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Fluctuations of cell geometry and their nonequilibrium thermodynamics in living epithelial tissue
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We measure different contributions to entropy production in a living functional epithelial tissue. We do this
by extracting the functional dynamics of development while at the same time quantifying fluctuations. Using
the translucent Drosophila melanogaster pupal epithelium as an ideal tissue for high-resolution live imaging,
we measure the entropy associated with the stochastic geometry of cells in the epithelium. This is done using
a detailed analysis of the dynamics of the shape and orientation of individual cells which enables separation of
local and global aspects of the tissue behavior. Intriguingly, we find that we can observe irreversible dynamics in
the cell geometries but without a change in the entropy associated with those degrees of freedom, showing that
there is a flow of energy into those degrees of freedom. Hence, the living system is controlling how the entropy
is being produced and partitioned into its different parts.
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I. INTRODUCTION

A tissue is a group of similar cells that function together
as a unit. Hence, there is a hope that ideas and techniques
to describe many particle systems from condensed matter
physics will be helpful to understand their function [1].
There have already been some significant successes follow-
ing this line of reasoning. The mechanical influences on the
dynamic interplay between cells in epithelial tissues have
been shown to be important for a diverse array of biological
processes from embryonic development and growth [2,3] to
healing of wounds [4–7] and other pathologies like cancer
[8]. Due to their importance in understanding tissues, there
has been much work on quantifying and inferring these forces
[9–12].

However, self-sustaining tissue is different from a col-
lection of cells (its constituent parts) due to a variety of
stochastic [13,14] feedback processes and information flow
essential for life to function. More is different, but in not
quite the same way as in traditional condensed matter [1]. To
consider the physical constraints on biological function in the
most realistic context, our focus here is quantifying functional
living tissue [15] in-vivo. By doing this we aim to contrast
with recent work on collective cell behavior in in-vitro sheets
of cells [16–21] or ex-vivo tissue extracts [6]. We explore
this difference by quantifying the fluctuations as well as the
dynamics of various geometric quantities in living tissue at
cellular scales, looking for signatures of functionality [22].
From analysis of the fluctuations we measure the system’s
entropy and how it evolves in time. The fact that entropy in-
creases for irreversible adiabatic processes (the second law of
thermodynamics) is one of the touchstones of modern physics.
It is not clear if entropy is even a useful concept in living
multicellular organisms, which of course are not adiabatic,
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nor at equilibrium. In addition, the question of how entropy
evolves in living multicellular organisms remains an open
question which we try to address here. A key part of our
analysis involves defining a partial entropy [23], depending
only on a subset of the total number of degrees of freedom
(d.o.f.) available. The other degrees of freedom can then be
viewed as a part of a reservoir in contact with these d.o.f.

We also precisely quantify a well-known analogy [24] to
the breaking of rotational symmetry occurring in the transi-
tions from an isotropic to an ordered mesophase in a liquid
crystal [25] and the global shape and orientational order oc-
curring in regions of developing tissue [26]. We map the shape
and orientations of cells in the epithelium to a model liquid
crystal. While easy to see for in-vitro sheets of confluent
elongated cells like fibroblasts [16,17], it is harder to make
this analogy for the more isotropic cells found in functional
tissue. This also addresses the question of whether the cells
show nematic [27] or polar (ferroelectric) [28] liquid crys-
talline order. We show unambiguously that epithelial cells in
a living functional tissue show nematic order on large scales
but polar order on very small scales, which quickly decays
to zero over a correlation length comparable to the size of a
single cell. Furthermore, the irreversible process [29,30] of
epithelial growth is indicated by the amount of liquid crystal
(nematic) order increasing with time while at the same time
the associated observed partial (information) entropy [31,32]
remains constant.

