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Wealth dynamics in a market with information asymmetries
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Financial markets are usually investigated through time series such as prices and volumes that describe the
behavior of the system as a whole. Such observables emerge from microeconomic interactions between market
participants. Agent-based models have been utilized to shed light on this process. The model’s ability to produce
statistics frequently found in empirical data is evidence of some correspondence with real markets. Here, an
agent-based market model is proposed. Different trader profiles with short- and long-term motivations are
considered, and limitations on the agents’ skills to manipulate information are inserted into the model. According
to their profile and limitations, agents are rational. A differential equation approximation is employed to find the
value to which the price converges and the timescale of this process. The relationship between agents’ attributes
and the evolution of their wealth is explored in different scenarios. Agent’s average wealth was not significantly
affected by information processing accuracy, but the standard deviation was. The increased risk is the main
consequence of low accuracy. The model yielded price series with multifractal behavior and heavy-tailed return
distributions, which are nontrivial statistics frequently observed in empirical series.
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I. INTRODUCTION

Financial markets are complex systems [1] composed of a
plurality of agents that interact through the exchange of infor-
mation and asset negotiation. The result of such interactions,
which occur at the microeconomic level, can be observed from
indicators like prices and volumes that describe the dynamics
of the market as a whole. Often, these series display the
emergence of stylized facts typical of financial systems [2,3].
Non-Gaussian distributions of returns have been reported: the
heavy tails made explicit in inverse cumulative distributions
originate from values on different scales [4-9]. The Hurst
exponent is frequently employed to show fractal behavior in
financial series and its generalized version reveals multifractal
scaling through the singularity spectrum [10-17].

Experimental methods have been utilized to shed light
on the manner economic agents tend to operate in different
situations [18]. Investigating search engine query data also
provided insights into their behavior [19]. However, economic
agents’ actions remain essentially unpredictable at the individ-
ual level. The decision-making process under uncertainty was
proven to move away from the strict rationality that underlies
many economic models [20]. In addition to behavioral issues,
deviations from market efficiency are associated with a variety
of factors, such as political uncertainties [21], financial crises
[22], central bank management [23,24], and information flow
[25,26].

Although they inevitably involve great simplification, mar-
ket models are often employed to improve the understanding
of how the relationships between agents yield the phenomena
observed at the macroscale. Random elements representing
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external influences on the market are often combined with
endogenous dynamics. In the past few decades, agent-based
models have played a prominent role [27-42]. Market models
based on differential equations were also explored [43—46].
Differential equation-based models have been proposed to
analyze the outcomes of laboratory markets [47,48]. To inves-
tigate whether the elements that integrate a model are likely
to correspond to real markets, one can verify if the model is
capable of generating stylized facts usually found in financial
series. The process of adjusting parameters for this purpose
can be a source of information about the interactions between
agents.

In the present contribution, we propose an agent-based
model for a market where traders have short-term and long-
term motivations. The degree of influence of such motivations
on each agent can vary, which allows the modeling of dif-
ferent profiles of traders. Agents are rational, in the sense
of making the best use of information, according to their
limitations and profile. Such information concerns price as-
sessment according to fundamental analysis, as well as the
prediction of the price of the next time step. Through errors
in the evaluation of these prices, limitations of the agent’s
ability to deal with information are inserted into the model. In
the next section, we describe the model in detail. In Sec. III,
we study price dynamics through a differential equation ap-
proximation. Such approximation discloses the value towards
which the price tends, according to the agents’ evaluations,
as well as the timescale of this process. Four different simu-
lations are explored in Sec. IV. In the first one, three agent
profiles are considered, without introducing evaluation errors.
In the following two simulations, only one profile is assumed;
uncertainties in the valuation of the fundamental price are
inserted in one and errors in forecasting the price for the next
step are modeled in the other. By using the model in a more
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advanced version, the fourth simulation regards three different
agent profiles, including valuation inaccuracies. In all cases,
the relationship between the agents’ characteristics and the
variation in their wealth is investigated. It is also shown that
the model can generate price series with multifractal scal-
ing and heavy-tailed return distributions. The conclusions are
summarized in Sec. V.

