limited, since we have neglected
the impact of hydrodynamic interactions. A similar observa-
tion was made in the context of a circular sheared system
[21,22]. As we have shown in the present study that (relax-
ation) timescales do play an important role under oscillatory
shearing, we expect that hydrodynamic interactions might
have a stronger impact than under static shear. This becomes
especially important at larger shearing frequencies, where
the oscillation period starts interacting with the relaxation
timescales. However, including hydrodynamic interactions in
the simulations would require an explicit treatment of the flow
field of the surrounding solvent, which strongly increases the

computational cost. One major problem in this direction is
the treatment of the solid-fluid interface. Recently, promising
advances in the treatment of such have been made possible,
e.g., in the framework of the smoothed profile (SP) method
[57]. Other common approaches to include hydrodynamic
interactions in particle-based simulations are, for example, the
frameworks of dissipative particle dynamics (DPD), multipar-
ticle collision dynamics (MPCD), or Stokesian dynamics (SD)
[58,59].

Despite the above mentioned restriction to bilayers, this
study gives a flavor of what kind of intriguing behavior could
arise in strongly confined colloidal dispersions under oscil-
latory shear. Indeed, we would expect that our findings also
apply (at least, qualitatively) to multilayered systems with,
e.g., three or four layers. This expectation foots on an earlier
investigation by one of us, where we studied the depinning
behavior of such multilayered systems under static shear [18].
Specifically, the concept of a frequency-dependent critical
shear rate should apply analogously, presumably with a sim-
ilar course at small and large frequencies. Larger differences
are to be expected regarding the crossing between small and
large frequency regime. Likewise, the concept of dynamical
states should also apply to multilayered systems, probably
with more complex mixed states at small frequencies and
stabilization of pure states at large frequencies. Indeed, it
would be an interesting question, whether all pure states, for
example, a laned state in a related three-layer system [18], can
be stabilized (and pinned) with oscillatory shearing.

Based on the variety of newfound structural dynamics un-
der oscillatory shear, we plan to take a closer look at the
rheology of these strongly confined, layered systems next,
including the analysis of stress-strain relations and the calcu-
lation of shear moduli (see Ref. [27] for a related study in three
dimensions). It has already been shown that these confined
systems possess a nonlinear constitutive flow curve for static
shearing [16]. We thus expect complex stress-strain relations
also under oscillatory driving.

In parallel to the (macroscopic) rheological properties, it
would also be very interesting to analyze the occurrence
and dynamics of spatial heterogeneities (i.e., defects) under
oscillatory shear. In fact, preliminary investigations revealed
that these occur quite frequently in the vicinity of depinning,
especially when considering larger system sizes. Related to
this, it seems very promising to look at local (nonaffine) defor-
mations, which have been intensely investigated in amorphous
solids under shear [37,60,61]. Work in these directions is
under way.

The codes for the many- and single-particle BD simula-
tions are written in C++. Analysis and visualization tools
are implemented in a Python library. The source code can be
provided by the authors upon request.
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APPENDIX A: TECHNICAL DETAILS

1. Finite-time step size

In this work, we solve Eq. (1) numerically for differ-
ent parameter combinations of γ̇0 and ω. We therefore have
to choose the discretized time step size �t , which enters
via the discretization of ṙi(t ) ≈ [ri(t + �t ) − ri(t )]/�t , care-
fully. Following Ref. [9], we first determine the relevant
timescales in the system and then choose the time step
size as a fraction (ε = 10−3) of the smallest of them, �t =
ε min(τω, τd, τB, τrelax ). Regarding the timescales, we con-
sider the oscillation period τω = 2π/ω, the deformation time
τd = 1/γ̇0, the Brownian time τB = d2/D0 and an estimated
relaxation time τrelax ≈ 10−2τB. Note that the estimation of
τrelax is not trivial because it strongly depends on the stiffness
of the particle’s surrounding potential landscape and thus on
the underlying model parameters and current state of the sys-
tem. Indeed, it turns out that τrelax is overestimated by a factor
10 (compare Sec. III B). Nonetheless, in conjunction with the
multiplication by ε (which compensates this error), we end
up with a maximal time step size of �t � 10−5τB, which has
already been successfully applied in previous studies [15,16].
These timescales refer to the sheared slit-pore many-particle
system (Sec. II A).

