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Discrete breathers in a mechanical metamaterial
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We consider a previously experimentally realized discrete model that describes a mechanical metamaterial
consisting of a chain of pairs of rigid units connected by flexible hinges. Upon analyzing the linear band structure
of the model, we identify parameter regimes in which this system may possess discrete breather solutions
with frequencies inside the gap between optical and acoustic dispersion bands. We compute numerically exact
solutions of this type for several different parameter regimes and investigate their properties and stability. Our
findings demonstrate that upon appropriate parameter tuning within experimentally tractable ranges, the system
exhibits a plethora of discrete breathers, with multiple branches of solutions that feature period-doubling and
symmetry-breaking bifurcations, in addition to other mechanisms of stability change such as saddle-center and
Hamiltonian Hopf bifurcations. The relevant stability analysis is corroborated by direct numerical computations
examining the dynamical properties of the system and paving the way for potential further experimental
exploration of this rich nonlinear dynamical lattice setting.
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I. INTRODUCTION

Mechanical metamaterials are engineered structures [1–6]
whose macroscopic properties are primarily controlled by
their geometry and may differ considerably from those of
their building blocks [7–11]. In recent years, there has been
a lot of interest in nonlinear dynamic response of flexible
mechanical metamaterials, a class of engineered materials
that exploit large deformation and mechanical instabilities of
their components to yield a desired collective response [1,12].
Examples include metamaterials consisting of rotating rigid
elements that are connected by flexible hinges [13,14], multi-
stable kirigami sheets [15], chains of bistable shells [16] and
beams [17], as well as origami-inspired [18,19] and linkage-
based [20] deployable structures. These metamaterials can be
designed to enable potential applications that include morph-
ing surfaces, soft robotics, reconfigurable devices, mechanical
logic, and controlled energy absorption [21–27]. Recent stud-
ies have demonstrated that metamaterials of this type can
be designed to control propagation of a variety of nonlinear
waves [12,14,17,18,20,28,29].

In this paper, we consider a flexible mechanical metamate-
rial that was recently studied experimentally and theoretically
in Refs. [12,14,30]. The experimentally realized system,
schematically shown in Fig. 1, consists of a chain of pairs of
cross-type rigid units made of LEGO bricks and connected by
thin flexible polyester or plastic hinges [14,30]. Under certain
assumptions, the system can be described by a discrete model
that assigns two degrees of freedom to each pair of rigid units:
horizontal displacement and rotation. This system, in turn, can
be approximated at the continuum level by a Klein-Gordon

equation with cubic nonlinearity, a nonlinear wave-bearing
system that possesses both soliton and cnoidal wave solutions
[12]. In Ref. [14], the authors use a combination of exper-
iments, direct numerical simulations of the discrete system
and analysis of the continuum model to investigate travel-
ing waves in this system that correspond to elastic vector
solitons at the continuum level. They demonstrate that the
metamaterial lattice may be designed to exhibit amplitude
gaps where soliton propagation is forbidden, which, in turn,
enables the design of soliton splitters and diodes. In Ref. [30]
the anomalous nature of the soliton collisions in this system
is explored. These developments clearly illustrate the promise
of this type of nonlinear lattice in regard to the wave dynamics
and interactions.

In this paper, we demonstrate that in certain parameter
regimes the discrete system derived in Ref. [14] also exhibits
a plethora of spatially localized, time-periodic patterns in the
form of discrete breathers (DBs). These structures arise in
terms of the angle and strain (relative displacement) vari-
ables. Similar to DBs observed in other settings, including
Josephson junction arrays [31,32], forced-damped arrays of
coupled pendula [33], electrical lattices [34–36], microme-
chanical systems [37–39], and granular chains [40–43], they
emerge as a result of the interplay of (discrete) dispersion and
nonlinearity [44–46] and appear to be generic in the gaps of
the linear excitation spectrum, as we will show below.

To construct such solutions for the metamaterial system,
we start by analyzing the dispersion relation, which features
optical and acoustic branches. We show that when the an-
gle φ0 measuring the vertical offset between the neighboring
horizontal hinges takes values in certain parameter-dependent
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FIG. 1. Top panel: Discrete chain of cross-shaped rigid units.
Bottom panel: Kinematic variables and parameters. Adapted from
Fig. 6 in Supplemental Material for Ref. [14].

intervals, there is a frequency gap between the optical and
acoustic branches that enables existence of DBs. We then
use the iterations of Newton’s method with a suitable initial
guess and (once converged to a member of a solution family)
parameter continuation to compute branches of DB solutions
that have frequency inside the gap and either bifurcate from
or exist near the edges of the optical and acoustic bands. Sta-
bility of the obtained solutions is investigated using Floquet
analysis.

As our first example, we consider the system parameters
from Ref. [14] and show that in this case a branch of DB
solutions bifurcates from the edge of the optical band provided
that the offset angle φ0 is above a certain threshold. Floquet
analysis reveals that this branch eventually undergoes period-
doubling bifurcations, and we compute the corresponding
double-period solutions and investigate their stability.

As a second example, we consider a different set of pa-
rameters that enables existence of breathers for small offset
angles φ0 in a certain interval. Choosing two different val-
ues in this interval, we compute branches of solutions that
exist in the gap between the optical and acoustic bands.
Here, our computations reveal complex bifurcation diagrams
in the energy-frequency plane involving branches of sym-
metric and asymmetric DB solutions and emergence of
instability modes associated with real and complex Floquet
multipliers. In particular, we find that the onset of real in-
stability can take place via collisions of complex multipliers,
as well as symmetry-breaking and period-doubling bifur-
cations. Another mechanism involves critical points of the
breather’s energy as a function of its frequency (effectively, a
saddle-center bifurcation), in line with the stability criterion
established in Ref. [47] for DBs in Fermi-Pasta-Ulam and
Klein-Gordon lattices. We investigate the fate of some of
the unstable solutions by perturbing them along the corre-
sponding eigenmodes and show that in each case the ensuing
dynamic evolution leads to a DB that is effectively stable
if one neglects the presence of small-magnitude complex
eigenvalues. The computed primary branches have a snakelike
form with multiple turning points, and the solution profiles

often evolve in a nontrivial way along a branch, e.g., via
the emergence of additional peaks or troughs in the strain
and angle variables describing a DB with even symmetry.
Some features of the obtained bifurcation diagrams are remi-
niscent of the “snake-and-ladder” patterns observed in other
nonlinear systems [48–50], although a detailed exploration
of such a phenomenology is outside the scope of the present
paper.

The rest of the paper is organized as follows. In Sec. II,
we introduce the discrete model and formulate the problem.
Analysis of the dispersion relation for the linearized system
is presented in Sec. III. In Sec. IV, we discuss a solution
branch bifurcating from the edge of the optical mode for the
parameter values in Ref. [14] and exhibiting period-doubling
bifurcations. In Sec. V, we consider another set of parame-
ters and describe the complex bifurcation diagrams involving
branches that exist in the gap between the optical and acoustic
bands. Concluding remarks can be found in Sec. VI.