We study epithelial tissue at a well-characterized stage
of development where the hinge region is contracting and
stretching the wing blade. We are investigating this, focusing
on the fluctuations on the cellular scale [15,33]. We show that
throughout a 1-h period of observation, despite the increas-
ing average orientational order, the probability distribution of
cell shapes and orientations follows a universal form which
remains steady, but that while the individual cells behavior
fluctuates widely, their average behavior evolves in a pre-
cise, deterministic way according to an equation of motion
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FIG. 1. (a) Translucent Drosophila pupa after dissection from its puparium [37,43]. (b) Low magnification of the entire transgenic pupal
wing; the total wing length is 800 µm and the width is 250 µm. The green is E-cadherin–GFP, which labels the cell’s adherens junctions,
and the red is histone-RFP, which labels the cell nuclei. (c) Pupal wing tissue. (d) A high-magnification (binary) view of cell boundaries.
(e) High-magnification cross section of the wing. (f) A schematic diagram of the cross section of the wing. (g) Geometric characterization of
a cell and its boundary. Scale bars as indicated.

which we are able to obtain. This implies that the average
dynamics are tightly coupled to the fluctuations and vice
versa, providing a special type of steady state where the
density of states remains constant even while the system is
evolving continually in time [34]. This suggests that zero
entropy production, in the presence of irreversible dynamics,
can be a way to identify healthy functional living tissue.
Using this entropy, we are able to separate the fluctuations
[13,35] in the tissue at the cellular level from the large-
scale changes occurring that lead to development, growth, and
morphogenesis.

Drosophila is highly genetically tractable and is well char-
acterized as a model of embryonic development and disease
[36]. Here we study the pupal stage of its life cycle because
pupae are translucent and immobile [see Fig. 1(a)]. More
specifically, we investigate pupal wings [see Figs. 1(b) and
1(f)], which enable viewing of a flat two-dimensional (2D)
surface of epithelial cells, to gather data-rich high-resolution
in-vivo images with relative ease [37]. These images of the
wing provide us with a unique opportunity for a level of
analysis that is currently not possible in other systems due to
their opacity and the difficulty in obtaining equivalent quality
in-vivo data.

Confocal movies were captured from 18 h post pupal for-
mation. The pupae were first dissected and removed from
their puparium. This allowed us to directly view the wing
[see Fig. 1(f)] and to gather confocal time-lapse movies of the
living wing tissue, details of which are in the Supplemental
Material [38] [37]. An example image from a movie is given
in Fig. 1(c), with a cross-sectional view in Fig. 1(e). From the
experimental data we generated binary images, as shown in
Fig. 1(d) [39–42]. The cell boundaries were fitted to polygons
(∼5–16 edges and where a single cell-cell boundary can have
more than one edge ) suitable for efficient mathematical anal-
ysis [see Fig. 1(g)].

Using these movies, we can perform a detailed statistical
analysis of the evolution in time of the shapes, sizes, and
orientations of cells, looking not only at their typical behavior
but also their fluctuations. This will allow us to maximize
the amount of useful information that we can extract from
these observations. Hence, this will put us in the position to
most accurately quantify what happens to such tissues after
perturbations such as wounds.

II. METHODS

A. Experimental methods

Transgenic Drosophila were used that expressed the en-
dogenous E-cadherin protein artificially tagged with green
fluorescent protein (GFP). E-cadherin is a cell-cell adhesion
molecule; this means the fluorescent protein is localized at
the cell membranes, allowing easy identification of cell-cell
boundaries via microscopy [see Fig. 1(c)]. Images were taken
of pupae at 18 h after puparium formation (APF). To gain
images of the pupae wings, first the pupae were dissected to
remove the puparium case. This allowed us to directly view
the wing [37]. The pupae were transferred to an imaging
dish, with the wing in direct contact with the cover glass.
Wings from transgenic Drosophila pupae labeled with E-
cadherin–GFP and histone-RFP were imaged on a Leica SP8
confocal microscope. Z stacks were taken through the three-
dimensional (3D) wing (with Z slices at 0.75-µm intervals)
and images were taken every 5 min. This produced a time-
lapse video of the healthy, developing tissue. Each image
consists of a series of different heights through the tissue (Z
stacks) [37]. The individual 3D stacks were transformed into
2D images using a modified version of the Stack Focuser
plugin for FIJI [42]. The plugin works by selecting the most
in-focus pixel for each (x, y). The most in-focus pixel is the
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one with the highest variance of intensity in the surrounding
pixels [42].

