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Delocalization of interacting directed polymers on a periodic substrate: Localization
length and critical exponents from non-Hermitian spectra
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We study a classical model of thermally fluctuating polymers confined to two dimensions, experiencing
a grooved periodic potential, and subject to pulling forces both along and transverse to the grooves. The
equilibrium polymer conformations are described by a mapping to a quantum system with a non-Hermitian
Hamiltonian and with fermionic statistics generated by noncrossing interactions among polymers. Using molec-
ular dynamics simulations and analytical calculations, we identify a localized and a delocalized phase of the
polymer conformations, separated by a delocalization transition which corresponds (in the quantum description)
to the breakdown of a band insulator when driven by an imaginary vector potential. We calculate the average
tilt of the many-body system, at arbitrary shear values and filling density of polymer chains, in terms of the
complex-valued non-Hermitian band structure. We find the critical shear value, the localization length, and the
critical exponent by which the shear modulus diverges in terms of the branch points (exceptional points) in
the band structure at which the bandgap closes. We also investigate the combined effects of non-Hermitian
delocalization and localization due to both periodicity and disorder, uncovering preliminary evidence that while
disorder favors localization at high values, it encourages delocalization at lower values.
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I. INTRODUCTION

Non-Hermitian operators [1,2] have been extensively used
to describe the dynamics of a variety of quantum [3–5] as
well as classical systems [6–9]. They are ubiquitous in both
exact and effective models of nature capturing gain/loss in
open systems [4], dissipation [10], probability fluxes [11,12],
sensitivity to boundary conditions [13–15], and various other
phenomena excluded by assumptions of Hermiticity. They
also enable the description of new kinds of phase transitions
and topological classifications beyond the existing Hermitian
framework for condensed matter [16–18]. For example, when
non-Hermitian systems are periodic in space, their excitations
are described by complex-valued band structures [19] which
support uniquely non-Hermitian properties such as excep-
tional points (branch points) [20]. The physical implications
of non-Hermitian band effects have been explored in a wide
range of classical systems [21–25].

In systems of many bodies—such as spin waves, electrons,
polymer chains, and vortex lines—generic thermodynamic
phases may be distinguished by the localization properties
of probability densities throughout the bulk [26]. Here, non-
Hermitian terms quantify the capacity of external forces
and fields to generate fluxes of probability and informa-
tion which can drive the system out of a localized phase
[11,27–30]. Non-Hermitian delocalization has been exten-
sively studied in models of thermally fluctuating lines under
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simultaneous tension and shear forces in the presence of
randomly positioned columnar pinning sites [27,28], which
serve as effective models for magnetic vortex lines penetrat-
ing through type-II superconductors with columnar defects
[31–33]. The statistical mechanics of fluctuating lines in d
dimensions was mapped to the quantum-mechanical time evo-
lution of bosons in d − 1 dimensions, whose Hamiltonian
becomes non-Hermitian when the lines are sheared in a direc-
tion transverse to the defect axes. The single-particle energy
eigenstates, which are localized due to disorder, become de-
localized when the strength of non-Hermitian terms exceed
a threshold corresponding to a critical shear force [27]. The
delocalization of the bosonic eigenstates manifests as a tilt in
the average conformations of the lines relative to the columnar
defects. This non-Hermitian delocalization transition survives
in the presence of interactions [34–39].

However, the simultaneous interplay of non-Hermitian
drive, thermal fluctuations, interactions, and confinement due
to spatial periodicity, as opposed to disorder, remains poorly
understood. Prior works on non-Hermitian delocalization of
magnetic vortices in periodic lattices of pinning sites op-
erated in the tight-binding limit [40–42], thereby failing to
capture dependencies on the form of the continuous poten-
tial [43]. Field-theoretic studies, which in turn derived their
effective action from the tight-binding limit via a Hubbard-
Stratonovich transformation, uncovered new thermodynamic
phases in the Hermitian setting [44] whose non-Hermitian
counterparts have been investigated using a mean-field model
in 2+1-dimensions (the upper critical dimension) [45] but
not in 1+1D. The form of the continuum equilibrium density
profiles and their connection with spectral and topological
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FIG. 1. Schematic and description of our model system. Ther-
mally fluctuating polymer chains (orange lines) with noncrossing
constraints are subjected to a tension force F (purple arrows) on a
two-dimensional substrate potential of strength V (x) per unit length
(green background). The potential, of amplitude V0, is periodic (with
period a) along the x direction and constant along the τ direction. The
tension force, F , is applied to the ends of each chain at a specified
force angle, θ , with respect to the τ axis; the transverse component
Fθ of the tension is called the shear force. F is assumed to be large
enough such that the chains do not double back on themselves and
self-interactions of a chain with itself are avoided.

features of non-Hermitian band structures was not elucidated
in these prior studies.

In this work, we investigate non-Hermitian delocalization
in a continuum statistical mechanical model with interactions,
in which localization derives from a band-insulating state
due to an underlying periodic potential. Specifically, we use
classical molecular dynamics simulations and analytical cal-
culations to study the effect of shear forces on a model of
directed polymers confined to two dimensions and experienc-
ing a smoothly varying periodic substrate potential (see Fig. 1
for a schematic and a description of our model). Directed
polymers are thermally fluctuating chains that are extended
along a preferred direction by an external field, which prevents
self-interactions within chains. Besides describing supercon-
ductor vortices [32,46], directed polymer models capture the
statistical mechanics of semiflexible polymers embedded in
liquid crystals [47] and wandering steps on vicinal surfaces of
crystals [48]. All these systems share the property that the ex-
tended constituents cannot cross each other in space. Directed
polymers with noncrossing interactions can be exactly solved
[49,50]; in our model, noncrossing interactions combine with
the periodic potential to generate a state in which individual
polymers are localized to distinct grooves [51]. Upon increas-
ing the shear strength, the polymers collectively undergo a
delocalization transition at a threshold force angle beyond
which their average equilibrium conformations are tilted and
no longer align with the substrate.

We map our model system of polymer chains to a one-
dimensional (1D) quantum Hamiltonian with non-Hermitian
drive caused by an imaginary vector-potential term. We find
the average tilt of the many-body system, at arbitrary shear
values and filling density of polymer chains, in terms of the

complex non-Hermitian band structure [Eq. (27)] and show
that the commensurate system undergoes a sharp transition in
the thermodynamic limit. The delocalization transition corre-
sponds to a gap closure in the complex non-Hermitian band
structure associated with the substrate potential in the pres-
ence of shear forces. The exact value of the critical force
angle at which the polymers delocalize is found in terms of
the position of the branch point (exceptional point) in the
spectrum [Eq. (20)], while the critical exponent by which
the shear modulus diverges is determined by the order of
the branch point and is universal for all periodic potentials
[Eq. (29)]. The theoretical prediction of the critical force
angle quantitatively agrees with the transition observed in our
simulations.

Our theoretical predictions rely upon a gauge transfor-
mation which maps the non-Hermitian quantum system to
a Hermitian system, albeit with altered boundary conditions
that necessitate the use of complex-valued crystal momenta to
describe the Bloch eigenfunctions of the periodic potential.
Using this mapping, we show that the the complex-valued
non-Hermitian band structure is the analytical continuation
of the real-valued Hermitian band structure for complex mo-
menta, which is well-studied in the context of surface states of
finite crystals [52,53] and which we make extensive use of. We
also report preliminary evidence of a reentrant delocalization
transition in the presence of both periodic potential and dis-
order, and explore possible connections with non-Hermitian
topological pumps.

This article is structured as follows: In Sec. II, we report
properties of the equilibrium chain conformations observed in
molecular dynamics simulations and numerically demonstrate
a localization-delocalization transition. In Sec. III A, we de-
rive the diffusion equation governing the probability density
of the chains and map it to the Schrödinger equation with a
non-Hermitian Hamiltonian. We find the eigenstates of the
Hamiltonian in Sec. III B and in Sec. III D show that the
delocalization threshold is captured by a branch point in the
complex-valued band structure. We also verify the theoreti-
cal prediction with the results from simulations. We report a
critical exponent associated with the delocalization transition
in Sec. III E, preliminary results on a system with quenched
substrate disorder in Sec. IV, and finally the relation to topo-
logically quantized currents in Thouless pumps in Sec. V. We
discuss the implications of our results and potential future
directions in Sec. VI.

II. SIMULATION RESULTS

We first report the results of Langevin dynamics simula-
tions of a discretized version of the system depicted in Fig. 1,
in which changes in equilibrium conformations at different
filling fractions and force angles are readily visualized. We
simulated thermally fluctuating chains of monomers confined
to two dimensions using the open-source molecular dynamics
software HOOMD-Blue [54] (see Appendix A for implemen-
tation details). The chains are stretched out via a tension
force applied to both ends, and experience a grooved substrate
potential. Monomers repel each other with a short-ranged
potential and are linked to neighbors along the chain using
stiff harmonic springs, to emulate polymers that cannot cross
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each other and are free to experience shape fluctuations. The
substrate potential per unit length, V (x), is periodic along
the x direction and constant along the τ direction (shaded
background in Fig. 1). The tension force, F , is applied to the
ends of each chain at a specified force angle, θ , with respect
to the grooves of the potential (the τ axis). The force angle
is kept constant during each simulation run and quantifies
the degree of shear experienced by the polymers. The effect
of a finite temperature is incorporated by including viscous
drag and introducing random forces on monomers whose
strength is related to the desired temperature via a fluctuation-
dissipation relation. After an equilibration period, monomer
positions can be aggregated over statistically independent
time points to obtain equilibrium density profiles of the
fluctuating chains.

When the potential energy experienced by a single
monomer is comparable to the thermal energy scale kBT , a
single polymer chain wanders across the simulation box with
no preferred position [Fig. 2(a)]. Upon subtracting the center-
of-mass motion of the chain from the monomer positions at
each time step, the equilibrium density profile obtained by ag-
gregating monomer positions over thousands of independent
time steps (see Appendix A for details) displays an overall
tilt in the direction of the transverse shear force, as seen in
Fig. 2(d). The tilt angle φ, extracted from the difference in
the average x positions from the density profiles near opposite
ends of the chain, is seen to align with the force angle θ

[Fig. 2(g)]. This alignment shows that a single chain is free to
tilt in response to the external tension and is not significantly
confined by the substrate potential.