II. MODEL

Let us consider a market where n agents trade a single asset
at discrete time steps . The variable X (a,t) describes the
agent’s behavior: when X (a, t) > 0 [X (a, t) < 0], the agent a
demands (supplies) X (a, t) assets. The asset is bought or sold
at the price P(¢). Each agent knows the action of all agents
[X (a, t)] and the price at which the trade is carried out [P(¢)].

The agent sets its position by comparing the price at ¢
with (a) a reference price P.(a) related to valuation from
fundamental analysis and (b) the estimate for the price in the
next time step, Py(a). Note that such prices may vary from
agent to agent, which allows us to model traders with different
information handling skills. The agent’s conduct is driven by

X(a,t) = c/(a)[P(a) — P(1)] + cs(a)[Ps(a) — P(D)], (D)

where c¢,(a) and c,(a) are non-negative parameters defining
the portion of the agent’s behavior targeting the long term and
the short term, respectively. Different investor profiles can be
modeled this way. The price that agent a estimates for the next
step is

Py(a) = P(t + D[ + A(a)]. 2

Agents are able to forecast the next price approximately; a
non-null A(a) models limitations in the ability to make such
a prediction. The variations, from agent to agent, in the refer-
ence price P,(a) are, in turn, associated with imperfections in
the fundamental analysis valuation; the accurate fundamental
price corresponds to the mean of P.(a) computed over all
agents. To model external inputs in the market, the values of
P,(a) can change during the simulation.
The price evolution is defined as

Pt +1)=P(t)+c,S(1), 3)

where ¢, is a positive parameter that relates the variation in
price and excess demand

St =) X(a1). (4)
a=1

The amounts of assets A(a, t) and money M(a, t) owned
by the agents are updated assuming that their entire supply
or demand has been fulfilled. The wealth of one agent is the
sum of its money and the value of its assets. In what follows,
we call wealth variation at time ¢ the difference between the

wealth at time ¢ and the initial wealth.

II1. DIFFERENTIAL EQUATION APPROXIMATION
From Egs. (1), (3), and (4), we find, after some algebra,
ne,c, Py
1 —nc,(cs + CSA)7

(&)

1 —ncy(c; +¢)
1 — ney (S + ¢,A)

Pit+1)= P(t) +
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FIG. 1. Differential equation approximation. Comparison of
price evolution computed by the agent-based model (solid line) with
its differential equation approximation (dashed line) for n = 101
and ¢, = 0.001. The parameters c,(a) = 1 and ¢,(a) = 0.01 are the
same for all agents. Values of P,(a) are distributed from 9 to 11
with step 0.02; here, they do not vary in time. Values of A(a) are
distributed between —0.1 and 0.1 with step 0.002. The curves show
good agreement.

where

a= 1Y@ w1y ew

Cy = — c(a), ¢ =— cr-(a),
na:l na:l
1 < I,

GA =) a@h@), P == c(a)P(a). (6)
n n
a=1 a=1

Equation (5) allows us to write
P+ 1) = P@) = yily, — P(1)], @)

where

(Fr - Cs_A)nCp CrPr

= — = — 8)
I — nc,(cs + csA) s Cr — CsA (

Y1

To get some insight into price dynamics, the differential equa-
tion

d
—P@) =yily, — P@)] &)
dt

can be used as an approximation of Eq. (7). The solution reads

P(t) =y, + [P(0) — y2le”™". (10)

Note that the differential equation parameters are functions
of the agent-based model parameters, which allows a fair
comparison between the results from both sources.