II. PROBLEM FORMULATION

Motivated by experimental and theoretical investigations
in Ref. [14], we consider a chain that consists of 2 × N cross-
type rigid units of mass m and moment of inertia J connected
by thin flexible hinges, as shown in Fig. 1. The neighbor-
ing horizontal hinges are shifted in the vertical direction by
a tan φ0, where a is the center-to-center horizontal distance
between the neighboring units (see the bottom panel of Fig. 1).
The hinges are modeled as a combination of three linear
springs, with stiffness parameters kl , ks, and kθ corresponding
to longitudinal stretching, shearing, and bending, respectively.
Following Ref. [14], we describe the dynamics of the system
by two degrees of freedom for nth vertical pair of rigid units:
the longitudinal displacement un(t ) and the rotation angle
θn(t ) at time t . Here it is assumed [14] that the two rigid units
in each vertical pair have the same displacement and rotate by
the same amount but in the opposite directions, with positive
direction of rotation defined as shown in the bottom panel of
Fig. 1. Introducing dimensionless variables

ũn = un

a
, t̃ = t

√
kl

m
,

and parameters

α = a

2 cos φ0

√
m

J
, Ks = ks

kl
, Kθ = 4kθ cos2 φ0

kla2
,

one obtains [14]

ün = un+1 − 2un + un−1

− cos(θn+1 + φ0) − cos(θn−1 + φ0)

2 cos(φ0)
,

1

α2
θ̈n = − Kθ (θn+1 + 4θn + θn−1) + Ks cos(θn + φ0)

× [sin(θn+1 + φ0) + sin(θn−1 + φ0) − 2 sin(θn + φ0)]

− sin(θn + φ0)[2 cos(φ0)(un+1 − un−1) + 4 cos(φ0)

− cos(θn+1 + φ0) − 2 cos(θn + φ0) − cos(θn−1 + φ0)],
(1)
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where we dropped the tildes in the rescaled displacement and
time variables, and the double dot denotes the second time
derivative. The total energy of the system is [14]

H =
N∑

n=1

[(
�l

n

)2 + Ks
(
�s

n

)2 + Kθ

(
2
(
δh

n

)2 + (
δv

n

)2
)

8 cos2(φ0)

+ u̇2
n + θ̇2

n

4α2 cos2(φ0)

]
, (2)

where

δh
n = θn+1 + θn, δv

n = 2θn,

�l
n =un+1 − un + 1

2 cos(φ0)
[2 cos(φ0) − cos(φ0 + θn)

− cos(φ0 + θn+1)],

�s
n = 1

2 cos(φ0)
[sin(φ0 + θn+1) − sin(φ0 + θn)]

characterize the deformation associated with horizontal (δh
n ,

�l
n, �s

n) and vertical (δv
n ) hinges.

We consider DB solutions of Eq. (1). These are time-
periodic nonlinear waves with frequency ω and corresponding
period T = 2π/ω,

un(t + T ) = un(t ), θn(t + T ) = θn(t ), (3)

that are spatially localized in terms of strain

wn(t ) = un+1(t ) − un(t ) (4)

and angle θn(t ) variables.

III. DISPERSION RELATION

To obtain conditions for existence of DB solutions bifur-
cating from the linear modes, we need to study the linear
spectrum of the problem first. To that effect, we linearize

Eq. (1) around the undeformed configuration. This yields

ün = un+1 − 2un + un−1 + 1

2
tan(φ0)(θn+1 − θn−1)

1

α2
θ̈n = (Ks cos2 φ0 − sin2 φ0 − Kθ )(θn+1 + θn−1)

− 2(Ks cos2 φ0 + sin2 φ0 + 2Kθ )θn

− sin(2φ0)(un+1 − un−1). (5)

Considering plane-wave solutions un(t ) = Uei(kn−ωt ), θn(t ) =
	ei(kn−ωt ) of Eq. (5) in the limit of an infinite chain (N → ∞),
we obtain the following solvability condition:[

ω2 − 4 sin2 k

2

][
ω2

α2
− 2(Kθ − Ks cos2 φ0 + sin2 φ0) cos k

− 2(2Kθ + Ks cos2 φ0 + sin2 φ0)

]
− 4 sin2 φ0 sin2 k = 0,

which yields explicit (but cumbersome) expressions for the
acoustic, ω−(k), and optical, ω+(k), branches of the disper-
sion relation between the wave number k and the frequency
ω. The two branches satisfy

ω−(0) = 0, ω+(0) = α

√
2(3Kθ + 2 sin2 φ0) > 0. (6)

We now examine the evolution of the dispersion relation
when the parameters α, Ks, and Kθ are fixed, while φ0 is var-
ied. Due to 2π -periodicity and even symmetry about k = π , it
suffices to consider wave numbers k in [0, π ]. In what follows,
we consider two sets of parameters α, Ks, and Kθ . In the
first representative example, we set α = 1.8, Ks = 0.02, and
Kθ = 1.5 × 10−4 from Ref. [14]. In the second case, we keep
the same value of Ks and set α = 5 and Kθ = 0.01. In both
cases,

α2(Kθ + 2Ks cos2 φ0) < 2 (7)

is satisfied for all φ0, and we thus have

ω−(π ) = α

√
2(Kθ + 2Ks cos2 φ0) < ω+(π ) = 2. (8)

Furthermore, one can show that for these parameter values the
acoustic branch ω−(k) has the maximum value at k = π given
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FIG. 2. Optical branch of the dispersion relation for (a) φ0 < φ′′
0 and (b) φ0 � φ′′

0 . The corresponding values of φ0 are indicated in each
panel; see also the discussion in the text. Inset in panel (a) zooms in on the k values near π . Here α = 1.8, Ks = 0.02, Kθ = 1.5 × 10−4.
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FIG. 3. Optical (blue) and acoustic (red) branches for (a) φ0 = 26π/180 ≈ 0.4538, α = 1.8, Ks = 0.02, Kθ = 1.5 × 10−4; (b) φ0 =
8π/180 ≈ 0.1396, α = 5, Ks = 0.02, Kθ = 0.01; (c) φ0 = 10π/180 ≈ 0.1745, α = 5, Ks = 0.02, Kθ = 0.01. The dashed horizontal lines
indicate the maximum ω−(π ) of the acoustic branch and ω+(kmax)/2, half of the maximum of the optical branch. When the optical branch is
above ω−(π ), condition (12) holds, and when it is above ω+(kmax)/2, condition (13) holds.

in Eq. (8) for all φ0. Meanwhile, as illustrated by the blue
curve in Fig. 2(a), the optical branch ω+(k) has a maximum at
k = π and a minimum at k = 0 for 0 � φ0 < φ′

0, where

φ′
0 = arccos

⎛
⎝

√
1 + Kθ

2 − 1
α2

1 − Ks

⎞
⎠ (9)

is obtained by setting ω′′
+(π ) = 0 at φ0 = φ′

0 and using
Eq. (7). The corresponding optical branch of the dispersion
relation with a zero-curvature point at k = π is shown by the
red curve in Fig. 2(a) and its inset. For φ′

0 < φ0 < φ′′
0 , where

φ′′
0 = arcsin

(√
1

α2
− 3

2
Kθ

)
, (10)

k = π becomes a local minimum, and ω+(k) reaches its max-
imum at k = kmax in (0, π ) and a global minimum at k = 0
[see the green curve in Fig. 2(a) and its inset]. At φ0 = φ′′

0 , the
case shown by the blue curve in Fig. 2(b), we have ω+(0) =
ω+(π ) = 2, which together with the second expression in
Eq. (6) yields Eq. (10). For φ0 > φ′′

0 , the optical branch has
a global minimum ω+(π ) = 2 at k = π . As illustrated by the
red curve in Fig. 2(b), it has a local minimum at k = 0 and the
maximum at k = kmax in (0, π ) until φ0 reaches the value

φ′′′
0 = arccos

(
1

2α
[(−2 + α2(Ks(3Kθ + 2) + 5Kθ + 4)

− [4 − 4α2(Ks(3Kθ − 2) + 5Kθ )

+α4(Ks(3Kθ + 2) + Kθ )2]1/2)/(Ks + 1)]1/2

)
, (11)

where k = 0 becomes a zero-curvature point (ω′′
+(0) = 0);

see the green curve in Fig. 2(b). For φ0 > φ′′′
0 , the optical

branch is inverted and has the maximum value at k = 0 and
the minimum value at k = π , as illustrated by the black curve
in Fig. 2(b). We obtain φ′

0 = 0.5736, φ′′
0 = 0.5888, and φ′′′

0 =
0.6032 for the parameters α = 1.8, Ks = 0.02, Kθ = 1.5 ×
10−4. In the case α = 5, Ks = 0.02, Kθ = 0.01, the evolution
of the optical branch is similar to Fig. 2 but the critical values
are φ′

0 = 0.1240, φ′′
0 = 0.1588, and φ′′′

0 = 0.1959.

