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Critical behavior of the diffusive susceptible-infected-recovered model
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The critical behavior of the nondiffusive susceptible-infected-recovered model on lattices had been well
established in virtue of its duality symmetry. By performing simulations and scaling analyses for the diffusive
variant on the two-dimensional lattice, we show that diffusion for all agents, while rendering this symmetry
destroyed, constitutes a singular perturbation that induces asymptotically distinct dynamical and stationary
critical behavior from the nondiffusive model. In particular, the manifested crossover behavior in the effective
mean-square radius exponents reveals that slow crossover behavior in general diffusive multispecies reaction
systems may be ascribed to the interference of multiple length scales and timescales at early times.
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I. INTRODUCTION

Nonequilibrium systems exhibiting active-to-absorbing
phase transitions are fundamentally important for understand-
ing a large variety of natural phenomena [1–6]. Among
the relevant models, the susceptible-infected-recovered (SIR)
model for the spread of epidemic disease in an ensemble of
living beings [7], or the spread of a nonconserved agent in
broader contexts (e.g., forest fires [8], chemical reactions [9],
and sociology [10]), has long been extensively studied. This
model and its numerous variants have been applied to the most
varied forms of epidemics [11], and more recently have been
attracting a surge of attention due to the COVID-19 pandemic
[12,13].

The essence of the model assumes that the individuals can
be categorized into susceptible (S), infected (I), and recov-
ered (R) states so that the unidirectional process S → I → R
occurs, upon the assumption that the infected agent can not
pop up spontaneously but transmits the disease exclusively

upon encounter of S − I pairs (S + I
λ−→ 2I), while infected

individuals recover (I
μ−→ R) and cannot revert to a suscepti-

ble state in any rate. By assuming perfect immunization, the
SIR process, which is also often referred to as the general
epidemic process (GEP) [14], is deeply connected to the bond
percolation process both on lattices [14–18] and on networks
[19]. Owing to the competition of the two sub-processes,
the SIR process manifests a continuous nonequilibrium phase
transition that separates the infection dominant regime, where
the epidemic spreads infinitely in the thermodynamic limit,
and the recovery dominant regime, where the system becomes
trapped in an absorbing state after some time, characterizing
the extinction of the epidemic.

In the past few decades, voluminous numerical simulation
[14,20–25] and field-theoretic [16–18] analyses have pro-
foundly established the critical properties of this transition
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on d-dimensional lattices to be exactly mapped to the dy-
namical isotropic percolation (DIP) universality class, except
for a subtle difference in their respective local cluster growth
probabilities [24]. Moreover, the DIP fixed point remains
stable even if partial immunization is implemented, until the
model is tuned into the SIS model which belongs to the
directed percolation (DP) class [16,20,22,26], or, according
to the Harris [27] or Harris-Barghathi-Vojta [28] criteria, if
certain quenched spatial disorders or topological disorders are
incorporated [29], as long as the transition is not destroyed
[30] and the dimensionality is not altered [13].

As a crucial ingredient for mapping to the DIP, all the
previous studies tacitly assumed that at least the immune
individuals are immobile [31] which in turn enables great
simplifications in problem formulation [14,16–18]. However,
similar to the pair contact process with diffusion (PCPD) [32]
and the diffusive epidemic process (DEP) [33], the effects of
diffusion shouldn’t be overlooked [13,34], because realistic
immune individuals indeed hop around to augment the mix-
ture of the population, so that such model could find wide
applications in epidemic spreading among wild grazing and
forest animals [35] as well as the spread of human diseases
such as whooping cough [36] and COVID-19 (when lock-
down measures are imposed to cut out most long-range links
and the population is restricted to local mobility), or even in
autocatalytic reactions with catalyst degradation [9], to name
just a few. Already after taking into account spatial inhomo-
geneities with the local densities and the diffusion terms for
the SIR rate equation

∂t S(x, t ) = DS∇2S(x, t ) − λS(x, t )I (x, t ),

∂t I (x, t ) = DI∇2I (x, t ) + λS(x, t )I (x, t ) − μI (x, t ),

∂t R(x, t ) = DR∇2R(x, t ) + μI (x, t ), (1)

it has been shown that the dynamic behavior of such coupled
(partial) differential equations depends on the diffusion rates
for both systems with homogeneous [36] and inhomogeneous
[37] couplings.