B. From experimental data to binary image

The experimental data, the focused 2D images, were pro-
cessed on the Modular Image Analysis plugin for FIJI [39–42].

The images of the cell boundaries were enhanced using
the WEKA pixel classification plugin, giving us a probability
image [44]. Then, a median filter was applied to the image,
which removed noise from the cell centres while retaining
definition of the cell-cell boundaries. Finally, cell boundaries
were obtained using the watershed transform. This converted
the probability image into a binary one, with the boundaries
labeled in black and cell in white [44]. A close-up of experi-
mental data that has been processed into binary is in Fig. 1(d).
To calculate the properties of each cell they must first be
approximated with a polygon. These polygons will be used
for analyses later.

C. From binary image to polygons

With these images, each cell was first identified and col-
ored. Hence, the contours between cells were able to be
determined and detected. Once the contours were identified,
they were fitted with polygons. Thus, the boundaries of each
cell were approximated by respective polygons.

Polygons that are clearly not cells can be selectively dis-
counted from the image, e.g., these could be folds in the
wing where the cells are out of the frame of reference in
which image slices are taken. In the Supplemental Material
[38] there is further information about how we identify and
discount these polygons.

An example of a polygon is shown in Fig. 1(g). This poly-
gon approximates a cell in one of the binary images. (Cx,Cy)
is the centroid (center of mass) of the polygons. The vertices
are labeled counterclockwise (this will be important in later
calculations). Some notation for a polygon with n vertices in
calculations rn = r0 [45].

D. Mathematical tools

We summarize here the theoretical tools we developed
to quantify the shapes and orientations of individual cells.
These local properties were used to find global averages and
determine how they changed with time. The area of a polygon
can be obtained from taking the double integral of the domain
of the shape,

A =
∫∫

A
dx dy. (1)

E. Centroid

The center of the polygon (a measure of its location) is
called its centroid. The centroid is the mean point of the
polygon. This is where the moments of the shape are balanced.
As the polygons are 2D shapes, the centroid will be a 2D
vector. Each component was calculated by taking the double

integral of the x or y over the domain of the polygon, then
dividing by the area,

Cx = 1

A

∫∫
A

x dx dy, (2)

Cy = 1

A

∫∫
A

y dx dy. (3)

F. Shape tensor

The distribution of any molecule (e.g., a protein) in each
cell (polygon) can be described by a second rank tensor de-
fined by the second moment of the area weighted with the
density of that molecule. Reminiscent of the inertia tensor, it
is a measure of the variance of concentration of a molecule
within a cell from its centroid in different directions. It there-
fore encodes information about the shape and orientation of
each molecule distribution within the cell. It is defined as

s =
(

sxx sxy

sxy syy

)
, (4)

where

sxx = − 1

A2

∫∫
A

f (x′, y′)y′2 dx′ dy′, (5)

sxy = 1

A2

∫∫
A

f (x′, y′)x′y′ dx′ dy′, (6)

syy = − 1

A2

∫∫
A

f (x′, y′)x′2 dx′ dy′, (7)

with y′ = y − Cy, x′ = x − Cx and f (x′, y′) the concentration
of said molecule. Here we have averaged over all species in
the cell and taken f (x′, y′) = 1. It is a dimensionless quan-
tity. Details of its computation are given in the Supplemental
Material [38,45].

G. Shape factor

From the shape tensor we can also construct a scalar, the
shape factor which measures how elongated a shape is, with
0 being a round shape and approaching 1 is a very long thin
shape. The shape factor is given by

s f =
∣∣∣∣λ2 − λ1

λ2 + λ1

∣∣∣∣, (8)

with s f ∈ (0, 1) as λ1, λ2 > 0, where λ1 and λ2 are eigenval-
ues of the shape tensor s. Isotropic shapes are shapes with
no clear major axis that would give it an orientation. For
shapes that are isotropic, their eigenvalues are a similar length,
making |λ1 − λ2| small and hence giving a s f close to 0,
whereas elongated shapes will have a one large eigenvalue and
one small, giving |λ1 − λ2| a much larger value.

