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Node role explainability in complex networks is very difficult yet is crucial in different application domains
such as social science, neurosciences, or computer science. Many efforts have been made on the quantification
of hubs revealing particular nodes in a network using a given structural property. Yet, in several applications,
when multiple instances of networks are available and several structural properties appear to be relevant, the
identification of node roles remains largely unexplored. Inspired by the node automorphically equivalence
relation, we define an equivalence relation on graph nodes associated with any collection of nodal statistics (i.e.,
any functions on the node set). This allows us to define new graph global measures: the power coefficient and the
orthogonality score to evaluate the parsimony and heterogeneity of a given nodal statistics collection. In addition,
we introduce a new method based on structural patterns to compare graphs that have the same vertices set. This
method assigns a value to a node to determine its role distinctiveness in a graph family. Extensive numerical
results of our method are conducted on both generative graph models and real data concerning human brain
functional connectivity. The differences in nodal statistics are shown to be dependent on the underlying graph
structure. Comparisons between generative models and real networks combining two different nodal statistics
reveal the complexity of human brain functional connectivity with differences at both global and nodal levels.
Using a group of 200 healthy controls connectivity networks, our method computes high correspondence scores
among the whole population to detect homotopy and finally quantify differences between comatose patients and
healthy controls.

DOI: 10.1103/PhysRevE.107.014302

I. INTRODUCTION

In several application scenarios which focus on complex
network studies, being able to determine node roles has
proven to be relevant [1–5]. Indeed, the notion of node roles
has been introduced in social science structural theory [6] with
at least two different conceptions: structural equivalence and
structural isomorphism. According to the former, nodes are
equivalent if they share exactly the same neighbors. For the
latter, nodes are equivalent if there exists an automorphism
which maps the first node to the second and vice versa. In this
work, we consider this latter conception and identify the node
role with its structural equivalence class.

Recently, node roles analysis has been applied to various
application domains such as web graphs [7] and technolog-
ical or biological networks [8]. Different algorithms have
been proposed to detect structural equivalence classes in
a single network by evaluating similarity metrics among
nodes [9–11].

When examining a network collection defined on the same
node set, node role detection can provide meaningful in-
formation for collection. characterization, possibly revealing
a specific nodal partitioning. Indeed, in many real-world
applications, the available graph set can potentially be charac-
terized by specific node role classes [12–16]. However, while
many graph comparison metrics already exist [17,18], there
is no evidence of a method for comparing them; moreover,

none of them directly address the detection of differences at
the nodal level.

This work has been motivated by our interest in human
brain functional connectivity networks. In such networks,
node organization has proven to be critical, for instance in
consciousness states differentiation [19]. However, while cur-
rent methods allow us to discriminate brain networks under
various pathological conditions [20,21], interpretation and ex-
planation of the exhibited differences between graphs at the
nodal level remain difficult.

The contributions of this work are then fourfold. First,
we define a structural equivalence relation on a graph node
set based on nodal statistics (any functions on the node set).
The proposed definition allows determining node role classes
according to statistics values. The main innovation of this
definition is given by the possibility of identifying the graph
structural pattern based on an original combination of as many
statistics as desired. Second, we define two global measures of
a statistics set which determine parsimony and heterogeneity
of its elements. These measures only depend on the graph
structure and can be used for statistics selection or graph
complexity evaluation [22]. Third, we propose to compare
graphs with the same vertices according to their structural
patterns similarity. Indeed, thanks to the identification of node
classes, we can compare different graph instances throughout
the evaluation of the similarity of their structural patterns.
Finally, we propose a framework to determine node categories
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FIG. 1. Global comparison and nodal characterization of graphs: (a) structural patterns associated with the same statistics are determined
on the graphs, (b) the structural patterns are matched to compute a similarity value, and (c) nodal participation in nontrivial classes is obtained
for nodal characterization.

in a network group which allows to characterize the group at a
nodal level and to discriminate nodes according to their role.

II. STRUCTURAL EQUIVALENCE FOR A SINGLE
UNDIRECTED UNWEIGHTED GRAPH

We propose to identify the graph structural pattern with the
equivalence classes of a newly defined equivalence relation.
The traditional definition identifies two nodes as automor-
phically equivalent if it exists a node permutation preserving
the adjacency matrix (an automorphism) which maps the first
node to the second and vice versa [23].