2470-0045/2023/107(1)/014303(9) 014303-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1952-8599
https://orcid.org/0000-0001-9259-5352
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.014303&domain=pdf&date_stamp=2023-01-19
https://doi.org/10.1103/PhysRevE.107.014303


SHENGFENG DENG AND GÉZA ÓDOR PHYSICAL REVIEW E 107, 014303 (2023)

What is more, inclusion of diffusion for immune agents
may also provoke nontrivial modifications to the critical prop-
erties, as remarked by Janssen et al. in Ref. [38]. First and
foremost, at criticality, the recovered debris left by starting
from a single infectious seed build up a fuzzy pattern, in
stark contrast to the fully connected percolating cluster in
the nondiffusive case (see Fig. 1). More profoundly, from a
field-theoretic point of view, after casting “I” and “R” into the
coarse-grained I (x, t ) and R(x, t ) fields [39] in the continuum
limit, along with the corresponding response fields Ĩ (x, t ) and
R̃(x, t ), the ensuing bosonic field theory action [18] (see the
Appendix for the derivation)

A =
∫

dd xdt

{
Ĩ
[
∂t − DI (τ − ∇2) + g

2
(2R − Ĩ )

]
I

︸ ︷︷ ︸
DIP

+ R̃(∂t − DR∇2)R − R̃I
}
, (2)

where τ denotes the control parameter, renders the duality
symmetry

Ĩ (x, t ) ↔ −R(x,−t ) (3)

no longer held. Note that the very existence of the DIP transi-
tion is induced by the spontaneous breaking of this symmetry
[16], which arises only if DR = 0 [16,18] (see Sec. II). Once
diffusion for the immune agents sets in, the duality symmetry
associated with this local accumulation is lost. The full action
then describes a reaction-diffusion-type model involving the
active species I and the inert species R: I + ∅ → 2I , I → R,
in conjunction with individual diffusion of rates DI and DR

and reactions for particle number restrictions in a bosonic
representation; see Eq. (A1).

While the rate equation system (1) yields qualitatively
good predictions for the evolving behavior of an epidemic
process, it still amounts to a mean-field treatment in which
correlations in the infection interactions had been factorized.
Hence, it ignores spatiotemporal fluctuations and correlations
of the reaction processes that increasingly become crucial for
low-dimensional systems near criticality [1]. To fully account
for the effects of fluctuations and correlations when individual
diffusion is also present in the SIR model, one can resort
either to a field-theoretic analysis [6,16,18], which is usu-
ally quite challenging for more complicated models, or to
a straightforward implementation of the stochastic reactions
via simulations [14,24]. In this work, we will take the latter
approach to study the critical properties of the diffusive SIR
(DSIR) process on a two-dimensional lattice. Field theory
action is primarily introduced to give a more profound moti-
vation for this study. Yet, we hope the numerical results could
be beneficial to further advancing field-theoretic analyses as
well.

The reminder of this paper is organized as follows: In the
next section, we give a detailed exposition on the violation
of the duality symmetry in the DSIR. We then detail our
simulation method in Sec. III and compute various critical
exponents both in the dynamical regime and in the stationary
state in Sec. IV. Finally, Sec. V summarizes this work and
provides a brief outlook.

II. VIOLATION OF THE DUALITY SYMMETRY

The response field R̃(x, t ) only appears linearly in the ac-
tion (2). Hence, it can be integrated out from the path integral
to retain only the DIP part of action (2), which is equivalent to
computing the functional derivative δA

δR̃ = 0 [6] that leads to a
constraint for the R(x, t ) field

∂tR = DR∇2R + I. (4)

Without the presence of diffusion for the immune agents, we
simply have

I (x, t ) = ∂tR(x, t ) and R(x, t ) =
∫ t

−∞
dt ′I (x, t ′), (5)

with which the DIP part of the action (2) can be further
manipulated through integrating by parts and becomes [16]

ADIP =
∫

dd xdt Ĩ
[
∂t − DI (τ − ∇2) + g

2
(2R − Ĩ )

]
∂tR

=
∫

dd xdt

{
∂tR[−∂t + DI (τ − ∇2)]Ĩ

− g

2
R2∂t Ĩ − g

2
Ĩ2∂tR

}
. (6)

Now we apply the duality transformation Eq. (3)
[Ĩ(x, t ) ↔ −R(x,−t ) = − ∫ −t

−∞dt ′I (x, t ′)] on ADIP to sub-
stantiate that the DIP action is invariant after transformation:

A′
DIP =

∫
dd xdt

{
(∂t [−Ĩ (−t )])[−∂t − DI (τ − ∇2)]

× [−R(−t )] − g

2
[−Ĩ(−t )]2(∂t [−R(−t )])

− g

2
[−R(−t )]2(∂t [−Ĩ (−t )])

}

t ′=−t=
∫

dd xdt ′
{
∂t ′R(t ′)[−∂t ′ + DI (τ − ∇2)]Ĩ(t ′)

− g

2
Ĩ(t ′)2∂t ′R(t ′) − g

2
R(t ′)2∂t ′ Ĩ(t ′)

}

Eq. (6)= ADIP, (7)

where in the second equation we have again employed
integration by parts.