For the effective single-particle model (Sec. II B), we use
an analogous approach. Instead of γ̇0, we have Fdr,0 as driving
amplitude, and the equation of motion is Eq. (13), which we
solve with an Euler method, starting from x0 = 0, computing a
total of 10 oscillation periods. The above definitions of oscilla-
tion period and Brownian time still apply, but the deformation
time is replaced by a driving time τdr = a/(μFdr,0) and the
(substrate) relaxation time is defined as τsub = a/(2πμFsub,0)
[see Eq. (16)].

Note that the time step size �t has to be determined sep-
arately for each considered parameter combination of γ̇0 (or
Fdr,0) and ω, since the oscillation period and deformation (or
driving) time depend on it.

2. Intralayer pair correlation function

In this section, we describe the calculation of the (instan-
taneous) intralayer pair correlation function that we use to
determine the nearest neighbor distance, which is needed in
the definition of angular bond order parameters in Eq. (11).
For each layer m = 1, 2, the intralayer pair correlation func-
tion at time t and for a specific noise realization is defined by

gintra
m (r) = 1

ρ tot
m Nm2πr

N∑
i=1

N∑
j �=i

Hm(zi )Hm(z j )δ(r − ri j ),

(A1)
which contains the area density of particle pairs with dis-
tance r [∼δ(r − ri j )/(2πr)] compared to the total area density
ρ tot

m = Nm/(LxLy) of all Nm particles within that layer. Since
the layers are all aligned parallel to the x-y plane, only in-
plane distances ri j =

√
x2

i j + y2
i j are considered (taking zi j

into account changes gintra
m (r) only marginally). Furthermore,

the pair of layer identification functions Hm(zi)Hm(z j ) [see
Eq. (8)] ensures that only particle pairs within that layer are
counted. Numerically, we treat the delta function δ(r) as a

rectangular pulse of width �r = 0.05d and height 1/�r. In
this representation, the area density can be thought of as the
number of particles within an annulus of radius r and width
�r (ri j ∈ [r − �r/2, r + �r/2]) divided by its area 2πr�r.

Due to the symmetry of the considered bilayer system with
respect to the plane z = 0, both particle layers exhibit the
same structure, besides from temperature fluctuations. Thus,
it is sufficient to consider only the average across both layers:

gintra (r) = 1

NL

NL∑
m=1

gintra
m (r). (A2)

3. Oscillation amplitude

For a function x(t ) (here usually a single or averaged
particle position), we define the oscillation amplitude A[x(t )]
at time t as half the distance between the largest and the
smallest value in a forward oriented time window of length
τω = 2π/ω,

A[x(t )] = 1

2

(�x(t ′)�t ′=t+τω

t ′=t − �x(t ′)�t ′=t+τω

t ′=t

)
. (A3)

Here, we define the maximum and minimum values of x(t ′) in
the interval t ′ ∈ [a, b] as

�x(t ′)�t ′=b
t ′=a = max{x(t ′)|a � t ′ < b}, (A4a)

�x(t ′)�t ′=b
t ′=a = min{x(t ′)|a � t ′ < b}. (A4b)

In our oscillatory driven systems, the oscillation amplitude
usually saturates at long times (at least in the ensemble aver-
age). We refer to the constant long-time value as

xmax = lim
t→∞ 〈A[x(t )]〉 (A5a)

≈ 〈A[x(ts)]〉 (A5b)

≈ 1

T − ts

T∫
ts

dt〈A[x(t )]〉, (A5c)

which is approximately already reached at the (finite) settling
time ts (defined in Appendix A 4). Note that the amplitudes
are calculated before the ensemble averages. To further reduce
remaining noise (despite the ensemble-averaging), we addi-
tionally take values for t > ts up to the total simulation time
T into account by computing the time-average in Eq. (A5c).