We define the structural equivalence relation as the union
of many equivalence relations, each one associated with a
single nodal statistics on the graph. When we refer to nodal
statistics, we consider any function on the node set s : V →
s(V ) which is a function of the adjacency matrix, i.e., node de-
gree, clustering coefficient of a node, centrality measures, etc.
We observe that for every pair of automorphically equivalent
nodes u, v ∈ V , any nodal statistics s is preserved. Therefore,
we propose to define an equivalence relation ∼s, associated
with a statistics s, on the nodes set V of a graph as follows:

v ∼s u ⇐⇒ s(u) = s(v). (1)

For a nodal statistics having as s(V ) a dense and continuous
subset of R, the equivalence is defined up to a fixed positive
small ε: v ∼s u ⇐⇒ |s(u) − s(v)| � ε (see the Appendix).
As ∼s is an equivalence relation on V , it is possible to find its

induced partition P on V ,

Ps = V
∼s

= {[a]l,∼s ∀l ∈ s(V )}, (2)

which defines the structural pattern of G associated with the
statistics s, and whose elements are the classes of equivalence
[a]l ,∀l ∈ s(V ),

[a]l,∼s = [a] = {b ∈ V|a ∼s b ⇐⇒ s(a) = s(b) = l}. (3)

A necessary condition for two nodes to be automorphically
equivalent is to belong to the same equivalence class.

Subsequently, we extend the equivalence relation associ-
ated with a statistics to any statistics collection S = {si}i=1,..,n,
requiring that:

a ∼S b ⇐⇒ a ∼s1 b, a ∼s2 b, . . . , a ∼sn b. (4)

Again, we can determine PS = {[a]∼S } the induced partition
by ∼S on V as the intersection of each class of the considered
{si}i=1,..,n. A visualization of the partitions associated with
degree statistics is shown in Fig. 1(a).

Since the automorphically equivalence relation preserves
any nodal statistics, the nodal statistics-based equivalence
relation associated with an infinity collection retrieves the
automorphically equivalence. However, a finite nodal statis-
tics collection with this property may also exist (see the
Appendix). We propose to compare statistics collection ac-
cording to new defined global graph parameters which
measure respectively parsimony and heterogeneity of its ele-
ments. These global parameters depend on the graph structure.
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Given PS , one can compute exactly the number of eligible
automorphisms that map nodes into the same equivalence
class, as it is computed below. Therefore, for each statistics
collection on a graph G, we can estimate how many permu-
tations are prevented from being tested as being adjacency
preserving in a brute-force approach. We introduce the power
coefficient (PC) of a set S for a graph G = (G, E ),

PCG (S ) =
∣∣∣∣ log

#{permutations preserving PS}
#{permutations of V}

∣∣∣∣, (5)

with

#{permutations preserving PS} =
∏

o∈PS

|o|!

#{permutations of V} = |V|!.

The value |V|!e−PC corresponds to an upper bound of the
number of automorphisms of G. Indeed, PC is increasing
when more nodal statistics are combined together (see the
Appendix). In the special case in which the permutations
preserving PS can be identified with the automorphisms of G,
PC can be interpreted as entropy of the network ensemble [22]
having G topology (see the Appendix). In all other cases, PC
encodes the amount of information given by S on the structure
of G and it is a parsimony measure for S .

Since PC takes values in [0, log 1
|V|! [, with an upper bound

strictly depending on the number of nodes, we propose a
normalized version of PC, P̂C ∈ [0, 1]:

P̂CG (S ) = PCG (S )

log |V|! (6)

= 1 − log #{permutations preserving PS}
log #{permutations of V} . (7)

The higher the P̂C, the more the collection of statistics S cap-
ture the heterogeneity of nodal structural roles in G. Indeed,
for a vertex-transitive graphs (i.e., all nodes are automorphi-
cally equivalent) P̂CG (S ) = 0 for all nodal statistics S , while
if it exists a collection S̄ s.t. P̂CG (S̄ ) = 1 then the graph G
does admit nontrivial automorphisms.

Hence, we introduce the notion of perfectly orthogonal
statistics for heterogeneity evaluation of a collection elements.
First, two nodal statistics are said to be perfectly orthogo-
nal if their union-associated equivalence relation induces the
trivial partition: All nodes belong to a single element set.
Next, we extend the definition to any nodal statistics set: A
nodal statistics collection is said to be perfectly orthogonal
if its induced partition is trivial. An orthogonality measure
for a given nodal statistics set on a graph can be assessed by
computing the number of nodes in nontrivial classes on its
associated partition:

OG (S ) = |{v ∈ V s.t. #[v]∼S �= 1}|
|V| . (8)

OG (S ) is the ratio between the number of nodes in nontrivial
classes and the total number of vertices and corresponds to an
orthogonality score. By definition, S is perfectly orthogonal if
and only if OG (S ) = 0.

III. STRUCTURAL EQUIVALENCE FOR GRAPH
COLLECTIONS

A. Structural pattern comparison

Graphs that have the same node set can be compared by
evaluating the correspondence between their structural pat-
terns. The node set constraint can be easily circumvented
when two graphs do not share all the nodes by including
all nodes to the graphs vertices set and allowing the net-
work to be composed of more connected components. Indeed,
each network can be seen as the union of one strongly con-
nected component with as many single disconnected vertices
as needed.