H. Orientation

We define the orientation as the direction of the long axis
of the polygons, as shown in Fig. 1(g). The shape tensor
cannot distinguish between the front or back of the polygon,
so the orientation is only defined modulo π . The orientation
is defined by the eigenvalues λ2 > λ1 > 0 and eigenvectors
v1, v2 of s. The eigenvector corresponding to the smallest
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eigenvalue of s determines the major (long) axis and hence the
orientation. If v1 is the eigenvector of the smallest eigenvalue,
and ϑ is the angle of orientation taken from the x axis, then

ϑ = arctan

(
v12

v11

)
where v1 = (v11, v12), (9)

θ = ϑ[π ]. (10)

It is more convenient for us to work with a q tensor, which
is a traceless symmetric tensor created by q = s − Tr(s)I,
where I is the identity matrix. q = (q1 q2

q2 −q1
) �= 0 implies an

oriented tissue, and the more oriented a tissue, the greater the
value of ‖q‖2 =

√
2

2 Tr(q2). Now we can take the mean and
standard deviation of q̂i for each image,

QQ̂ = 1

N

N∑
i=1

q̂i, (11)

σ 2
q = 1

N

N∑
i=1

‖q̂i − Q̂‖2 , (12)

where ‖‖ is the Frobenius norm.

I. Polarization

Calculating a cell’s polarization requires the use of a third
rank tensor. To simplify calculations, we first translate and ro-
tate the shape, r→r′ = R(θ )−1 · (r + t), such that its centroid
is at the origin with its major (long) axis oriented along the y′
axis and the minor axis along the x′ axis. The components of
the polarization in the x′ and the y′ direction are given by T ′

xxx
and T ′

yyy, respectively defined below. The polarization vector
is then defined as p′(r′) = 1

A5/2 (T ′
xxx, T ′

yyy) , where

T ′
xxx =

∫∫
A

x′3 dx′ dy′, (13)

T ′
yyy =

∫∫
A

y′3 dx′ dy′. (14)

Once the polarization vector has been calculated, the reverse
rotation, p(r) = R(θ ) · p′(r′), gives its value in the original
coordinates. Similarly to the orientation, we can take the mean
and standard deviation of p̂i for each image:

PP̂ = 1

N

N∑
i=1

p̂i, (15)

σ 2
p = 1

N

N∑
i=1

( p̂i − P̂)2. (16)

J. Theoretical model

Given cells whose shape is given by the tensor q, we study
the noisy growth of macroscopic orientation of the tissue
along an arbitrary axis making an angle φ to the x axis.
We start with a function H (q, q0) = ∑2

i, j=1
1
2δqiAi jδq j +

O(‖δq‖3), where δq = q − q0n, which is minimized when
the cell is oriented along an axis given by the tensor n =
(cos 2φ sin 2φ

sin 2φ − cos 2φ) = (n1 n2
n2 −n1

). The most general form of the
2 × 2 matrix Ai j which is rotationally invariant is given by

Ai j = A0δi j + A1nin j , with δi j being the Kronecker delta func-
tion and A0, A1 functions of the tension in the tissue . The
dynamics, which is a combination of gradient flow towards
the minimum of H and nonequilibrium stochastic driving,
is described by Langevin equations (stochastic differential
equations) for the tensor q and parameter q0,

dqi

dt
= −∂H

∂qi
+ ξi(t ) = −Ai j (q j − q0n j ) + ξi (17)

dq0

dt
= k0 − ∂H

∂q0
+ ξ0(t ), k0 > 0 . (18)

We emphasize that this means that the dynamics of individual
cells are highly stochastic and fluctuate strongly in time. The
fact that k0 > 0 implies that shape orientational order is in-
creasing. q0(t ), q(t ) have fluctuations that are encoded in the
white noises

〈ξi〉 = 0, 〈ξi(t )ξ j (t
′)〉 = 2Diδi jδ(t − t ′), (19)

where i, j ∈ {0, 1, 2} and the constant parameters k0, A0, A1

control the behavior. We take D1 = D2 = D and δ(t − t ′) is
Dirac delta function . A key part of our analysis will be
determining what parameters of the model are consistent with
the data.

