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Enhanced dispersion in an oscillating array of harmonic traps
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Experiment, theory, and simulation are employed to understand the dispersion of colloidal particles in a
periodic array of oscillating harmonic traps generated by optical tweezers. In the presence of trap oscillation,
a nonmonotonic and anisotropic dispersion is observed. Surprisingly, the stiffest traps produce the largest
dispersion at a critical frequency, and the particles diffuse significantly faster in the direction of oscillation
than those undergoing passive Stokes-Einstein-Sutherland diffusion. Theoretical predictions for the effective
diffusivity of the particles as a function of trap stiffness and oscillation frequency are developed using generalized
Taylor dispersion theory and Brownian dynamics simulations. Both theory and simulation demonstrate excellent
agreement with the experiments, and reveal a “slingshot” mechanism that predicts a significant enhancement of
colloidal diffusion in dynamic external fields.

DOI: 10.1103/PhysRevE.107.014601

I. INTRODUCTION

Dispersion—the coupling between stochastic and deter-
ministic forces that drive particle motion—is fundamental to
transport in potential-energy fields. At long times and under
dilute conditions, colloidal particles acted upon by an external
potential move diffusively. Numerous studies have analyzed
the effective diffusivity of isolated particles under static
potentials [1–4], including porous media [5,6], block copoly-
mers [7], corrugated and patterned substrates [8–10], and
colloidal crystals [11,12]. Experimentally, optical tweezers
provide a convenient method to trap particles in a two-
dimensional (2D) periodic array of potential wells [11–15].
Although trapping in static, periodic potentials tends to hinder
particle diffusion [1–3,16–19], various investigators have also
reported diffusion enhancement due to broken spatial sym-
metry (e.g., using tilted potentials [8,9,20–22] or convective
flow [13,15]).

Dynamic (i.e., time-varying) potential-energy fields pro-
duce qualitatively different dispersive phenomena. Time-
oscillating optical and magnetic fields have been shown to
significantly enhance particle diffusion via the “ratchet ef-
fect” [23–29]. Conceptually, this enhanced dispersion can
be rationalized as a coupling between Brownian motion, a
spatially modulated potential, and a time-varying, convec-
tive flow. Several studies of one-dimensional (1D) potentials
report a maximum diffusivity as a function of oscillation
frequency [25,28]; by comparison, 2D potentials are far less
studied [26,27]. To date, the impact of potential strength and
oscillation frequency on 2D dispersion has not been rigor-
ously quantified. Consequently, the extent (and mechanism)
of diffusion enhancement across a broad parameter space
remains elusive. Such insight could aid in the design of
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systems for manipulating and controlling particles using dy-
namic potential-energy fields.

In this article, we combine optical tweezer experiments,
Taylor dispersion theory, and Brownian dynamics simula-
tions to investigate the dispersion of colloidal particles in
a time-oscillating, 2D array of mobile potential wells. Our
main objective is to systematically measure and predict the
effective diffusivity across a broad range of potential strengths
and oscillation frequencies, thereby identifying the conditions
under which diffusion is maximally enhanced. In addition, we
seek to provide simplified and intuitive predictions for the
diffusivity under various limiting circumstances. Our results
reveal several distinct types of 2D dispersion, including (i)
random walking, (ii) trapping and hopping, and (iii) facilitated
hopping or “slingshotting.” In this third regime, we find that
diffusion is anisotropic and maximally enhanced at a critical
oscillation frequency. Somewhat surprisingly, the extent of
diffusion enhancement is exaggerated by increasing the po-
tential strength, which would ordinarily hinder diffusion under
stationary (i.e., nonoscillating) conditions. We rationalize this
effect based on a simplified model of a particle in an isolated
potential well and, incidentally, deduce a scaling relation for
the critical frequency as a function of the potential strength.

The remainder of this article is organized as follows. In
Sec. II, we present a high-level overview of our experimental
and theoretical methods. In Sec. III, we discuss our measure-
ments and predictions of the particle diffusivity for stationary
traps and traps oscillated at a finite frequency. Concluding
remarks and suggestions for future work are then given in
Sec. IV.