Figure 1 compares this solution with the price evolution
from the agent-based model, showing good agreement. In
what follows we choose nc,(c; + ¢;A) < 1, which is related
to the low responsiveness of (a) the price to excess demand
and (b) the agent’s behavior to the estimated next price. This
guarantees a positive denominator in the expression of y;.
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If we also set a relatively high fundamentalist influence on
agents’ decisions (¢, > c;A), positive y; and y, are assured.
Under such conditions, the equilibrium solution P(¢) = y; is
positive and stable. If all agents accurately estimate the price
at the next time step [A(a) = 0] and perform the same funda-
mentalist valuation [P,(a) = P, fora =1, 2, ..., n], the price
tends asymptotically to the reference price. The reciprocal of
y) defines a timescale for the price stabilization process. The
increase in the parameter ¢, is a factor that leads to the de-
crease in this time. In all simulations described here, we chose
agent-based model parameters that lead to positive and stable
price equilibrium solutions and price stabilization timescales
that did not exceed the mean time between reference price
changes.

IV. SIMULATIONS

We explore the model in different configurations refer-
ring to distinct investor profiles and information manipulation
skills. In all the simulations, we assume agents with satisfac-
tory competence to assess the fundamental price and predict
the price of the next time step. Thus the values of P.(a)
and A(a) were chosen so that the maximum errors in such
estimates are 10% of the accurate value, i.e., one order of
magnitude smaller.

Wealth distribution is examined. We do not set initial val-
ues for the amount of money and assets owned by agents. We
focus attention on the difference between the agent’s wealth
at each time step and its initial wealth. Unlimited resources
are assumed: as a consequence, the agent is always able to
operate, regardless of the losses it has suffered during the
simulation.

We look into the model’s ability to produce price series
with nontrivial statistics typical of empirical financial data,
focusing on multifractal scaling and heavy tails in return
distributions. Inverse cumulative distribution functions of nor-
malized returns were built to examine the heavy tails. The
normalization corresponds to subtracting the mean from each
return and dividing the result by the standard deviation. Mul-
tifractal scaling was investigated through generalized Hurst
exponents. The Hurst exponent H is a tool to analyze long-
term memory [49]. Values of H above (below) 0.5 are found
in persistent (antipersistent) series; if H = 0.5, there is no
trend. Fractal behavior is associated to the computation of H.
Multifractal scaling is made explicit through the singularity
spectrum [50], which is attained from generalized Hurst expo-
nents H(g) (g is a parameter that assumes the value ¢ = 2 for
the canonical Hurst exponent). Here, the singularity spectra
were performed with g ranging from —3 to 3.

In all scenarios described below, we found heavy-tailed
return distributions. This stems from the tendency of the dy-
namics to seek a price that depends on the agent’s reference
prices, demonstrated by the differential equation approxima-
tion. If we choose the model parameters so that the timescale
for such convergence is small (see Sec. III), large returns arise
after each change in reference prices. These returns occur in
many timescales and populate the heavy tails. Multifractal
scaling is also present for the simulations explored here. We
found significant singularity spectra widths for all original
series and a relevant width decrease for each corresponding
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FIG. 2. Three homogeneous sets. A total of 303 agents were
grouped into three sets of 101 elements, within which the agents’
parameters do not vary. In set 1, agents are driven only by the
reference price [c,(a) =5 and c¢,(a) = 0] and, in set 2, only by
the next step price [c,(a) = 0 and c;(a) = 1]; in set 3, both prices
influence the agents [c,(a) = 5 and c¢,(a) = 1]. The initial price is
P(0) = 10. The reference price is the same for all agents affected by
it [P.(a) = P,]. It starts at P, = 10 and at each time step can change
with a probability of 0.04. The logarithm of such variation follows a
Gaussian distribution: the new value is computed by multiplying the
current one by exp(n/100), where n is a random variable with stan-
dard normal distribution. Agents guided by the price of the next step
predict it accurately [A(a) = 0]. The parameter that relates excess
demand to price variation is ¢, = 3 x 107*. The price dynamics is
given in (a) and the corresponding returns in (b). In (c), we present
the evolution of wealth variation for a typical agent of set 1 (blue
line), set 2 (red line), and set 3 (black line). Singularity spectra
are displayed in (d): blue dots correspond to the original series and
red dots to the shuffled ones. The dots in (e) represent the inverse
cumulative distribution of normalized returns; for comparison, the
dashed line gives the Gaussian profile.

shuffled series. Such behavior, which evinces nonlinear corre-
lations in the original series, may also be associated with price
convergence to the stable value after changes in reference
prices. During this process, clustering of high returns is ob-
served, which leads to those correlations. Such stylized facts
are often described in the examination of empirical financial
data. They are related to augmented variations in traders’
wealth and therefore increased risk.