4. Settling time

In Sec. III C, we introduced the settling time ts of the
relative layer motion, which we defined as the time span
between the onset of oscillatory shear and the stabilization of
the oscillation amplitude xmax. In this section, we explain our
definition of ts, specifically the saturation criterion of xmax.

Generally speaking, we consider a time-dependent ob-
servable x(t ) (e.g., x = 〈A[�Rx]〉), which saturates at x∞ =
const. for long times: x(t → ∞) = x∞. This provided, we
define the settling time ts as the earliest point in time, when
x(t ) ≈ x∞ for the remaining t � ts. In the following, we spec-
ify in more detail, how we implement this saturation criterion
for an observable that has been computed for a finite simu-
lation time t ∈ [0, T ]. First, we define the maximal relative
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distance between x(t ) and any following function value at a
later time t ′ > t :

δ(t ) = max

{ |x(t ) − x(t ′)|
|x(t )|

∣∣∣∣t < t ′ � T

}
. (A6)

Now, the saturation condition x(t ) ≈ x∞, t � ts is mapped
onto δ(t ) ≈ 0, t � ts. Note that δ(t ) deliberately contains in-
formation from the entire time interval t ′ ∈ (t, T ], not only
from its end (t ′ = T ), to capture potential oscillatory behavior
in-between.

Finally, we define the settling time as the smallest time,
where δ(t ) becomes smaller than a convergence threshold
ε > 0:

ts = min

{
t

∣∣∣∣δ(t ) < ε, τω � t � 2

3
T

}
. (A7)

Here, we demand that the saturation criterion is fulfilled at
least until t = 3

2 ts. Thus, only settling times up to an upper
limit of 2

3 T are measurable. If there is no t � 2
3 T , which

fulfills the saturation condition δ(t ) < ε, then we assume that
the settling time diverges: ts = ∞. Additionally, in our spe-
cific case, settling times below one oscillation period cannot
be resolved, because the amplitude definition in Eq. (A3)
includes information from function values in a time window
of length τω. Hence, we apply the lower limit ts � τω.

For our numerical calculations, we choose a convergence
threshold of ε = 0.1. However, reasonable results can be ob-
tained in the range ε ∈ [0.03, 0.15]. Note that the value of ε

represents the systematic relative error of the saturated value
x(ts). Finally, we compute at least T = 10τω oscillation peri-
ods, increasing the simulation time stepwise (10-30-50-100),
if no settling time (ts = ∞) can be found at first. To prevent
excessively time- and memory-consuming simulations in the
case of diverging settling times, we don’t go higher than T =
100τω. Similarly, to obtain reasonable ensemble averages, we
compute 10–100 realizations.

APPENDIX B: OSCILLATIONS IN THE STRONGLY
DRIVEN SINGLE-PARTICLE MODEL

In this section, we sketch the derivation of the analytical
solution of Eq. (13) at large driving amplitudes and zero
noise, based on Refs. [47,48] on a similar problem in the
context of laser physics. For readability, we state here again
the deterministic equation

ẋ = −Fsub,0 sin

(
2π

a
x

)
+ Fdr,0 cos(ωt ). (B1)

For large amplitude motion, the solution to Eq. (B1) will be
similar to that of a free particle [compare Eq. (18)]. Therefore,
we make the ansatz

x(t ) = Fdr,0

ω
sin(ωt ) + θ (t ), (B2)

where θ (t ) is assumed to be a small correction. Inserting
Eq. (B2) into Eq. (B1) and isolating θ̇ (t ) yields

θ̇ (t ) = −Fsub,0 sin

(
2π

a

[
Fdr,0

ω
sin(ωt ) + θ (t )

])
. (B3)

