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Localization of nonbacktracking centrality on dense subgraphs of sparse networks
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The nonbacktracking matrix and the related nonbacktracking centrality (NBC) play a crucial role in models
of percolation-type processes on networks, such as nonrecurrent epidemics. Here we study the localization of
NBC in infinite sparse networks that contain an arbitrary finite subgraph. Assuming the local tree likeness of the
enclosing network, and that branches emanating from the finite subgraph do not intersect at finite distances, we
show that the largest eigenvalue of the nonbacktracking matrix of the composite network is equal to the highest
of the two largest eigenvalues: that of the finite subgraph and of the enclosing network. In the localized state,
when the largest eigenvalue of the subgraph is the highest of the two, we derive explicit expressions for the NBCs
of nodes in the subgraph and other nodes in the network. In this state, nonbacktracking centrality is concentrated
on the subgraph and its immediate neighborhood in the enclosing network. We obtain simple, exact formulas in
the case where the enclosing network is uncorrelated. We find that the mean NBC decays exponentially around
the finite subgraph, at a rate which is independent of the structure of the enclosing network, contrary to what was
found for the localization of the principal eigenvector of the adjacency matrix. Numerical simulations confirm
that our results provide good approximations even in moderately sized, loopy, real-world networks.
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I. INTRODUCTION

Recent decades have witnessed a surge of scientific activity
focused on understanding the behavior of dynamical models
on complex network substrates. Much of this research effort
has been oriented towards models of epidemic spreading on
networks of social acquaintances, such as the paradigmatic
susceptible-infected-susceptible (SIS) endemic model, and
the susceptible-infected-removed (SIR) model of nonrecur-
rent epidemics [1,2]. Mean-field theories have been developed
for both classes of models, making use of two characteristic
matrices: the adjacency matrix and the nonbacktracking (or
Hashimoto) matrix [3] of a given network, respectively. In the
quenched mean field approximation of the SIS model on a
static network, the epidemic threshold is given as the inverse
of the largest eigenvalue (LEV) of the adjacency matrix [4–6].
Close to the threshold the probability of a given node being
infected is proportional to the corresponding component of the
principal eigenvector (PEV). This has the consequence that
close to the epidemic threshold, disease may become localized
on the largest hubs and their immediate neighborhoods [7].
These results are partly an artifact of the quenched mean
field approximation, which is not exact even in infinite locally
treelike networks due to neglecting dynamical correlations be-
tween the infection states of neighboring nodes. Nevertheless
the predicted disease localization also does occur in real-life
systems [8–11] and is a crucial phenomenon to understand in
epidemic surveillance and control [12–14].

A similar approach for nonrecurrent epidemics, analogous
to the quenched mean field in the case of the SIS model, is
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the message-passing approximation where it is assumed that
the contribution of a node j to the behavior of a neighboring
node i is completely determined by the contribution of the
neighbors of j, excluding i. This assumption holds exactly
for infinite locally treelike networks in the case of perco-
lation [15] and, e.g., the SIR epidemic model [16,17]. The
relevant matrix in message-passing theories is the nonback-
tracking (NB) matrix H, which is a 2L × 2L nonsymmetric
matrix (L being the number of links in the network) whose
elements are indexed by directed links i ← j, instead of
nodes. It is defined as Hi← j,k←l = δ j,k (1 − δi,l ), where δ is the
Kronecker symbol.

Similarly to the quenched mean field in the case of the
SIS model, message-passing predicts a percolation or SIR
epidemic threshold that is the inverse of the LEV of the NB
matrix [17]. Also, the probability, close to the threshold, of
node i belonging to the giant connected component (or of
being infected in an SIR epidemic) is proportional to the
nonbacktracking centrality (NBC) of node i (see Ref. [18]),
defined as NBCi ≡ ∑

j∈∂i
vi← j , where ∂i is the set of neigh-

bors of node i and vi← j is the component of the PEV of the
NB matrix that corresponds to the directed link i ← j. In
other words, NBCi is the sum of incoming PEV components
to node i. We will assume the NBC values to be normalized
according to the condition

∑N
i NBCi = 1, in a network con-

sisting of N nodes. The NBC emerges in various applications
related to nonrecurrent dynamical models, e.g., in designing
optimal percolation and immunization strategies [19–21] or
identifying influential spreaders [22,23]. Compared to the
classical eigenvector centrality (the PEV components of the
adjacency matrix), NBC suffers to a much lesser degree from
localization, as discussed in Ref. [24]. In particular, isolated
hubs cannot be centers of localization, that is, the NBC is able
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to avoid the artificial “self-inflating” phenomenon associated
with high-degree nodes in the case of the adjacency matrix
PEV. This circumstance has also made the NB matrix a useful
tool in spectral community detection methods [25,26].