Defining �X = (q0, q1, q2), the Langevin equations for the
fluctuating variables are equivalent to a Fokker-Planck equa-
tion for the probability density P( �X ):

∂t P +
3∑

i=1

∇i(ViP) = 0, Vi = (vi − ∇iH − Di∇i ln P),

(20)
where ∇i = ∂/∂Xi. The set of equations above have a steady-
state probability density given by

Pss(q, A) = 1

Z
e−h(q,A); h = H/D0 (21)

and dynamical system

dq
dt

= −
(

1 − D

D0

)
A · (q − q0n) (22)

dq0

dt
= k0, (23)

as long as D0 > D. It is important to note that min(h) = 0 is
bounded below [34].

Starting with an initial typical value at t = 0 of q(0) =
θ0, q(0) = θ0n, we find q0(t ) = θ0 + k0t, q(t ) = q0(t )n. This
allows us to study statistically the behavior of different tra-
jectories (experimental samples). First, coordinate axes are
rotated so the orientation axis is along the x axis. With this
we can express the steady-state probability density in terms of
the deviations from the typical values.

Hence, we set q(t ) = q(t ) + δq(t ), q0 = q0(t ) + δq0(t ), to
obtain

Pss(δq, δq0) = 1

Z ′ exp

[
− 1

D0
F (δq1, δq2, δq0)

]
, (24)

where

F = (A0 + A1)

2
(δq1)2 + A0

2
(δq2)2 (25)

and Z ′ is chosen so that
∫

dqdq0Pss = 1.
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From this we obtain

〈(δq1)2〉 = D0

A0 + A1
,

〈(δq2)2〉 = D0

A0
.

From this it follows that

〈‖q‖〉 = q0(t ) = θ0 + k0t . (26)

From the data it thus follows that we can extract
C, kB, a0, b0, θ .

III. RESULTS

A. Analysis

In this stage in development of the wing tissue, the cells
are reducing their area at a linear rate. At the same time the
number of cells is also increasing linearly.

B. Shape tensor

Each cell (polygon) can be described by a second rank
tensor, which we call the shape tensor (S), a measure of
the variance of the shape of a polygon from its centroid in
different directions. Encoding information about the shape
and orientation of each cell, it is similar to the texture tensors
introduced in Refs. [46,47]. To compare cells of different
sizes, it is made dimensionless by dividing by the area squared
(see Supplemental Material [38]).

C. Cell shape factor

We can gain information about a cell’s shape from the dif-
ference between the eigenvalues of the shape tensors, which
we call the shape factor. The shape factor lies between [0, 1).
When eigenvalues are similar, this gives a low shape factor
(close to 0), indicating an isotropic, nonoriented shape. A high
shape factor implies an elongated shape with vastly different
eigenvalues. For more details about shape tensors/factors see
the Supplemental Material [38].

Figures 2(a) and 2(b) show the shape factor heat map and
histogram, respectively, for a typical image. Figure 2(c) shows
how the average shape factor evolves with time. There is a
clear linear increase with time. This means cells are becoming
increasingly elongated as the tissue develops. The cause of the
elongation is the concentration of cells in the hinge, which
applies tension across the blade where we are imaging [15].

D. Cell orientation

We define the cell orientation as the angle θ ∈ [0, π )
between the major axis of the cell and the x axis [see
Fig. 1(g)]. The orientation (major) axis is the eigenvector of
the shape tensor with the smallest eigenvalue. The orientation
axis, invariant under reflection, is π−periodic, θ = θ + π .
Figure 2(d) shows a heat map of the orientations from the
same image as Fig. 2(a). It is clear from the heat map that there
is a global orientation of this tissue. The most common cell
color, yellow-green, indicates a mean orientation of ∼π/6.