Utilizing a Bessel-Fourier expansion sin(x sin β ) =∑∞
m=−∞ Jm(x) sin(mβ ) (following Ref. [47]) and the trigono-

metric identity sin(α + β ) = sin(α) cos(β ) + cos(α) sin(α),
we obtain

θ̇ (t ) = −Fsub,0

∞∑
m=−∞

Jm

(
2πFdr,0

aω

)
sin

(
mωt + 2π

a
θ (t )

)
,

(B4)
where Jm(x) is the mth Bessel function of the first kind. So
far, Eq. (B4) is still exact. Assuming that θ (t ) slowly varies in
time compared to ωt , we neglect all summands except the one
with m = 0, yielding

θ̇ (t ) ≈ −Fsub,0J0

(
2πFdr,0

aω

)
sin

(
2π

a
θ (t )

)
. (B5)

Equation (B5) represents an Adler-type equation for θ (t ) with
the solution [62]

θ (t ) = a

π
arccot

[
cot

(π

a
x0

)
exp

(
J0

(
2πFdr,0

aω

)
t

τsub

)]
.

(B6)

Here, we inserted the initial condition x(0) = θ (0) = x0.
Equation (B5) has two fixed points at θ = 0 and θ = a/2.

Which one of them is stable depends on the sign of J0( 2πFdr,0

aω
)

and therefore on the combination of Fdr,0 and ω. As a slowly
varying correction, θ (t ) describes the time-averaged oscil-
lation center x(t ) ≈ θ (t ) of the (otherwise fast) sinusoidal
particle motion, where x(t ) = ∫ t+τω

t x(t ′)dt ′/τω denotes the
average over one period. The presence of the two fixed points
implies that the oscillation center assumes only two possible
values, either θ = 0 or θ = a/2 for t → ∞, corresponding to
a stable oscillation around the minimum or maximum of the
substrate potential [Eq. (12)], respectively. Specifically, the
particle oscillates around the potential minimum (θ = 0), if
J0( 2πFdr,0

aω
) > 0, and around the potential maximum (θ = a/2),

if J0( 2πFdr,0

aω
) < 0.

Taking a closer look at the shape of the zeroth-order Bessel
function J0, we recognize that it exhibits an infinite amount
of zero crossings j0,k , k = 1, 2, . . . , starting from positive
values for small arguments [J0(0) = 1]. This means that, at
constant ω, the particle’s stable oscillation center will period-
ically swap between potential minimum and maximum, when
increasing Fdr,0, starting from an oscillation around the poten-
tial minimum (small Fdr,0). Moreover, expressed as functions
Fdr,0(ω), the locations of these “stability swaps” are given by

F swap,k
dr,0 (ω) = j0,kFsub,0ωτsub, k = 1, 2, . . . (B7)

The first swap (k = 1) from θ = 0 to θ = a/2 follows from
Eq. (B7) with j0,1 ≈ 2.4048.

Comparing these predictions with our numerical investiga-
tion of the single-particle model (see Fig. 10), we found that
the stability of θ indeed periodically swaps in large portions
of the (Fdr,0, ω) parameter space upon increasing Fdr,0 (above
Fdr,0 � Fsub,0). The predicted swapping locations given by
Eq. (B7), however, are only valid at large driving amplitudes
(Fdr,0 � 3Fsub,0) and large frequencies (ωτsub � 10−1). Note
that the first swap from θ = 0 to θ = a/2 at large frequencies
[Eq. (B7), k = 1, dashed green line] already happens below
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FIG. 10. Heatmap of the oscillation centers x in the determin-
istic single-particle model. Light and dark colored areas indicate
solutions, where the particle oscillates around the substrate potential
minimum x = 0 and maximum x = a/2, respectively. At large am-
plitudes (and frequencies), Eq. (B7) describes the position of the first
stability swap from x = 0 to x = a/2 (green dashed line), at slightly
smaller driving force amplitudes than F crit

dr,0 [Eq. (22), orange dash-
dotted line]. At smaller frequencies (blue dashed line), the transition
happens at slightly larger driving force amplitudes instead.

the critical driving amplitude [Eq. (22), orange dash-dotted
line], at an oscillation amplitude of xmax = j0,1a

2π
≈ 0.38a.