Although the PEV of the NB matrix cannot be localized
on isolated hubs, localization may still occur on dense sub-
graphs, e.g., cliques [24], if the subgraph in question has a
LEV higher than that of the surrounding network. A recent
study of a large set of real-world networks showed that the
presence of such dense subgraphs is quite common, in which
case the LEV of the network is dominated by the LEV of
the subgraph and nodes outside the subgraph have NBC close
to zero [27]. In particular, the authors of Ref. [27] identified
two specific subgraphs in real-world networks that were often
found to be centers of localization of the NBC: the maximum
k-core and a bipartite structure called overlapping hubs. These
subgraphs may correspond to localized percolation clusters,
and localized disease spreading in the SIR model. In such
cases typically a double transition is found, where the first
transition is determined by the structure of the dense subgraph
and the second by the entire network [27]. The message-
passing method is only able to identify the first transition,
and treats it as a strict phase transition, which is an artifact
of this approach [28]. As an extreme example, consider a
small clique with high LEV embedded in a larger network
with smaller LEV. Message passing will predict a single phase
transition at the inverse of the LEV of the small clique. This is
not a true phase transition, in the sense that susceptibility here
is still small, of the order of 1. It is rather an indication that
localized cooperative phenomena may already occur, namely,
the clique and its neighborhood may experience a small epi-
demic outbreak, in the case of the SIR model. To be able to
interpret message-passing results correctly it is vital to have a
solid understanding of such localization phenomena.

In the present work we explore the localization of the
NBC in a more general setting than previously considered,
deriving some exact results and useful approximations. The
paper is organized as follows. In Sec. II we describe our
network construction which allows for the derivation of exact
results: an arbitrary finite subgraph embedded in an arbitrary
infinite locally treelike network, where branches emanating
from the finite subgraph do not intersect at finite distances.
In Sec. III, using the concept of nonbacktracking expansion,
we derive an exact expression for the NBCs of nodes in the
finite subgraph (child network). We show that the LEV of
the composite network is exactly given by the maximum of
the two LEV values: that of the child network and that of the
embedding infinite locally treelike network (mother network).
Thus localization occurs when the composite LEV is equal
to the LEV of the child. We obtain compact approximate
formulas for the NBC values in the case where the embedding
mother network is uncorrelated. Performing simulations we
check that our predictions also work well with a real-world
mother network with degree correlations and short loops. In
Sec. IV we show that in the localized state the mean NBC
decays exponentially with distance from the child network.
Interestingly the rate of decay depends only on the LEV
of the child network, and is completely independent of the
mother network. We show that in finite mother networks the
exponential form has a cutoff distance depending on network

size and the difference between the LEVs of child and mother
network. We give a summary and conclusions in Sec. V.

II. ARBITRARY GRAPH INSERTED IN AN INFINITE
LOCALLY TREELIKE NETWORK

We aim to quantify the localization of the NBC on arbi-
trarily structured small, dense subgraphs embedded in large
sparse networks. Our setup is somewhat idealized, enabling
us to derive exact results and simple approximate expressions.
Nonetheless, as we show in Secs. III and IV in various ex-
amples, the strict assumptions can be greatly relaxed and the
theory still provides good predictions.

Throughout our derivations we will make extensive use of
the concept of nonbacktracking expansion of graphs, intro-
duced in [28], which corresponds to computational trees in
computer science [29]. For a given graph G, the nonbacktrack-
ing expansion provides an infinite tree constructed as follows.
Starting from an arbitrary node i in G as the root of the tree,
perform all possible nonbacktracking walks from this node.
Each nonbacktracking walk corresponds to a branch of the in-
finite tree. Thus the nonbacktracking expansion “unfolds” the
original graph into an infinite tree, generating an infinite num-
ber of replicas for each node in G. It was shown in [28] that for
an arbitrary graph, the LEV of the NB matrix corresponds to
the asymptotic branching of the nonbacktracking expansion.
(The branching of an infinite treelike network is defined as
the limit lim�→∞ L�+1/L�, where L� is the number of links
connecting the nodes at distance � from an arbitrary node to
the nodes at distance � + 1; see Ref. [30].) Furthermore, the
NBC of node i in graph G is equal to the relative frequency
of replicas of node i on the surface of the tree at infinity,
irrespective of the starting node (root). This useful property
was applied recently in Ref. [31] to approximate NBC values
of nodes in correlated networks.

Let us consider a system in which an arbitrary finite child
network of n nodes is inserted into an infinite locally tree-
like network in the following way. Each node i, of nc � n
selected nodes in the child network, is merged with a node
of degree b(i)

1 in the mother network. By merging we mean
that the resulting node (of the composite network) retains
the links of both the child node and the mother node. As
an example, see Fig. 1(a), where child node i of degree 2 is
merged with a mother node of degree 3, resulting in a node
of degree 5 in the composite network. Let the sequence of
branchings on the mother network branches attached to node
i be b(i)

2 , b(i)
3 , . . . , b(i)

m , . . . [see Fig. 1(b)], where b(i)
m→∞ → b.