The above derivation demonstrates that, after integrating
out the response field R̃, it is crucial for Eq. (5) to be strictly
valid for the DIP part of action (2) to be symmetric under
the duality transformation. According to Eq. (4), implement-
ing diffusion for the immune agents immediately spoils this
requirement.

III. SIMULATION METHOD

To verify the effects of diffusion on the critical prop-
erties, in this paper, we perform large-scale Monte Carlo
simulations for the simplest DR = DI = DS = D case on a
two-dimensional square lattice, with each site being occupied
by exactly one individual. Since individuals constantly jiggle
around after the incorporation of diffusion, efficient simula-
tion methods that had been exploited for the nondiffusive SIR
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(hereafter referred to as SIR), such as traversing over a linked
list for active agents [22], are not feasible in a straightforward
way. Henceforth, to reduce the simulation overhead, we resort
to the sequential updating scheme [1,13]. At each Monte Carlo
(MC) time step t , it is preferable to implement reactions and
individual diffusions into two separate sequential sweeps to
prevent diffusion events from interfering with reaction events.
The system is then updated as follows.

(1) Two arrays x and X (initially, x = X) of size N =
L × L, representing the current and the future states of the
system, are maintained to trace the updates. At each site, the
state variables xi and Xi can assume one of the S, I , and R
states. During the reaction sweep, depending on the state value
Xi of a selected site i, the state is updated either from Xi = S
to Xi = I with probability λ if the selected nearest neighbor
j for contact is in the state x j = I , or from Xi = I to Xi = R
with probability μ = 1 − λ; otherwise, Xi remains intact.

(2) In the diffusion sweep, we simply swap the states of
a selected site i and its randomly selected neighbor j with

respect to identical probability D: Xi
D↔ Xj . One caveat to note

is that the conventional rightward-downward sweep tends to
cause a biased diffusion towards the right and the down di-
rections. To counteract this artifact so that individuals diffuse
unbiasedly, the lattice is swept alternately in a forward manner
for odd time steps, and in a backward manner for even time
steps.

(3) Set x = X after each cycle of the above two sweeps
and increase t by one to start a new updating cycle, until the
prescribed/conditioned simulation time is reached.

In principle, the artifact in step 2 can be circumvented
with a greater effort by matching the pairs for swapping
through a domino tiling [40], permitting a parallel update
of the system. Nevertheless, the entirety of the above up-
dates should be considered as happening simultaneously for
each time step. As a side remark, note that critical prop-
erties of a system are governed by the emerged long-range
correlations and are insensitive to microscopic details, as
exemplified by the bosonic representation of the DSIR in
the Appendix, in which a site can even contain more than
one individual. In this respect, any mechanism that provides
isotropic local mobility of the individuals can be defined as a
valid diffusion action, and the above implementation of diffu-
sion for our fully occupied lattice via simple state swapping
is justified.

To simulate the critical dynamics of absorbing phase tran-
sitions, there are two conventional ways of initializing the
runs, i.e., homogeneously filling the lattice with the active
agents or starting each run from a single active seed [1]. Due
to the irreversible nature of the dynamics, the former only
amounts to the relaxational process for recoveries. Therefore,
it is customary to study the spreading dynamics by initializing
the lattice with a single infectious seed [1,5,13,41] placed at
the center of the lattice; cf. the typical clusters obtained at
criticality shown in Fig. 1. The growth of clusters is charac-
terized by the number of I individuals NI (λ, t ); the survival
probability Psur (λ, t ) [42], with both quantities averaged over
all runs; and the mean-square radius R2

I (λ, t ), averaged over
survival runs. Simulations were terminated if the distance of
any I or R individual away from the center exceeds L/2.

FIG. 1. Snapshots for the critical SIR process with diffusion rates
D = 0, 0.5, and 1 on a 500 × 500 lattice. The S and I species are
colored in white and black. The rainbow spectrum beared by the
R species, from blue to red, linearly marks their relative generating
time.

Above the transition point λc, after denoting � = λ − λc, the
following scaling relations hold [5,18]:

NI (λ, t ) = t θI N̂I (�ν‖t ), (8a)

Psur (λ, t ) = t−δP̂sur (�
ν‖t ), (8b)

R2
I (λ, t ) = tZI R̂2

I (�ν‖t ), (8c)

giving rise to the power laws at criticality,

NI (t ) ∼ t θI , Psur (t ) ∼ t−δ, R2
I (t ) ∼ tZI , (9)

where θI , δ, and ZI = 2/zI = 2ν/ν‖ are spreading exponents,
whilst ν and ν‖ are related to the correlation length and
the characteristic time, diverging as ξ ∼ �−ν and tc ∼ ξ zI ∼
�−ν‖ . For two-species systems, it is also appropriate to define
the counterparts NR(t ) ∼ t θR and R2

R(t ) ∼ tZR , for the R species
[43].