We propose to compare structural patterns as follows. Let
G,G ′ be two graphs having same vertices V and let S be a
statistics collection whose associated partitions are PS , P′

S on
G,G ′, respectively. Given bijective mapping from PS , P′

S to
an initial segment of the natural numbers as enumerations, let
c(vi ), c′(vi) be the enumeration of the classes of vi, the cor-
respondence structural pattern score between G,G ′ is defined
as:

C(G,G ′) = max
π∈�

1

|V|
|V|∑
i=1

X (π [c(vi)] = c′(vi )) (9)

where � is the set of all coupling between the elements in PS
and the elements in P′

S and X is the indicator function.
A possible implementation of C(G,G ′) in polynomial time

is given by the Hungarian algorithm [24] for assignment prob-
lems with has a complexity O(max{|PS |, |P′

S |}3) which in the
worst case equals O(|V|3).

The correspondence structural pattern score can be ap-
plied for two different purposes: To evaluate structural pattern
similarity between two graphs [Fig. 1(b)] or to evaluate
the similarity of structural patterns associated with different
statistics collection on the same graph. Since at least one
class of PS shares one element with one of the classes in P′

S ,
C(G,G ′) � 1

|V| . As a consequence, even perfectly orthogonal
statistics set of a graph can exhibit a correspondence pattern
score higher than zero (see the Appendix).

If for every class in PS there exists one class of P′
S having

all and only its elements, then PS = P′
S and C(G,G ′) = 1.

The opposite is also true: The same partitions determine a
correspondence structural pattern score equals to 1.

More general properties of the defined global measures can
be found in the Appendix.

B. Nodes distinctiveness or similarity

Since eligible automorphisms can only map nodes within
classes, a node in a trivial class (one element class) is always
a fixed point. Thus, to provide a group characterization at
nodal level, we propose to enumerate for each node its par-
ticipation into nontrivial classes as a measure of the node’s
propensity not to be a fixed point of admissible automor-
phisms. The more a node appears in nontrivial classes, the
more it shows common properties with some other nodes in
the graph. The persistence of a node to belong to a class in
an entire graph group reveals the presence of shared prop-
erties among the group for the given node, i.e., hubs nodes,
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peripheral nodes, etc. [Fig. 1(c)]. Thus, given a graphs group
G = {Gk = (Vk, Ek ) s.t. Vk = V}, and a statistics collection S
we count the percentage of participation of each node of V in
nontrivial classes:

∀v ∈ V PPS
G (v) = PPG(v) =

∣∣{Gk ∈ G s.t. #[v]Gk∼S
�= 1

}∣∣
|G| ,

(10)

with [v]Gk∼S
the class of v in Gk in the partition induced by S . In

the following, with abuse of notation, we suppose S fixed and
avoid to explicitly repeat the dependency. A high percentage
of participation means the node shares its role in many graph
instances in the group, while at the opposite a node which does
not share its role consistently shows a distinctiveness behavior
in the considered graphs collection.

IV. EXPERIMENTS

A. Synthetic data

We consider different generative graph models and com-
pare them according to their sparsity level, defined as the ratio
between the edge count on the graph and the edge count in
a complete graph having the same nodes. We fix the num-
ber of nodes to 90 to be in line with the considered real
dataset. Indeed, 90 corresponds to the number of human brain
regions classically used in brain partitioning [25]. We exam-
ine Erdős-Rényi (ER) [26], Watts-Strogatz (WS) [27], and
Barabási-Albert [28] models (BA1, BA2). Moreover, to be
close to real situations, we consider additional models driven
by human brain data. Here such models provide synthetic
versions of corresponding real networks: A model which
preserves the degree sequence (DSP), two models of brain
connectivity, economical preferential attachment (EPA) and
economical clustering (EC), models proposed in Ref. [29].
More models details are provided in the Appendix.

In our experiments, we consider classical graph statistics:
degree, clustering coefficient, and centrality measures (be-
tweenness, closeness, second-order) [30–36].

B. Real data: Human brain functional connectivity networks

Our framework has been developed to provide new sta-
tistical tools for the quantitative analysis and comparison of
brain functional connectivity networks. To give a flavor of this
application, we consider 200 networks built from resting-state
functional magnetic resonance imaging (RS-fMRI) available
through Human Connectome Project (HCP) [37,38]. The
brain was parcelled in 90 regions (AAL90 atlas) [25]. For
each region, a unique time-series signal was determined by
averaging the RS-fMRI time series over all voxels, weighted
by the gray matter proportion. Then, wavelet correlation [39]
among regional time series was estimated at the 0.043- to
0.087-Hz frequency interval [40–43]. Finally, the correlation
matrices were thresholded to extract graphs at various spar-
sity ratios [44,45]. When analyzing graph at fixed sparsity,
we select 0.1 which guarantees that each extracted network
belongs to small-world regime corresponding to global and
local efficiencies comprised between the ones of ER graph
and ones of the complete graph [46,47].