The mean orientation, determined by orientation of the
pupa wing on the slide, is arbitrary. However, the standard

FIG. 2. (a) The shape factor of cells; elongated and thin shapes
have high values (yellow), isotropic (nonoriented) shapes have low
values (blue). (b) The distribution of the shape factor. The black line
shows the mean. (c) The mean shape factor increases linearly with
time. (d) Heat map showing the orientation of each cell relative to the
x axis of a single sample. (e) The distribution of orientations in the
sample in part (c) but rotated such that the mean is at π

2 . The black
line shows the mean. The standard deviation is in the subtitle. (f)
The standard deviation of the orientation averaged over 15 samples
decreases linearly with time. (Error bars are root mean square errors.)

deviation of cell orientations around the mean remains con-
sistent between samples at the same developmental stage and
indicates how oriented the tissue is; the smaller the standard
deviation, the more oriented it is. Figure 2(f) shows that the
standard deviation is a linearly decreasing function of time,
implying that an increasing number of cells are oriented in the
same direction as time increases.

We can more precisely quantify the fluctuating growth
of the tissue by studying the evolution of the whole shape
tensor. We define a q tensor, a traceless symmetric tensor
created by q = S − Tr(S)I, where I is the identity matrix: q =
(
q1 q2
q2 −q1

) = q0√
2

(
cos 2θ sin 2θ

sin 2θ − cos 2θ
) = q0 q̂. If the norm, ‖q‖ �= 0 ⇒

an elongated shape, and the more oriented a shape, the greater
the norm [‖q‖2 = 1

2 Tr(q2) = q2
0, q̂ has unit norm and θ is

orientation].
To determine the orientation of the tissue we calculate the

average of the cell’s q tensors, Q = 〈q〉. We define Q, its mag-
nitude (norm), and write Q = QQ̂, where Q̂ is a unit tensor.
We analyze the distribution of tensors using the standard devi-
ation (σq). If Q

σq
∼ 1, then the system is functionally oriented,
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and if Q
σq

� 1, it is functionally isotropic. We find typical

values of Q
σq

� 0.84, indicating an oriented tissue. Details
about the mean and standard deviation are in the Supplemental
Material [38].

E. Cell polarization

The shape tensor is unable to identify whether a cell has
any shape anisotropy along its main axes, which requires a
third rank tensor. From this tensor we can define a polarization
vector p (see Supplemental Material [38]). The polarization of
a cell measures the skewness of its shape. The polarization
of each cell p can be decomposed into magnitude and di-
rection: p = pp̂, where p = |p| and p̂ = (cos φ, sin φ). When
this magnitude is large, the shape is highly polarized, and
when the magnitude is small, the shape is not polarized. As
above, to get an indication of whether the tissue has a global
polarization, it is instructive to compute the average of the po-
larization vectors P = 〈p〉 = PP̂ and standard deviation (σp).
P is the magnitude of this average vector (how strong it is),
and the unit vector P̂ indicates in which direction the tissue is
polarized. If P

σp
∼ 1, then the system is functionally polarized,

and if P
σp

� 1, it is functionally isotropic. Typically, values of
P
σp

� 0.021, indicating isotropy with no polarization.

F. Correlations of the orientation and polarization

We also consider the orientation and polarization correla-
tions of cells separated by distance R,

Cp(R) = 1

NR

∑
R<|ri−r j |<R+dR

〈p̂i, p̂ j〉, (27)

Cq(R) = 1

NR

∑
R<|ri−r j |<R+dR

〈q̂i, q̂ j〉. (28)

For the q̂ we use the Frobenius inner product. The functions
Cp,Cq are plotted in Fig. 3(b). Cp has a small anticorrelation
at small distances, after which the correlation function decays
quickly to zero. It is negative at short distances, which implies
that if a cell is polarized in one direction, its direct neighbors
are likely to be polarized in the opposite direction, but that
cells further than one cell apart are essentially uncorrelated.
Therefore, while individual cells can be polarized, the tissue is
not polarized at all. The fact that Cq does not decay to zero for
large distances demonstrates that there is strong orientational
order throughout the tissue. Hence, the tissue is oriented but
not polarized.