Here b is the branching of the mother network, i.e., the LEV
of its NB matrix. For all nodes j of the child network that
were not chosen for merging with mother network nodes,
b( j)

1 , b( j)
2 , b( j)

3 , . . . = 0. Importantly, the branches attached to
different nodes in the child network do not intersect within any
finite distance. Figure 1 demonstrates this construction. The
nonintersection of branches emanating from child nodes is a
strong assumption, which certainly does not hold in real-world
networks that tend to have many short loops. As we will see,
the theory also provides good approximations in these more
realistic scenarios.

Now let us denote the LEV of the NB matrix of a child
network (to be inserted into a mother network) by z. This is
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FIG. 1. (a) A finite child network (white nodes and links on dark
grey shaded area) inserted into an infinite locally treelike mother net-
work (black nodes and links on light gray shaded area). The branches
emanating from nodes of the child network do not intersect within
any finite distance. In this example the number of nodes selected for
merging with mother network nodes is nc = 3. (b) First two elements
in the sequence of branching numbers on the branch connected to
node i of the child network.

the asymptotic branching of the nonbacktracking expansion
of this subgraph. This means that asymptotically the number
of vertices on the surface of the expansion at distance m is

Hm
∼= Czm, (1)

where C is a constant. Let the NBC of node i in the
child network be xi, i = 1, 2, . . . , n, normalized according to∑n

i=1 xi = 1.

III. NONBACKTRACKING CENTRALITIES IN THE CHILD
NETWORK

A. Results for general networks

Let us perform the nonbacktracking expansion of the com-
posite network, starting from one of the child nodes (see
Ref. [28] for details of this procedure). The number of replica
nodes of the child network on the surface of the nonbacktrack-
ing expansion at large distances m will still be Czm, but there
will be additional vertices from the mother network. We want
to find the fraction ρ of replica nodes of the child network on
the surface of the expansion as m → ∞. This is equal to the
sum of NBCs of child nodes. (We denote the NBC of child
node i by NBCi. Note that this value—the NBC measured in
the composite network—differs from xi.) Let Qm be the total
number of nodes on the surface of the expansion at distance
m. In the limit of infinite m,

ρ = lim
m→∞

Czm

Qm
. (2)

For large m we have the following recursion relation:

Qm = Czm + Czm−1
n∑

i=1

xib
(i)
1 + Czm−2

n∑
i=1

xib
(i)
1 b(i)

2

+ Czm−3
n∑

i=1

xib
(i)
1 b(i)

2 b(i)
3 + · · · . (3)

Let us explain this equation. The first term on the right-
hand side is the number of nonbacktracking walks of length m
that stay inside the child network throughout the m steps. The

second term is the number of nonbacktracking walks of length
m that spend m − 1 steps inside the child network and exit it
only in the last step. In general, the ith term gives the number
of nonbacktracking walks of length m that spend m − i + 1
steps inside the child network and exit it in the next step, never
returning due to the nonintersecting tree nature of all branches
emanating from the child network. Equations (2) and (3) lead
to the following relation:

1

ρ
= 1 +

n∑
i=1

xi
b(i)

1

z
+

n∑
i=1

xi
b(i)

1 b(i)
2

z2
+

n∑
i=1

xi
b(i)

1 b(i)
2 b(i)

3

z3
+ · · · .

(4)

Hence we have

ρ =
[

n∑
i=1

xi

(
1 + b(i)

1

z
+ b(i)

1 b(i)
2

z2
+ b(i)

1 b(i)
2 b(i)

3

z3
+ · · ·

)]−1

.

(5)

We immediately see from Eq. (5) that ρ = 0 if b � z,
which implies that, in this case, the LEV of the composite
network is λcmp = b. On the other hand, in the localized state,
when z > b, the sum in parentheses converges, resulting in
ρ > 0. In this case, as we show in Sec. IV, almost all nodes
outside the child network have negligible NBC: only the nodes
of the child network and nodes close to it have NBC noticably
different from zero. Since the branches emanating from the
child network do not intersect, no finite neighborhood of the
child network contains additional loops (compared to those
already present in the child network), and so the subgraph
comprising the nodes with nonnegligible NBCs has the same
LEV as the child network, and hence, λcmp = z. Therefore, we
have in general that

λcmp = max(z, b). (6)