FIG. 2. Mean normalized power coefficient (P̂C) of cluster-
ing coefficient statistics on different generative models and real
brain connectivity graphs (HCP) at different sparsity levels. ER,
Erdős-Rényi; WS, Watts-Strogatz; BA1, BA2, Barabási-Albert; DSP,
degree sequence preserving model; EPA, economical preferential
attachment model; EC, economical clustering model.

V. RESULTS

A. Generative networks

In Fig. 2, we report clustering coefficient P̂C on different
generative models and real connectivity graphs with respect
to their sparsity ratio. The same analysis can be conducted for
different nodal statistics (see the Appendix), yet for clustering
coefficient, we can easily observe that for the same level of
sparsity, the P̂C behaves differently across the models. As
expected, P̂C = 0 when sparsity ratio = 1 as in a complete
graph, it is not possible to extract any meaningful class for
any nodal statistics.

For the Barabási-Albert models (BA1, BA2), we observe a
monotone increasing P̂C with respect to the sparsity. Indeed,
when the sparsity is low, we have few nodes of high clustering
coefficient and many nodes of very low coefficient values. The
number of automorphisms exchanging nodes of low values is
then higher for small sparsity, while when the sparsity ratio
increases the clustering coefficient values distribution tends to
be less concentrated on the node set, identifying more classes
and corresponding to higher P̂C. ER and WS show similar
behavior especially for high sparsity values, while, when the
sparsity is low, WS tends to differ from ER model.

Regarding brain models, EPA fits correctly the HCP net-
works when the sparsity is higher than 0.7. EC and DSP
curves follow the HCP curve tendencies but with lower
P̂C values. A possible explanation of this difference, is the
presence of hubs in HCP networks not present in the mod-
els. Indeed, a higher number of hubs results in higher P̂C
score.

Then, we evaluate orthogonality and correspondence struc-
tural pattern of statistics pairs in WS and BA2 models at 0.1
sparsity (see the Appendix). A visualization of their structural
patterns is shown in Fig. 3. In the WS model, the degree shows
high orthogonality values with all nodal statistics: Many nodes
that have same degree also share a second nodal statistics
value. This is likely due to its degree distribution. Indeed, in
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FIG. 3. Structural patterns associated with different statistics on Watt-Strogatz (top) and Barabási-Albert (bottom) models. cc, clustering
coefficient; b, betweeness centrality; d, degree; s: second-order centrality; cs: closeness centrality.

a general WS graph Gn,k,p all nodes have approximately the
same degree k [48].

Thus, there is high chance of retrieving high populated
classes associated with degree. Interestingly, the correspon-
dence patterns scores between the degree and the other
statistics are low except for the second-order centrality (Fig. 3,
top right). Degree and second-order centrality capture dif-
ferent topological graph features [36] and usually appear
unrelated in complex networks. However, in the considered
case, their induced partitions on the graph largely overlap.
Indeed, they exhibit a strong negative correlation coefficient
(−0.98 in average). Their high orthogonality and high corre-
spondence scores reveal this correlation.

In WS model, the statistics pair, which shows the least
correspondence pattern scores, is composed by degree and be-
tweenness centrality: While trivial degree classes capture high
connected nodes, the betweenness centrality better refines the
class associated with the average degree value.

Completely different results are observed in BA2 model,
for which the orthogonality of all considered statistics pair
together with their correspondence scores appear close to 1.0.
This shows how in preferential attachment model all statistics
pairs determine almost the same structural patterns: few popu-
lated classes of high connected nodes and high populated class
for the leaves. Indeed, for BA model a very high correspon-
dence of structural patterns associated with single statistics is
detected (Fig. 3, bottom).

B. Human brain functional connectivity networks

The HCP dataset was analyzed considering degree and
betweenness centrality associate-equivalence relation. For this
pair, low orthogonality and correspondence patterns scores are
observed both on WS model and real data (see the Appendix).

We compare the correspondence structural pattern score
distribution for generative models and HCP datasets (Fig. 4).
The observed ER and WS distribution values are lower com-
pared to real data. Moreover, when considering a dataset
combining half HCP real networks and half ER networks,
we observe a reduction in the structural pattern comparison
values and an increase in the variance. Interestingly, while
HCP data and WS model both exhibit small-world properties,
their score distributions are very distinct, indicating the pres-
ence of various network topology belonging to small-world
regime.