In Fig. 2, three groups of agents are assumed: one is driven
only by the reference price [c,(a) # 0 and ¢;(a) = 0]; another
is ruled just by the estimated value for the next time step
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FIG. 3. Uncertainty in the fundamental analysis. Market dynamics for n = 101 agents driven by both fundamental analysis [P,(a)] and
short-term expectations [Py(a)]. The simulation was performed with c¢,(a) = 1 and c¢,(a) = 0.01 for all agents, and ¢, = 0.001. The initial
price is P(0) = 10. The reference prices take values equally spaced between 0.9P,. (for the agent with index @ = 1) and 1, 1P,. (for the agent
with index a = 101), according to P,(a) = P,.[0.9 + (a — 1)0.002], where P,. is a central price that begins at P, = 10 and can change at each
time step with probability 0.04. The logarithm of such variation follows a Gaussian distribution: the new value is computed by multiplying
the current one by exp(n/100), where 7 is a random variable with standard normal distribution. The agents accurately predict the next step
price [A(a) = 0]. Price evolution is given in (a) and the corresponding returns in (b). In (c), we present the wealth variation in time for each
agent. In (d), dots represent the mean of the wealth variation computed over the whole simulation period; the upper (lower) line displays the
mean plus (minus) the standard deviation. Singularity spectra are displayed in (e): blue dots correspond to the original series and red dots to
the shuffled ones. The dots in (f) represent the inverse cumulative distribution of normalized returns; for comparison, the dashed line gives the

Gaussian profile.

[c,(a) = 0 and ¢ (a) # 0]; the third takes both factors into ac-
count [c,(a) # 0 and c;(a) # 0]. The agents influenced by the
next step price forecast it accurately [A(a) = 0]. The refer-
ence price is the same for all agents affected by it [P.(a) = P,].
When not null, the parameters c¢,(a) = ¢, and c4(a) = ¢, do
not change with the agent. Therefore, the behavior of agents
does not vary within each group. In Figs. 2(a) and 2(b), price
and return dynamics are shown; the wealth evolution for one
agent of each group is found in Fig. 2(c): it is easy to see
the relationship between wealth and price movements. Much
of this relationship concerns the valuation and devaluation
of assets owned by agents. The agents that employed the
reference price (fundamentalist assessment) for their decision
earned more than the ones focused only on the next step. The
agents that utilized both pieces of information were the most
successful. The fundamental assessment and the forecast for
the next step are evaluations of the future price referring to
different timescales. Operating based on the former tends to
produce gains that go along with the approximation to the
reference price, which occurs in several time steps; trading
according to the latter aims at gains concerning the move-
ment of each step. The absence of errors in such estimations
makes them more relevant to the growth of agents’ wealth.
Although the fundamentalist evaluation was more effective for

wealth accumulation, the variation of the model parameters
can change this outcome. On the other hand, it is reasonable to
expect that agents employing all available information tend to
have the best performance, which occurred in our exploration.
Figure 2(d) displays the singularity spectrum. The width
found for the original price series is a signature of multifractal
behavior; the relevant reduction in width for the shuffled series
indicates that it comes mostly from nonlinear correlations. In
Fig. 2(e), we show the normalized returns inverse cumulative
distribution function. The heavy tail becomes explicit from the
comparison with the Gaussian profile.