Making use of the Collatz-Wielandt formula, a corollary
of the Perron-Frobenius theorem, one can easily show that
the LEV of any network is greater than or equal to the LEV
of an arbitrary subgraph of the network (see, e.g., Ref. [24]).
According to Eq. (6) this inequality is actually a strict equality
in the case of an arbitrary child network in an infinite locally
treelike mother network. Equation (6) is confirmed in Fig. 2,
where, as an example, the small Karate club network [32]
is inserted into a large Erdős-Rényi (ER) network of vary-
ing mean degree. (An ER mother network was chosen for
convenience, as it is locally treelike, and its LEV is closely ap-
proximated by its mean degree, for large sizes.) The insertion
is made in a way that a number nc of nodes of the child net-
work are merged with nc randomly chosen nodes in the mother
network. The LEV of the composite network was found to
follow Eq. (6) very closely for small nc, where the condition
of nonintersecting branches is a decent approximation. For
larger nc there is less “space” in the mother network for the
branches to be independent, making the theory less accurate,
and resulting in a smoother crossover of the composite LEV.
This is a finite size effect, and would disappear for N → ∞
[see Fig. 2(a)]. A rough criterion for the validity of the results
derived for N → ∞ is given in Sec. III D.
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We can write Eq. (5) in simpler form. Since b(i)
m→∞ → b,

we have, asymptotically,

m∏
k=1

b(i)
k

∼= cib
m, (7)

where ci is a constant,

ci ≡ lim
m→∞

1

bm

m∏
k=1

b(i)
k . (8)

The function ρ−1 contains a singularity at z = b, hidden in
Eqs. (4) and (5). Extracting this singularity we obtain

ρ =
[

n∑
i=1

xi

(
ci + 1 − ci + cib + b(i)

1 − cib

z
+ cib2 + b(i)

1 b(i)
2 − cib2

z2
+ cib3 + b(i)

1 b(i)
2 b(i)

3 − cib3

z3
+ · · ·

)]−1

=
[

n∑
i=1

xi

(
ci

1 − b/z
+ 1 − ci + b(i)

1 − cib

z
+ b(i)

1 b(i)
2 − cib2

z2
+ b(i)

1 b(i)
2 b(i)

3 − cib3

z3
+ · · ·

)]−1

, (9)

or, in more compact form,

ρ =
⎧⎨
⎩

∑n
i=1 xici

z − b
z +

n∑
i=1

xi

⎡
⎣1 − ci +

∞∑
k=1

1

zk

⎛
⎝ k∏

j=1

b(i)
j − cib

k

⎞
⎠

⎤
⎦

⎫⎬
⎭

−1

. (10)

Note that the only assumption for the mother network was
local tree likeness. The mother network may possess any
correlations, as long as tree likeness is fulfilled; it may be
random or deterministic.

The NBC of a given node i of the child network is simply

NBCi = xiρ. (11)

This is easily confirmed by noticing that the fraction of repli-
cas of node i, among the replicas of all child nodes, on the
surface of the nonbacktracking expansion at infinity is xi re-
gardless of the structure of the surrounding mother network.

Throughout the rest of the paper, unless explicitly stated
otherwise, we will always consider the localized state, i.e.,
when z > b.

FIG. 2. LEV of the composite network consisting of the Karate
club network (n = 34, z ≈ 5.29) inserted into an ER network of
varying mean degree 〈k〉 ≈ b. Solid black dots correspond to sim-
ulation results for a mother network size of N = 105, and empty
black dots correspond to a mother network size of N = 106. The
solid blue line corresponds to the result for N → ∞, Eq. (6). (a) The
Karate club network was inserted into the ER mother network by
merging all nc = n = 34 nodes with random nodes of the mother
network. (b) Only nc = 5 random nodes of the Karate club network
were merged with random nodes of the mother network. Simulation
results were averaged over 100 realizations for each point in both
panels.

B. Approximation for finite distances

Equation (10) is an exact result, given the somewhat strict
assumptions of an infinite locally treelike mother network,
and nonintersecting branches emanating from child nodes.
To turn this result into a useful expression in real networks,
we consider distances only up to a finite m value. One can
measure the branching numbers b(i)

1 , b(i)
2 , . . . up to b(i)

m , for
all child nodes i, and assume that the branching numbers are
equal to b thereafter. The constants ci are in this case defined
as

ci ≡ 1

bm

m∏
k=1

b(i)
k , (12)

and the formula for ρ changes to

ρ ≈
⎧⎨
⎩

∑n
i=1 xici

z − b
z

+
n∑

i=1

xi

⎡
⎣1 − ci +

m−1∑
k=1

1

zk

⎛
⎝ k∏

j=1

b(i)
j − cib

k

⎞
⎠

⎤
⎦

⎫⎬
⎭

−1

.

(13)

We can derive a first order approximation by considering
just one step away from the child network, i.e., m = 1,

ρ ≈ z − b∑n
i=1 xi(z − b + ki )

, (14)

where ki = b(i)
1 is the degree of the mother network node with

which the child node i was merged.