For brain connectivity models, EC and EPA have similar
distributions, but when compared to real data they exhibit
lower values. Instead, the DSP show higher variance in com-
parison to HCP and a non-Gaussian behavior.

FIG. 4. Correspondence structural pattern distribution on the
considered model and real data. Left: WS, Watt-Strogatz model;
ER, Erdős-Rényi model; and HCP; dataset composed of 100 sam-
ples randomly chosen from HCP dataset and 100 from ER model.
Right: Brain models and HCP data. DSP, degree sequence preserving
model; EPA, economical preferential attachment model; EC, eco-
nomical clustering model.
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FIG. 5. Nodal participation in nontrivial classes for comatose
patients (n = 17), healthy controls (HCP dataset), and DSP model.
Left hemisphere nodes are sorted by participation in HCP, right hemi-
spheres nodes occupy symmetrical positions of their corresponding
left hemisphere nodes with respect to the dotted line.

Finally, we compare nodal participation in models and real
HCP dataset (Fig. 5, see the Appendix). As expected, the
values of percentage of participation for EC and ECA brain
models are higher than real ones, due to the spatial relations
that constrain the role of each brain region. Thus, same nodes
play the same role in many samples of the generated datasets.
On the contrary, DSP provides a lower bound in the percent-
age of participation of real data. Indeed, constraining graphs
to only keep same degree sequence, increases the node role
variability in the group.

A well-known brain property is the presence in the
two hemispheres of homotopic regions: The right and left
hemispheres are approximately mirror images of each other.
That means the same region can be found in both hemispheres.
An interesting result is the high number of observed classes
to which belong both the homotopic regions (38% in average
on HCP, see the Appendix). Again, when analyzing the entire
data, we found that the nodal participation of brain regions
is symmetrical: pairs of homotopic regions have a similar
percentage of participation in nontrivial classes (Fig. 5). This
property is still present in the brain models that integrate the
brain geometry in their construction, such as DSP (see the
Appendix).

Finally, we consider 17 brain connectivity networks ob-
tained by scanning comatose patients [19] and we compare
their node percentage of participation scores with healthy
controls in Fig. 5. In comparison with HCP scores, there is less
variance in the percentage participation, with almost every
node close to the average percentage of 0.26 ± 0.17 (HCP
0.32 ± 0.30, see the Appendix). This makes harder to detect
in comatose graphs a hierarchy in the node behavior. The low
number of nodes sharing their property in the patient group
can be due either to the presence of many trivial classes in
patient networks or to the fact that the nodes in nontrivial
classes are not consistently be the same in the group. Thus, we
evaluate the number of nodes in nontrivial classes per graph,
and we found comparable number in controls and patients

(see the Appendix). Hence, the difference in the percentage
of participation indicates the presence of higher structural
patterns variability in patients.

VI. DISCUSSION

Graph models become largely used in real-world applica-
tions and many nodal statistics have been proposed for node
roles detection. However, the most informative statistics for
graph comparison is highly dependent on the observed data
and combining more statistics can be relevant.

We propose a mathematical framework with the specific
purpose of providing new statistical tools for the analysis of
brain functional connectivity networks.

We introduce a nodal statistics-based equivalence relation
and propose an innovative way to combine nodal statistics for
graph structural pattern detection. We use the latter to compare
different graphs and characterize graph family defined on
the same node set. As the equivalence relation depends on a
collection of nodal statistics, we define a power coefficient and
an orthogonality score which can be used as revisited measure
of nodal statistics dependency.

We define a graph similarity based on node roles and a
mathematical tool to detect nodes persistently different from
others, by computing the percentage of participation in non-
trivial classes. Interestingly, nodes which tend to persistently
belong to trivial class are likely to play peculiar roles in the
graphs, while at the opposite nodes with a high participation,
appear to share similar property with other nodes.

The proposed framework can be extended specifically to
handle graph families. In order to do so, a new equivalence
relation over graph instances should be introduced. In this
case, the group version nodal statistics assigns a value (or an
interval) to each node in the vertices set, such as the average
per node of the statistics across the graph instances (or its first-
third quartile interval). Then, we introduce the corresponding
nodal equivalence relation whose nodes are equivalent if their
average of nodal statistics is the same (or fall in the same
interval). In this case, the definition of the structural pattern
corresponds to an average structural pattern of a virtual aver-
age graph. The graph family version of parsimony and orthog-
onality corresponds to the traditional definition on this average
graph. The ability of the average structural pattern to charac-
terize the group of graphs needs, however, to be explored.