Let kmin denote the wave number where the optical branch
ω+(k) reaches its minimum value. From the above discussion,
it follows that kmin = 0 for 0 � φ0 � φ′′

0 , with the minimum
value ω+(0) = α(6Kθ + 4 sin2 φ0)1/2, and kmin = π for φ0 >

φ′′
0 , with the minimum value ω+(π ) = 2. Recalling that the

acoustic branch has a maximum at k = π , we find that when

G = ω+(kmin) − ω−(π ) > 0, (12)

there is a band gap between the two branches. See Fig. 3 for
examples of such a gap. A DB solution with frequency ω in-
side the gap, i.e., ω−(π ) < ω < ω+(kmin), may exist provided
that

S = ω+(kmin) − 1
2ω+(kmax) > 0 (13)

holds in addition to condition (12) and ω > ω+(kmax)/2. Here
kmax is the wave number where the optical branch ω+(k)
reaches its maximum value. The fact that ω does not coincide
with either optical or acoustic values for any wave number
means that the breather is not in resonance with any linear
modes, while the condition (13) eliminates the second har-
monic resonances by ensuring that 2ω > ω+(k) for all wave
numbers. This enables both the spatial localization (due to
its presence in the band gap) and the nonresonance of the
breather, as discussed, e.g., in Ref. [51].

Figure 4 shows G and S defined in Eqs. (12) and (13),
respectively, as functions of φ0 for the first parameter set.
Both functions have a corner at φ0 = φ′′

0 , where kmin changes
from 0 to π . Noting that G changes sign from negative to
positive for φ0 < φ′′

0 , when kmin = 0, we set

G = ω+(0) − ω−(π ) = α(
√

6Kθ + 4 sin2(φ0)

−
√

2Kθ + 4Ks cos2(φ0)) = 0

to find the critical angle

φ∗
0 = arccos

√
1 + Kθ

1 + Ks
, (14)

above which condition (12) holds. The function S in Fig. 4(b)
also changes sign for φ0 < φ′

0, where kmin = 0 and kmax = π ,
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FIG. 4. (a) G defined in Eq. (12) as a function of φ0. The horizontal line is G = 0, and the two vertical lines indicate φ0 = φ∗
0 = 0.1400

and φ0 = φ′′
0 = 0.5888. (b) S defined in Eq. (13) as a function of φ0. The horizontal line is S = 0 and the two vertical lines indicate φ0 = φ∗∗

0 =
0.2811 and φ0 = φ′′

0 = 0.5888. Here α = 1.8, Ks = 0.02, Kθ = 1.5 × 10−4.

so

S = ω+(0) − 1
2ω+(π ) = α

√
6Kθ + 4 sin2(φ0) − 1 = 0

at

φ∗∗
0 = arcsin

(√
1

4α2
− 3

2
Kθ

)
, (15)

and hence condition (13) holds for φ0 > φ∗∗
0 . We find

that φ∗
0 = 0.1400 and φ∗∗

0 = 0.2811 in this case. Thus for
φ0 > 0.2811, both conditions (12) and (13) hold, and DB
solutions may exist with frequencies ω in the interval
(ω+(kmax)/2, ω+(kmin)); otherwise, first or second resonances
set in. The example at φ0 = 26π/180 ≈ 0.4538, where con-
ditions (12) and (13) hold for 1 < ω < 1.57906, is presented
in Fig. 3(a). As shown in Fig. 4(b), the frequency gap in-
creases until φ′′

0 = 0.5888 and then starts decreasing. Note
that for φ0 < φ′′

0 , DB solutions bifurcating from the optical

band emerge from k = 0 mode, while for φ0 above this thresh-
old the breathers bifurcate from the k = π mode.

The functions G(φ0) and S(φ0) for the second parameter
set are shown in Fig. 5. Recall that in this case Eqs. (9)–(11)
yield φ′

0 = 0.1240, φ′′
0 = 0.1588, and φ′′′

0 = 0.1959. One can
see that condition (12) holds [G(φ0) > 0] for φ0 > φ∗

0 , where
φ∗

0 = 0.0992 is found from Eq. (14). Meanwhile, S(φ0) is
positive for 0 � φ0 < φ∗∗∗

0 . To find this value, we observe that
it is above φ′′′

0 , which means that kmin = π and kmax = 0 in
Eq. (13). Thus,

S = 2 − 1
2α

√
6Kθ + 4 sin2(φ0) = 0

must hold at φ0 = φ∗∗∗
0 , which yields

φ∗∗∗
0 = arcsin

(√
4

α2
− 3

2
Kθ

)
. (16)
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FIG. 5. (a) G defined in Eq. (12) as a function of φ0. The horizontal line is G = 0 and the two vertical lines indicate φ0 = φ∗
0 = 0.0992

and φ0 = φ′′
0 = 0.1588. (b) S defined in Eq. (13) as a function of φ0. The horizontal line is S = 0 and the two vertical lines indicate φ0 = φ′′

0 =
0.1588 and φ0 = φ∗∗∗

0 = 0.3906. Here α = 5, Ks = 0.02, Kθ = 0.01.
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We obtain φ∗∗∗
0 = 0.3906 for the second parameter set. Thus,

in this case conditions (12) and (13) both hold when 0.0992 <

φ0 < 0.3906. Examples of dispersion relations with band gaps
for this parameter regime are shown in Figs. 3(b) and 3(c).
Note that in both cases the maximum of the acoustic branch
lies above half of the maximum of the optical one, and hence
the frequency range where DB solutions may exist includes
the entire gap between the two bands. This is in contrast to the
example shown in Fig. 3(a) for the first parameter set, where
the breather frequency must exceed ω+(π )/2 = 1.

IV. PERIOD-DOUBLING BIFURCATION

We first discuss DB solutions bifurcating from the opti-
cal k = 0 mode at φ0 < φ′′

0 for the parameters considered in
Ref. [14] and associated with the experimental implementa-
tion of the metamaterial in that work: α = 1.8, Ks = 0.02,
Kθ = 1.5 × 10−4. We set φ0 = 26π/180 ≈ 0.4538, which
enables existence of DB solutions with frequency ω in
(1,1.57906). The corresponding dispersion relation is shown
in Fig. 3(a).

To obtain the breathers with frequency ω and correspond-
ing period T = 2π/ω, we consider a chain of N = 200
elements and solve iteratively using Newton’s method the
following equations:⎛

⎜⎜⎝
u(T ) − u(0)
u̇(T ) − u̇(0)
θ(T ) − θ(0)
θ̇(T ) − θ̇(0)

⎞
⎟⎟⎠ = 0,

where the vector functions u(t ), u̇(t ), θ(t ), and θ̇(t ) have
the components un(t ), u̇n(t ), θn(t ), and θ̇n(t ), n = 1, . . . , N ,
respectively. We perform numerical continuation in the fre-
quency ω, starting with ω = 1.57, just below the edge of
the optical band at k = 0. The initial guess, motivated by
multiple-scale reductions in the vicinity of the band edge [43],
is of the form

un(0) = εu tanh

[
δ

(
n − N

2

)]
,

θn(0) = εθ sech

[
δ

(
n − N

2

)]
, (17)

where εu, εθ , and δ are small. The dynamical evolution of
Eq. (1) (over the prescribed period T ) is performed using a
symplectic fourth-order Runge-Kutta-Nyström algorithm [52]
with free-end boundary conditions.