Figure 3 shows the results of a simulation where all the
agents are influenced by both the reference price and the
price of the next time step [c,(a) # 0 and c,(a) # 0]. All
agents evaluate the next price accurately [A(a) = 0], but they
differ concerning the fundamental reference price. The values
of P.(a) are symmetrically distributed around a central price
which randomly changes from time to time. Price and return
series are displayed in Figs. 3(a) and 3(b), respectively. Fig-
ure 3(c) shows the wealth variation dynamics of each agent.
The reference price of the agent in the middle of the heatmap
(agent 51) is the central price. Moving towards the top of the
chart (from agent 52 to 101), the reference price increases;
moving towards the bottom (from agent 50 to 1), the reference
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FIG. 4. Uncertainty in the short-term forecast. Market dynamics for n = 101 agents driven by both fundamental analysis [P,(a)] and
short-term expectations [Ps(a)]. The simulation was performed with c,(a) =1 and ¢,(a) = 0.01 for all agents and ¢, = 0.001. The initial
price is P(0) = 10. The reference price is the same for all agents [P,(a) = P,]. It starts at P, = 10, and at each time step can change with a
probability of 0.04. The logarithm of such variation follows a Gaussian distribution: the new value is computed by multiplying the current
one by exp(n/100), where 1 is a random variable with standard normal distribution. The next time step price prediction is imperfect: A(a)
varies from —0.1 (for the agent with index a = 1) to 0.1 (for the agent with index a = 101 ), according to A(a) = —0, 1+ 0, 002(a — 1).
Price evolution is given in (a) and the corresponding returns in (b). In (c), we present the wealth variation in time for each agent. In (d), dots
represent the mean of the wealth variation computed over the whole simulation period; the upper (lower) line displays the mean plus (minus)
the standard deviation. Singularity spectra are displayed in (e): blue dots correspond to the original series and red dots to the shuffled ones.
The dots in (f) represent the inverse cumulative distribution of normalized returns; for comparison, the dashed line gives the Gaussian profile.

price decreases. By the comparison of Figs. 3(a) and 3(c),
one can see that price rising (falling) favors wealth accumu-
lation for the agents with higher (lower) reference prices; the
magnitude of the wealth variation increases when we move
away from the center. Agents near the center experience a
much lesser variation. This is confirmed by Fig. 3(d), which
exhibits the mean and standard deviation of the wealth varia-
tion computed over the whole simulation period. While the
average values are close for all agents, the standard devia-
tion, which may be associated with risk, grows substantially
for agents whose reference prices are further away from the
price center. To understand this result, consider, for example,
that the reference price has increased. Agents who estimate
the fundamental price above the accurate value maintain a
momentary advantage, as they have already been operating
according to a higher reference price. Agents with valuations
below the accurate value have a symmetrical disadvantage.
When the reference price decreases, the advantage is reversed.
As this process is random, sometimes one group of agents is
favored and sometimes the other group benefits. The singular-
ity spectra displayed for the original and shuffled price series
in Fig. 3(e) indicate multifractal behavior originating mainly
from nonlinear correlations. The inverse cumulative distribu-
tion function of the normalized returns presents a heavy tail,
as can be seen in Fig. 3(f).

In the simulation presented in Fig. 4, both the reference
price and the price of the next time step affect the agent’s be-
havior [c¢,(a) # 0 and c4(a) # 0]. The reference price, which
changes randomly from time to time, is the same for all agents
[P-(a) = P,]. The evaluation of the next price, in turn, varies
with the agent: A(a) goes from —0.1 (for agent 1) to 0.1
(for agent 101) through equally spaced steps. In this scenario,
agent 51 gets the higher prediction accuracy [A(51) = 0].
Figures 4(a) and 4(b) show the price and return series, respec-
tively. Figure 4(c) exposes the wealth variation of the agents.
The relation between wealth variation and price movements
can be seen by comparing Figs. 4(a) and 4(c): the rapid price
increase (decrease) favors the agents that predict, for the next
price, a value above (below) the accurate one. A smaller
wealth variation is found for the agents near the center of the
heatmap, which are the ones with higher forecast skills. This
can also be seen in Fig. 4(d): although the average variation
of wealth is almost the same for all agents, the standard
deviation increases when moving away from the central agent.
Forecast accuracy is mainly related to reducing risk rather
than increasing gain. The situation here is analogous to the
previous case: variations in reference prices are at the origin
of momentary advantages or disadvantages for agents with
inaccurate evaluations. The multifractality in the price series
mostly originating from nonlinear correlations is evidenced in
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FIG. 5. Uncertainty in both fundamental analysis and short-term forecast. A total of 303 agents were grouped into three sets of 101