In terms of application, we show application in human
brain functional connectivity networks. We report high cor-
respondence scores among networks of healthy controls and
differences in the nodal participation in nontrivial classes of
random and real graphs. Interestingly, NPP can detect brain
homotopy. Applied to comatose patients, our mathematical
framework allows to quantify at the global and nodal levels
how their functional connectivity networks differ from healthy
controls. These results motivate further investigations, in par-
ticular for a deeper characterization of each identified class.
For instance, with a counting of nodes not only on trivial
classes but on different class sizes.
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FIG. 6. Visualization of the structural pattern associated with a
given statistics on a trivial graph whose nodes have the same degree.
Left: Structural pattern associated with nodal degree. Right: Struc-
tural pattern associated with combination of betweenness centrality
and degree. Colors correspond to different classes. In this toy exam-
ple, the degree alone is not sufficient to reveal different equivalence
classes and identifies a unique class. While, when two nodal statistics
are considered, a nontrivial structural pattern appears.

APPENDIX

1. General properties

In the following section we listed the general properties
of the defined metrics. Figure 6 reproduces a toy example in
which a finite nodal statistics collection retrieves the automor-
phically equivalence relation.

a. Properties of PC

Note that all the listed properties are true also for P̂C.
(i) on the same graph the PC increases on increasing col-

lections of nodal statistics (Appendix, Fig. 7);
(ii) the PC of every nodal statistics collection equals zero

for vertex-transitive graph;
(iii) if the PC of a nodal statistics collection equals the

PC of one of its element, then the correspondence structural
patterns score of the structural pattern associated with the
collection and the one of that element is 1;

(iv) if the PC of a graph equals 0 for one collection of
statistics, then the graph does not admit nontrivial automor-
phisms;

FIG. 7. Normalized power coefficient (P̂C) on nodal statistics
incremental sets of two Erdős-Rényi graphs of 90 and 100 nodes.

(v) if two graphs are isomorphic than their PC is the same
for all statistics collection.
Relation with network ensembles entropy.

The number of eligible automorphisms of a graph corre-
sponds to the number of rows permutations of its adjacency
matrix. Following Ref. [49], the partition function of the en-
semble of a given topology G = (V, E ), with Aut(G) the set
of automorphism of G,

Z (G = (V, E )) =
∣∣∣∣ |V|!
|Aut(G)|

∣∣∣∣. (A1)

We denote PC∗ the PC computed for a collection of statistics
whose equivalence relation corresponds to the automorphisms
relation. Then, we have

PC∗ = | log
1

Z
|, (A2)

PC∗ = | − log Z|, (A3)

PC∗ = log Z, (A4)

entropy ∝ PC∗. (A5)

This is in line with the idea that a higher level of order in the
graph structure is associated with lower entropy, indeed for
vertex-transitive graphs the entropy reaches is minimal value
of zero [22,50]. A comparison within entropy and PC∗ can be
found in Table I. Note that in the first and last examples the
statistics collection choice does not affect the PC.

b. Properties of orthogonality

(i) a nodal statistics whose induced partition is composed
of classes having each one a unique element is perfectly or-
thogonal with every nodal statistics;

(ii) if collection of statistics is perfectly orthogonal, then
all other collection having as a subset that collection is per-
fectly orthogonal as well;

(iii) if a perfectly orthogonal statistics set exists on a
graph, then the graph does not admit nontrivial automor-
phisms.

c. Properties of correspondence of structural pattern

(i) All graphs defined on the same node set, having same
degree sequence, have a correspondence of structural patterns
associated with the degree statistics equals 1;

(ii) the minimum values of structural pattern score is given
by 1

|V| ;
(iii) if on the same graph, the structural patterns score of

different nodal statistics reaches the minimal value, then the
nodal statistics are perfectly orthogonal.

In Fig. 8 we show how the three global metrics distinguish
across different cases.

2. Generative networks

a. Erdős-Rényi model

The ER model generates a binomial graph Gn,p by the
creation of edges among n nodes. Each edge has a probability
p of being created. The expected number of edges in Gn,p is
then p

(n
2

)
and its sparsity ration equals p. For values of p close
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TABLE I. Entropy and PC∗ on known graphs.

to 1, the graph tends to be the complete graph in which all
possible edges are present.

b. Watts-Strogatz model

The WS model generates a small-world graph Gn,k,p by
connecting each node with its k neighbors nodes and then
recombining each edge with probability p. In this case, the
number of created edges is always nk

2 , requiring an even value

for k, which corresponds to a sparsity value of nk
2(n

2)
= k

(n−1) .