II. MATERIALS AND METHODS

A. Experiment

Experimentally, we use an optical tweezer (Tweez 305;
Aresis) with an infrared laser (wavelength 1064 nm) to
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FIG. 1. Schematic of a Brownian particle diffusing in a 2D, os-
cillating array of harmonic traps with potential-energy field V (r) and
velocity u(t ) given by Eqs. (1) and (2), respectively. The harmonic
well has curvature κ and depth �V = 1

8 κW 2
trap. Inset: Experiment

snapshot of radius a = 1.25 µm silica particles diffusing in an array
of traps created by optical tweezers.

generate a 16 × 16 lattice of harmonic traps spaced a distance
L = 6 µm apart along a 2D plane (see Fig. 1 for a schematic of
our experimental system). The interaction of a colloidal parti-
cle with each trap is well modeled by the piecewise potential,

V (r) =
{

1
2κr2 for r � 1

2Wtrap

�V for r > 1
2Wtrap,

(1)

where r is the particle position relative to the trap’s center,
κ is the trap stiffness, Wtrap is the trap width (≈3.2 µm),
and �V = 1

8κW 2
trap is the potential well depth. Most optical

tweezer applications employ very stiff traps (large κ) to ensure
that a trapped particle does not hop out of a given potential
well. However, in our experiments, we tune the laser power
from 0.05 to 0.5 W to vary the trap stiffness from κ = 0.5–6
kT/µm2, where kT = 4.046 × 10−21 J is the thermal energy.
To study dispersion in dynamic potential-energy fields, we
oscillated all traps synchronously with the sinusoidal velocity,

u(t ) = êxωA cos (ωt ), (2)

where A is the amplitude and ω is the angular frequency. In our
oscillating-trap experiments, we fix the amplitude A = 5 µm
and vary the frequency ω/2π = 0–66 mHz.

Silica microspheres of radius a = 1.25 µm (Bangs Labo-
ratories) were fluorescently labeled by coating a supported
lipid bilayer (SLB) containing a minority fraction of fluo-
rescently tagged lipid. The lipid mixture comprised DOPC,
5% DOPS (Avanti Polar Lipids), and 0.5% DOPE-Atto 647
(ATTO-TEC GmbH). Upon depositing a dilute concentra-
tion of particles to the bottom of an imaging chamber, we
observed oscillatory motion as the particles moved in and
out of neighboring harmonic wells along the 2D plane. Flu-
orescence imaging was carried out using an inverted Nikon
Ti2-Eclipse microscope (Nikon Instruments). A custom MAT-
LAB script based on the Crocker-Grier algorithm [30–32] was
used to track the particles’ trajectories and measure their
long-time self-diffusivity. With the trapping field switched
off, we measure the Stokes-Einstein-Sutherland diffusiv-
ity D0 ≈ 0.105 µm2/s, corresponding to a particle-to-wall

spacing of about 0.5 µm [33]. Further details on our ex-
perimental methodology can be found in the Supplemental
Material [34].

B. Theory

We apply generalized Taylor dispersion theory [5] to un-
derstand the coupling between oscillatory trap motion and
colloidal diffusion. For a Brownian particle that enters an
L × L cell occupied by a moving harmonic trap, the nor-
malized probability density g(r, t ) of finding the particle at
a position r and time t is governed by the Smoluchowski
equation, (

∂

∂t
+ L

)
g(r, t ) = 0, (3)

where

L ( · ) = u(t ) · ∇r( · ) − kT

γ
∇2

r ( · ) − 1

γ
∇r · [( · )∇rV (r)]

(4)
is the time-evolution operator, V (r) is the potential-energy
field given by Eq. (1), u(t ) is the velocity of the moving traps
given by Eq. (2), and γ is the particle resistivity. The terms
on the right-hand side of Eq. (4) reflect transport by convec-
tion, diffusion, and potential-energy gradients. The ratio D0 ≡
kT/γ defines the Stokes-Einstein-Sutherland diffusivity.