IV. CRITICAL EXPONENTS

In this section, we show that after a crossover the dynami-
cal spreading exponents of the DSIR consistently deviate from
the SIR/DIP, resulting in an altered hyperscaling relation. In
addition, finite-size scaling analyses of the stationary state
further corroborate the main conjecture.

As shown in Fig. 2(a), in stark contrast to the SIR, in which
a pure power law is manifested for NI (t ) at λc, the DSIR
process exhibits a crossover before an asymptotic scaling
regime is approached. Owing to the competition of diffusive
spreading and local reactivity, this crossover can be separated
into two stages: first, the initially abundant S content renders
the kinetic to be reaction-limited and once the established
correlations exceed the lattice spacing at t ∼ 10, the enhanced
mixture of S and I populations kicks in a boosted spread;
then at large times, the produced R debris effectively dilute
the local reactant densities and the system becomes diffusion-
limited [44]. In finite systems, this process goes on until
reachable S individuals are depleted. The observed asymptotic
scaling behavior permits one to estimate the transition point λc

by observing the evolution of the local slope, i.e., the effective
exponent

θ eff
I =

∣∣∣∣ ln [NI (t )/NI (t/b)]]

ln(b)

∣∣∣∣, (10)

with b > 1 [45]; similarly, θ eff
R , δeff , Zeff

I , and Zeff
R can be

defined. The transition point is then identified by spotting the
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FIG. 2. Growth of the I population NI (t ) from a single infectious
seed on a L = 4001 square lattice in the vicinity of criticality for
(a) D = 1, and the evolution of the corresponding effective expo-
nent θ eff

I in the inset, in panel (b) for D = 0, and in panel (c) for
D = 0.5. For comparison, the red solid line in panel (a) depicts the
critical NI (t ) result for D = 0. The critical points, emphasized by the
thick curves, are estimated to λc 
 0.4058(1), λc 
 0.3806(1), and
λc 
 0.3533(1) for D = 0, D = 0.5, and D = 1, respectively. The
horizontal dashed red line indicates the DIP value; cf. Table I. All
results were averaged over 104 independent runs.

λ value that gives rise to an asymptotically stationary θ eff
I .

Figure 2 illustrates that, on the one hand, the transition point
decreases with increasing diffusion rates; on the other hand,
while θI ≈ 0.585(10) for D = 0 conceivably recovers the DIP
value, the DSIR exponent value θI ≈ 0.55(2) and 0.56(1) for
D = 0.5 and D = 1 demonstrate a consistent, albeit slight,
deviation from the DIP. This downward shift in θI can be
understood as a consequence of the above-mentioned dilution
effect which mitigates the infections at the infectious front to
some extent.

Figure 3 further unambiguously shows departures of other
DSIR spreading exponents from those of the SIR, which again
align with the DIP. In particular, on top of θ eff

I , which al-
ready manifests an evident crossover behavior in the DSIR
(cf. Fig. 2), all the remaining effective exponents for DSIR
are displaying even more pronounced crossover behaviors as
compared to the SIR. Hence, NI (t ) is a more apt observable for
critical point estimation, even though it is still quite nontrivial,
similarly to the PCPD, to fully take into account the correc-
tions to scalings [32,46], thereby the exponents also seem
to exhibit a slight dependence on the implemented diffusion
rate [47]; cf. Table I. Yet an important observation to make
is that the effective spreading exponents Zeff

I and Zeff
R , while

closely clinging to each other since early times for D = 0,
only close up their noticeable gap and converge to an identical
value ZI = ZR = Z asymptotically for the DSIR, suggesting
that there is really just one unique set of length scale ξ and
timescale tc, that renders a critical system scale invariant.

FIG. 3. The effective exponents θ eff
R (top), δeff (middle), as well

as Zeff
I and Zeff

R (bottom) vs 1/t for D = 0, 0.5, and 1. The solid
thick lines correspond to the respective critical points. In the bottom
panes, the dashed thick curves represent the critical Zeff

R , while the
dashed black lines extrapolate the effective exponents to 1/t → 0.
The standard DIP values are marked by the horizontal dashed red
lines; cf. Table I.

Since Zeff
I and Zeff

R are related to the effective correlation
exponents, the manifested crossover behavior at early times
can then be ascribed to the interference of multiple length
and timescales, resulting from diffusion (
D ∼ t1/zD = t1/2)
and the cutoffs of the correlation functions 〈I (r, t )Ĩ (0, 0)〉
and 〈R(r, t )Ĩ (0, 0)〉, until the dominant scales ξ and tc are
singled out as t → ∞, masking processes with shorter char-
acteristic length scales and timescales. Note that z = 2/Z <

zD = 2, so the system is superdiffusive and ξ is bound to be
larger than 
D.