To study the linear stability of the obtained solutions,
we use Floquet analysis. Setting un(t ) = ûn(t ) + εvn(t ) and
θn(t ) = θ̂n(t ) + εγn(t ) in Eq. (1), where ûn(t ) and θ̂n(t ) com-
prise the DB solutions, and considering O(ε) terms, we obtain
the linearized system

v̈n = vn+1 + vn−1 − 2vn

+ sin(θ̂n+1 + φ0)γn+1 − sin(θ̂n−1 + φ0)γn−1

2 cos(φ0)

1

α2
γ̈n = − Kθ (γn+1 + 4γn + γn−1)

+ Ks[cos(θ̂n + φ0) cos(θ̂n+1 + φ0)γn+1

− sin(θ̂n + φ0) sin(θ̂n+1 + φ0)γn

+ cos(θ̂n + φ0) cos(θ̂n−1 + φ0)γn−1

− sin(θ̂n + φ0) sin(θ̂n−1 + φ0)γn

− 2(cos2(θ̂n + φ0) − sin2(θ̂n + φ0))γn]

− [2 sin(θ̂n + φ0) cos(φ0)(vn+1 − vn−1)

+ 2 cos(θ̂n + φ0) cos(φ0)(ûn+1 − ûn−1)γn

+ 4 cos(θ̂n + φ0) cos(φ0)γn

− (cos(θ̂n + φ0) cos(θ̂n+1 + φ0)γn

− sin(θ̂n + φ0) sin(θ̂n+1 + φ0)γn+1)

− 2(cos2(θ̂n + φ0) − sin2(θ̂n + φ0))γn

− (cos(θ̂n + φ0) cos(θ̂n−1 + φ0)γn

− sin(θ̂n + φ0) sin(θ̂n−1 + φ0)γn−1)],

which is used to compute the monodromy matrix F defined
by ⎛

⎜⎜⎝
v(T )
v̇(T )
γ (T )
γ̇ (T )

⎞
⎟⎟⎠ = F

⎛
⎜⎜⎝

v(0)
v̇(0)
γ (0)
γ̇ (0)

⎞
⎟⎟⎠,

where the vector functions v(t ), v̇(t ), γ (t ), and γ̇ (t ) have
the components vn(t ), v̇n(t ), γn(t ), and γ̇n(t ), n = 1, . . . , N ,
respectively. The Floquet multipliers μ are the eigenvalues
of the matrix F . The existence of a Floquet multiplier μ

satisfying |μ| > 1 indicates the presence of instability. When
the relevant instability-inducing multiplier is real, we refer to
the instability as exponential, given the exponential nature of
the associated growth. When such real multipliers arise, they
come in pairs (μ, 1/μ) (one of which is outside, while the
other is inside the unit circle). In the case of a complex mul-
tiplier quartet (μ, 1/μ, μ̄, 1/μ̄) with |μ| > 1, the instability
is referred to as oscillatory, given that oscillations accom-
pany the exponential growth due to the imaginary part of
the associated multipliers. The fact that the multipliers come
in real pairs or complex quartets is a generic byproduct of
the Hamiltonian nature of the underlying lattice dynamical
system.

In what follows, we use the energy H of the obtained
breathers, computed using Eq. (2) for each frequency ω, to
represent the bifurcation diagrams. Similar to the case of soli-
tary waves [53], energy is an intrinsic characteristic of DBs,
and thus represents a natural choice of a dependent variable.
Importantly, change in monotonicity of the energy-frequency
curve has been linked with a potential change in breather
stability [47], a feature that will also be encountered in what
follows.

Figure 6(a) shows the energy H of the breathers bifurcating
from the k = 0 mode as a function of the frequency ω. As
illustrated in the insets, the amplitudes of both the strain
variable defined in Eq. (4) and the angle variable increase
as the frequency is decreased away from the edge of the
optical band, i.e., as the strength of the nonlinear contribution
increases. The maximum modulus of the Floquet multipliers
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FIG. 6. (a) Energy H as a function of frequency ω. The two insets show the strain variable defined in Eq. (4) and the angle variable at
points A, B, and C along the solution curve. (b) H (ω) for the single-period (blue curve) and double-period (red and green curves) solution
branches at twice their frequency. The bifurcation points are marked by d and e. The two insets show the strain and angle variables at points D
and E along the double-period solution curves. (c) Maximum modulus |μ| of Floquet multipliers versus frequency ω along the single-period
(blue) and double-period (red and green) solution branches. The insets show the corresponding Floquet multipliers near the unit circle. While
the double-period solution along the red curve coincides with the single period solution (blue curve) at the bifurcation point e, the Floquet
multipliers for the double-period solution are squares of those for the single-period one, resulting in the gap between the blue and red curves.
(d) Upper panel: Largest modulus |μ| of the real Floquet multipliers as a function of frequency ω along the blue single-period and green
double-period solution curves near the bifurcation point d . Lower panel: Second-largest modulus |μ| of the real Floquet multipliers as a
function of ω along the blue single-period and red double-period solution curves near the bifurcation point e. Note that these real Floquet
multipliers are negative for the blue curve and positive for the red and green curves. Here and in the remainder of this section we have α = 1.8,
Ks = 0.02, Kθ = 1.5 × 10−4, N = 200, and φ0 = 26π/180.

computed for this solution branch is shown by the blue curve
in Fig. 6(c). One can see that it exceeds unity and rapidly
increases near the end of the continuation. As illustrated in
the bottom left inset, this is due to the emergence of a pair
(μ, 1/μ) of real Floquet multipliers from μ = −1 at ω =
1.05155. One of these has modulus greater than one and hence
leads to the onset of an exponential instability at point d in
Fig. 6(b), which corresponds to a period-doubling bifurca-
tion [46]. A second pair of real Floquet multipliers emerges
from μ = −1 at ω = 1.05006, leading to another exponential
instability mode (not further explored). As the frequency is
decreased, these multipliers first move away from the unit
circle along the real line and then start moving back toward
it, eventually colliding at μ = −1 at ω = 1.0499, which cor-

responds to point e in Fig. 6(b) and is associated with another
period-doubling bifurcation.

To compute the double-period solutions that arise as a
result of the bifurcations at points d and e along the single-
period solution branch, we used the same iterative procedure
as discussed above with the initial guess consisting of a single-
period solution with twice the frequency perturbed along the
corresponding unstable mode. Solutions along the bifurcating
branches were then obtained using parameter continuation
in frequency or energy. The resulting energy as a function
of frequency for the double-period solutions (red and green
curves) is shown in Fig. 6(b) for each case together with the
single-period solution branch (blue curve) discussed above.
The double-period solution curves are plotted at twice their
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FIG. 7. (a) Enlarged view of the green double-period solution curve. The dashed vertical lines indicate the local minimum (left) and
maximum (right) of H (ω) along the upper branch of the multivalued curve. Points x1, . . . , x9 correspond to the Floquet multiplier panels
shown in (b). The inset shows an enlarged view near the turning point. Point x5, which is very close to x6, is marked by a larger red circle.
(b) Floquet multipliers near μ = 1 for points marked in (a). The arrows indicate how the Floquet multipliers evolve as the branch is transversed.

actual frequency to facilitate the comparison with the single-
period solution curve. Insets in Fig. 6(b) show examples of
the symmetric breather solutions along the different double-
period solution curves. As the insets of Fig. 6(c) reveal,
the Floquet spectra of the double-period and single-period
solution branches are markedly different. While the single-
period solutions, as noted above, are characterized by an
exponential period-doubling instability associated with a Flo-
quet multiplier μ < −1 for frequencies below the value at
the bifurcation point d , the double-period branches exhibit
an exponential instability associated with a Floquet multiplier
satisfying μ > 1. As the bifurcation points are approached,
the corresponding pairs of real multipliers collide at μ = −1
for the parent single-period branch and at μ = 1 for the bifur-
cating branches.