The p parameter, which regulates the probability of rewiring
the edges, generates the regular graph (p = 0) in which all
nodes have the same degree and the completely random graph
(p = 1) in which the expected number of edges are ran-
domly distributed on the vertices set. We consider cases p =
0.1, 0.5, 0.9 and refer to the case p = 0.5 as the small-world
model.
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(a) One statistics is enough informative

(b) Two nodal statistics are more informative

(c) Two perfectly orthogonal nodal statistics

FIG. 8. Visualization of global metrics on three graphs (column)
for three cases (row). (a) One statistics is sufficient: The P̂C value
observed when considering two statistics (right) is equal to degree
alone (left), meaning that betweenness provides with no useful infor-
mation for determining the structural pattern. When we compare the
two partitions with the degree statistics alone, we observe 75% of the
nodes belonging to the same class and no trivial class (orthogonality
equals to 1). This result can be interpreted in two different ways:
More node statistics are needed to identify hub nodes or the consid-
ered graph does not contain hub nodes. (b) Two statistics are more
informative the partition associated with the combination of degree
and betweenness improves the power coeffiecient. The identified
patterns share half of nodes and their orthogonality is 0.5, meaning
that their partition situates half of nodes in trivial classes. (c) Perfect
orthogonality: The minimal values is reached when one of the two
compared structural pattern has only one class and the other contains
trivial classes.

c. Barabási-Albert model

The BA model generates a graph Gn,m by favoring specific
attachments. It starts from a star graph of m + 1 nodes and at-
taches the n − m − 1 remaining nodes to the m existing nodes
with high degree. In that case, the number of edges expected is
given by the sum of the first m edges of the initial graph with

(n − m − 1)m edges created by attaching new nodes until the
graph has n vertices leading to the sparsity value equals to
m(n−m)

(n
2)

. In this case, having fixed n and the level of sparsity

l , there are two possible choices for m, corresponding to the
solutions of

m2 − mn + l

(
n

2

)
= 0.

The existence of real solutions to the previous equations is
only guaranteed for l � n2

4(n
2)

and in that case, it always has two

positive solutions. We considered both cases, referring to BA1
and BA2, respectively, for the lower and the highest root. Due
to the constraints of existence of real solutions, all networks
generated according to Barabási-Albert model are sparse [51].

d. Degree sequence preserving model

The DSP model is based on the configuration model [28].
For each graph from our real dataset (HCP), we search for
preserving its degree sequence while controlling the sparsity
ratio. For this reason, given the correlation matrix associated
with a subject and given a sparsity ratio, we threshold the
correlation matrix to obtain a binary version with the number
of edges corresponding to the fixed sparsity. Then, we extract
the degree sequence and randomly generate a new graph that
preserves the given degree sequence. Since the degree of
each node is fixed, we obtain a synthetic graph which has
the same sparsity as its real version. In such a way, for all
sparsity values we considered, we obtain the synthetic graphs
whose elements are the model version of the corresponding
real graphs. An example of the simulated DSP networks is
shown in Fig. 9 of the Appendix.

e. Economical preferential attachment model

The EPA model has been defined to reproduce functional
brain networks [29]. The probability of observing a connec-
tion between region i and region j is given by

pi, j ∝ (
deg(i) deg( j)

)γ
(di, j )

−η

where deg(i) is the degree of node i and di, j is the Euclidean
distance in anatomical space between i and j. Since we want
to generate network at fixed sparsity, given a real network, we
first extract its degree distribution. Next, we compute the pi, j

of all possible pairs of nodes and then we select the highest
probability until we reach the expected number of edges.
To ensure connectivity, we also add the minimum spanning
tree as is done in real data. The parameters γ , η are tuned
according to Ref. [29] and fixed to respectively 1.81 and 5.37.
An example of the simulated EPA networks is shown in the
Appendix, Fig. 9.

f. Economical clustering model

The EC model has also be proposed in the context of
functional brain networks [29]. The probability of observing
a connection between region i and region j is given by

pi, j ∝ (ki, j )
γ (di, j )

−η,

where ki, j is the number of nearest neighbors in common
between nodes i and j, while di, j is the Euclidean distance

014302-9



CARBONI, DOJAT, AND ACHARD PHYSICAL REVIEW E 107, 014302 (2023)

FIG. 9. Examples of real functional connectivity network in the HCP dataset and the corresponding model versions for different sparsity
values. DSP, degree sequence preserving model; EPA, economical preferential attachment model; EC, economical clustering model.

in anatomical space between i and j. For being able of tuning
the sparsity of the model, we generate an EC model version
of real network. Given a real network at a given sparsity ratio,
we determine its ki, j and compute the pi, j of all possible node
pairs. Finally, we select edges whose probability is higher
until the expected number of edges is reached. Again, we en-
sure connectivity by adding missing edges from the minimum
spanning tree algorithm. The parameters γ and η are fixed to
3.17 and 2.63, respectively. For these values the model best
fits data both on training and validation set [29]. An example

of the simulated EC networks is shown in the Appendix,
Fig. 9.