C. Random mother network

Informative expressions can be found for average quan-
tities when the child network is inserted into a random
uncorrelated network with an arbitrary degree distribution.
In this case we can obtain 〈ρ−1〉 exactly, averaged over the
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members of the configuration model ensemble, using Eq. (10).
In this expression only ci and b(i)

j are random variables, and
they appear independently, so we can perform the average:

〈ρ−1〉 =
∑n

i=1 xi〈ci〉
z − b

z

+
n∑

i=1

xi

⎡
⎣1 − 〈ci〉 +

∞∑
k=1

1

zk

⎛
⎝

〈
k∏

j=1

b(i)
j

〉
− 〈ci〉bk

⎞
⎠

⎤
⎦.

(15)

Here, for an uncorrelated network, the branching b =
〈k2〉/〈k〉 − 1, where 〈k〉 and 〈k2〉 are the first and second
moments of the mother network’s degree distribution. (We
assume a finite second moment.) Note that in uncorrelated net-
works the sequence b(i)

1 , b(i)
2 , b(i)

3 , . . . almost surely converges
to b for any i. Also, b(i)

1 , b(i)
2 , b(i)

3 , . . . , b(i)
k are independent

random variables with mean values 〈k〉, b, b, . . . , b. There-
fore, 〈∏k

j=1 b(i)
j 〉 = 〈k〉bk−1, for any k � 1, and hence, using

Eq. (8), we have that 〈ci〉 = 〈k〉/b. Using these observations
Eq. (15) can be written as

〈ρ−1〉 = 〈k〉 + z − b

z − b
. (16)

Note the similarity between Eq. (16) and the first-order ap-
proximation for general mother networks, Eq. (14). Assuming
that the variance of ρ is small, we can estimate

〈ρ〉 ≈ z − b

〈k〉 + z − b
. (17)

By Jensen’s inequality we know that

〈ρ〉 � 〈ρ−1〉−1, (18)

so the expression in Eq. (17) is a lower bound on the exact
value. Equality holds only if the variance of ρ is zero. Simu-
lations show that this approximation is fairly accurate.

For an ER mother network, 〈k〉 = b, so we have the simple
relationship

〈ρ−1〉 = z

z − b
, (19)

which is readily observed in Fig. 3. Equations (16) and (19)
are completely general exact results, for an arbitrary child
network, given that all nodes of the child network are merged
with random mother network nodes. If only a random fraction
f of nodes in the child network is merged with random mother
network nodes, then

〈ρ−1〉 = f 〈k〉 + z − b

z − b
, (20)

and hence, again assuming a small variance of ρ, we have

〈ρ〉 ≈ z − b

f 〈k〉 + z − b
. (21)

As an example, Fig. 3 shows results for the sum of NBCs of
nodes in the Karate club network inserted into an ER network
of size N = 105. The exact formula, Eq. (20), fits the simula-
tion results perfectly when the number of connection nodes nc

is small. For larger nc deviations from the theory are observed
close to the localization transition due to the intersection of

FIG. 3. The Karate club network (n = 34, z ≈ 5.29) inserted into
an ER network of N = 105 with varying mean degree 〈k〉 ≈ b. (a),
(b) Average sum of NBCs of child nodes and (c), (d) inverse of
average inverse sum of NBCs of child nodes, as functions of the
LEV of the mother network. The solid red line corresponds to the
result Eq. (13), evaluated up to a distance m = 5. The dashed green
line corresponds to the results for random mother networks, Eqs. (20)
and (21). (a), (c) The Karate club network was inserted into the
ER mother network by merging all nc = n = 34 nodes with random
nodes of the mother network. (b), (d) Only nc = 5 random nodes
of the Karate club network were merged with random nodes of the
mother network. Simulation results were averaged over 100 realiza-
tions for each point in all panels.

branches already at short distances. For decreasing mean de-
gree of the mother network the formula works progressively
better, as expected. Equation (21) also works remarkably well,
despite being strictly only a lower bound. This supports our
assumption of a small variance for the distribution of ρ.

D. Range of validity of the theory

We can give a rough criterion for the validity of the results
derived in the limit N → ∞, considering the normalization
condition for the NBCs,

∑N
i=1 NBCi = 1. As we show in

Sec. IV, in the localized state the NBC of nodes in the mother
network decays exponentially with distance from the child
network. This means that nodes outside the child network, on
average, have NBC much smaller than ρ/n, if the network
is large. Together with the normalization condition, for large
networks, this means that the network size N must satisfy

ρ

n
N � 1. (22)

Using Eqs. (22) and (20), and assuming z ≈ b, we arrive at a
rough criterion for the validity of the theory,

N

nc
� 〈k〉

z − b
. (23)

Equation (23) shows that, as z approaches b, N must in-
crease approximately as ∼(z − b)−1 for the theory to remain
valid. Conversely, for a fixed network size, the theory becomes
less accurate close to the point z = b, which is confirmed by
Figs. 2 and 3.
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FIG. 4. An ER network of n = 50 and varying mean degree,
inserted into the Gnutella p2p network (N = 62 561, b ≈ 11.48) at
nc = 5 random nodes. (a) LEV of the composite network as a func-
tion of the LEV of the child network. (b) Average sum of NBCs of
child nodes. (c) Inverse of average inverse sum of NBCs of child
nodes. Simulation results were averaged over 100 realizations for
each point in all panels.