To examine the nature of these bifurcations further, we plot
in the top panel of Fig. 6(d) the largest modulus of real Floquet
multipliers μ as a function of ω along the green and blue
curves near the bifurcation point d . One can see that at the
period-doubling bifurcation point d the single-period branch
develops an exponential instability associated with a Floquet
multiplier μ < −1 via a subcritical pitchfork bifurcation of
the double-period branch, which has a pair of real multipliers
(μ, 1/μ) with μ > 1. In the bottom panel of Fig. 6(d), we
show the second largest modulus of the real Floquet multipli-
ers near the bifurcation point e, where the second pair of real
multipliers emerges near μ = −1 for the single-period branch
and near μ = 1 for the bifurcating red branch. Due to the
presence of the first pair of real multipliers, all solutions are
unstable near the bifurcation point e, as indicated in Fig. 6(c).

Note that the upper branch of the multivalued energy-
frequency function corresponding to the unstable green
double-period solution curve bifurcating from point d has a
local minimum and a local maximum, marked by the dashed
vertical lines in Fig. 7(a). As illustrated in the first four pan-
els in Fig. 7(b), these extrema are associated with a change
of multiplicity of the Floquet multiplier at μ = 1 along this
branch and subsequent emergence or collision of a second

pair of real Floquet multipliers. The change in multiplicity
of the unit Floquet multiplier when H ′(ω) changes sign is
consistent with the energy-based stability criterion proved in
Ref. [47] for DBs in Fermi-Pasta-Ulam and Klein-Gordon
lattices. Note, however, that in this case the change in mul-
tiplicity does not lead to a stability change due to the presence
of an additional pair of nonunit real multipliers at these fre-
quency values. As we trace the solution curve toward point d ,
this pair collides at μ = 1 on the unit circle at a bifurcation
point and subsequently briefly remains on it [see panels 4 and
5 in Fig. 7(b)], while the solutions are still unstable due to
the presence of complex multipliers μ satisfying |μ| > 1 (not
shown in panel 5). However, as illustrated in panels 7 and 8
in Fig. 7(b), two pairs of real multipliers subsequently emerge
on the real axis via collisions of complex conjugate pairs of
multipliers. One of the pairs eventually collides on the unit
circle at another bifurcation point, leaving a single pair (panel
9), which in turn collides at μ = 1 at point d .

The enlarged view of the Floquet multiplier curve for the
single-period solution branch and the insets shown in Fig. 8(a)
reveal that the onset of the period-doubling instability is pre-
ceded by small-magnitude oscillatory instabilities associated
with pairs of multipliers colliding on the unit circle and then
moving slightly off it in the form of a quartet as discussed
above. Note also that prior to the onset of the instability the
Floquet multipliers μ form an arc along the unit circle, as
shown in Fig. 8(b). Using the linearization of Eq. (1) about the
uniform equilibrium state for an infinite chain, one can show
[54] that the background state of the breather with period T
contributes the Floquet multipliers

μ = e±iω±(k)T , (18)

where we recall from Sec. III that ω+(k) and ω−(k) are the
optical and acoustic branches of the dispersion relation. As
we vary k from 0 to π , we obtain arcs of multipliers along
the unit circle. Such arcs corresponding to the top optical
(ω+(k), red arc) and the bottom acoustic (−ω−(k), light blue
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FIG. 8. (a) Maximum modulus |μ| of Floquet multipliers versus frequency ω along the blue branch prior to the bifurcation. The vertical
line indicates the frequency ω = 1.229, at which the top optical and bottom acoustic arcs shown in Fig. 9 below first intersect (see text for
details). Here |μ| > 1 corresponds to oscillatory instabilities, as shown in the insets, where the red curve is part of the unit circle. (b) Floquet
multipliers μ at the start of the continuation (ω = 1.57).

arc) bands are depicted in Fig. 9 for different values of ω

[and hence different T = 2π/ω in Eq. (18)] along with the
numerically computed Floquet multipliers (dark blue crosses)
for the obtained DB solutions. There are also symmetric arcs
(not shown in the figure) corresponding to the bottom optical
[−ω+(k)] and the top acoustic [ω−(k)] bands.

Under the mapping given by Eq. (18), the left ends of
the arcs corresponding to the top optical and bottom acoustic
bands, respectively, seen in Fig. 9, are associated with ω+(π )
and −ω−(π ). As ω is decreased, the two ends approach each
other along the unit circle and eventually coincide when

ei2πω+(π )/ω = e−i2πω−(π )/ω,

which yields

ω+(π ) + ω−(π )

ω
= n,

where n is a positive integer. We find that the first such col-
lision takes place when n = 2, which together with Eq. (8)

yields

ω = 2 + α
√

2(Kθ + 2Ks cos2 φ0)

2
≈ 1.2293.

This predicted value of ω = 1.2293 is close to the first sig-
nificant peak shown in Fig. 8(c), although there are also two
smaller peaks to the right of it at ω = 1.231 and ω = 1.239.
This discrepancy between predicted and actual collision fre-
quency values may be attributed to numerical accuracy of
computing the Floquet multipliers, as well as possible effects
of weak nonlinearity.

The solution curve shown in Fig. 6(a) was continued until
the frequency ω = 0.9972, and thus includes solutions with
frequencies ω � 1. As noted in Sec. III, these frequencies
are associated with second harmonic resonances of the DB
solution with the linear waves that have frequencies in the
optical band. As a result, the corresponding solutions are no
longer localized and instead possess nondecaying oscillatory
wings. Such solutions are known as phantom breathers [55]
or nanoptera [56,57]. The latter term stems from their nonva-
nishing tails due to the resonance with the linear modes. An
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FIG. 9. Numerically computed Floquet multipliers (dark blue crosses) and arcs of Floquet multipliers in Eq. (18) corresponding to top
optical (ω+(k), red arc) and bottom acoustic (−ω−(k), light blue arc) dispersion bands at (a) ω = 1.57, (b) ω = 1.4, (c) ω = 1.201.
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chain for the phantom breather with frequency ω = 0.9972 (solid
red) and the regular (localized) discrete breather with frequency ω =
1.02 (dashed blue).

example of a phantom breather with frequency ω = 0.9972
(red curve) is shown in Fig. 10 along with the regular (local-
ized) DB solution at ω = 1.02 (dashed blue).

We now consider the Fourier spectrum associated with the
dynamic evolution of the obtained breathers with prescribed
frequency ω̃. Fig. 11 shows the fast Fourier transform (FFT)
results involving the dynamics simulated over a course of 100
oscillation periods for two different values of ω̃, along with
the acoustic and optical bands shaded in gray. In the case
ω̃ = 1.1 [Fig. 11(a)], there are only two peaks at nonzero
frequencies for the displayed range, at ω̃ and 2ω̃, and the
latter is clearly above the top of the optical band (the right
shaded strip) at ω = 2. When ω̃ = 1.02 [Fig. 11(b)], one can
see a third nonzero-frequency peak in addition to ω̃ and 2ω̃.