3. More experiment results

For the sake of completeness, we report some more exper-
iment results

(i) Figure 10 compares pair of nodal statistics on two
generative models;

(ii) Figure 11 details the choice of ε when s(V ) is a dense
and continuous subset of R;

FIG. 10. Nodal statistics pair comparison on two models. Upper triangular matrix: WS (Watt-Strogatz model); lower triangular matrix:
BA2 model. Left: orthogonality for a pair of statistics; right: correspondence structural pattern score for a pair of statistics. cc, clustering
coefficient; b, betweeness centrality; d, degree; s, second-order centrality; cs: closeness centrality.
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FIG. 11. ε choice effects in Erdős-Rényi graphs. The chosen ε corresponds to a number of significant digits to be used when comparing
different nodal-statistics values. When the number of significant digits is higher, the number of extracted classes increases. Depending on the
considered statistics, the number of classes usually stabilizes around four or five significant digits. Thus, in the experiments ε is fixed to be the
minimum number at which the class number stabilizes.

(iii) Figure 12 reproduces Fig. 2 for a different choice of
nodal statistics;

(iv) Figure 13 gives the average value of orthogonality and
correspondence structural pattern scores of nodal statistics
pairs on HCP dataset;

(v) Figure 14 reports the mean participation in nontrivial
classes of a node with respect the size of the considered graph
collection;

FIG. 12. Mean normalized power coefficient (P̂C) of degree
statistics on different generative models and real brain connectivity
graphs (HCP) at different sparsity levels. ER, Erdős-Rényi; WS,
Watts-Strogatz; BA1, BA2, Barabási-Albert; DSP, degree sequence
preserving model; EPA, economical preferential attachment model;
EC, economical clustering model. Interesting, the P̂C on the real data
have the best performance at all sparsity levels. When evaluating the
P̂C of different measures on the same model, we can select for each
sparsity ratio which nodal statistics have the higher discriminative
power on the node set.

(vi) Figure 15 compares the nodal participation in models
and real dataset;

(vii) Figure 16 validates the homotopical symmetrical re-
sults of the nodal participation.

(viii) Table II compares the nodes in nontrivial class in
HCP and Comatose patients;

FIG. 13. Average value of orthogonality and correspondence
structural pattern scores (SD) of nodal statistics pairs on HCP
dataset. Upper diagonal: orthogonality score; lower diagonal: cor-
respondence structural patterns score. cc, clustering coefficient; b,
betweeness centrality; d, degree; s, second-order centrality; cs, close-
ness centrality.
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FIG. 14. Mean participation of a node in datasets of different
size. Mean percentage of participation in nontrivial classes for a
single node in 90 nodes ER and WS model at 0.1 sparsity level. The
results indicate that the mean percentage of participation stabilizes
respectively at 0.43 and 0.55 for ER and WS models. WS is obtained
with 0.5 edge rewiring probability. Dots lines are first and third
quartile.

(ix) Table III compares the results on the nodal percentage
of participation in HCP and Comatose patients;

(x) Table IV reports the ratio of nodes in nontrivial classes
in the same class of their homotopical regions in the HCP.

FIG. 15. Nodal participation in nontrivial classes for real (HCP),
and synthetic datasets. ER, Erdős-Rényi model; WS, Watt-Strogatz
model; DSP, degree sequence preserving model; EPA, economical
preferential attachment model; EC, economical clustering model.

FIG. 16. Nodal participation in nontrivial class in HCP dataset
and a shuffled version. Nodes labels are sorted according to the
percentage of participation of left hemisphere regions. The symmetry
reveals the expected hemisphere similarity in the participation of
analog regions.The percentage of participation of each node is also
compared with a shuffled HCP dataset, where each real network is
reordered by a random shuffle of the adjacency matrix, preserving the
degree distribution. In this way, we expect that nonzero percentage
of participation is simply due to chance. The participation indices
for this random dataset appear to be significantly lower than the ones
observed in the real HCP. However, even if closer to 0, all nodes
appear to participate at least in one nontrivial class. Thus, when, for
the real data, we observe a high participation index, we can conclude
that the node is likely to share its equivalence role with some other
nodes in the graph. At the same time, when a node does not have a
positive percentage of participation, we expect the node to be unique,
consistently in all networks and so to retrieve regions associated with
unique functions.

TABLE II. Nodes in nontrivial class per graph.

AVG SD MIN MAX

HCP 0.32 0.062 0.17 0.52
Comatose 0.26 0.067 0.13 0.41

TABLE III. Statistics on nodal percentage of participation.

MIN MAX AVG SD

HCP 0.015 0.98 0.32 0.30
Comatose 0.0 0.76 0.26 0.17

TABLE IV. Ratio of nodes in nontrivial classes in the same class
of their homotopical in HCP dataset.

AVG SD MIN MAX

0.38 0.11 0.13 0.67
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