The DIP spreading exponents are related by the hyperscal-
ing relation [48]

θI = dZ

2
− 2δ − 1. (11)

Furthermore, the size of the immune cluster should grow
linearly with the linear extension of the cluster as ξ d f ∼ t d f Z/2

in a surviving run, where d f denotes the fractal dimension [8].
By utilizing the hyperscaling relation d f = d − β/ν and the
scaling relation δ = β/ν‖ = βZ/2ν [8,18] (see below for the
definition of β), the average size of the immune cluster for
all runs is then obtained by further multiplying the expression

TABLE I. Critical (and scaling) exponents of the DIP [14,21,25], the SIR (D = 0), and the DSIR (D = 0.5, 1).a

D θI θR δ Z ν‖ β/ν γ /ν

DIP 0.586 1.586 0.092 1.771 1.5057 0.1042 1.792
0 0.585(10) 1.584(10) 0.092(2) 1.771(4) 1.51(1) 0.1040(2) 1.810(2)
0.5 0.56(1) 1.55(1) 0.096(4) 1.780(2) 1.46(1) 0.096(2) 1.764(4)
1 0.55(2) 1.54(1) 0.096(4) 1.780(3) 1.47(1) 0.093(3) 1.755(3)

aUncertainties in the last digit were estimated from the effective exponents for the spreading exponents and from fitting errors for the remaining
ones.
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with the survival probability

NR(t ) ∼ t dZ/2−2δ. (12)

Equations (11) and (12) suggest that θR = θI + 1 
 1.586 for
the DIP. The SIR is naturally in full compliance with these
relations.

Now in the DSIR, although the relation θR 
 θI + 1 still
seems to be valid, Eq. (12) predicts θR ≈ 1.588(9), which is
higher than the obtained values 1.55(1) and 1.54(1), implying
that the scaling relations d f = d − β/ν and/or δ = β/ν‖ =
βZ/2ν utilized for Eq. (12) may not be held for the DSIR.
Nonetheless, by taking into account the dilution effect, the
density deduced from Eq. (12) should be further reduced by a
factor of t−(θI.DIP−θI.DSIR ), leading

θR 
 dZ

2
− 2δ − (θI.DIP − θI.DSIR) ≈ 1.55(2) (13)

to be compatible with numerical values within error margins.
In addition, the absence of the duality symmetry leads to
an apparent violation of the hyperscaling relation Eq. (11)
in the DSIR. To break down this discrepancy, we need to
take into consideration the renormalization corrections to
the naive scaling dimensions, whereupon, when expressed
in terms of an arbitrary timescale T ∼ κ−2/Z , we have
[I] ∼ T −dZ/4−1/2+ρ and [Ĩ] ∼ T −dZ/4+1/2+χ , so that NI (t ) ∼
〈∫ dd xI (x, t )Ĩ(0, 0)〉 ∼ tρ+χ holds, where ρ and χ are the
anomalous dimension of the fields. Furthermore, in field the-
ories with absorbing states, one has [Ĩ] ∼ T −δ [48]. Hence,
given the symmetry Ĩ (x, t ) ↔ − ∫ −t

−∞ dt ′I (x, t ′) which ren-
ders ρ = χ , Eq. (11) immediately follows in the DIP, whereas
in the DSIR, only χ can be eliminated and the hyperscaling
relation is altered to

θI = dZ

4
− δ − 1

2
+ ρ. (14)

Inserting other exponent values, the DSIR value ρ ≈ 0.26(2)
differs from the DIP value ρ = θI/2 = 0.293.

Starting from a seed, the peculiar DSIR dynamical spread-
ing behavior at criticality eventually results in many shattered
remnant clusters (cf. Fig. 1), rather than a fully connected
percolating cluster as in the DIP/SIR [14,24]. Consequently,
the DIP exponents β and γ , associated with the percolation
probability P∞ ∼ |�|β and the mean cluster size S ∼ |�|−γ ,
respectively, are not well defined in the DSIR. Nevertheless,
in the sense of how one infected seed may affect a sizable pop-
ulation, we can define the “mean cluster size” as the average
eventual number of recovered individuals S = 〈NR∞〉 after the
disease dies out, then the definitions for the corresponding
second moment M = 〈N2

R∞〉 and the cumulant U = M/S2

follow subsequently. Furthermore, for systems with a definite
size, the DSIR “percolation probability” P∞ can as well be
understood as the fraction of runs with any I individuals
ever reached the border. Similar to the SIR, these observables
are expected to follow the following finite-size scalings at
criticality

S ∼ Lγ /ν, U ∼ Lβ/ν, P∞ ∼ L−β/ν, (15)

suggesting UP∞ = const.
Figures 4(a) and 4(b) do justify the above finite-size scal-

ings for large system sizes. However, these scalings are

FIG. 4. The finite-size scaling results of (a) U and P∞ (inset),
(b) S, and (c) UP∞; and (d) the data collapse results for NI (�, t ).
The results in panels (a)–(c) were averaged from 104 to 108 runs, and
the results in panel (d) were obtained with L = 2001, averaged over
104 runs.