elements. Set 1 consists of agents from @ = 1 to a = 101, which consider both P,(a) and Ps(a) [c,(a) = c;(a) = 1]. In this set, the reference
prices take values equally spaced between 0.9P,. (for the agent with index a = 1) and 1, 1P,. (for the agent with index a = 101), according to
P.(a) = P..[0.9 4+ (a — 1)0.002], where P,. is a central price that begins at P,. = 10 and can change at each time step with probability 0.04.
The logarithm of such variation follows a Gaussian distribution: the new value is computed by multiplying the current one by exp(n/100),
where 7 is a random variable with standard normal distribution. The next time step price prediction is imperfect: A(a) varies from —0.1 (for
the agent with index a = 1) to 0.1 (for the agent with index a = 101), according to A(a) = —0, 1+ 0,002(a — 1). Agents from a = 102
to a = 202 integrate set 2, where agents are only influenced by P,(a) [c,(a) = 1 and c;(a) = 0]. The values of P,(a) in this group are the
same as in set 1: P,(a + 101) = P.(a), fora =1, 2, ..., 101. Set 3 is composed of agents from a = 203 to a = 303; they are driven just by
Pi(a) [c,(a) = 0 and c,(a) = 1]. The values of A(a) are distributed similarly to those of set 1: A(a + 202) = A(a), fora=1,2,...,101.
Price begins at P(0) = 10; its evolution is governed by excess demand according to ¢, = 3 x 107*. Price evolution is given in (a) and the
corresponding returns in (b). In (c), we present the wealth variation in time for each agent. In (d), dots represent the mean of the wealth
variation computed over the whole simulation period; the upper (lower) line displays the mean plus (minus) the standard deviation. Singularity
spectra are displayed in (e): blue dots correspond to the original series and red dots to the shuffled ones. The dots in (f) represent the inverse

cumulative distribution of normalized returns; for comparison, the dashed line gives the Gaussian profile.

Fig. 4(e). The heavy tail of the returns distribution is made
explicit in Fig. 4(f).

Figure 5 presents the results of a simulation involving the
two types of uncertainty—the one concerning the reference
prices, P.(a), and the one concerning the forecasted prices
for the next time step, Ps(a). We consider a universe of 303
agents divided into three sets. Agents with indexes froma = 1
to a = 101 (set 1) take into account both P.(a) and P;(a)
[c,(a) # 0 and cs(a) # 0]. In this group, the values of P.(a)
are distributed symmetrically around P,(51), taken as a central
reference price which varies from time to time at random. As
we move away from a = 51, the prices P,(a) move away from
P.(51) at fixed steps. Similarly, the A(a) are symmetrically
distributed around A(51) =0, departing from this central
value taking negative values for a between 1 and 50 and
positive values for a between 52 and 101. From a = 102
to a = 202 (set 2), the agents are only influenced by P,(a)
[c,(a) # 0 and cy(a) = 0]. The values of P,(a) in this group
are the same as in the previous one: P.(a + 101) = P,(a),
fora=1,2,...,101, centered in P.(152) = P.(51). Agents
from a = 203 to a = 303 (set 3) are, in turn, directed only