E. Real-world mother network

Many real-world networks, particularly social networks,
tend to have a multitude of short loops, violating our assump-
tion of nonintersecting branches emanating from the child
network. Simulation results indicate that Eq. (13) still works
well, and even the results derived for uncorrelated random
networks, Eqs. (20) and (21), provide good approximations
(see Fig. 4). As an example, a small (n = 50) ER network is
inserted into the Gnutella p2p network [32] by merging nc = 5
random nodes of the child network with random mother net-
work nodes, and the sum of NBCs of the child network is
compared with our predictions. (An ER network was, again,
chosen only for convenience.)

IV. EXPONENTIAL DECAY OF NONBACKTRACKING
CENTRALITY AROUND THE CHILD NETWORK

A. Results for general networks

Let us find how nonbacktracking centrality is distributed
in the composite network. Returning to the nonbacktracking
expansion of the composite network, let ζ (i)

m be the fraction
of replicas—on the surface of the expansion—of nodes at
distance m � 1 from child node i (on the branch attached to
node i). This is the sum of the NBCs of these nodes. For z > b
Eqs. (3) and (4) immediately lead to the following expression:

ζ (i)
m = ρ

zm
xi

m∏
k=1

b(i)
k

∼= ρcixi

(
b

z

)m

. (24)

According to Eq. (5),

ρ +
n∑

i=1

∞∑
m=1

ζ (i)
m = 1, (25)

as is natural. Furthermore, since the number of nodes in the
branches attached to node i at distance m from this node grows
as ∼cibm, the NBC for an “average node” at distance m decays

as

ζ (i)
m

cibm
∼= ρxiz

−m, (26)

which is an exponential decay with rate z. Notably the branch-
ing of the mother network doesn’t play a role here. Using
Eq. (24) the sum of NBCs of all nodes at a distance m � 1
from the child network can be written as

Sm = ρ

zm

n∑
i=1

xi

m∏
k=1

b(i)
k

∼= ρ

(
b

z

)m n∑
i=1

cixi, (27)

while the number of nodes at distance m � 1 from the child
network,

Nm =
n∑

i=1

m∏
k=1

b(i)
k

∼= bm
n∑

i=1

ci. (28)

So the mean NBC of nodes at a distance m � 1 from the child
network is

〈NBC〉m = Sm

Nm

∼= ρz−m

∑n
i=1 cixi∑n
i=1 ci

. (29)

If the child network is a regular graph, then xi = 1/n, and

〈NBC〉m = Sm

Nm

∼= ρz−m

n
. (30)

These results are similar to the case of the adjacency matrix
PEV in a localized state, studied in Ref. [7]. The authors
also found an exponential decay of eigenvector centrality as
a function of the distance from the localization center: the
node of highest degree. The authors of Ref. [7] considered
a less general situation, a hub of degree q inserted into a
Bethe lattice of branching B, and found that the adjacency
matrix PEV components decay with distance m as fm ∝ a−m,
with a = (q − B)1/2, and the critical value for localization
qloc = B2 + B. In other words the rate of decay depends on the
branching of the surrounding network, whereas, interestingly,
in the case of the NBC the decay rate depends only on the
LEV of the child network. On the other hand, as the degree of
the hub q approaches qloc from above, a tends to B. Thus, at
the localization transition both the eigenvector centrality and
NBC decay at a rate given by the branching of the mother
network.

Localization in a given vector 
h = (h1, h2, . . . , hN ) is of-
ten studied using the inverse participation ratio, Y4(
h) =
(
∑N

i h4
i )/(

∑N
i h2

i )2, observing how this quantity scales with
system size N . For the case of NBCs in our study, when z < b,
we have Y4(NBC) ∼ N−1, indicating a delocalized state. For
z > b, considering that the decay of NBC around the child
network is exponential, we obtain Y4(NBC) ∼ const, indicat-
ing that localization occurs on a finite subgraph, as expected.