The polymer conformations are markedly different when
the system is prepared at a commensurate filling of one
polymer per groove of the periodic potential. At small force
angles, the wandering of polymers in the multichain system
is suppressed and each chain is localized to a distinct groove
[Fig. 2(b)] [51] breaking ergodicity [55,56]. The aggregated
density profile shows that the chains remain vertically aligned
even at nonzero shear, except for a small amount of bending
near the ends [Fig. 2(e)]. Only at force angles larger than a
threshold value, := θc, do the chain conformations acquire a
significant tilt along the entire length of the chain [Fig. 2(f)].
The threshold force angle is identified by a sharp increase
both in the magnitude of the tilt φ and in the slope of the
φ-θ relationship (numerical estimation of θc is discussed in
Appendix B). At force angles much larger than the threshold,
the chains align with the applied force [φ ≈ θ , Fig. 2(g)]. At
θ > θc, not only do the chains display an abrupt tilt, they
also drift back and forth across the substrate at equilibrium
with no preferred center-of-mass location. This motion occurs
via the diffusion of kinks that carry a chain over a potential
peak to the adjacent valley [Fig. 2(c)]; the kink positions and
motion must be coordinated across all chains to satisfy the
noncrossing constraint [45].

In summary, the commensurate system exhibits two dis-
tinct equilibrium phases in simulations: a localized phase with
untilted chain conformations confined to individual potential
grooves, and a delocalized phase in which chains are tilted
in the direction of the applied force and wander across the
substrate. To explain these phases, we map the density profiles
of the classical equilibrium system to the quantum probability
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FIG. 2. (a–c) Snapshots of Langevin dynamics simulations of
discretized polymer chains (points) on a periodic substrate potential
(colormap same as in Fig. 1). Each chain has equilibrium length 40a
and the simulation box has width 10a; x and τ directions have dif-
ferent scales. (a) Single polymer under low shear. (b, c) Noncrossing
polymers under commensurate filling (one chain per repeating unit
of the substrate potential) under low (b) and high (c) shear. (d–f)
Aggregated density profiles of equilibrium chain conformations from
simulations (a–c). (g), Tilt angle of the aggregated polymer confor-
mations, φ, as a function of force angle, θ , as measured in simulations
of a single polymer and of multiple polymers under commensurate
filling. Gray symbols indicate the parameter values for panels (a–f).
Dotted line shows φ = θ . Critical force angle θc is estimated as the
intersection of measured tilt–angle curve with φ = 0.1θ (dash-dotted
line; see Appendix B for details). The spacing of simulated θ values
provides the uncertainty in the estimate. From the commensurate
curve, we obtain θc = 0.040 ± 0.007 (green symbol on θ axis).

evolution of noninteracting fermions experiencing a periodic
potential [51] in the presence of a non-Hermitian term due
to shear [27]. The mapping has its roots in field-theoretic
descriptions of the statistics of polymer melts [57–60], but is
simplified by the absence of self-interactions of each chain
with itself—the tension is assumed to be large enough that
each chain conformation is described by a single-valued func-
tion x(τ ) and chains do not double back on themselves along
the τ direction. This feature, which distinguishes directed
polymer models from regular polymers, allows the corre-
sponding quantum system to be exactly solved for some types
of inter-polymer interactions [49,50].
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III. THEORETICAL ANALYSIS

A. Classical-quantum mapping

The chains of monomers depicted in Figs. 2(a)–2(c) are
rough at a microscopic scale set by the monomer size �0.
Meanwhile, the potential energy varies at a scale set by
the lattice constant a, which can be much larger than the
monomer size. In the limit that a � �0, the lattice-scale fea-
tures of the chain conformations can be described using a
coarse-grained model in which monomers are aggregated into
mesoscopic segments. Each segment is small enough such that
its local environment is more or less homogeneous, but large
enough that its fluctuations obey Gaussian statistics [60]. This
coarse-graining effectively smoothens out the monomer-scale
roughness (as depicted schematically in Fig. 1) burying mi-
croscopic degrees of freedom in a multiplicative constant for
the partition function (additive constant for the entropy) which
does not affect the equilibrium properties.

For each polymer chain, labeled by the index 1 � n � N ,
the instantaneous coarse-grained conformation is then spec-
ified by a smooth function xn(τ ) with τ ∈ [0, L] where L is
the length of each polymer. The total energy, at small angles
θ � 1 and small chain slopes ∂τ xn � 1, is [32,33,45,50]

E =
N∑

n=1

∫ L

0
dτ

[
F

2
(∂τ xn − θ )2+V (xn) +

∑
n′ �=n

|c|δ(xn − xn′ )

]
.

(1)

The first term in the integrand captures the energy cost of
the chain deviating from a straight line aligned with the
force direction. For the coarse-grained description to hold, the
transverse fluctuations due to thermal energy at the monomer
scale must be small compared to the lattice spacing. The
energy associated with a deflection of order δ over a length
�0 is order F (δ/�0)2 × �0 ∼ Fδ2/�0. The typical deflection
δth due to thermal fluctuations is obtained by balancing this
energy against the thermal energy scale kBT , which gives
δth ∼ √

kBT �0/F . In all our simulations, parameters are cho-
sen such that δth � a.

The second term in Eq. (1) implements the position-
dependent substrate potential, where V (x) is the potential
energy per unit length of the chain experienced at position
x. The coarse-grained description in the theory and the mi-
croscopic description in simulations are matched by setting
V = Vm/�0, where Vm is the potential energy experienced by
each monomer.

The last term in Eq. (1) incorporates interactions among
chains, which are assumed to be entirely local so that chain
segments interact only when xn(τ ) = xn′ (τ ) [50]. In this work,
the only interaction we will consider is that polymers cannot
cross each other, which is implemented by taking the limit
|c| → ∞. As pointed out by de Gennes [49], for noncrossing
polymers we can use Girardeau’s mapping [61] to eliminate
the interaction term from the energy and absorb its effect into
the boundary conditions of the probability density functions
describing the polymers. We will exploit this feature in the
theoretical treatment below [see Eq. (7)]. In simulations, the
noncrossing condition is implemented by including extremely
stiff contact forces among monomers whose radius is �0, so
that monomers cannot pass through the gaps between pairs of

monomers on other chains. Prior work on a related system
[51] showed that when �0 is small, the statistics of such
monomer chains quantitatively match theoretical expectations
from idealized noncrossing lines.

We now derive a Schrödinger-like equation governing the
probability weights associated with the chain conformations
at thermal equilibrium. Our approach augments the contin-
uum treatment of shear-free (θ = 0) directed polymers in
Refs. [49,50] to include the effects of a periodic substrate po-
tential [51] and of shear forces following the Hatano-Nelson
model [27,28]. Consider the conformation of any one of the
N polymer chains, x(τ ′), and assume it is pinned at two
points, τ ′ = 0 and τ ′ = τ , so that x(0) = x0 and x(τ ) = xτ .
The energy of the fragment between the points is denoted
by E [x; 0, τ ]. The partition function of this fragment can be
written as a path integral [62] over all paths obeying the
pinning constraints,

�(xτ , x0, τ ) =
∫ (xτ ,τ )

(x0,0)
Dx exp(−βE [x; 0, τ ]), (2)

where (β = 1/kBT ). By considering the change in the parti-
tion function between the vertical coordinates τ and τ + ε in
the limit ε → 0 (see details in Appendix C), we find that it
satisfies the following diffusion equation:

∂�(x, τ )

∂τ
=

[
1

2βF

∂2

∂x2
− θ

∂

∂x
− βV (x)

]
�(x, τ ), (3)

where the linear differential operator in the brackets will
take the role of a Hamiltonian upon mapping to quantum
mechanics. The partition function �(xτ , x0, τ ) with some
modifications will help us retrieve the probability distribution
p(x, τ ) of finding the point τ along the chain at horizontal
coordinate x.

The transformation from Eq. (2) to Eq. (3) is for-
mally similar to the transformation from the Feynman path
integral,

∫
Dx exp(iS[x]/h̄), to the Schrödinger formalism in

quantum mechanics. Indeed, if we redefine variables by map-
ping τ = it , β = 1

h̄ , F = m, and Fθ = g, Eq. (3) maps to the
time-dependent Schrödinger equation,

ih̄
∂�(x, t )

∂t
=

[
(p + ig)2

2m
+ g2

2m
+ V (x)

]
�(x, t ) (4)

≡
[
H(g) + g2

2m

]
�(x, t ), (5)

where p = −ih̄ ∂
∂x = − i

β
∂
∂x . The nonzero shear component of

the forces on the chains manifests itself as an imaginary vector
potential ig = Fθ [27]. We identify the Hamiltonian to be
H(g) shifted by a constant, g2

2m , where H(g) is the continuum
version of the periodic Hatano-Nelson Hamiltonian which has
been well-studied in the tight-binding limit [41].

The procedure can be repeated for the full many-body
system with the path integral now involving all possible con-
formations of the N chains. The mapped many-body quantum
system then has a Hamiltonian [28,50],

H =
N∑

n=1

[
(pn + ig)2

2m
+ g2

2m
+ V (xn) +

∑
n′ �=n

|c|δ(xn − x′
n)

]
,

(6)
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where pn = −ih̄ ∂
∂xn

= − i
β

∂
∂xn

. This Hamiltonian describes a
one-dimensional system of N quantum particles in a periodic
potential V (x) acted upon by a common imaginary vector
potential ig. Now, we impose the restriction |c| → ∞, which
corresponds to the noncrossing interaction. In this limit, the
interaction term can be absorbed into the boundary condi-
tions of the many-body wave function [49] using Girardeau’s
mapping [61] which effectively maps bosons with contact
repulsion to non-interacting fermions. By considering only
fermionic many-body wavefunctions, the noncrossing condi-
tion is automatically satisfied. The many-body Hamiltonian
then becomes a sum of single-body terms,

H =
N∑

n=1

(
Hn(g) + g2

2m

)
. (7)

The statistics of N noncrossing, fluctuating lines has been
mapped to a quantum mechanical problem of noninteracting
fermions, each experiencing the same periodic scalar potential
V and constant imaginary vector potential ig.