Particle density fluctuations give rise to an effective dif-
fusivity that is distinct from the Stokes-Einstein-Sutherland
value. The strength and orientation of these fluctuations
are captured by the probability-weighted displacement field
d(r, t ), which satisfies the inhomogeneous equation,(

∂

∂t
+ L

)
d(r, t ) = 2kT

γ
∇rg + 1

γ
[g∇rV − 〈g∇rV 〉 g],

(5)
where 〈 · 〉 ≡ L−2

∫
L2 ( · )dr denotes the spatial average over an

L × L cell. Clearly, the evolution of d is one-way coupled to
the evolution of g through the terms on the right-hand side of
Eq. (5). These terms reflect fluctuations in the probability cur-
rent, which drive long-wavelength disturbances to the number
density of particles. Following Brady and co-workers [35–40],
it can be shown that the structure field g(r, t ) is directly related
to the effective drift velocity of the particle,

U (t ) = u(t ) − 1

γ
〈g∇rV 〉 (t ), (6)

while the displacement field d(r, t ) is related to the effective
diffusivity tensor,

D(t ) = kT

γ
I + 1

γ
〈d∇rV 〉 (t ). (7)

The last two expressions are the key results of the dispersion
theory. They show that the enhancement (or reduction) in
drift and diffusion is driven by the average particle flux down
potential-energy gradients.

Equations (3) and (5) were solved numerically in an L × L
cell subject to periodic boundary conditions and the nor-
malization conditions 〈g〉 = 1 and 〈d〉 = 0. Our numerical
solutions were developed using the finite-element method
with implicit time advancement in COMSOL MULTIPHYSICS.
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The resulting g and d fields were then inserted into Eqs. (6)
and (7) to compute the effective drift and diffusivity of the
particle as a function of time. We validated the dispersion the-
ory by developing Brownian dynamics simulations of 10 000
freely draining (i.e., noninteracting) particles in HOOMD-
blue [41] and calculating their diffusivity from the long-time
growth of their mean-squared displacements. Further details
on the derivation of the relevant equations, numerical method,
and simulations can be found in the Supplemental Mate-
rial [34]. Below, we present the key results from the theoret-
ical calculations and compare them against the experimental
measurements.

III. RESULTS AND DISCUSSION

A. Stationary traps

When the traps are held stationary, the convective term
in Eq. (4) vanishes and the particle probability distribution
achieves a steady state. The absence of a time-dependent
convective term in the Smoluchowski equation implies zero
net drift, U = 0, and an isotropic, time-independent diffusiv-
ity D with components Dxx = Dyy = D. Figure 2(a) shows
that the scalar diffusivity D decreases monotonically with
the trap stiffness κ , as reported in previous studies using
one-dimensional (1D) potentials [7]. (Supplemental Mate-
rial Movies S1 and S2 [34] show measured and simulated
particle motion in stationary traps of varying stiffness.) For
“soft” traps (i.e., potential well depths �V � kT ), a regular
perturbation analysis admits the following expansion for the
diffusivity:

D = kT

γ

(
1 − 〈(V − 〈V 〉)2〉

2(kT )2

+ 〈(V − 〈V 〉)3〉 + 〈∇r(|∇rΦ|2) · ∇rV 〉
4(kT )3

+ · · ·
)

, (8)

where Φ(r) satisfies ∇2
r Φ(r) = 〈V 〉 − V (r) and 〈Φ〉 = 0.

Equation (8) indicates that the reduction in diffusivity below
the Stokes-Einstein-Sutherland value is proportional to the
spatial variance in the potential energy; both the first and
second corrections are plotted in Fig. 2(a). In this regime,
the particle trajectories appear to follow a random walk as in
classical Brownian motion [see Fig. 2(b), top row].