G. Partial entropy production

We also analyze the distribution of cell shapes and orien-
tations and its evolution in time and hence extract the flow
of information (partial entropy) associated with it. At this
point it is probably helpful to review some basic notions
of thermodynamics and nonequilibrium statistical mechan-
ics. We consider in general a macroscopic system plus its
environment at fixed temperature, which together form an
isolated composite. From the second law, the total entropy
production is given by the sum of that produced by the system

FIG. 3. (a) The entropy of the q tenser. Each point is the mean
entropy of the videos. (b)The figure shows the correlation function
of the polarization and the orientation, respectively. Distance by a
typical cell length scale is defined by the square root of the mean
area of the cells in each image. Cp(R) at 1 cell length starts nega-
tively and then decays exponentially to 0. Cq(R) is correlated around
0.6 throughout the tissue (error bars are smaller than markers). c)
〈(δq1)2〉 and 〈(δq2)2〉 over the frames of the video (error bars are
smaller than markers). (d) 〈‖q‖〉 over the frames of the video. This
increased linearly over time, and line of best fit is shown in black.
(Error bars are root mean square errors.)

(sys) and its environment (env), Ṡtot = Ṡsys + Ṡenv � 0, with
Ṡsys = Ṡenv = 0 at equilibrium. Typically when studying pas-
sive systems, we consider situations where the system does
not perturb the environment, which can be considered to be
at equilibrium, Ṡenv = 0. For a passive system coupled to
such a reservoir, starting in a nonequilibrium initial state and
evolving towards a (possibly more-ordered) equilibrium state,
we would then expect that Ṡsys > 0. We explore here what
happens in a living functional tissue whose cells are becoming
more orientationally ordered, in which the system corresponds
to the degrees of freedom associated with the cell shape and
orientations and the environment is everything else.

Defining the probability ρq of finding a cell with shape
q, we can calculate the shape entropy, the contribution
to the entropy from shape fluctuations, Sq(t ) = −∑

q ρq ln
ρq, and its evolution with time. A constant value for Sq is
consistent with our measurements to within the error bars [see
Fig. 3(a)]. Hence, we find that the partial entropy production
is on average zero, i.e., the entropy remains constant over the
whole period of observation despite the increase in orienta-
tional order. The observation of irreversible dynamics of some
observables without an increase in entropy associated with
them is an indication of a flux of energy from the degrees
of freedom under observation into other degrees of freedom
(i.e., it implies that the environment or reservoir is itself not
at equilibrium) [48,49]. We emphasize that this implies that
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while Ṡsys = 0, Ṡenv > 0 and the second law is still satisfied.
To be concrete, the second law requires that T Ṡsys � Ė , where
Ė is the rate of energy (heat) flow to the system from the
environment and T is the temperature of the system (and
reservoir). Since this active system has Ė �= 0, the fact that
Ṡsys = 0 implies that Ė < 0 and there is a (steady) flow of
energy (heat) to the environment from the system. Conversely,
the second law also implies that T Ṡenv � −Ė > 0.

Constant entropy for a subset of the degrees of freedom,
however, is ideal for accurate information processing and
quick response to external perturbations of those observables.
This is because the accuracy threshold for any error-correction
mechanism will not be changing [50–52].

H. Theory

We now develop a model of the development of
tissue orientation along an axis with angle φ that can
be compared quantitatively to what we observe in the
experimental data. The aim is to describe the dynamics of the
probability distribution of cell shapes encoded in the tensor
q = (q1 q2

q2 −q1
). All the data is consistent with a steady-state

probability density given by

Pss(q, q0) = 1

Z
e−h(q,q0 ); h = H/D0, (29)

where H (q, q0) = ∑2
i, j=1

1
2δqiAi jδq j + O(‖δq‖3), where

δq = q − q0n with the orientation n = (
cos 2φ sin 2φ

sin 2φ − cos 2φ
) =

(
n1 n2
n2 −n1

). Note that min(h) > −∞ must be bounded for

Eq. (29) to make sense. The most general form of the
matrix A which is rotationally invariant is given by Ai j =
A0δi j + A1nin j . The fluctuating variables q0(t ), q1(t ), q2(t )
capture the changes in cell shape which evolve on average
according to the deterministic dynamical system

dq
dt

= V (q, q0) = −A · (q − q0n) (30)

dq0

dt
= V0(q, q0) = k0. (31)

It is helpful at this point to compare this with the stochastic
dynamics of an equilibrium system with the same number
of degrees of freedom e(t ) = (e0, e1, e2) and a Hamiltonian
H(e) so that

dei

dt
= −∂H

∂ei
+ ξi(t ), (32)