This peak is at ω̃/2 and is associated with the period-doubling
instability, which is present at this frequency. Note that 2ω̃

is above the optical band (the right shaded strip), and ω̃/2 is
above the acoustic band (the left shaded strip), so there are
no resonances with either optical or acoustic linear waves.
In contrast, in the case ω̃ = 0.9972 (not shown), the peak at
2ω̃ is just inside the optical band, and the second-harmonic
resonance results in the phantom breather structure shown in
Fig. 10.

V. SNAKELIKE SOLUTION BRANCHES

As we have seen, the existence of DB solutions with
frequencies inside the band gap requires rather large angles
φ0 (above 16◦) for the set of model parameters used in the
previous subsection. Since large offset angles may render the
present description of the system with only two degrees of
freedom somewhat less accurate [58], we consider in what
follows the parameters α = 5, Ks = 0.02, Kθ = 0.01, which
allow breather existence at smaller values of φ0.

A. Branches associated with the k = π mode

We start by considering solutions that exist when the bot-
tom of the optical band is at k = π , which, as shown in
Sec. III, can occur when the angle φ0 is above φ′′

0 . Recall-
ing that φ′′

0 = 0.1588 for the chosen parameter values, we
set φ0 = 10π/180 ≈ 0.1745. The corresponding dispersion
relation plot is shown in Fig. 3(c).

To compute solutions associated with the k = π mode,
we modify our initial guess as follows. To obtain the initial
guess for the angle variable θn, we solve the linear system
in Eq. (5) for the finite chain of size N = 200 with zero
strain and zero angle prescribed at the boundaries, observ-
ing that the eigenvalues ν are equal to the negative of the
square of the frequencies that make up the optical and acous-
tic bands obtained for the linearized problem, and selecting
the angle-related part of the eigenvector associated with the
eigenvalue ν = −ω2

+(π ) = −4. Selecting the corresponding
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FIG. 11. The amplitude spectrum P(ω) obtained using the FFT for different values of the prescribed breather frequency ω̃: (a) ω̃ = 1.1,
(b) ω̃ = 1.02. The left and right shaded strips in each of the bottom panels indicate the acoustic and optical dispersion bands, respectively. The
dashed vertical lines indicate ω̃ and 2ω̃ in both panels and ω̃/2 in panel (b). It is clear that the frequencies associated with the breather do not
resonate with the linear spectral bands in the cases shown.
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FIG. 12. Initial guess for (a) displacement un = εu tanh(δ(n − N/2)); (b) angle θn obtained from the π -mode eigenvector (see text for
details). Here εu = 0.05 and δ = 0.15.

displacement part of the eigenvector did not yield nontrivial
solutions, and thus we used the same form of the initial guess
for un as in Eq. (17). Figure 12 shows the initial guess we used
in the computation.

The results of our computations are summarized in Fig. 13,
which shows the energy of the obtained solution branches as
a function of frequency. Blue, red, and green curves show
branches of DB solutions that have even symmetry, while the
black curves indicate asymmetric solution branches. For each
solution branch, thin dashed portions of the curve indicate the
existence of real Floquet multipliers satisfying μ > 1, along
with the corresponding real multipliers 1/μ inside the unit
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FIG. 13. Energy H of the computed DB solutions as a function
frequency ω. Blue, red, and green curves are branches of solutions
that have even symmetry, while the asymmetric solution curves are
shown in black. The legend in the figure holds for all four curves,
and the inequalities refer to the maximum modulus of the Floquet
multiplier. The parts of the curves where there are only oscillatory
instabilities with the maximum modulus of the Floquet multipliers
exceeding 1.009 are indicated by thin dotted segments, while solid
segments indicate the portions where there are no exponential in-
stabilities, and the maximum modulus of the Floquet multipliers is
below 1.009. Here and in the remainder of this subsection, we have
α = 5, Ks = 0.02, Kθ = 0.01, N = 200, and φ0 = 10π/180.

circle along the real line. Thick dashed segments indicate the
additional presence of real Floquet multipliers μ and 1/μ sat-
isfying μ < −1 and thus corresponding to a period-doubling
instability akin to the one discussed in Sec. IV. The parts of
the curve where there are only oscillatory instabilities with the
maximum modulus of the Floquet multipliers exceeding 1.009
are shown by thin dotted segments, while along the thick
dotted portions there are also real multipliers μ and 1/μ with
μ < −1. Solid segments indicate the portions where there are
no exponential instabilities, and the maximum modulus of the
Floquet multipliers is below the threshold value 1.009. Small-
magnitude oscillatory instabilities along the solid portions are
similar to the ones observed in Sec. IV and can be neglected,
so the associated solutions can be considered effectively (i.e.,
practically, for long-time simulations) stable. The threshold of
1.009 is (by necessity) somewhat arbitrary and is connected
with observations over the time horizons selected for our
numerical simulations of the breather dynamics.

We first consider the blue and red symmetric solution
curves shown in Figs. 14(a) and 14(c), respectively. Fig-
ures 14(b) and 14(d) show strain and angle variables for the
solutions at selected points along the corresponding curves
in Figs. 14(a) and 14(c) at the time instances of maximal
amplitude. Near ω = 2, the solutions for the blue curve have
only a single trough in the angle θn. As the curve is traversed,
this single trough evolves first into a double trough, as can be
seen at points A and B in Fig. 14(b), and later into a quadruple
trough at point C. Meanwhile, the strain wn evolves from a
single initial peak at point A into a single trough at point B
in Fig. 14(b), and finally into a quadruple trough at point C.
The solutions along the red curve near ω = 2 have a single
minimum in θn, which is maintained at points A and B in
Fig. 14(d). However, as can be seen at point C in Fig. 14(d),
these solutions also evolve from having a single minimum to
multiple extrema. As before, in the strain component we see
an inversion of an initial peak to a single trough as seen at
points A and B in Fig. 14(d). A key distinction between the
blue and red solution curves is that the solutions along the
blue branch are site-centered, and the solutions along the red
branch are bond-centered.
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FIG. 14. (a) Energy H as a function of frequency ω along the blue symmetric solution branch. The insets provide a enlarged view of
the turning points. (b) Strain and angle variables for the solutions at points A, B, and C in (a). (c) H (ω) along the red symmetric solution
branch. The inset showing Floquet multipliers illustrates the emergence of an exponential instability. A pair of complex Floquet multipliers
(blue crosses) associated with a solution before the transition collides to form two positive real multipliers (red crosses) associated with the
solution after the collision. The corresponding symmetric multipliers inside the unit circle are not shown. (d) Strain and angle variables for the
solutions at points A, B, and C in (c). (e) Left panel: The unstable asymmetric branch connecting the red and blue symmetric branches. Right
panel: Maximum real Floquet multiplier as a function of energy for the three branches. All solution profiles are shown at the time instances of
maximal amplitude.
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FIG. 15. (a) Energy H as a function of frequency ω along the blue and green symmetric solution branches and bifurcating black branches
of asymmetric solutions, with a, b, c, and d marking the bifurcation points. The insets show the solutions of the asymmetric and symmetric
branches at points A, B, and C. (b) The stability exchange between the symmetric (blue) and the asymmetric (black) branch. Both the associated
portion of the bifurcation diagram and the dominant multiplier of each branch associated with the instability growth rate are shown. (c) Energy
H versus frequency ω for the green symmetric solution branch with d and e marking the bifurcation points (see Fig. 16 for the asymmetric
branch bifurcating from e). (d) The enlarged view of the region inside the rectangle in (c). The insets show the transition from exponential to
oscillatory instabilities and vice versa that take place over the green symmetric curve. The red and blue crosses indicate Floquet multipliers μ

outside the unit circle that correspond to solutions before and after the transition point, respectively.