B. Eigenstates and ground-state dominance

Besides simplifying the description of many-body densi-
ties which automatically satisfy the noncrossing condition, the
mapping to quantum mechanics motivates the use of a spec-
tral expansion to represent the solution to Eq. (3). A general
solution to a linear differential equation such as Eq. (3) can
be written as a superposition of eigenfunctions �m(x) of the
Hamiltonian,

�(x, τ ) =
∑

m

cme−β(εm+ Fθ2

2 )τ�m(x), (8)

where

H(g)�m(x) =
(

(p + ig)2

2m
+ V (x)

)
�m(x) = εm�m(x) (9)

for some quasienergy eigenvalue εm, and cm are constants
fixed by the initial condition �(x, 0). We will index the
eigenfunctions in increasing order of the real part of the
quasienergy, Re εm′ > Re εm for m′ > m. As the coordinate
along the polymer increases from τ = 0, the amplitudes
of eigenstates relative to the “ground state” (m = 0) decay
exponentially as e−β Re(εm−ε0 )τ . Far from the boundary, the
polymer’s profile is dominated by the ground-state wave func-
tion of the time-independent Hamiltonian with the lowest real
component of εm,

�(x, τ ) ∼ e−β(ε0+ Fθ2

2 )τ�0(x),

a situation termed ground-state dominance [63]. Ground-state
dominance holds in the interior of polymers with lengths that
satisfy L � 1/[β(Re ε1 − Re ε0)]; the lower the real-energy
gap between the lowest two quasienergies, the longer the
polymer needs to be.

To describe the density profiles of polymers away from the
ends, we also need the contribution to the partition function of
a polymer being pinned at x(L) = xL and propagating down-

wards. We will write this partition function contribution as

�̃(xτ , xL, τ ) =
∫ (xτ ,τ )

(xL,L)
Dx exp(−βE [x; τ, L]). (10)

The diffusion equation obeyed by �̃ is obtained by rotating
the coordinate system (x, τ ) → (−x,−τ ) in Eq. (3), leading
to

∂�̃(x, τ )

∂τ
=

[
− 1

2βF

∂2

∂x2
− θ

∂

∂x
+ βV (x)

]
�̃(x, τ ). (11)

On repeating the quantum mapping, and assuming an even
potential, V (−x) = V (x), we get

−ih̄
∂�̃(x, t )

∂t
=

(
(p − ig)2

2m
+ g2

2m
+ V (x)

)
�̃(x, t ) (12)

=
(
H(g)† + g2

2m

)
�̃(x, t ). (13)

Note the reversed sign of time. We now expand
�̃ using the eigenfunctions of H(g)† as �̃(x, τ ) =∑

m c̃me−β(ε̃m+ Fθ2

2 )(L−τ )�̃m(x), where

H(g)†�̃m(x) =
[

(p − ig)2

2m
+ V (x)

]
�̃m(x) = ε̃m�̃m(x),

and the coefficients c̃m are fixed by the boundary condition at
τ = L.

Although H(g) �= H(g)† because of the non-Hermiticity
induced by a finite force angle, the eigenfunctions and eigen-
values of the Hamiltonians in Eqs. (4) and (12) are closely
related. A diagonalizable non-Hermitian Hamiltonian can be
written as [1]

H =
∑

n

λn|Rn〉〈Ln|, (14)

where the right eigenstates, |Rn〉, and the left eigenstates,
〈Ln|, form a biorthonormal basis, 〈Li|Rj〉 = δi j . By taking the
conjugate transpose of the above equation, we get

H† =
∑

n

λ∗
n|Ln〉〈Rn|.

We identify �m(x) = 〈x|Rm〉 and �̃m(x) = 〈x|Lm〉 such that
ε̃m = ε∗

m and
∫

dx �̃∗
m(x)�n(x) = δmn. Now, since H(g) (as

well as H(g)†) is real-valued, its eigenstates are either real
with real eigenvalues, or come in complex-conjugate pairs.
Using this, we choose to index the eigenstates �̃m(x) such that∫ Lx

0
dx �̃m(x)�n(x) = δmn and ε̃m = εm. (15)

In particular, the ground state has a real eigenvalue even for
the non-Hermitian problem [28], and far from the upper end
of the polymer we obtain

�̃(x, τ ) ∼ e−β(ε0+ Fθ2

2 )(L−τ )�̃0(x).

The polymer density is expressed in terms of the two par-
tition function contributions as

p(x, τ ) = 1

Z
�(x, x0, τ )�̃(x, xL, τ ), (16)
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where Z = ∫
dx �(x, x0, τ )�̃(x, xL, τ ) = �(xL, x0, L) is the

full partition function of the chain with end points (x0, 0)
and (xL, L) and is therefore independent of the x and τ co-
ordinates. While p(x, τ ) can be expanded in terms of the
eigenfunctions �m(x) and �̃m(x), we operate in the limit of
long polymer chains where the density far from the ends is
dominated by the ground state:

p(x, τ ) ∼ �0(x)�̃0(x). (17)

These quantities are readily translated to the correspond-
ing many-body quantities. Using Girardeau’s mapping [61],
the many-body eigenstate, �(x) = �(x1, x2, ..., xN ), of the
Hamiltonian in Eq. (6) is the Slater determinant of the
single-body wave functions Eq. (19) (see Appendix D for de-
tails). The Slater determinant ensures that �(x1, x2, ..., xN ) =
0 whenever any xi = x j , thus enforcing the noncrossing con-
dition. The associated energy, is the sum of the single-particle
eigenenergies of states in the Slater determinant, ε = ∑

i εi.
The many-body ground state, which determines the polymer
profiles away from the ends, is therefore the Slater determi-
nant of the lowest N single-particle eigenstates. The analog
of Eq. (17) for the many-body probability density over the
polymer chain coordinates x = (x1, x2, . . . , xN ) at any τ as

p(x; τ ) = 1

Z
�(x, τ )�̃(x, τ ) ∼ �0(x)�̃0(x). (18)

C. Imaginary gauge transformation
and the delocalization transition

The problem of finding the polymers’ density profile has
reduced to finding the lowest N eigenstates of the Hamiltonian
Eq. (9) (ordered by the real part of the quasienergy). To do
so, we use the fact that if � ′(x) is an eigenstate of the shear-
less Hamiltonian, H(g = 0) = p2

2m + V (x) with eigenvalue ε,
then �(x) = e

gx
h̄ � ′(x) = eFβθx� ′(x) is an eigenstate of H(g)

with the same eigenvalue. (This is analogous to a gauge-
transformation of the vector-potential [64].)

When V (x) is periodic, Bloch’s theorem applies and the
eigenfunctions � ′

k (x) should be of the form eikxuk (x) with
uk (x) having the same periodicity as the potential, i.e., uk (x +
a) = uk (x). However, to ensure that �(x) is physical (in par-
ticular that it obeys periodic boundary conditions) we must
choose k to be complex such that Im(k) = g/h̄ = Fβθ to
cancel out the “gain factor” e

g
h̄ x = eFβθx. The single-particle,

normalizable eigenstates of H(g) are then

�(x) = �k (x) = ei Re(k)xuk (x), (19)

with k = Re(k) + iFβθ . Such Bloch waves with complex k
have been used to describe the evanescent surface states of
a finite crystal [53,65,66] and more recently to elucidate the
non-Hermitian skin effect [15,67].

The essential physics of the nonzero tilt angle for polymer
conformations is captured in the localization, or lack thereof,
of the fermionic ground states constructed from the Bloch
waves. A superposition of N Bloch waves is generically de-
localized through the whole lattice and has equal weight on
all unit cells. The equilibrium density profile of the polymer
far from the ends is therefore uniform across the system: The
polymer wanders freely and visits each groove with equal

probability over long times. The wandering polymer aligns its
conformation to the force angle to minimize its free energy,
leading to a conformational tilt which grows with tilt angle as
observed in simulations.

An exception to the generic delocalized state occurs under
commensurate filling of one polymer per groove of the peri-
odic potential. At zero shear, appropriate superpositions of the
Bloch waves can be used to construct an alternate basis for the
lowest band, consisting of a set of Wannier functions

′
j (x) = ′(x − ja),

each centered on the jth unit cell of the periodic potential and
exponentially localized in the x direction, ′(x) ∼ exp(−λ|x|)
[52,68]. Here, λ > 0 is an inverse localization length deter-
mined by features of the complex band structure ε(k).

Once we have identified an exponentially localized set of
basis states, the mechanism of how shear causes delocal-
ization can be framed in a very general manner using the
imaginary gauge transformation [28,29]. Consider a many-

body Hermitian (shear-free) system, H (g = 0) = ∑
n

p2
n

2m +
V (x). The potential energy, V (x), might be either periodic
(as in the current problem), or disordered, or both. It may
even have possible interaction terms. Regardless of the lo-
calization mechanism, if the many-body ground state of the
shear-free system ψ′(x; g = 0) is exponentially localized, the
effective eigenstate of each polymer chain dies off away
from its mean/typical position as � ′(x) ∼ exp(−λ|x|) where
λ > 0 is the many-body inverse localization length [68,69].
Using the gauge transformation, we see that in the presence
of shear, the many-body (right) ground state is ψ(x; g) =
eFβθ

∑
n xnψ′(x; g = 0). The gauge transform is permissible as

long as eFβθx�(x) is well-behaved, i.e., it still must satisfy the
periodic boundary conditions. This condition is met as long as
λ > Fβθ . The critical shear at which delocalization happens
is then Fθc = λ

β
(compare with the conductivity expression

in Ref. [70]). If the density profiles of chains in the shear-
free many-body ground state ψ′(x; g = 0) fall off faster than
exponentially with distance from the mean chain position [for
example, as a Gaussian profile ψ ′(x) ∼ exp(−λ2x2) which de-
cays faster than any exponentially decaying function at large
enough x], then no amount of shear will delocalize the system.
By contrast, if the localization is weaker than an exponential
falloff (for example, as a power-law decay with distance from
the mean position), then an infinitesimal amount of shear is
sufficient to delocalize the system.