by Ps(a) [c,(a) =0 and c(a) # 0]. The values of A(a) are
distributed around A(253) = 0 similarly to those of set 1:
A(a+202) = A(a), fora=1,2,...,101. Figures 5(a) and
5(b) present the dynamics of prices and returns. Figure 5(c)
shows the evolution of wealth variation for the agents of the
three sets. Increases (decreases) in the price are associated
with positive variations in the wealth of agents with higher
(lower) both reference and next-step prices. Such variations
are greater for the agents that use both pieces of information
(set 1). Figure 5(d) shows that the averages of wealth vari-
ation (calculated over the simulation period) fluctuate little
between agents. The standard deviations, in turn, increase
in each set as we move away from its central agent. This
increase is more pronounced in set 1. Standard deviation is
associated with risk. When we depart from the central element
of each set, valuation inaccuracies increase, which leads to
greater risks. Such results can be understood the same way
as in previous cases. When reference prices change, agents
with inaccuracies pointing in the direction of that change are
momentarily benefited and those with errors in the opposite
direction are momentarily harmed. This increases the range
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of variations in wealth, but since changes in both directions
occur with equal probability, average wealth does not vary
significantly within each set. This effect is stronger in set
1, where short- and long-term motivations drive the agents
to buy and sell larger asset amounts. On average, we find
greater earnings for the agents of set 1: taking the mean of
the wealth variation over all time steps and all agents, we
get 4.2429 for set 1, 3.9858 for set 2, and 0.2571 for set 3.
Such averages are not noticeable in Fig. 5(d) because the scale
of the standard deviations, which determine the figure scale,
is much larger. Nevertheless, they indicate greater gains for
the agents that utilize P,(a) and Ps(a), followed by those that
employ only P,(a). The agents influenced just by Py(a) present
the lower average profits. Although such gains are irrelevant
when compared to the risks (standard deviations), these results
are in line with those regarding Fig. 2(c). Despite the presence
of errors, the agents’ estimations are relevant for operation, as
the biggest mistakes are 10% of the accurate values. Thus it is
expected that agents who use both pieces of information tend
to perform better than the other, as we found. The advantage
of agents motivated by long-term expectations over the ones
guided by the short term is not inevitable. This depends on
the parameters chosen for the model. Nonlinear correlations
in the price series are evidenced by the singularity spectra in
Fig. 5(e). Heavy tails in the distribution of returns are made
explicit in Fig. 5(f).

V. CONCLUSION

The model studied here involves agents motivated by two
types of information: the price predicted for the next time
step and the price derived from a fundamental valuation.
Such estimates proved to be relevant to the agents’ earnings:
simulations indicate that the agents that employ both pieces
of information have, on average, the best performance with
regard to the variation of their wealth. Different information

manipulation skills were modeled by introducing errors in the
evaluation of both prices. The average wealth of agents, calcu-
lated over time, is not significantly influenced by such errors,
but the standard deviation is. Thus the major consequence of
lower accuracy is increased risk. The simulations also yielded
price series with multifractal behavior and heavy-tailed return
distributions, which are nontrivial statistics usually found in
financial data.

Among the studied scenarios, the last one, which com-
prises the agents with the most varied motivations and skills,
seems to be the most plausible. Even there, immense simpli-
fication is evident. Adding new ingredients to the model is a
way to increase its likelihood. Some possibilities along these
lines are considering other kinds of agents, such as momentum
traders, or the simultaneous negotiation of different types of
assets. In actual markets, agents own limited resources, often
having to stop trading after heavy losses. Introducing such
limitations probably leads to different wealth dynamics than
those displayed here. Model developments like these make its
exploration more complex, given the increase in the number
of parameters.

In general, we start by considering agents that interact
in a credible way to compose a market model. Its vali-
dation can be performed by comparing its outcomes with
what is expected or observed in actual cases. Some paral-
lels involve qualitative attributes. In this context, the results
that indicate that agents who use more information earn
more and that increased evaluation errors lead to greater
risk are in line with reasonable expectations. From a quan-
titative perspective, statistics synthesized by the model are
compared with stylized facts typical of financial markets.
This was carried out through the analysis of return distri-
butions and multifractal scaling. The agreement observed is
an indication that the model components keep some corre-
spondence with processes that effectively take place in actual
markets.
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