We remark that although both the energy and the amplitude
of solutions along the blue and red branches decreases as the
frequency approaches the edge of the optical band, they do not
appear to tend to zero in the limit. This suggests that instead
of bifurcating from the band edge, these DB branches retain
a finite amplitude as their frequency approaches the band
edge, akin to the large-amplitude bright breathers computed
in Ref. [59] for the Fermi-Pasta-Ulam lattices.

Examining now the stability of the solutions along the
two branches, we first note that as shown in the left panel
of Fig. 14(e), the two exchange an effective stability via a
connecting unstable asymmetric solution branch. This is rem-
iniscent of a similar phenomena observed in different settings
(yet still connecting the bifurcations from site-centered and
bond-centered solution branches) [60]; see also the discus-
sion of Ref. [45], where asymmetric solution curves carry
instabilities between neighboring symmetric solutions. The
blue curve has a real Floquet multiplier pair (1/μ,μ), with
μ > 1 until the bifurcation point at ω = 1.7742 and H =

2.264 × 10−3, where it becomes effectively stable (modulo
small-amplitude oscillatory instabilities), while the emerging
asymmetric branch is exponentially unstable; in other words,
this is a subcritical pitchfork bifurcation. The asymmetric
branch then connects to the red curve, where a similar stability
exchange (i.e., another subcritical pitchfork bifurcation) takes
place at ω = 1.7738 and H = 2.172 × 10−3. The stability
exchange is further illustrated in the right panel of Fig. 14(e),
where we plot the maximum real Floquet multiplier μ as a
function of the energy H .

Next, we note that the exponential instability that emerges
from the oscillatory instability in the solutions along the red
curve, indicated by the inset in Fig. 14(c), is due to the col-
lision of two complex pairs of Floquet multipliers μ (only
the multipliers outside the unit circle are shown in the inset).
A similar collision is responsible for the transition to expo-
nential instability near the first local maximum in the blue
curve, which is indicated in the inset containing point D in
Fig. 14(a).
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FIG. 16. (a) Energy H as a function of frequency ω along the green symmetric solution branch and a branch of asymmetric solutions
(different from the ones discussed earlier) bifurcating at point e. The insets include profiles of the angle variable at points A, B, and C. (b) The
insets associated with points D and E show the emergence of a new pair of real Floquet multipliers. In both cases, there is an additional pair of
real multipliers, which is not shown due to its larger magnitude. The inset associated with point F illustrates the collision of two pairs of real
multipliers to form two complex pairs. The red and blue crosses indicate Floquet multipliers outside the unit circle that correspond to solutions
before and after the transition point, respectively.

Figures 15(a) and 15(b) show a bifurcation at point a along
the blue curve, at which point the blue curve loses its expo-
nential instability (while still retaining oscillatory instability
modes). The instability is transferred to an asymmetric solu-
tion branch (again through a subcritical pitchfork bifurcation).
Another exponentially unstable asymmetric branch bifurcates
at point b from this branch and at point c from the blue
curve. The resulting part of the bifurcation diagram, depicted
in the right panel of Fig. 15(b), is reminiscent of the “snaking”
behavior that has been observed in other systems [48,49].
Further exploration of such snaking features and associated
asymmetric branches in the present metamaterial setting is a
potentially interesting topic for future studies.

We also observe that stability changes at the points where
H ′(ω) changes sign are associated with the emergence of a
pair of real Floquet multipliers from μ = 1. The multiplier
μ > 1 then corresponds to an exponential instability. One
such example is shown in the upper inset of Fig. 14(a), which
zooms in on a sharp turning point. The initial stability change
happens at a local minimum, and the second saddle-center
bifurcation takes place at a local maximum. This change in
multiplicity of the unit Floquet multiplier at the extrema of
the energy-frequency curve is similar to the one we observed
earlier in Sec. IV and again consistent with the stability crite-
rion in Ref. [47]. The same mechanism is responsible for the
onset of exponential instability at a local minimum of H (ω)
near ω = 2 [see the bottom right inset of Fig. 14(a)]. Another
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FIG. 17. (a) Energy H as a function of frequency ω along an asymmetric solution branch that exists near the k = π edge of the optical
branch. The insets include profiles of the angle variable at points A, B, C, and D. (b) The same branch, with the inset showing the collision of
two pairs of complex Floquet multipliers to form two real pairs. Blue and red crosses show the pairs outside the unit circle that correspond to
solutions before and after the transition, respectively.
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FIG. 18. (a) Energy H as a function of frequency ω along the red and blue symmetric solution curves. Points A–L indicate the perturbed
unstable solutions, while points A∗−L∗ mark the corresponding final states. The inset zooms in on the region including the end points.
(b) Space-time plot of the displacement un(t ) for the solution corresponding to point E . Here ε = 10−5 is the strength of the perturbation
and μ = 1.3596 is the largest real Floquet multiplier. (c) Space-time plot of the angle θn(t ). (d) Enlarged view of (c). Both (c) and (d) are
shown in a logarithmic plot to facilitate the visualization of the small scales involving dispersive wave radiation as a result of the instability.

example of such change in multiplicity takes place at the local
maximum near point D in Fig. 14(a) (see the inset). At this
point, a second pair of real Floquet multipliers emerges from
the unit circle, and this new pair subsequently collides at point
D with an already existing pair of real multipliers forming a
complex quartet of Floquet multipliers. A similar emergence
of a pair of real Floquet multipliers from μ = 1 is observed at
the local extrema of energy along the red curve.

As discussed above, a secondary asymmetric branch bi-
furcates from a primary asymmetric branch at point b in
Figs. 15(a) and 15(b). The primary branch continues past this
bifurcation point to intersect with a symmetric solution curve
at point d , shown in green in Fig. 15(a). Following this green
curve, shown in its entirety in Fig. 15(c), upward from point
d , we observe the sequence of events illustrated in Fig. 15(d).
Two pairs of real multipliers (1/μ,μ) with μ > 1 emerge
due to two pairs of complex multipliers colliding on the real
axis (only the multipliers outside the unit circle are shown in
the insets). The real multipliers then collide to form complex

ones anew, and subsequently reemerge again due to another
collision of the oscillatory multipliers. Eventually, the real
multipliers rejoin the unit circle. This provides a sense of the
complexity of the associated bifurcation diagram.

Traveling downward now from point d along the green
curve, we eventually arrive at another bifurcation of an asym-
metric solution branch at point e. This bifurcation is shown
in Fig. 16 and appears not to be associated with any stability
change. A closer examination shows that this is due to the
prior existence of two pairs of nonunit real Floquet multipliers
(one is not included due to its larger magnitude), shown in
the inset of Fig. 16(b) associated with point D. After the
bifurcation, a third pair of real Floquet multipliers joins the
other two, as shown in the inset of Fig. 16(b) associated with
point E , indicating the emergence of a new exponential insta-
bility. It is important to note that at both points D and E , an
additional exponential instability is present but not shown due
to its larger magnitude. As before, we also observe changes
in stability due to collisions of complex pairs, as shown in
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the inset associated with point F , as well as due to turning
points in energy, e.g., near the local minimum of the black
asymmetric solution curve of Fig. 16.