Finding the localization length in the Hermitian problem
is, thus, equivalent to finding the critical shear in the non-
Hermitian problem. Conversely, finding the critical shear,
either experimentally or theoretically, in the non-Hermitian
system is equivalent to finding the localization length in
an exponentially localized Hermitian system. In our specific
system, this localization length is precisely that of the Wan-
nier functions at commensurate filling, which we explicitly
calculate in Sec. III D. Interestingly, the effect of the shear
force on the polymer density profiles themselves is minimal
in the localized phase. Observing that the right eigenstate in
the non-Hermitian system falls off as ∼eFβθx exp(−λ|x|), the
inverse localization length in the sheared system appears to
be λ − Fβθ . This is, however, the inverse localization length
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of the right eigenstate only. The polymer’s probability profile
consists of the product of both the right and the left eigenstate
[Eq. (16)]. The left eigenstate of H(g) is the right eigenstate of
H(g)† = H(−g) which suffers an opposite gauge transforma-
tion. The inverse localization length of the polymer density
profiles under shear, obtained by multiplying the left and
right ground states [Eq. (17)], is then the same as that of a
system without shear (θ = 0). Away from the polymer ends,
non-Hermiticity does not affect polymer density profiles in the
localized phase [29].

We note that the gauge transformation of a localized non-
Hermitian system to a localized Hermitian system is not
possible in a tight-binding (discrete) model such as the lattice-
based Hatano-Nelson model with a periodic potential [41].
Indeed, there is no similarity transformation that maps a
generic non-Hermitian matrix with complex eigenvalues to
a Hermitian matrix. A key difference between discrete and
continuum models is that boundary conditions are part of
the operator itself in the former but not in the latter. For the
continuum model, we have to adjust the boundary conditions
of the mapped Hermitian system to ensure the original non-
Hermitian system has periodic boundary conditions. When
the many-body non-Hermitian phase is localized, the Hermi-
tian phase is localized as well, and we can retain periodic
boundary conditions ensuring the mapped Hamiltonian is Her-
mitian as well as self-adjoint. In the delocalized phase, we are
forced to place special nonperiodic boundary conditions in the
mapped Hermitian problem such that the operator is no longer
self-adjoint. A continuum Hermitian operator with an infinite-
dimensional Hilbert space can have complex eigenvalues if
it is not self-adjoint [71,72]; this fact explains the complex
eigenenergies in our system even though it can be mapped
to a Hermitian Hamiltonian. The gauge transformation also
allows us to make use of the well-studied properties of the
analytical continuation of the Hermitian spectrum [52] which
is essentially the spectrum of the Hermitian operator under
modified (nonperiodic) boundary conditions.

Having identified the mechanism for delocalization in the
system under commensurate filling, we now turn to analyzing
the energy spectrum, ε(k), to determine the value of the criti-
cal force angle; we also compute the tilt angle of the polymers
from the corresponding eigenfunctions.

D. Non-Hermitian gap closure and critical shear

At finite shear, the quasienergies of the eigenstates become
complex-valued since the Hamiltonian is non-Hermitian,
H(g)† = H(−g) �= H(g). The complex energy bands, εn(k),
can be regarded as distinct Riemann sheets over the complex
k plane of a multivalued complex function ε(k) [52,53,73]
with each sheet corresponding to a particular band. (When
used with an argument k, the expression εn(k) denotes the
nth energy band associated with the periodic potential; bands
are ordered according to the real part of the energy.) While
the bands are separated for real k, adjacent sheets meet at
branch points of ε(k) which occur at complex k: The nth
sheet meets the (n + 1)th sheet at wave-vector values kn =
±π

a ± i μn

a , where the dimensionless numbers μn, which quan-
tify the distances of the branch points from the real k axis, are

FIG. 3. The (complex-valued) energies, ε, of the Hamiltonian
p2

2m + V (x), where V (x) is periodic, as a function of the imaginary
component of the Bloch wave vector, Im(k), the value of which is
set by the shear force Fθ and temperature β in the polymer system.
When Im(k) = 0, the energies are real and form separate bands
(shown in blue). As the shear force is increased Im(k) increases and
the energies form complex-valued ovals (gray dotted contours). At
the critical value of Im(k) = μ/a the ground-state oval meets the
first excited band and a commensurate filled crystal is no longer a
band insulator. This is the delocalization mechanism exhibited by
the polymer system. While the complex energies shown here have
been computed for the specific potential V (x) = V0 cos(2πx/a), with
V0 = 1 (see Appendix E for computation details), this behavior is
generic for even one-dimensional potentials with V (x) = V (−x) and
are expected to hold with some modifications for nonsymmetric
periodic potentials as well [52,73].

determined by the potential function V (x). The values of μn

will determine the value of the critical shear in our system.
In the polymer model, commensurate filling ensures that

the quantum particles completely fill the ground-state energy
band ε0(k). At Fθ = 0, when there is no shear, the energies
are real and there is a finite gap between the ground-state band
and the higher band. At nonzero shear force Fθ , the bands
become complex-valued and turn into ovals in the complex
plane. As Fθ , and therefore Im(k), increases, these oval en-
ergy bands grow in size (Fig. 3) and the separation between
bands ε0(k) and ε1(k) is reduced as the branch point at k0 is
approached (Fig. 3). When the shear force equals the branch
point value, Fβθ = μ0/a, the ground-state energy band meets
the higher band. The energy gap closes and the system at
commensurate filling is now a conductor that enables prob-
ability flows driven by the imaginary vector potential. These
probability flows manifest themselves as tilts in the polymer
density profiles, Fig. 2.

The critical angle of force, θc, at which the polymers ac-
quire a collective tilt (Fig. 2) is therefore predicted to be

θc = μ0

Fβa
. (20)

Notably, the value of μn is sensitive to the details of the con-
tinuous periodic potential; its dependence on the energy gap or
the amplitude of the potential energy is nonuniversal [74,75].
This subtlety is not captured by tight-binding studies of the
complex band structure [41], which gloss over the details of
the periodic potential and suggest that θc should scale with the
energy gap in a universal manner.
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FIG. 4. Critical force angles measured from simulations with
different potential amplitudes and temperatures, rescaled by the en-
ergy and force scales governing the underlying Schrödinger equation
[Eq. (21)]. Symbols are labeled according to the parameter which is
kept constant in distinct sets of simulations. The other parameters
are F = 20, a = 1, N = 10 in simulation units. Error bars show
uncertainty in the critical force estimate due to the finite sampling
resolution of applied shear forces. Solid curve shows the theoretical
prediction, Eq. (20).

One can transform x to the dimensionless coordinate r =
x/a (where a is the lattice constant) in Eq. (9). Upon rescaling
the wave function to a new variable � ′

n(r) ≡ �n(r)e−Fβθar we
get

−1

2

∂2

∂r2
� ′

n(r) + V0Fβ2a2V ′(r)� ′
n(r) = εnFβ2a2� ′

n(r),

(21)

where V0 is the amplitude of the periodic potential and
V ′(r) ≡ V (r)/V0. For a particular functional form of the
rescaled potential V ′(r), the system is then governed by
two dimensionless quantities: The dimensionless shear force,
Fβθa and the generalized potential strength, V0Fβ2a2. In
Fig. 4 we report measurements of θc from molecular dynamics
simulations in which the parameters β and V0 were varied
for our choice of potential V ′(r) = cos(2πr). We find that
delocalization thresholds from simulations covering a broad
range of parameter values collapse onto a narrow region in the
force angle-potential strength plane when rescaled according
to the quantum mapping. Furthermore, the rescaled critical
force angles are consistent with the theoretical prediction of
the localization-delocalization transition—the branch point
distance μ0 at the given potential amplitude [Eq. (20)]. The
agreement does not involve any fitting parameters, and is
robust to changes in the numerical estimation of the critical
force angle from simulations (see Appendix B).

Although we only considered a system with commensurate
filling in our simulations, the non-Hermitian band structure
also determines the delocalization behavior for other filling
densities f = N/M (where M = Lx/a is number of unit cells)
of the polymers. When f is noninteger the polymers are ex-
pected to be generically delocalized because there is no energy
gap separating the last occupied single-particle state from the

first unoccupied state. By contrast, when f is an integer the
system exhibits a transition from a localized to delocalized
state at a critical force angle given by μ f

Fβa .
The delocalization transition due to closure of the non-

Hermitian energy gap is also apparent in the behavior of the
wave functions for filled bands. We can write the many-body
wave function of the commensurate system as a real-valued
Slater determinant of Wannier functions defined on the
ground-state band (see Appendix D). The Wannier functions
of the nth band, at zero shear, are also known to depend
on the branch point locations μn: their spatial profiles fall
off as ∼ exp(−μnx/a) at large x [52,68]. Delocalization of
the wavefunctions is then linked to the threshold at which
the “gain factor” e

gx
h̄ exceeds the falloff e

μnx
a , recovering the

prediction for the critical angle, μn/a = gc/h̄ = Fβθc.
The exponential falloff of the Wannier functions is

known to include a power-law prefactor [76]: The com-
plete functional form for the large-x behavior is ′(x) ∼
x−α exp(−μnx/a) for the shear-free system. Right at the tran-
sition point, the gain factor cancels the exponential decay and
it is the power-law falloff that survives. The exponent for the
falloff, α, is derived from the analytic properties of ε(k) for 1D
periodic potentials, is known to be universal, and equals 3/4
[76]. This feature provides a critical exponent for the phase
transition—at the critical point, the polymers’ probability den-
sity in the bulk is expected to fall off as ρ(x) ∼ [e

gcx
h̄ ′(x)]2 ∼

x−3/2, independently of the details of the periodic potential.