For “stiff” traps (�V � kT ) held in a fixed configuration,
the particles undergo activated-hopping dynamics and their
diffusivity is very nearly zero. Any given particle remains
trapped in a local potential well for a long time, punctuated
by discrete transitions (“hops”) from one well to another [see
Fig. 2(b), bottom row]. Kramers’ theory [16–18] suggests that
the effective diffusivity is proportional to the characteristic
“hopping frequency,” which scales linearly with the curvature
of the potential well κ = 1

2 (∇2
r V )|r=0 and exponentially with

the well depth �V = 1
8κW 2

trap:

D ∝ L2

4πγ
e−�V/kT

(∇2
r V

)∣∣
r=0. (9)

The last relationship is not exact. A constant of proportion-
ality, which would convert Eq. (9) into an equality, depends
upon the ratio Wtrap/L between the size and spacing of the

FIG. 2. Effective diffusivity D of particles in stationary traps
decreases monotonically with trap stiffness κ . (a) Results from
experiments (squares), Brownian dynamics simulations (triangles),
Smoluchowski theory (solid line), and asymptotic limits [dashed
lines; see Eqs. (8) and (9)]. A proportionality constant of 1.5 was
used in Eq. (9) to fit the numerical data. (b) Particle trajectories from
the experiments and simulations indicate random walks for soft traps
(top row, cool colors) and activated, Kramers-like hopping for stiff
traps (bottom row, warm colors). See also Supplemental Material
Movies S1 and S2 [34].

harmonic traps. For traps of diameter Wtrap = 3.2 µm spaced
a distance L = 6 µm apart, a proportionality constant of 1.5
gives quantitative agreement with the exact dispersion theory
(see Fig. 2). [See the Supplemental Material [34] for the
derivation of Eqs. (8) and (9).]

B. Oscillating traps

The situation qualitatively changes when the traps are
not stationary, but oscillated synchronously with the veloc-
ity prescribed by Eq. (2). After a sufficiently long time, the
system achieves a periodic steady state; one is then only
interested in time-averaged quantities over a periodic cycle,
( · ) ≡ limτ→∞(2π/ω)−1

∫ τ+π/ω

τ−π/ω
(·)dt . It is straightforward to
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FIG. 3. Oscillating array of harmonic traps generates a non-
monotonic, anisotropic dispersion of Brownian particles. (a) Time-
averaged effective diffusivities Dxx (filled symbols) and Dyy (open
symbols) plotted as a function of oscillation frequency ω for different
trap stiffnesses κ . Shown are results from experiments (squares),
Brownian dynamics simulations (small triangles), Smoluchowski
theory (small circles), and asymptotic limits [dashed lines, see Fig. 2
and Eqs. (8), (9), and (11)]. There are no fitting parameters in
the theory. (b) Experimental particle trajectories at the critical fre-
quency ωmax, where Dxx = Dxx,max, depict increasingly anisotropic
dispersion as the trap stiffness is increased. The field of view is
100 µm × 100 µm. See also Supplemental Material Movies S3 and
S4 [34] for measured and simulated particle trajectories.

show that the time-averaged drift is identically zero, U = 0,
whereas the time-averaged diffusivity D is generally nonzero
and anisotropic (Dxx �= Dyy) due to the existence of a pre-
ferred direction along the convection (x) axis.

Figure 3(a) illustrates the nonmonotonic dependence of
the time-averaged diffusivities Dxx and Dyy with the driv-
ing frequency ω for three different trap stiffnesses κ = 1,
3, and 5 kT /µm2 and a fixed amplitude A = 5 µm. The
softest of these traps (κ = 1 kT /µm2) exhibits the weakest
coupling between convection and potential-energy gradients:
over a broad range of frequencies, diffusion remains nearly
isotropic and close to the Stokes-Einstein-Sutherland limit
D0 ≈ 0.105 µm2/s. As the trap stiffness is increased to
κ = 3 and 5 kT /µm2, the diffusivity becomes increasingly
anisotropic with faster diffusion in the oscillating direction
relative to the transverse direction (Dxx > Dyy). Tracking the
particle trajectories, depicted in Fig. 3(b), visually confirms
the anisotropic dispersion (Supplemental Material Movies S3
and S4 [34] show measured and simulated trajectories in
oscillating traps of varying frequency and fixed stiffness).
Both Dxx and Dyy increase to a maximum before decaying
to an asymptotic plateau as ω becomes infinitely large (“ul-
trafast cycling”). Varying the oscillation amplitude A at fixed

frequency ω reveals a similar, nonmonotonic trend (additional
data provided in the Supplemental Material [34]).