〈ξi〉 = 0, 〈ξi(t )ξ j (t
′)〉 = 2T δi jδ(t − t ′). (33)

This system has a steady state with density of states,
Peq(e) = e−H/T , with average constant values ei, which
means in the steady state the average e(t ) evolves according to

dei

dt
= 0, (34)

i.e., the d.o.f. do not change with time. The dynamical system
of the average behavior is a trivial one: all velocities are on av-
erage zero and each realization of the system (or equivalently
each experiment) simply fluctuates around the mean constant
value. This is equivalent to a detailed balance condition that is
required by all systems at equilibrium. Here, the existence of

a nontrivial dynamical system [i.e., the fact that the right hand
side (rhs) of Eqs. (30) and (31) are not zero] means that the
living epithelium cannot be mapped to an equilibrium system.
Consequently, detailed balance is also broken: there are
nonzero currents �Jss(q, q0) = [V (q, q0),V0(q, q0)]Pss(q, q0)
which break detailed balance. Each realization (experiment)
will fluctuate around these deterministic trajectories. Guided
by the data, we will obtain values for A0, A1, k0. This
allows us to study statistically the behavior of different
trajectories (experimental samples). First, coordinate axes
are rotated so the orientation axis is along the x axis (i.e.,
n1 = 1, n2 = 0). With this we can express the steady-state
probability density in terms of the deviations from the typical
values q0(t ), q1(t ), q2(t ). From the data we can compute
〈‖q‖〉, 〈(δq1)2〉, and 〈(δq2)2〉, as shown in Figs. 3(c) and
3(d), from which we can extract k0, A0, A1 (see Supplemental
Material [38]), though it is not clear how these relate to
mechanical properties of the developing tissue.

IV. SUMMARY AND DISCUSSION

The ability to visualize the dynamic evolution of the spa-
tial distribution of specific proteins within individual cells in
tissue provided by high-resolution imaging holds promise for
us eventually being able to extract the organizing principles
behind tissue function and repair. This biological function
happens in the presence of large fluctuations, both chemical
and mechanical, hence these principles, whatever they turn
out to be, must be robust to noise. It is the implications
of this robustness that we focus on in this paper. Here we
have tracked the concentration of junction proteins to quantify
the dynamics of cell shapes, orientations, and polarization,
measuring not only their averages but, most importantly, their
fluctuations. In this context, the degrees of freedom associated
with the shapes, orientations, and polarizations of the cells are
the system, while everything else in the tissue we consider as
the environment.

The experimental data in total paint a consistent picture.
We observe irreversible dynamics of the cells becoming more
elongated and the tissue becoming more oriented along a par-
ticular direction n without any associated change in entropy.
We emphasize that this implies that while the rate of entropy
production of the environment is nonzero, Ṡenv > 0, the rate of
change of entropy associated with those degrees of freedom in
the tissue Ṡsys = 0. This implies a steady flow of energy from
the reservoir to the system. Given that the reservoir is much
larger than the system, Ssys � Senv, we note that it is also pos-
sible that at different points in development, the rate of change
of entropy in the tissue Ṡsys can be nonzero, even negative.

We also find no macroscopic shape polarization of the
tissue; i.e., we find nematic symmetry of the director axis,
i.e., n and −n are equivalent. This can be explained by a
model of cell shape and orientation that can be mapped to
a nonequilibrium driven nematic liquid crystal. We find that
while oriented, the tissues have no global polarization, and
that cells that are polarized only affect other cells in their very
close proximity. An observation from our data is that all these
features are developed in the presence of strong local variation
and fluctuations about the average behavior. This indicates a
large but constant information entropy. Clearly this approach
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can be extended to any group of observables in living tissue or
other functional biological matter. This suggests an intriguing
possibility that should be investigated further by studying
the statistical dynamics of other chemical and geometrical
quantities in tissue to see if zero rate of change of entropy
with irreversible dynamics is a signature of functionality and
homeostasis in healthy living organisms. This characterization
of an unperturbed but dynamic, developing tissue will lay
the groundwork for understanding what happens when these
tissues are perturbed, for example, by cancer or wounding.
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