E. Critical exponent of diverging shear modulus

In the vicinity of the branch points of the energy surface,
the imaginary part of the energy is known to vary as as
ε(k) ∼ | Im(k) − Im(kn)|1/2 [53]. This dependence suggests
a universal divergence in the shear response of the system
near the critical force angle. We can define the shear modulus,
�, of the system as the applied stress, Fθ/a, divided by the
resulting strain, φ. Fig. 2 shows that for a commensurate
system, � = Fθ/(aφ) equals F/a at θ � θc. As θ approaches
θc from above, φ decreases faster than θ so that θ/φ, and
hence �, diverges as θ → θc. For commensurate filling we
therefore expect

φ ∝
⎧⎨⎩0 if θ � θc,

(θ − θc)η if θ ∼ θc,

θ if θ � θc,

(22)

for some critical exponent η which we find to be 1
2 in the

following.
The tilt of the polymer chains, φ, can be measured by the

averaged slope of the polymer configurations,

φ(τ ) ∼ 〈∂τ xn〉 = 1

N

N∑
n=1

∫ Lx

0
dx xn

∂ p(x, τ )

∂τ
, (23)

where the overline denotes averaging over the N polymers.
The tilt, φ(τ ), depends on the coordinate τ because of the
influence from the initial conditions at τ = 0 and τ = L.
Indeed in Figs. 2(e) and 2(f) we see that the polymers’ den-
sity profile shows a small amount of bending near the ends.
We will be interested in the value of φ in the bulk of the
polymer system, that is at large values of τ and L − τ . In
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this regime, the ground-state dominance applies such that
(�, �̃ ) → (�0, �̃0) and we find that the local tilt angle, φ(τ )
becomes a constant (see Appendix F 1 and Refs. [27,28]),

φ ∼ 〈∂τ xn〉 = − 1

NF

∂ε0

∂θ
. (24)

Here, ε0 is the many-body ground-state energy which is the
sum of the lowest N single-body energies,

ε0 =
N∑

i=1

εi. (25)

At commensurate filling and large N , the sum of single-
particle energies that yields the many-body ground-state
energy can be written in the form of an integral over the
complex-valued energy band ε0(k):

ε0 =
∫

C

dk

2π/(Na)
ε0(k) =

∫
C

dk

2π/(Na)
Re (ε0(k)), (26)

where the complex contour C is the line segment connecting
k = −π/a + iβFθ to k = π/a + iβFθ at constant Im(k) =
βFθ . In the last step, we used the fact that since the single-
body eigenvalues are either real or occur in complex conjugate
pairs, the many-body ground-state energy for a filled band is
guaranteed to be real.

Using Eq. (24), the average tilt angle far away from the
polymer ends is given by

φ = − 1

NF

∂ε0

∂θ
= − 1

NF

∫
C

dk

2π/(Na)

∂ Re (ε0(k))
∂θ

= −βa

2π

∫
C

dk
∂ Re (ε0(k))

∂ Im(k)
. (27)

Note that the line element dk involves variations only in
Re(k), so we can safely apply the derivative to the integrand.
We now use the fact that the complex energy function cor-
responding to the lowest band, ε0(k), is a Riemann sheet of
a multivalued function ε(k) and is analytic everywhere away
from the branch points at k0 = ±π

a ± i μ0

a which are encoun-
tered only when θ = θc [52]. As a result, away from the
critical angle the Cauchy-Riemann equations for the analytic
function ε0(k) can be used to rewrite Eq. (27) as

φ = βa

2π

∫
C

dk
∂ Im(ε0(k))

∂ Re(k)

= βa

2π

{
Im

[
ε0

(π

a
+ iβFθ

)]
− Im

[
ε0

(
−π

a
+ iβFθ

)]}
,

= βa

π
Im

[
ε0

(π

a
+ iβFθ

)]
. (28)

In the last line we used the fact that ε0(−k∗) = ε∗
0 (k) since the

Hamiltonian is real [52].
Now for θ < θc, the integration contour C traces a com-

plete loop of the closed oval corresponding to the lowest band
in Fig. 3, such that ε0(k) evaluates to the same value at the
endpoints of the contour and the value of the integral, Eq. (27),
is identically zero. For θ > θc, the closed oval corresponding
to the lowest band “opens up” by merging with the higher
band. The size of the opening along the Im(ε) direction is
proportional to the acquired tilt via Eq. (28). Near the branch
point, k0 = π/a + iFβθc, it is known that Im[ε0( π

a + iβFθ )]

FIG. 5. The theoretically predicted φ vs. θ graph for a com-
mensurate polymer system. By Eq. (29), the tilt of the polymer
chains, at shear value of Fθ and temperature 1/β = kBT , is given by
βa
π

Im ε(k) with k = π

a + Fβθ . Shown is the numerically computed
value of this expression (blue solid line) for a cosine potential,
V (x) = cos(2πx/a). The green dashed line is φ = θ = ki

Fβ
, to which

the tilt asymptotically tends to at large shear; the red dotted curve is
c(ki − μ

a )
1
2 , demonstrating the critical exponent is 1

2 (the value of c is
set by fitting). As predicted, the tilt is exactly zero below the critical
shear [Eq. (29)].

behaves like
√

θ − θc since the branch point is always of order
one [52]. Finally, for very large values of θ , the momentum
term of the Hamiltonian dominates the potential term and we
can show that Im[ε0( π

a + iβFθ )] = πθ
βa .

These calculations rely only on the analytic properties of
ε(k) for one-dimensional periodic potentials and on the ex-
istence of a gap between the lowest band and higher bands.
We stress that while the location of the branch point in the
complex momentum plane (i.e., the value of μ0) depends
on system details, its existence and the order of the branch
point are independent of the specifics of the periodic potential
[52,53,73]. Therefore, the critical exponent of 1/2 is univer-
sal for all substrate potentials that are periodic along the x
direction and constant along the τ direction. The details of the
calculation linking the branch point structure to the polymer
conformations can be found in Appendix F 2 along with fig-
ures of the complex band-structure for a cosine potential and
a calculation of the tilt for arbitrary filling (see Eq. (F9) in
Appendix F 2).

In summary, we have established that for a commensurate
system, the polymer tilt angle is determined by the complex-
valued lowest energy band and behaves as

φ = βa

π
Im

[
ε0

(π

a
+ iβFθ

)]
=

⎧⎨⎩
0 if θ < θc,

c(θ − θc)
1
2 if θ � θc,

θ if θ � θc,

(29)

for some constant of proportionality, c, which depends on the
specifics of the periodic potential. Figure 5 shows this theoret-
ical prediction, numerically computed from the complex band
structure of a cosine potential as used in our simulations (solid
line). The tilt exhibits the expected functional forms near the
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FIG. 6. (a) Tilt vs force angle measurements from simulations with different disorder strengths (V0 = 0.239, F = 20, β = 1, N = 10).
Each panel shows curves from 50 independent random realizations of potentials (thin blue curves). The thick curve shows the average of all tilt
values for each applied force angle. All panels have the same value ranges for the θ and φ axes. (b) Dependence of the critical force angle on
disorder strength. Discs with error bars show the average and standard deviation of θc measured from the 50 independent disorder realizations
at each value of σd . Crosses show θc measured from the average tilt [thick curves in panel (a)].

critical point (dotted line) and at large force angles (dashed
line).

In the simulations performed for this paper, the polymer
chains had a length of 40a while the horizontal length of the
simulation box was 10a, too limited to extract a critical expo-
nent from the tilt angle measurements. We leave a numerical
verification of the predicted divergence exponent for future
work.

IV. EFFECTS OF QUENCHED SUBSTRATE DISORDER

The present model of fluctuating lines under shear was
originally introduced to study the competition between non-
Hermitian delocalization and Anderson localization [27] of
the polymers due to disorder in the substrate potential. We
now investigate the interplay of our band-insulator localiza-
tion mechanism with Anderson localization by introducing a
random component to the substrate potential V (x) which is
constant along the τ direction (see Appendix A for implemen-
tation details). The disorder strength was quantified using the
root mean square amplitude σd of the random potential Vd (x)

added to the periodic substrate, σd ≡
√∫ Ma

0 dx [Vd (x)]2/Ma.
At each disorder strength, multiple independent realizations of
the random disorder potential were simulated; the results are
shown in Fig. 6. While outcomes varied among independent
runs for a given disorder strength because of the finite system
size [blue curves in Fig. 6(a)], we find that the mean critical
force varies nonmonotonically with disorder strength, first
falling and then increasing [Fig. 6(b)]. A similar trend was
obeyed by critical force angles extracted from the averaged
φ–θ curve obtained by averaging the measured tilt angles
across all independent realizations (red curves and symbols
in Fig. 6).

These observations can be explained by considering the
separate effects of disorder on the bandgap and on the local-
ization properties of the single-particle eigenstates. Numerical
studies of the lattice Hatano-Nelson model with a periodic
potential [41] have shown that small amounts of disorder

reduced the real-valued energy gap between bands along
the Re(ε) axis without affecting the extended nature of the
Bloch eigenstates near the band edges. As a result, we expect
low levels of disorder to shift the delocalization transition to
smaller shear values due to the reduction of the bandgap. For
a given shear value, however, all single-particle eigenstates
become localized at high-enough disorder due to Anderson
localization, and the many-body fermionic ground state would
also be localized even in the absence of an energy gap between
unoccupied and occupied states [77]. Higher values of tilt
are necessary to drive the non-Hermitian delocalization of
the single-particle eigenstates at large disorder, leading to an
increase in the threshold shear value. The nonmonotonic be-
havior is consistent with a switch in the dominant localization
mechanism, from band-insulator physics at low disorder to
Anderson localization of single-particle eigenstates at high
disorder.