The high-frequency asymptote can be understood as fol-
lows. Over a time increment much shorter than the Brownian
time, a particle samples the entire potential range along the
convection axis as the potential field is rapidly cycled. There-
fore, the effective potential that is “felt” by the particle over
one periodic cycle is approximated by averaging V over the
convection axis:

v(y) = 1

L

∫ L/2

−L/2
V (x, y)dx. (10)

The quasisteady diffusion of a Brownian particle in a 1D
potential v(y) is well established [2,42], with diffusivities
(derived in the Supplemental Material [34]),

Dxx = kT

γ
, (11a)

Dyy = kT

γ
〈e−v/kT 〉−1 〈ev/kT 〉−1

. (11b)

Equation (11) agrees well with the data plotted in Fig. 3(a)
at the highest of frequencies. Whereas diffusion perpendicular
to convection is hindered as though the particle experienced
a potential-energy field given by Eq. (10), parallel diffusion
is largely unaffected because the potential-energy gradients
along the x direction have essentially been “smeared out.” Put
another way, since the time required for a Brownian particle
to diffuse from one lattice site to another is much slower than
the convection time (γ L2/kT � 2π/ω), the particle is unable
to quickly respond to the rapid motion of the traps as it freely
diffuses along the convection axis.

C. Maximum diffusivity

Both theory and experiment predict a maximum diffusivity
that exceeds the Stokes-Einstein-Sutherland value, Dxx,max >

D0, at a critical oscillation frequency ωmax (see Fig. 3). Similar
maxima have been previously reported for 1D magnetic ratch-
ets [25,28]. Figures 4(a) and 4(b) sketch the basic argument
for this maximum. In a stationary system, a strongly trapped
Brownian particle fluctuates with variance kT/κ about a local
potential-energy minimum until a sufficiently large, thermal
“kick” successfully propels the particle out of the potential
well and into the interstices of the lattice [see Fig. 4(a), top,
and Supplemental Material Movie S5 [34]]. Oscillatory con-
vection displaces the particle along the x axis with amplitude
A[1 + (κ/γω)2]−1/2 ≈ γωA/κ , bringing it towards the edge
of the trap at x = ± 1

2Wtrap and effectively lowering the bar-
rier to escape [see Fig. 4(b), top, and Supplemental Material
Movie S6 [34]]. Consequently, the particle is never trapped for
very long, but rather is catapulted between lattice sites through
the motion of the harmonic traps. This “slingshot” mechanism
is facilitated at a critical frequency ωmax for which the fluctu-
ating particle position (with mean ∼γωmaxA/κ and variance
∼kT/κ) is convected a distance 1

2Wtrap up the potential-energy
gradient. By this argument, we make the following estimate
for ωmax (derived in the Supplemental Material [34]):

ωmax ≈ κ

γ A

(
1

2
Wtrap −

√
kT

κ

)
. (12)
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FIG. 4. “Slingshot” mechanism of enhanced dispersion in an os-
cillating array of harmonic traps. (a) A particle trapped in a stationary
potential-energy well undergoes O(

√
kT/κ ) positional fluctuations

due to Brownian motion. Isocontours of the displacement field den-
sity dx reveal a dipolar profile. (b) Oscillation at the critical frequency
ωmax convects the particle probability up the potential-energy gra-
dient by an O(γωmaxA/κ ) distance, effectively lowering the barrier
to escape. The convected dx field samples larger trapping forces,
resulting in enhanced dispersion along the convection axis. Contour
plots in (a) and (b) were generated for κ = 5 kT /µm2. See also
Supplemental Material Movies S5–S7 [34] for simulated particle tra-
jectories and displacement field densities. (c) The critical frequency
ωmax plotted as a function of the trap stiffness κ favorably agrees with
the rough estimate given by Eq. (12).

This rough estimate qualitatively predicts the critical fre-
quency ωmax over a range of trap stiffnesses κ and quanti-
tatively up to a relative error of about 5% above the exact
calculation [Fig. 4(c)].