B. Random mother network

If the mother network is a random uncorrelated network,
we can calculate some averages approximately. In this case
let us define an average NBC at distance m as

NBCm ≡ 〈Sm〉
〈Nm〉 , (31)
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FIG. 5. Exponential decay of NBC around the child network: the
Karate club network (n = 34, z ≈ 5.29) inserted into an ER network
of N = 106 with varying mean degree 〈k〉 ≈ b. The insertion was
made at nc = 5 random points. Black dots show mean NBC as a
function of distance from the child network, for different LEV values
of the ER mother network. Solid blue lines correspond to the result,
Eq. (34). The range of exponential decay, rc, given by Eq. (43) is
marked with dashed black lines. In panel (a) localization of the NBC
is absent, and the mean NBC is almost uniform. Simulation results
were averaged over 10 realizations for each point in all panels.

where 〈Sm〉 and 〈Nm〉 are the averages over the network en-
semble. We have

〈Sm〉 ≈ f 〈ρ〉〈k〉bm−1

zm
, (32)

〈Nm〉 = f n〈k〉bm−1, (33)

where f is the fraction of child nodes that are merged with
mother network nodes. [In Eq. (32) we made the approxima-
tion 〈ρ ∏m

k=1 b(i)
k 〉 ≈ 〈ρ〉〈∏m

k=1 b(i)
k 〉, again assuming a small

variance for ρ.] We obtain

NBCm = 〈Sm〉
〈Nm〉 ≈ 〈ρ〉z−m

n
. (34)

As an example, Fig. 5 shows results for the decay of the
NBC around the child network in a composite network con-
sisting of the Karate club network inserted, at nc = 5 random
points, into an ER network of N = 106 and varying mean
degree. The LEV of the child network is ≈5.29, therefore
in Fig. 5(a) localization is absent due to the higher LEV of
the mother network. In the cases where localization is present
[Figs. 5(b)–5(d)] the theoretical prediction, Eq. (34) provides
a very good fit up to a cutoff distance which depends on
the LEV (i.e., the branching, which in this case is closely
approximated by the mean degree) of the mother network.
As an example of a real-world mother network Fig. 6 shows
results for a small ER network inserted into the Gnutella p2p
network. For small distances away from the child network, the
theory works remarkably well.

In both Figs. 5 and 6 the mean NBC noticably deviates,
above a certain distance, from the exponential decay predicted
by Eq. (34). This is a finite-size effect related to the normal-
ization of the NBCs and can be understood as follows. Due to

FIG. 6. Mean NBC as a function of distance from the child
network: an ER network of n = 50 and z ≈ 12.11 inserted into the
Gnutella p2p (N = 62 561, b ≈ 11.48) network by merging nc = 5
random nodes in both networks. The range of exponential decay, rc,
given by Eq. (43) is marked with a dashed black line. Simulation
results were averaged over 100 realizations.

the normalization of the NBCs we must have

1 ≈ 〈ρ〉
[

1 + f 〈k〉
b

∞∑
m=1

(
b

z

)m
]
, (35)

which results in

〈ρ〉 ≈ z − b

f 〈k〉 + z − b
, (36)

in accordance with Eq. (21). Equation (34) is approximately
valid in an infinite locally treelike mother network for any
m value. The rate of decay of the exponential in Eq. (34) is
such that when summing the NBC values of all distances,
m → ∞, the normalization condition, Eq. (35), holds. For
a finite network, assuming the same ρ value and the same
exponential decay rate but a finite maximum distance mmax,
the normalization condition is necessarily violated,

1 > 〈ρ〉
[

1 + f 〈k〉
b

mmax∑
m=1

(
b

z

)m
]
. (37)

Therefore, to restore correct normalization, for finite
mother networks there must exist a cutoff distance above
which the NBC decays more slowly. Note that the finite net-
work considered here is still large enough so that ρ is given
by the theory derived for infinite mother networks, i.e., we
assume that the criterion in Eq. (23) is satisfied.

C. Decay of nonbacktracking centrality in finite graphs

Here we give an approximation to the cutoff distance above
which the NBC must decay more slowly than the exponential
predicted by Eq. (34). For simplicity let us assume that the
mean NBC decays exponentially up to a cutoff distance rc,
and is uniform above that value up to the effective radius

R ≡ ln N + ln(b − 1) − ln〈k〉 − ln n − ln f

ln b
≈ ln N

ln b
. (38)

(Here the effective radius R is the average maximum dis-
tance from the child network in a random mother network of
size N , with mean branching b.) First, let us write the mean
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number of nodes up to distance r in a random mother network,
r∑

m=0

〈Nm〉 ≈ f n〈k〉br

b − 1
, (39)

and the mean sum of NBCs up to distance r, assuming the
exponential decay of Eq. (32),

r∑
m=0

〈Sm〉 ≈ 〈ρ〉 + f 〈ρ〉〈k〉[( b
z

)r − 1
]

z
(

b
z − 1

) . (40)

We can write an equation for normalization:

1 ≈ 〈ρ〉 + f 〈ρ〉〈k〉[( b
z

)rc − 1
]

z
(

b
z − 1

)
+ 〈ρ〉

n
z−rc

(
N − f n〈k〉 brc

b − 1

)
, (41)

where the first two terms on the right-hand side give the sum
of NBCs up to the cutoff distance rc from the child network;
see Eq. (40). The third term on the right-hand side gives
the sum of NBCs of all remaining nodes, that is, nodes at
distances larger than rc, considering that NBC from distance
rc onwards is assumed to be uniform, and using Eq. (39).
Accounting for Eq. (21), we have

f 〈k〉 + z − b

z − b
≈ 1 + f 〈k〉[( b

z

)rc − 1
]

z
(

b
z − 1

)
+ z−rc

(
N

n
− f 〈k〉 brc

b − 1

)
. (42)

This results in the cutoff distance

rc ≈ ln N + ln(z − b)

ln b
+ C, (43)

with

C = ln(b − 1) − ln(z − 1) − ln〈k〉 − ln( f n)

ln b
. (44)

Expressed using the effective radius R,

rc ≈ R − ln(z − 1) − ln(z − b)

ln b
< R. (45)

We see that rc → R as b → 1, i.e., approaching the perco-
lation threshold in the mother network. Equation (43) slightly
overestimates the cutoff distance, as seen in Figs. 5–7. This is
due to the fact that the mean NBC displays only a short plateau
at the cutoff distance and then continues to decay, contrary to
our assumption. The prediction of the cutoff distance, relative
to the actual observable value, progressively improves with
increasing network size, as shown in Fig. 7, where the Karate
club network was inserted into ER mother networks of size
ranging from N = 103 to 106.

One can easily show that rc in Eq. (43) is positive within
the range of validity of our theory, Eq. (23), as it must
be.

V. DISCUSSION AND CONCLUSIONS

In this paper we have considered the problem of lo-
calization of the NBC in networks where the LEV of the

FIG. 7. The Karate club network (n = 34, z ≈ 5.29) inserted
into ER networks of mean degree 〈k〉 = 4.5 ≈ b and sizes N =
103, 104, 105, and 106. The insertion was made at nc = 5 random
points. Solid lines with dots show mean NBC as a function of
distance from the child network. The solid black line corresponds
to the result, Eq. (34). The range of exponential decay, rc, given
by Eq. (43) is marked with dashed lines. Increasing the size of the
mother network by a factor of 10 corresponds to a shift of the range
rc by a value ln 10/ ln 4.5 ≈ 1.53, as predicted by Eq. (43).

nonbacktracking matrix of a small subgraph is larger than
that of the surrounding network. Our results were obtained
for a composite network where a completely arbitrary child
network is inserted into an infinite locally treelike mother net-
work. The mother network is allowed to have any correlations,
but must be such that the branches emanating from child nodes
do not intersect at finite distances. This condition allowed us
to utilize the concept of nonbacktracking expansion to derive
an exact expression for the sum of NBCs of child nodes. For
uncorrelated random mother networks a simple expression
was found. For large mother networks the NBCs of child
nodes are small (zero in the limit of infinite mother network
size) when the LEV of the child network is less than or equal
to the LEV of the mother network. Localization on the child
network occurs when the child LEV is larger than the mother
LEV, and in this case the child node NBCs are strictly positive
in the infinite size limit. We show that, in our construction, the
LEV of the composite network coincides with the maximum
of the two LEVs: that of the child and that of the mother
network. This result is a useful addition to what is already
known due to the Collatz-Wielandt formula: that the LEV
of any network is greater than or equal to the LEV of an
arbitrary subgraph of the network. Strict equality applies only
in the case of an infinite locally treelike mother network with
nonintersecting branches, however, as we show, the result is
accurate also in moderately sized random networks and even
in real-world sparse, loopy networks. Our expressions for the
NBC of child nodes proved to be good approximations in all
these situations.

Similarly to what was seen in the localization of eigenvec-
tor centrality (the PEV components of the adjacency matrix),
we found an exponential decay of the mean NBC around the
child network in the localized state. The rate of the decay,
however, is given only by the LEV of the child network, i.e.,
is independent of the mother network. In infinite systems the
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exponential decay means that almost all nodes outside the
child network have zero NBC. In the language of epidemic
spreading in the SIR model, for example, this would mean
that disease is only able to spread locally, in the child network
or very close to it. In finite networks the exponential decay
is only valid up to a certain cutoff distance above which the
mean NBC decays more slowly. Our estimate for this cutoff
distance agrees well with the simulation results. Interestingly,
in simulations of random networks, the mean NBC appears
to return to an exponential decay after a short plateau at the
predicted cutoff distance. This behavior, involving peripheral
nodes, is not explained by our theory and will require further
work to understand.

Our findings contribute to a better understanding of nonre-
current dynamical models, such as the SIR model of epidemic

spreading, on certain real-world network structures, where
localization may occur due to small, dense subgraphs. Our
results were derived for an arbitrary child network, albeit
inserted into an infinite locally treelike mother network. We
suggest that the presented ideas will provide a basis for future
work on more realistic mother network structures containing
finite cycles.
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