APPENDIX C: STRUCTURAL CLASSIFICATION DETAILS

1. Criteria and threshold values

Our classification is based on the two time-dependent an-
gular bond order parameters ψ4 and ψ6 defined in Eq. (11),
each of them assuming values between zero and one. Note
that the definition of ψ4 and ψ6 [see Eq. (11)] involves an
average over all particles, thus this approach ignores any
heterogeneities that may occur within or between the particle
layers.

Since we are dealing with a noisy system, perfect square or
hexagonal structures (ψ4/6 = 1) are not observed. Therefore,
we choose threshold values ψ thr

4 = ψ thr
6 = 0.75 to allow for

impurities. Based on these threshold values, we classify a pair
of (ψ4, ψ6) values into one of four structures: square (s), dis-
ordered (d), hexagonal (h), or forbidden (h), see Table I. The
“forbidden” case occurs because the local structure around a
particle cannot be, at the same time, square and hexagonal.
The visual counterpart of this classification is to divide the
(ψ4, ψ6) plane into four rectangular sectors (see Fig. 8), where
each sector is attributed to one structure.

Note that the choice of the threshold values is arbitrary to
a certain extent. We found that threshold values in the range
[0.6, 0.8] are appropriate. Going below 0.6, one would start to
observe “forbidden” cases, while going above 0.8, one would
primarily identify disordered structures. Furthermore, since

TABLE I. Criteria for the structure classification.

Structure Abbr. Criterion

square s ψ4 > ψ thr
4 , ψ6 � ψ thr

6

disordered d ψ4 � ψ thr
4 , ψ6 � ψ thr

6

hexagonal h ψ4 � ψ thr
4 , ψ6 > ψ thr

6

forbidden f ψ4 > ψ thr
4 , ψ6 > ψ thr

6

TABLE II. Criteria for the classification of dynamical states.
Unmentioned structures in the last column are adopted less than 1%
of the time during each period. Dynamical states in parenthesis are
not observed.

Dynamical state Abbr. Criterion

square s P(s) ≈ 100%
square-disordered sd P(s), P(d) > 1%
disordered d P(d) ≈ 100%
disordered-hexagonal dh P(d), P(h) > 1%
hexagonal h P(h) ≈ 100%
(square-hexagonal) (sh) P(s), P(h) > 1%
square-disordered-hexagonal sdh P(s), P(d), P(h) > 1%

the angular bond curves feature jumps within the disordered
sector [there are some void areas in the phase space, see e.g.,
Fig. 8(f)], it is especially important to keep ψ thr

6 well above
these jumping areas.

As a prerequisite for the next section, it is practical
to define a structure identifier function p(α,ψ4, ψ6) (α ∈
{s, d, h, f }), which is one, if the system is in structure α, or
zero, if it is not, based on the criteria in Table I. For instance,
the identifier function for square structures is defined as

p(s, ψ4, ψ6) =
{

1, if ψ4 > ψ thr
4 , ψ6 � ψ thr

6
0, else

. (C1)

2. Classification of dynamical states

Under oscillatory shearing, the particle layers alternate pe-
riodically between the three structures s, d and h defined in
the previous section. We refer to these periodic alternations as
dynamical states. Depending on γ̇0 and ω, a dynamical state
may involve only one of these structures (s, d, h) or a mixture
of two or all three of them during a half-period τω/2. Ignoring
the (absent) forbidden case, we therefore allow the detection
of three pure and four mixed dynamical states (see Table II), of
which the dynamical state sh is not observed. This is because
the square and hexagonal sectors can only be connected by
crossing the disordered sector (compare Fig. 8). A dynamical
state is considered “mixed” if each of the participating states
is assumed at least 1% of the time across multiple oscillation
periods and different ensembles.