strongly disturbed by diffusion for smaller system sizes, as
evidently shown by the crossover of UP∞ in Fig. 4(c). To
bridge the dynamical exponents with the stationary scaling
exponents, by utilizing Eq. (8a), we also estimated the expo-
nent ν‖ by collapsing the NI (�, t )t−θI data, for several �s,
to the scaling function N̂I (�ν‖t ) with respect to the rescaled
time �ν‖t . In Fig. 4(d), by fitting all the datasets for different
�s with an eighth-order polynomial, the best estimations for
ν‖ were obtained by minimizing the sum squared error. Col-
lecting the obtained exponent values in Table I, we see that
the DSIR exponents, as well as the deduced exponents ν =
Zν‖/2 ≈ 1.30(1), β ≈ 1.21(1), and γ ≈ 2.29(2), again show
deviations from those of the DIP/SIR: ν 
 4/3, β 
 5/36,
and γ 
 43/18 [14]. What is more, since β and γ are not
defined on connected clusters, the scaling relations [14,18]
δ = β/ν‖ = β/ν × Z/2 and (2β + γ )/νd = 1 also seem to
be violated in the DSIR.

V. SUMMARY

Our simulations and scaling analyses show that the inclu-
sion of diffusion for immune individuals profoundly alters the
critical properties of the SIR/DIP in two dimensions. Distinct
anomalous scaling dimensions emerge due to the absence
of the duality symmetry, leading to an altered hyperscaling
relation. In particular, the effective exponents Zeff

I and Zeff
R

indicate signatures of multiple length scales and timescales
at early times, which qualitatively explain the manifested
crossover behavior. Hence, in addition to the PCPD, which
may be considered a diffusive coupled two-species system
[43] and which also demonstrates a slight exponent change
[47], the DSIR provides another example of how diffusion
may introduce a singular perturbation, characterized by a slow
crossover behavior, to an otherwise well-behaved multispecies
system and as in the PCPD [32,43]. Such perturbation may
lead to even more intricate dynamics if there are more than
one active species. Except for some multispecies directed
percolation processes [6,49], the critical properties of general

014303-5



SHENGFENG DENG AND GÉZA ÓDOR PHYSICAL REVIEW E 107, 014303 (2023)

active-to-absorbing transitions that involve higher-order or
multispecies reactions are still scarcely studied and are as yet
incompletely understood. We hope our work will shed some
light on these fields.

For more realistic epidemiologic modeling, such as in
metapopulation models built from internally strongly con-
nected modules [50], structural disorders are strong enough to
affect the critical properties. It is then interesting to investigate
how critical properties will be affected by diffusion in con-
junction with structural disorders, by constructing long-range
links [13,51].
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APPENDIX: FIELD THEORY AND THE ACTION

In this Appendix, we show how Eq. (2) can be obtained
by mapping the classical master equation of reaction-diffusion
processes onto a field theory action via the Doi-Peliti formal-
ism [52–54] (also see Refs. [6,55,56] for more recent reviews).
To begin with, let us note that the action Eq. (2) serves to
describe the system near the transition, when the I species
is close to extinction so that the density of the I species is
vanishingly small as compared to that of the S species. Since
S individuals are basically everywhere, it suffices to consider
them as a background. Then, similar to the decoupling of
predators from preys near the predator extinction transition
in the Lotka-Volterra model for predator-prey systems [49],
the SIR reactions can be replaced with I → 2I and I → R
by ignoring the existence of the S species. Alternatively and
more straightforwardly, for the conventional full-lattice setup
[14,24], in which every lattice site is occupied exactly by one
individual of S, I or R state, the vast existing S state can be
treated as the “vaccum” state ∅ as in the contact process for the
lattice susceptible-infected-susceptible (SIS) model [5,57].

However, as will become clear later, the Doi-Peliti for-
malism considers particles as “bosonic,” meaning arbitrarily
many particles of either species could occupy a lattice point.
Therefore, in field theory, to prevent local particle numbers
from diverging in the active phase, one can either mimic the
mutual exclusion of particles in simulations by imposing a
hard-core constraint [58] or more heuristically just add the re-
action I + I → I and, without loss of generality, the reaction
I → ∅, to restrict the local particle numbers [49]. We should
remark that retaining either or both of these two reactions
will lead to the same effective field theory. Furthermore, the
reaction I + R → R is added to suppress further productions
of Rs from Is if an R individual is already present at a location.
We then consider the following set of reactions in the bosonic
field theory [18]:

I
λ

�
κ

2I, I
σ−→ ∅, I

μ−→ R, I + R
ν−→ R. (A1)