The nonmonotonic variation in localization with disorder
strength implies that for some values of the force angle,
the system undergoes two transitions as the disorder is in-
creased. Consider a commensurate system with a force angle
maintained at a value for which the polymers are localized
in the absence of disorder. The system can be driven into
a delocalized state by increasing the substrate disorder be-
yond the disorder-driven gap closure. If the disorder level is
increased even further, then the polymers will eventually re-
cover their vertical confinement due to Anderson localization
of the single-particle eigenstates. This mechanism represents
a non-Hermitian version of a reentrant localization transi-
tion, reminiscent of similar phenomena in Hermitian systems
[78–80] and in biased Brownian motion under periodic poten-
tials with weak disorder [81].

V. RELATION TO TOPOLOGICALLY
QUANTIZED TRANSPORT

Since the force angle θ is shared among all polymers in
the system, the transverse component of the tension can be
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eliminated by rotating the coordinate system so that the τ

axis aligns with the tension direction. In this rotated frame,
the potential energy grooves are no longer aligned with τ ,
giving rise to a substrate potential which depends on both
x and τ , and the corresponding quantum system becomes
time-dependent. That is, the energy functional in the rotated
frame is

E =
N∑

n=1

∫ L

0
dτ

[
F

2
(∂τ xn)2 + V (xn + θτ )

]
, (30)

with the interaction terms omitted since they can be absorbed
into the fermionic statistics. Prior work on a shear-free version
of the directed polymer model with substrate potentials vary-
ing in both axes uncovered topological phenomena enabled by
thermal fluctuations and noncrossing interactions [51]. In this
section, we outline the possibility and the potential complica-
tions in realizing topologically protected chain conformations
enabled by non-Hermitian spacetime-periodic potentials.

Upon performing the classical-quantum mapping as be-
fore, the quantum Hamiltonian for each fermionic particle
acquires a time-dependence in the potential,

Ĥ = p2

2m
+ V (x + igt/m), (31)

and the partition function of the chain satisfies the following
equation [82]:

∂�(x, τ )

∂τ
=

(
1

2Fβ

∂2

∂x2
− βV (x + θτ )

)
�(x, τ ). (32)

The potential is periodic in space (with period a) and along
the imaginary time axis (with period a/θ ), making Eq. (32)
a Floquet partial differential equation [83]. The equation can
also be derived by changing variables from (x, τ ) to (x′, τ ′) =
(x + θτ, τ ) in Eq. (3).

At small values of θ , the Hamiltonian varies slowly in time
so we can use the quantum adiabatic theorem to describe the
evolution of the probability density along the vertical axis. It
is known that a 1D quantum system with a potential vary-
ing slowly in time exhibits a current which is quantized to
multiples of the Chern number. This is called the quantized
adiabatic pump or Thouless pump [84]. In the polymer sys-
tem, this mechanism translates to the tilt of the polymers at
commensurate filling being proportional to the Chern num-
ber of the lowest band of the spacetime-periodic potential
[51], which equates to one for a sliding potential of the form
V (x, τ ) = V (x + θτ ) [84]. Each polymer contour, on average,
shifts to the right by one lattice step for each period in the
τ direction, which corresponds to the the polymer profiles
being tilted by an angle θ away from the vertical direction
and following the potential grooves exactly. This topological
tilt matches the commensurate conformations observed at low
force angles in simulations.

In the rotated frame, the delocalization transition is trig-
gered by increasing the tilt of the grooves relative to the
vertical (tension) direction beyond a threshold angle. Past the
transition, chains do not follow the grooves but instead align
themselves closer to the vertical direction. The Chern number
of the substrate potential no longer dictates the alignment

of the polymers, and the transition can be interpreted as a
non-Hermitian breakdown of the topological adiabatic pump.

We have not achieved a quantitative understanding of this
delocalization transition in the rotated frame, where no gap
closure is apparent. The instantaneous spectrum of the time-
dependent Hamiltonian in the rotated frame,[

1

2Fβ

∂2

∂x2
− βV (x + θτ )

]
�(x, τ ) = ε(τ )�(x, τ ), (33)

can be found by replacing x + θτ → x′. This gives us[
1

2Fβ

∂2

∂x′2 − βV (x′)
]
�(x′ − θτ, τ ) = ε(τ )�(x′ − θτ, τ ),

(34)

so that �(x′ − θτ, τ ) is a Bloch state eik(x′−θτ )uk (x′ − θτ )
for the Hermitian Hamiltonian 1

2Fβ
∂2

∂x′2 − βV (x′) and ε(τ ) is
the corresponding real-valued energy with no dependence on
θ or τ . In other words, the instantaneous spectrum of the
time-dependent Hamiltonian in the rotated frame, Eq. (31),
does not exhibit a gap closure at any value of g so an al-
ternative mechanism for an abrupt transition at a threshold
force angle is needed. One possible mechanism is a break-
down in adiabaticity due to mixing with the higher bands
when the potential varies so quickly in the vertical direction
that ground-state dominance no longer applies. In this limit,
we must consider the Floquet spectrum of the Hamiltonian,
which describes the evolution of eigenstates over full periods
in the vertical direction [85]. The breakdown of adiabaticity
and corresponding delocalization could be triggered by the
appearance of a Floquet exceptional point [86] at a threshold
force angle.

VI. DISCUSSION

In summary, we have described a new non-Hermitian de-
localization transition in a statistical mechanical system of
polymer chains. The transition occurs from an insulator-like
localized state created via a periodic potential and noncrossing
interactions, and is driven by transverse forces that generate
non-Hermitian terms under a mapping to a solvable quan-
tum Hamiltonian. We found that the delocalization of the
polymer chains is caused by a gap closure in the complex
non-Hermitian band structure. We derived the exact value of
the critical shear in terms of the branch point structure of
complex energy bands of the Hamiltonian. We also found that
the critical exponent by which the shear modulus diverges
is given by generic properties of the branch point. We have
investigated the localization due to the combined effect of
both periodicity and disorder and uncovered preliminary evi-
dence that while disorder favors localization at high values, it
encourages delocalization at lower values. Finally, we mapped
the system to a 1D non-Hermitian Thouless pump, whose
breakdown triggers the delocalization transition.

Our work shows that non-Hermitian band physics [19]
and phase transitions driven by exceptional points [87], both
typically associated with driven systems, can be realized in
a purely classical equilibrium setting. The directed polymer
model studied here serves as a test-bed for exploring non-
Hermitian physics that is straightforward to describe and
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visualize, and which admits exact solutions even in the pres-
ence of thermal fluctuations and interactions. Our model and
analytical framework be generalized to more complex poten-
tials [88,89] and interactions [90], as well as disorder models
that could harbor new many-body localization phenomena
[91]. The gauge transformation that links the spectrum of
our system to the analytic continuation of band structures
to complex-valued crystal momenta [52,53] could provide
insights into non-Hermitian delocalization in systems where
localization is caused by disorder or interactions. Higher-
dimensional generalizations of our system, which generate
particles with exotic statistics under the classical-quantum
mapping [92], could be used to probe the non-Hermitian
physics of composite fermions.

A promising avenue for further investigation involves an-
alyzing the system in a rotated frame which aligns the τ axis
with the net force direction rather than the potential grooves.
In this frame, the corresponding quantum system becomes
time-dependent, opening up the possibility of realizing non-
Hermitian topological phenomena [16,19] due to adiabatic
pumping of the underlying probability distributions [51,82].
Delocalization in the rotated frame could provide a manifes-
tation of Floquet exceptional point physics [86] in a classical
model. The introduction of disorder, which enables unique
non-Hermitian topological indices based on winding numbers
[93,94], provides yet another target for future studies.

While we have focused on the theoretical description of
a model polymer system in our work, the transition we
have uncovered could potentially be realized in a variety of
fluctuating-line systems. The 1+1D statistical mechanics of
vortex lines has previously been measured in type-II super-
conductors in a slab geometry [46]. The substrate potential
for the vortices can be controlled by patterning the supercon-
ducting properties via techniques such as focused ion beam
milling [95] or masked ion irradiation [96]. In this system, the
localized state at nonzero tilt angle signifies a misalignment
between the external magnetic field direction (the direction
of applied tension) and the direction of the internal mag-
netization (carried by the vortices, which are aligned to the
potential grooves)—a transverse Meissner effect [33], owed
to band insulator physics rather than disorder. Other exper-
imental candidates include artificial polymer-like fluctuating
chains assembled from mesoscopic monomers such as col-
loids [97,98] and nanoparticles [99], which can be confined to
planar substrates and subjected to patterned electromagnetic
or chemical forces.
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APPENDIX A: SIMULATION METHODS

We implemented Langevin dynamics simulations of dis-
cretized polymer chains using a modified version of the
open-source simulation software HOOMD-Blue [54], with
modifications made to enable the addition of periodic po-
tentials of arbitrary phase. Each polymer is approximated as
a chain of 200 particles of mass m, connected by stiff har-
monic springs with equilibrium length l0, implemented as a
bond potential Vbond(r) = K (r − l0)2/2 where r is the distance
between adjacent particles on the chain and K is a stiffness
constant. The noncrossing constraint is enforced by adding a
stiff contact interaction between all pairs of particles in the
system, with pair potential Vcontact(r) = K (r − l0)2 for sepa-
rations r < l0. For simplicity, the same stiffness coefficient is
used for both potentials.

The tension is implemented by applying the requisite
forces on the first and last particles of each polymer chain
in the desired shear angle relative to the vertical direction.
To prevent the finite-length chains from drifting vertically,
the first particle of each chain is confined to a τ coordinate
of zero with a deep and narrow harmonic potential well; the
well does not constrain the horizontal motion of the parti-
cles. The substrate potential energy per unit length of the
chain, V (x) = V0 cos(2πx/a), is implemented by adding a
position-dependent potential energy of magnitude l0V (x) to
each particle.

In all our simulations, we set m = 1 and a = 1 to set the
mass and length scales. The time scale is implicitly defined
by setting K = 10 000 in simulation units for the bond and
contact stiffnesses across all simulations. We also set l0 = 0.2,
so chains with 200 particles have an equilibrium length of 40a.
The simulation box has periodic boundary conditions along
the x direction with dimension Lx = 10a (ten repetitions of
the periodic potential) and the system size in the τ direction is
set to be much larger than the chain length.