Mathematically speaking, we define the average ratio of
time spent in state α

P(α) = 1

N

N∑
i=1

1

(T − ts)

T∫
ts

p
(
α,ψ i

4(t ), ψ i
6(t )

)
dt, (C2a)

= 1

N

N∑
i=1

1

N�t − js

N�t∑
j= js

p
(
α,ψ i

4( j), ψ i
6( j)

)
, (C2b)

where T is the total simulation time, �t the finite-time step
size, N�t = T/�t the total number of time steps, N the num-
ber of ensembles, i the ensemble index and j is the time
step. Finally, ts is the structure settling time and js = N�t ts/T
the corresponding time step. Since we are lacking a proper
definition of ts, we approximate it via ts = 2

3 T .
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FIG. 11. Snapshots of two disordered structures from the dh-
state shown in Fig. 7 (γ̇0τB = 769, ωτB = 51.5) for a smaller (a) and
a larger (b) system size. The snapshots are taken at t = 4.75τB when
the structures change from disordered to hexagonal. Particles are
colored based on their individual ψ6,i-value, which (partly) deter-
mines their local structure (blue = square, green = disordered, red
= hexagonal). Although the snapshots are taken at the same point
in time, the smaller system is already more hexagonal compared to
the larger system, because some hexagonal stripes have reinforced
themselves by connecting with their periodic images.

APPENDIX D: SYSTEM-SIZE DEPENDENCE
AND STRUCTURAL HETEROGENEITIES

In the following section, we comment on the system size
dependence of the phenomena presented in this study based
on few test simulations with a four times larger system (com-
posed of 4232 instead of 1058 particles).

Generally, we find that larger systems tend to exhibit more
disordered structures during an oscillation cycle. In particular,
dynamical states involving hexagonal (h) structures at inter-
mediate frequencies seem to be affected, i.e., the dynamical
states sdh, dh and h. For example, at γ̇0τB = 769, ωτB = 51.5
[see Fig. 8(d)], a system with 1058 particles exhibits a dh-

state, assuming a disordered structure for 8% and a hexagonal
structure for 92% of each oscillation period. In contrast, the
corresponding larger system with 4232 particles assumes a
disordered structure 33% and a hexagonal structure 67% of
each period, which remains a dh-state but with more disorder.

According to this shift, some h-states turn into dh-states
and some dh-states into d-states for larger system sizes com-
pared to smaller system sizes. Generally speaking, the order
d-dh-h (from small to large γ̇0), which we observe at in-
termediate frequencies (compare Fig. 9), remains valid, but
the transition lines get shifted to higher γ̇0. Similarly, some
sd-states turn into d-states and sdh-states into either sd-, dh-,
or d-states, although states including square structures tend to
be less affected. However, the transition from s- to sd-states as
well as the depinning transition seem to remain unaffected.

Upon a closer look at the particle-resolved angular bond
order parameters, we find that the reason for a preference
of d- over h-structures at larger system sizes lies in struc-
tural heterogeneities. In fact, it turns out that (on average)
disordered structures are composed of a mixture of square
and hexagonal substructures. We find that these substructures
typically have the shape of elongated stripes along the shear
(x) direction (compare Fig. 11), which for a smaller system
size can quickly cover the whole width of the simulation box.
It further seems that these (hexagonal) stripes reinforce their
structure once they connect with their periodic image, thereby
delaying the transition back to disordered structures. For a
larger simulation box, however, it is less likely that a stripe
connects with its periodic image. Hence, it takes longer for
a disordered structure to become fully hexagonal, which is
necessary for the formation of dh- or h-states.

The formation of elongated h-stripes also applies to a cer-
tain extent during the transition from s- to d-structures. We
find it to be less pronounced, though, because the formed,
hexagonal stripes are shorter in length and thus less likely to
connect with their periodic image.

Ultimately, a larger system size does not alter the quali-
tative behavior shown in Fig. 9, but enlarges the disordered
(green) region at γ̇0τB ≈ 360, ωτB ≈ 100 and shifts the
disordered-hexagonal (yellow) and hexagonal (red) regions
upwards.
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