Henceforth, we mainly follow the derivations in Sec. 2.2
of Ref. [18], filling necessary gaps. Suppose there is no
site occupation number restriction, i.e., we are consid-
ering a “bosonic” system with a configuration {n, m} =
(. . . , ni, . . . ; . . . , mi, . . . ) with ni particles of species I and
mi particles of species R on site i, etc., where ni, mi =
0, 1, 2 . . . . The integer occupation number changes of each
species (I , R) can be accounted for by using the cre-
ation and annihilation operators {â, b̂} and {a, b} that satisfy
the bosonic ladder operator algebra: [ai, a j] = [âi, â j] =
[bi, b j] = [b̂i, b̂ j] = 0, [bi, b̂ j] = [ai, â j] = δi j . Denoting |ni〉
the particle number eigenstate on site i and defining the vac-
uum state through ai|0〉 = 0, the bosonic algebra dictates that
ai|ni〉 = ni|ni − 1〉, a†

i |ni〉 = |ni + 1〉, and a†
i ai|ni〉 = ni|ni〉.

The full state describing a given configuration of the sys-
tem can then be constructed from the vacuum state as
the Fock product state|{n, m}〉 = ∏

i âni
i b̂mi

i |0〉 and the state
of the entire stochastic system |�(t )〉 is expressed as a
superposition of all possible configuration states |�(t )〉 =∑

{n,m} P({n, m}; t )|{n, m}〉, weighted with the time-dependent
configuration probability. The master equation for the con-
figuration probability P({n, m}; t ) is then cast into an
“imaginary-time Schrödinger equation,”

∂|�(t )〉
∂t

= −H |�(t )〉 ⇒ |�(t )〉 = exp(−Ht )|�(0)〉, (A2)

where the pseudo-Hamiltonian H is generally not Hermitian.
In terms of the ladder operator language, the gain and

the loss terms originating from the master equation for
P({n, m}; t ) are embedded in H . The rule of thumb is that
the losses of particles give rise to the positive loss terms
with the number operators âiai and b̂ibi being raised to the
normal-ordered powers of corresponding reactant changes,
and the negative terms for the gain balance directly reflect
how many particles are destroyed and (re-)created. For exam-
ple, considering the reaction kI

α−→ lI without diffusion, one
obtains Hreact = α

∑
i(â

k
i − âl

i )a
k
i . Diffusion between neigh-

boring sites i and j is nothing else but just the reactions Ii
DI0↔ I j

and Ri
DR0↔ Rj , with the microscopic diffusion rates DI0 and

DR0. Hence, the reaction scheme (A1), when supplemented
with diffusions of both species, yields H = Hdiff + Hreact with

Hdiff =
∑
〈i j〉

[DI0(âi − â j )(ai − a j ) + DR0(b̂i − b̂ j )(bi − b j )],

(A3a)

Hreact =
∑

i

[
λ(1 − âi )âiai + κ (âi − 1)âia

2
i + σ (âi − 1)ai

+μ(âi − b̂i )ai + ν(âi − 1)b̂ibiai
]
. (A3b)

The field theory action will take its shape within the ex-
ponential weight for the statistical average of an arbitrary
observable O. To this end, by introducing the projection state
〈P| = 〈0| ∏i eai+bi , which satisfies 〈P|âi = 〈P| = 〈P|b̂i, the
expectation value of O reads

〈O(t )〉 =
∑
{n,m}

O({n, m})P({n, m}; t )

= 〈P|O({âa, b̂b})|�(t )〉
= 〈P|O({âa, b̂b}) exp(−Ht )|�(0)〉. (A4)
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Next, we follow the standard path integral construction
[6,55] by splitting the temporal evolution exp(−Ht ) into in-
finitesimal increments and inserting at each time step the
identity operator 1 = ∫ ∏

i(
d2φ

π
)( d2ϕ

π
)|{φ, ϕ}〉〈{φ, ϕ}|, where

the coherent states |φi〉 and |ϕi〉 are right eigenstates of
the annihilation operators, ai|φi〉 = φi|φi〉 and bi|ϕi〉 = ϕi|ϕi〉,
permitting a transformation from q-numbers (âi, ai, b̂i, bi) to
c-numbers (φ∗

i , φi, ϕ∗
i , ϕi). After further taking the contin-

uum limit,
∑

i → h−d
∫

dd x, φ∗
i → â(x, t ), φi → h−d a(x, t ),

ϕ∗
i → b̂(x, t ), ϕi → h−d b(x, t ), where h denotes the lattice

spacing, the resulting statistical average becomes

〈O(t )〉 =
∫

D[â, b̂, a, b]O({âa, b̂b}) exp(−A[â, b̂, a, b]),

(A5)

with the field theory action

A =
∫

dd xdt[(â − 1)∂t a + D′
I∇â · ∇a

+ (â − 1)(σ − λâ + κ ′âa)a + (b̂ − 1)∂t b

+ D′
R∇b̂ · ∇a + μ(â − b̂)a + ν ′(â − 1)b̂ba]. (A6)

Note that the microscopic diffusion rates have been replaced
by the continuum diffusivities D′

I/R = h2DI0/R0, and the rates
κ ′ = hdκ and ν ′ = hdν. In the above expression, the terms∫

dd xdt â∂t a and
∫

dd xdt b̂∂t b stemming from the initial and
the final factors of the path integral have also been kept. As it
is standard, the time limit in the action can be formally taken
from −∞ to ∞.