The equilibrium behavior of the system is simulated by us-
ing the built-in Langevin integrator of HOOMD-Blue, which
introduces random forces on each particle that replicate the ef-
fect of a finite temperature T . Langevin dynamics requires the
introduction of drag forces on each particle, Fdrag,i = −γ vi

proportional to the instantaneous velocity vi of the ith particle.
The value of the drag coefficient affects the transient dynamics
as equilibrium is approached, but is not expected to affect the
equilibrium properties. We choose a drag coefficient γ = 0.5
for our simulations. The time step is chosen to be 0.001 in
simulation units. All simulations are run for H = 107 time
steps or more. To aid the evolution to equilibrium conforma-
tions, the system is “annealed” by starting the simulation at
a temperature of 1.5T and ramping the temperature down to
the desired value T over the first H/2 time steps. Equilibrium
density profiles are then built up by sampling particle posi-
tions during the latter H/2 time steps in intervals of 104 time
steps.

Disorder in the substrate potential is implemented by
adding nd cosine potentials with random amplitudes αi, wave
numbers pi, and phases φi to V (x):

Vdisorder(x) =
nd∑

i=1

αi cos

(
2π pi

Lx
x + φi

)
,
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FIG. 7. Critical force angle θc estimated as the intersection of the φ-θ curve with the line φ = cθ , for different values of the numerical
coefficient c. Estimates from simulated curves (symbols) are compared to the theoretical prediction (solid line) after rescaling as in Fig. 4. Data
shown are from the sweep with V0 = 0.239 and varying β.

where αi are drawn from a uniform distribution chosen to gen-
erate the desired RMS amplitude σd , φi are drawn uniformly
from the interval [0, 2π ), and pi are drawn uniformly from the
range 2 � pi � 20.

APPENDIX B: EXTRACTING CRITICAL FORCE ANGLE
FROM SIMULATION DATA

According to our theoretical analysis, in the limit of in-
finitely long polymers at commensurate filling the φ-θ curve
should be exactly zero up to the critical value θc, then increase
with a diverging slope (as (θ − θc)1/2) before approaching the
φ = θ line. In our finite-sized molecular dynamics simula-
tions, the polymers acquire a slight tilt at low force angles,
which abruptly increases at a finite θ value [see solid curve
in Fig. 2(g) for the typical behavior]. The small nonzero tilt
at low θ arises due to bending confined to the polymer ends,
whereas the steep rise (signaled by a sudden increase in the
slope of the φ-θ relationship) is interpreted as a finite-size
signature of the sharp delocalization transition in the thermo-
dynamic limit.

To automate the estimation of the critical delocalization
angle from simulations, we need a criterion to identify the
abrupt rise in the polymer tilt angle curve. One option would
be to set a threshold value of φ and identify θc as the first θ

value at which the measured tilt angle is above this threshold.
However, the magnitude of the tilt at low θ values depends
on the system parameters such as the polymer length and
potential strength, so any such threshold φ value would have
to be adjusted for each simulation to accurately capture the
sharp increase. Furthermore, such a criterion would not incor-
porate the information also present in the changing slope of

the φ-θ curve. Another possible approach would be to directly
estimate the slope of the measured φ-θ curve and apply a
threshold value to the slope, but this approach is limited in
precision by the large spacing between simulated θ values
(restricted by the computational resources available).

Rather than imposing a threshold on the value of φ or the
slope of the φ-θ curve, we found that the sudden increase in
tilt was reliably captured by searching for the first point of in-
tersection between the φ-θ curve and the line φ = Cθ , where
C < 1 is a numerical prefactor. If C is set to be large enough,
then the intersection point avoids the range of slow increase
in tilt at low θ and correctly captures the abrupt increase in
slope near the purported critical force angle. The expected
large-angle behavior meanwhile restricts C to be smaller than
one. If our estimation is robust, we would expect to find an
intermediate range of C values for which the intersection,
and therefore the θc estimate, does not significantly change
with C because the two curves cross within the region of
steep increase in φ with θ . We indeed find that our criterion
generates θc estimates that do not change significantly in the
range 0.1 � C � 0.4 (Fig. 7). When C is much smaller than
0.1, the point of intersection falls within the region of shallow
slope in the φ-θ for some parameter values and the resulting
estimate varies strongly with C. At C values larger than 0.4,
the point of intersection falls far to the right of the region
of steep increase, leading to a systematic overestimate of the
critical angle. These patterns are apparent in the variations in
estimated θc as the value of C is changed in Fig. 7. We use
the finite spacing of the simulated θ values to quantify the
uncertainty in this estimate.

In the main text, we use the curve-line intersection criterion
with C = 0.1 (the smallest value which reliably captures the
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abrupt increase in φ across all simulations) to extract critical
angle estimates for comparison with the theoretical results in
Fig. 4. However, our conclusions would be unchanged if we
used other values of C within the range 0.1 � C � 0.4, as
the estimates would still agree with the theoretical prediction
within the uncertainty, as shown in Fig. 7. Note that there are
no fitting parameters; the theory curve is completely deter-
mined by the system parameters.

APPENDIX C: DERIVING THE DIFFUSION EQUATION

To obtain the differential equation whose solution provides
the partition function in Eq. (2), we consider the evolution
of � for a small change in the τ coordinate, τ → τ + ε.
Since the energy of the polymer is built up of purely local
terms, E [x; 0, τ + ε] = E [x; 0, τ ] + E [x; τ, τ + ε] for any ε.
As a result, � obeys the useful “Markovian” recursive relation
[60],

�(xτ , x0, τ + ε) ∼
∫

dxε�(xτ , xτ + xε, ε)�(xτ + xε, x0, τ ).

(C1)

The partition function can now be evaluated iteratively
[60]. For small ε we can expand the left hand side as
�(xτ , x0, τ ) + ε∂τ�(xτ , x0, τ ) + O(ε2). We also perform the
expansion,

�(xτ + xε, x0, τ ) ≈
(

1 + xε∂x + x2
ε

2
∂2

x

)
�(xτ , x0, τ ). (C2)

Finally, as the field does not change appreciably during the
evolution by ε we replace E [x; τ, τ + ε] by its mean value to
get

�(xτ , xτ + xε, ε) ∼ e−βε[ F
2 (− xε

ε
−θ )2+V (xτ )]. (C3)

(We change notation by omitting the initial condition x0

and replacing xε by x.)
Plugging everything in, performing the Gaussian integral,

and discarding O(ε2) terms gives the diffusion equation,
Eq. (3). Note that this connects to the assumption of the exis-
tence of a microscopic scale over which the external fields are
constant and the polymer segment obeys Gaussian statistics.

APPENDIX D: THE FULL MANY-BODY SYSTEM

The full many-body problem is easily solved once the
single-body wave functions above are known. Using Gi-
rardeau’s mapping [61], the many-body Hamiltonian, Eq. (6)
reduces to a sum of single-body Hamiltonians provided
the many-body wave function obeys the constraint, �(x) =
�(x1, x2, ..., xN ) = 0 whenever any xi = x j . This constraint is
satisfied by the Slater determinant of the single-body wave
functions (the Bloch waves with complex momenta).

To get real-valued solutions, we note that since the Hamil-
tonian, Eq. (6), is real, its normalized eigenstates �n(x) are
either real or come in complex conjugate pairs. Thus we
just need to ensure that the Slater determinant has either real
eigenstates or pairs of complex conjugate ones.

For a filled band it is useful to define the solution in
terms of Wannier functions rather than Bloch waves. The de-
scriptions are equivalent since the determinant of a matrix of

solutions is invariant on multiplication with a Unitary matrix.
The Slater determinant in terms of the single-body Wannier
functions, X (x), is

S(x) = 1√
N!

∑
σ∈SN

sgn(σ )
N∏

i=1

Xi (σ (xi )), (D1)

where the Wannier functions, X (x), are related to the Bloch
functions, �k (x), by

X (x) = 1√
N

∑
k

e−ikX �k (x); X ∈ {a, 2a, . . . , Ma}. (D2)

While the above defined functions are not unique (due to
the freedom in choice of global phase for the Bloch functions)
a unique set of real-valued Wannier functions can always be
found [52].

Finally, since the polymers are distinguishable we restrict
the domain of the constructed wave-function:

�(x) =
{√

N!S(x) if x ∈ R0,

0 elsewhere,
(D3)

where R0 is defined by the inequalities, x1 < x2 < ... <

xN (mod Ma), and is the physical region allowed in our non-
crossing problem [49]. This redefining does not interfere with
the wave function being an eigenstate since it still satisfies the
eigenvalue equation and is still continuous. (The derivative of
the wave function is allowed to be discontinuous because of
the singular terms, δ(xi − x j ), in the Hamiltonian.)

Note that while Girardeau’s fermion-to-boson mapping
requires the determinant S(x) be multiplied with an antisym-
metry factor, A(x) ∈ {±1}, to render it symmetric [61], this is
not required since our wave function is nonzero only in R0.

APPENDIX E: COMPUTATION OF BAND-STRUCTURE
AND THE CRITICAL ANGLE

The band structure, εn(k) at complex k can be computed
using any electronic-structure calculations software such as
Ref. [100] as used in Ref. [101].