The enhanced dispersion can also be rationalized by plot-
ting the two-dimensional isocontours of the displacement
field density dx with and without convection [see Figs. 4(a)
and 4(b), bottom, and Supplemental Material Movie S7 [34]].
Under quiescent conditions, the dx field is strongly localized
to the center of the potential well and admits a dipolar pro-
file. Oscillation convects the dx field to the edge of the trap,
where the potential-energy gradient ∂V/∂x is maximized.
Larger trapping forces are, therefore, weighted more heavily
in the force-displacement dyad 〈dx(∂V/∂x)〉 that appears in
the xx component of Eq. (7). This argument directly explains
the maximum diffusivity Dxx,max observed at the critical fre-
quency ωmax.

The fact that dispersion along the convection axis increases
significantly with increasing trap stiffness may be counterin-
tuitive, given that strong harmonic traps reduce the particle
diffusivity under quiescent conditions. A useful analogy is
the classical Taylor-Aris dispersion of a tracer in a pressure-
driven fluid flow [43,44], in which smaller tracer diffusivities
generate stronger dispersion along the convection axis due
to the coupling between longitudinal convection and trans-
verse diffusion. This effect becomes more pronounced with
increasing convection strength. In our system, the strongest
dispersion occurs when convection, diffusion, and potential-
energy gradients are all in play and on equal footing. If the
traps are too stiff, then the particles remain confined to their
wells at the mercy of thermal forces; too strong a convective
velocity, and the particles are swept past the wells and only
sense transverse gradients in the potential-energy landscape.
The “optimal” rate of convection, for a given trap stiff-
ness, oscillation amplitude, and particle size, is satisfactorily
predicted by Eq. (12).

IV. CONCLUSIONS

We have measured and predicted the effective diffusivity
of individual colloidal particles moving through a 2D os-
cillating array of harmonic traps in order to elucidate the
influence of trapping strength and oscillation frequency. Our
results revealed several distinct regimes of dispersion. Under
soft trapping (i.e., weak potentials compared to kT ), particles
undergo random walks with a diffusivity given by Eq. (8).
Stiff (but stationary) traps leading to trapping-and-hopping
kinematics with Kramers-like diffusivity are given by Eq. (9).
Rapid oscillation of the traps enhances diffusion parallel and
perpendicular to the convection axis relative to a station-
ary system of equal trapping strength. The high-frequency
diffusivity is given by Eq. (11) as though the particles experi-
ence an effective, 1D potential in the perpendicular direction
[Eq. (10)]. Finally, we showed that the maximum diffusiv-
ity in the parallel direction occurs by a facilitated hopping
or slingshotting mechanism, whereby oscillatory convection
of particles up steep potential-energy gradients facilitates
their escape. A scaling relation for the critical frequency
at which parallel diffusion is maximally enhanced is given
by Eq. (12).

Our study focused on dispersion through a 2D array of har-
monic traps as a simple and tractable model for a corrugated
potential-energy landscape. However, it is straightforward to
draw connections to other physical systems where trapping
physics and nontrivial dispersive phenomena may emerge. Ex-
amples include stick-slip diffusion and Lévy flights [45,46],
active or directed motion through convection rolls [47–49],
and caging in concentrated suspensions [50,51].

We end this article by providing several areas for future
investigation. First, one can easily adapt our experimental
system to generate other forms of time-dependent trap motion.
This study focused on 1D synchronous, sinusoidal motion
for simplicity; asynchronous or anharmonic kinematics will
likely give rise to different couplings with the potential-energy
field produced by the traps. This, in turn, could either en-
hance or hinder dispersion and merits further study. Second,
in addition to changing the convective forcing, one could
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investigate colloids with different packing densities and sur-
face chemistries to understand how dynamic external fields
impact multibody interactions (including hydrodynamic in-
teractions) and macroscopic suspension properties. Finally,
the use of self-propelled colloids would generate further
couplings with the dynamic potential landscape, producing
nontrivial effects that could be relevant to the field of active
matter.
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