The fields â(x, t ), a(x, t ), b̂(x, t ), and b(x, t ) in
Eq. (A6) are still complex. To relate them to the density
fields I (x, t ) and R(x, t ), one can utilize the fact
that â(x, t )a(x, t ) = I (x, t ) = exp(Ĩ )I exp(−Ĩ ) and
b̂(x, t )b(x, t ) = R(x, t ) = exp(R̃ )R exp(−R̃ ), with the
auxiliary (imaginary) response fields Ĩ (x, t ) and R̃(x, t ).
Since a(x, t ) and b(x, t ) carry dimensions of particle
densities after performing the continuum limit, we can make
the ansatz â = exp(Ĩ ), a = I exp(−Ĩ ), b̂ = exp(R̃ ),
and b = R exp(−R̃ ) to construct a quasi-canonical
transformation [18]. Upon employing this transformation,
followed by the expansion of the exponentials, integrating
by parts, and discarding fourth- and higher-order terms, the
action finally takes the following form:

A =
∫

dd xdt

{
Ĩ ∂tI − Ĩ I ∂tĨ − D′

I [Ĩ ∇2I + I (∇Ĩ )2] + Ĩ

[
(σ + μ − λ) + κ ′I + ν ′R − λ + σ

2
Ĩ

]
I

+ R̃∂tR − R̃R∂tR̃ − D′
R[R̃∇2R + R(∇R̃ )2] − μR̃I

}
. (A7)

As one rescales the lengths, each term should acquire its respective renormalized (running) coupling constant at different scales.
Hence, in the effective field theory, the above expression is rewritten in the following general way:

A =
∫

dd xdt{Ĩ ∂tI − cĨ I ∂tĨ − DI1Ĩ ∇2I + DI2I (∇Ĩ )2 + τ ′Ĩ I + Ĩ [g1I + g2R − g3Ĩ ]I

+ R̃∂tR − c′R̃R∂tR̃ − DR1R̃∇2R + DR2R(∇R̃ )2 − g4R̃I }. (A8)

Following the same arguments in Ref. [18], the coupling g1 turns out to be irrelevant, and the fields as well as the couplings g2

and g3 are rescaled by a dimensionful amplitude K as Ĩ = K−1Ĩ , I = KI , R̃ = K−1R̃, R = KR, and Kg2 = 2K−1g3 = g′,
leading to

A =
∫

dd xdt

{
Ĩ∂tI − c/K ĨI∂t Ĩ − DI1Ĩ∇2I + DI2/KI (∇Ĩ )2 + τ ′ĨI + g′

2
Ĩ(2R − Ĩ )I

+ R̃∂tR − c′/KR̃R∂tR̃ − DR1R̃∇2R + DR2/KR(∇R̃)2 − g4R̃I
}
, (A9)

in which, upon rescaling the spatial distances x by a length scale κ−1, the naive scaling dimensions of the fields and couplings
are fixed to [R]0 ∼ [Ĩ]0 ∼ κ (d−2)/2, [I]0 ∼ [R̃]0 ∼ κ (d+2)/2, [τ ]0 ∼ κ2, [g]0 ∼ κ (6−d )/2, [g4]0 ∼ κ0, [c/K]0 ∼ [DI2/K]0 ∼
κ−(d−2)/2, [c′/K]0 ∼ [DR2/K]0 ∼ κ−(d+2)/2. Consequently, the upper critical dimension dc = 6 remains the same as the DIP,
while the couplings c/K , c′/K , DI2/K , and DR2/K are all irrelevant near dc, rendering

A =
∫

dd xdt

{
Ĩ∂tI − DI1Ĩ∇2I + τ ′ĨI + g′

2
Ĩ (2R − Ĩ )I + R̃∂tR − DR1R̃∇2R − g4R̃I

}
. (A10)

Finally, we note that g4 is naively dimensionless and what is more, there are no diagrams to renormalize it, implying that
it will remain dimensionless with respect to rescaling. Hence, it is customary to rescale the time t → t ′ = g4t to eliminate g4.
Upon renaming the couplings to DI = DI1/g4, DR = DR1/g4, Dτ = τ ′/g4, and g = g′/g4, we arrive at the action (2).
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