In our case, we used the fact that exact solutions for
the cosine potential, V (x) = V0 cos(2πx/a) are known in
terms of the Mathieu functions [102], which are imple-
mented with high precision in computational software such as
Mathematica. To generate Figs. 3, 5, and 8, we computed the
Floquet exponent (also called the Mathieu characteristic expo-
nent for the specific case of the cosine potential) for different
complex values of the energy eigenvalue ε. The imaginary part
of the Floquet exponent is the same as Im k up to numerical
factors. After computing a fine mesh of Floquet exponents for
a range of energy eigenvalues, we interpolate the values to
generate smooth sheets/curves. For Fig. 4, we used the fact
that εn(k) is real for k in the line segment joining π

a − i μ

a
to π

a + i μ

a [53]. To find μ for any fixed value of potential
strength, V0, we then had to increase the value of Im k (with
Re k fixed to π/a) until the corresponding value of ε became
complex-valued.
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(a) (b)

(c) (d)

FIG. 8. The complex band-structure ε(k) of the Hamiltonian, p2

2m + V (x) with V (x) = cos(x) as a function of complex k. Panels (a) and
(b) show the real and imaginary parts, respectively, of the lowest two bands (Riemann sheets ordered by the real part of the energy) of ε(k).
The lowest band is plotted as a solid surface in the interval 0 < Re k < π/a and the next band is plotted in the interval π/a < Re k < 2π/a.
In panel (a), the other band in each region is shown as a translucent surface. Only the region with Re k � 0 and Im k � 0 is shown since on
changing the sign of either Re k or of Im k, ε(k) turns into ε(k)∗ [52]. The three contours are at Im k = 0.5μ/a (blue, dashed), Im k = μ/a
(red, solid) which corresponds to the critical shear, and Im k = 1.25μ/a (green, dotted). Panels (c) and (d) show these contours in the full
Brillouin zone, illustrating that ε(k) is periodic upon advancing Re(k) by 2π/a.

APPENDIX F: DERIVATION OF POLYMER TILT

1. Tilt from energy eigenvalues

In Refs. [27,28], the tilt angle of a polymer in a single-
particle eigenstate �m of the Hamiltonian H(g) was shown to
be related to the dependence of the energy eigenvalue on the
force angle:

φ = −∂εm

∂g
= − 1

F

∂εm

∂θ
.

The expression was derived by defining a current operator in
terms of a derivative of the Hamiltonian with respect to the
vector potential strength g. Here, we provide an alternative
derivation of this expression using classical probability cur-
rents under periodic boundary conditions, and also show that
it describes the average tilt of the many-body system.

We begin by evaluating the change in the probability den-
sity function along the τ direction:

∂ p(x, τ )

∂τ
≡ ∂τ p(x, τ ) = 1

Z
[�̃∂τ� + �∂τ �̃]

= 1

Z

[
1

2βF

(
�̃∂2

x �−�∂2
x �̃

)−θ (�̃∂x�+�∂x�̃ )

]
.

This change in density generates a local probability current
j(x, t ) along the x direction through the continuity equation

∂τ p + ∂x j = 0

⇒ j(x, τ ) = 1

Z

[
− 1

2βF
(�̃∂x� − �∂x�̃ ) + θ (�̃�)

]
.

The integrated probability current provides the rate of change
in the average polymer position along the τ direction, which
is the local tilt angle: ∂τ 〈x〉 = ∫

dx x∂τ p = − ∫
dx x∂x j =∫

dx j, where the last step involves integration by parts on the
periodic domain 0 � x < Lx. Therefore, we obtain

∂τ 〈x〉 =
∫ Lx

0
dx j(x, τ )

= − 1

2βFZ

∫ Lx

0
dx(�̃∂x� − �∂x�̃ ) + θ

Z

∫ Lx

0
dx �̃�

= − 1

βFZ

∫ Lx

0
dx(�̃∂x�) + θ, (F1)

where the last step again involves integration by parts. To
understand the origin of the constant term, consider a single
polymer wandering across a featureless substrate V (x) = 0 at
a nonzero force angle with free ends. The aggregated density
profile is a constant over all space so ∂x� = 0, yet the polymer
aligns to the force direction on average so the tilt equates to θ .

To express the above equation in terms of the eigenvalues
we first note that

H(g) = (p + ig)2

2m
+ V (x)

= − 1

2β2F
∂2

x + θ

β
∂x − Fθ2

2
+ V (x), (F2)

such that

∂θH(g) = 1

β
∂x − Fθ. (F3)
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Now we expand the equation ∂θ (H�n) = ∂θ (εn�n), multi-
ply both sides by �̃m(x) and integrate∫

dx [�̃m(∂θH)�n + (εm − εn)�̃m∂θ�n] = δmn∂θεm. (F4)

We used H†�̃∗
m = ε∗

m�̃∗
m to simplify �̃mH = εm�̃m. If m = n

(we will be using ground-state dominance), then we get

∂θεm =
∫

dx �̃m(∂θH)�m = 1

β

∫
dx �̃m∂x�m − Fθ. (F5)

Given specific boundary conditions at the polymer ends,
we can write the tilt of an arbitrary polymer state using the
spectral expansion introduced in the main text; this would give
a local tilt angle dependent on the vertical coordinate τ . In the
interior of a long polymer, however, ground-state dominance
dictates that (�, �̃ ) → (�0, �̃0) and, on substituting Eq. (F5)
in Eq. (F1), the local tilt angle becomes a constant,

∂τ 〈x〉 = − 1

F

∂ε0

∂θ
→ φ. (F6)

We equate this to the measured tilt angle, φ, in the simulations.
For a system of many polymers, we now have N probability

currents jn and the continuity equation is transformed to

∂τ p(x; τ ) +
N∑

i=1

∂xi ji(x; τ ) = 0.

The local tilt angle associated with the nth polymer is obtained
by integrating the corresponding current:

∂τ 〈xn〉 = −
∫ Lx

0
dx xn

∑
i

∂xi ji(x; τ )

=
∫ Lx

0
dx jn(x; τ )

= − 1

βFZ

∫ Lx

0
dx(�̃∂xn�) + θ,

where Z = ∫
dx (�̃�). Since all the polymers are statistically

identical, the equilibrium tilt of an individual polymer is the
same as the average tilt of all the polymers, which decomposes
into a sum of single-particle terms under the mapping we use
for noncrossing polymers:

∂τ 〈xn〉 = 1

N

∑
n

[
− 1

βFZ

∫ Lx

0
dx

(
�̃

∑
n

∂xn�

)
+ θ

]

= 1

NFZ

∫ Lx

0
dx �̃

(
∂θ

∑
n

Hn(g)

)
�. (F7)

Under ground-state dominance the average tilt angle again
depends solely on the many-body energy eigenstate with the
lowest real part and we obtain Eq. (24) of the main text:

φ = − 1

NF

∂ε0

∂θ
.

2. Using the analytical properties of the complex band structure

Equation (28) of the main text establishes that the tilt can
be simplified to

φ = βa

π
Im

[
ε0

(
π

a
+ iβFθ

)]
.

The multivalued function ε(k) is also periodic upon ad-
vancing Re(k) by 2π/a [52]. At constant Im(k) = βFθ with
θ < θc, the Riemann sheet ε0(k) is well-separated from its ad-
jacent sheets (which form higher bands), and is itself periodic
with the same periodicity as ε(k) [see Fig. 8(a)]. This implies
that ε0(−π

a + iβFθ ) = ε0( π
a + iβFθ ), and the average tilt

[Eq. (27)] evaluates to zero.
By contrast, when Im(k) > μ0/a = βFθc, i.e., for force

angles above the critical angle, the real part of the lowest band
touches the next band at Re(k) = ±π/a (see Fig. 8). Now, al-
though the multivalued function ε(k) is still periodic along the
Re(k) axis, the sheet ε0(k) with the lowest real part of the en-
ergy is no longer periodic. Upon smoothly following ε0 from
one endpoint of the contour to the other, the real component
returns to its starting value, whereas the imaginary component
is nonzero at either endpoint. This feature is apparent in the
shapes of the dashed lines in Fig. 3 above the critical contour:
the oval corresponding to the lowest band opens up when it
merges with the next band, but remains symmetric about the
Re(ε) axis. Therefore, the average tilt becomes nonzero when
θ > θc, since the closed oval corresponding to the lowest band
‘opens up’ by merging with the next band and ε0( π

a + iβFθ )
becomes complex-valued.

We can deduce additional features of the φ–θ curve near θc

from known analytic properties of ε(k). Near the branch point
k0 = π/a + iFβθc, the energy behaves as ε0(k) = ε0(k0) +
Aei π

4 (k − k0)1/2 to lowest order in (k − k0), where A is a
nonzero real constant [52,53]. Since ε0(k0) is real, the imag-
inary part of ε0( π

a + iβFθ ) has the following behavior near
θc:

Im

[
ε0

(
π

a
+ iβFθ

)]
=

{
0 θ < θc,

A√
2

√
Fβa(θ − θc) θ > θc.

(F8)

Immediately after the transition, therefore, the tilt is expected
to grow as φ ∼ (θ − θc)1/2 in the limit of large system sizes.

Finally, for very large values of the force angle and hence
of Im(k), the momentum term dominates the Hamiltonian and
we can ignore the potential term. The eigenfunctions of Ĥ are
of the form eikx with energy-momentum relation ε(k) = k2

2β2F .
For θ � θc, we therefore expect

Im

[
ε0

(
π

a
+ iβFθ

)]
= 1

2β2F
Im

[(
π

a
+ iβFθ

)2]
= π

βa
θ, (F9)

from which we obtain φ = θ from Eq. (28).
The calculations can be easily generalized to arbitrary fill-

ings too. For N polymers and M potential wells, where N is
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odd, we get

φ = − 1

NF

∂ε0

∂θ
= −Mβa

N2π

∫ π (N−1)
Ma

− π (N−1)
Ma

dk
∂ Re[ε0(k)]

∂ Im(k)
,

= M

N

βa

π
Im

{
ε0

[
π (N − 1)

Ma
+ iβFθ

]}
. (F10)

This corresponds to the path along increasing values of Im k
at constant Re k = π (N−1)

Ma in Fig. 8(b). When N is even, the
many-body ground-state eigenvalues and eigenstates come in

complex-conjugate pairs. In that case, the generalization of
the calculation requires forming appropriate superpositions of
the two complex-conjugate states, in terms of their real and
imaginary parts, to keep the probability density, p(x, τ ), real.

The calculations in this Appendix rely on generic features
of the complex band structures of one-dimensional periodic
potentials as detailed in Refs. [52,53,73]. We can verify these
general predictions for the specific (cosine) potential we have
used in our study, for which we can compute the complex-
valued energy bands following Appendix E. Figure 8 shows
the three distinct behaviors for Eq. (28) as the force angle is
increased.
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