Finally, we consider the asymmetric branch in Fig. 13 that
has not yet been discussed. This branch is unique among the
other asymmetric branches in that it comes near the π -mode
edge of the optical branch. However, similar to the blue and
red branches, it does not appear to bifurcate from the edge. As
in the previous cases, we observe the emergence or collision
of real Floquet multipliers at the turning points in energy.
In Fig. 17(a), we show the evolution of the solutions as the
branch is traversed, and in Fig. 17(b), one can see the emer-
gence of pairs of real multipliers from complex ones; once
again these are signaled by transitions from dotted lines to
dashed ones.

To examine the consequences of an instability associated
with real Floquet multipliers μ > 1 along the blue and red
symmetric solution branches, we perturb unstable solutions at
various points featuring such an exponential instability along
the corresponding eigenmodes and simulate the resulting dy-
namics. In Fig. 18(a), these points on the blue and red dashed
portions of the curves are labeled A−L. The corresponding
final states are indicated by points A∗−L∗. As can be seen in
the inset of Fig. 18(a), in all cases, the perturbed solution even-
tually settles onto one of the two effectively stable regions of
the blue and red solution curves, with an apparent preference
toward the blue curve, which is effectively stable for a much
larger interval of frequencies than the red curve.

As an example, we consider point E in Fig. 18(a) and
show the dynamic evolution of the perturbed solution in
Figs. 18(b)–18(d). Here ε = 10−5, and the largest real Flo-
quet multiplier is μ = 1.3596. The space-time plots of the
displacement and angle are shown in Figs. 18(b) and 18(c),
respectively, while Fig. 18(d) zooms in on the dynamic evo-
lution of the angle variable at smaller times. Both Figs. 18(c)
and 18(d) are shown on a logarithmic scale. This facilitates
the last plot to show the nontrivial amount of radiation that
is emitted by the perturbed wave as it develops, as well as
its temporary mobility. Eventually, this perturbed wave settles
into a stable breather, associated with point E∗, as can be
verified by comparing its properties (once it settles) with those
of the latter solution.

B. Zero-mode optical and π-mode acoustic branches

We now consider breather solutions bifurcating from the
bottom of the optical band at k = 0, as well as solutions that
exist near the top of the acoustic branch at k = π . To ensure
that the optical branch has a minimum at k = 0, we choose
φ0 = 8π/180 ≈ 0.1396, which is below φ′′

0 = 0.1588. The
corresponding dispersion relation plot is shown in Fig. 3(b).

Using the continuation procedure with the initial guess of
the form given by Eq. (17), we obtained the blue and red
branches of symmetric DB solutions shown in Fig. 19 that
are site centered and bond centered, respectively, and bifur-
cate from the edge of the optical band at k = 0. The green
solution branch of site-centered breathers shown in the same
figure extends from near the top of the acoustic band at k = π

and was obtained using the initial guess that was constructed
as described in Sec. V A. As in the previous case discussed
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FIG. 19. Energy H of the computed DB solutions as a function
frequency ω. Blue and red curves bifurcate from the optical band at
k = 0, while the green curve is associated with the acoustic π mode.
All of the branches shown contain solutions with even symmetry.
Thin dashed portions of the curves indicate the presence of the
real multiplier pairs (1/μ, μ) with μ > 1. Along the thick dashed
segments, there are also real multipliers (1/μ, μ) with μ < −1.
The parts of the curves where there are only oscillatory instabilities
with the maximum modulus of the Floquet multipliers exceeding
1.009 are indicated by thin dotted segments. Solutions that also
have real multiplier pairs (1/μ, μ) with μ < −1 are along the thick
dotted parts. Solid segments indicate the portions where there are
no exponential instabilities, and the maximum modulus of the Flo-
quet multipliers is below 1.009. Here and in the remainder of this
subsection we have α = 5, Ks = 0.02, Kθ = 0.01, N = 200, and
φ0 = 8π/180.

in Sec. V A, we expect there to be other solution branches
emanating from the band edges, as well as secondary branches
that bifurcate from the primary ones. However, the discussion
below is limited to the three branches included in Fig. 19.

Figure 20 shows each of the branches (left panels) along
with the evolution of the strain and angle variables along
each curve (right panels). Along the blue branch presented in
Fig. 20(a), the strain variable shown in Fig. 20(b) has a single
peak at point A, which evolves to a single trough at point B,
and then to a triple trough at point C. Meanwhile, the angle
variable changes from a single trough at point A to a double
trough at point B, and finally to a quadruple trough at point C.

In the case of the red symmetric branch [Fig. 20(c)], the
strain variable shown in Fig. 20(d) initially has a single peak
at point A, which then evolves into a single trough at point B
and later to a double trough at point C. Meanwhile, the angular
variable has a single trough at point A and develops steps at
point B, which subsequently evolve into a triple trough at point
C. As in the case of the blue branch, the expansion of the
solution to more sites bearing high amplitudes is associated
with higher energies along the snakelike solution branch.

For the green solution branch that extends to near the top
of the acoustic band [Fig. 20(e)], we find that as we move
from point A to point C, the strain variable shown in Fig. 20(f)
develops two peaks. Notice that in this case, point A illustrates
the provenance of this mode from a k = π band edge, since
adjacent sites are out of phase with each other at the starting
point of the branch in Fig. 20(e). In the angular variable, we
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FIG. 20. (a) Energy H as a function of frequency ω along the blue symmetric solution branch. (b) Strain and angle variables for the
solutions at points A, B, and C in (a). (c) H (ω) along the red symmetric solution branch. The inset showing Floquet multipliers illustrates the
emergence of an exponential instability. A pair of complex Floquet multipliers (red crosses), associated with a solution before the transition,
collides to form two positive real multipliers (blue crosses) associated with the solution after the collision. The corresponding symmetric
multipliers inside the unit circle are not shown. (d) Strain and angle variables for the solutions at points A, B, and C in (c). (e) H (ω) along the
green symmetric solution branch. The inset shows the enlarged view near the end of the computed branch. (f) Strain and angle variables for
the solutions at points A, B, and C in (e). All solution profiles are shown at the time instances of maximal amplitude.
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observe a widening of the core from point A to point C along
with the emergence of two troughs at point C.

As in the previous case discussed in Sec. V A, we expect
the existence of an asymmetric solution branch connecting
the red and blue branches and facilitating an exchange of
the exponential instability shown in the inset in Fig. 19.
Due to the extremely narrow frequency and energy inter-
vals over which this exchange takes place, we were unable
to accurately compute the asymmetric solutions. Similar
stability exchange through symmetry-breaking bifurcations
is expected at other points where the emergence of an
exponential instability is not caused by a collision of com-
plex multipliers, as depicted in the inset of Fig. 20(c),
or associated with splitting of a pair of real multipliers
at μ = 1 when H ′(ω) changes sign.

VI. CONCLUDING REMARKS

In this paper, we have revisited a dynamical system that
constitutes a prototypical, experimentally tractable example
of a nonlinear mechanical metamaterial. While earlier works
[12,14,30] on this system focused on the possibility of its
featuring propagating nonlinear excitations in the form of
traveling waves, the emphasis in this paper has been on the
dynamics of discrete breathers (DBs) with parameters allowed
by the experimental setting (in accordance, e.g., with the
Supplemental Material in Ref. [14]). To explore the DB wave
forms, we started with a systematic analysis of the linear
spectrum of the system. We ensured the presence of a gap
between the acoustic and optical branches of the linear dis-
persion relation and the absence of resonances involving the
second harmonic, which are necessary for the existence of
spatially localized DBs [51]. When the relevant conditions
applied, we were able to identify a rich set of families of
DBs, both symmetric and asymmetric. This includes DB so-
lutions bifurcating from or existing near the lower edge of
the optical band, as well as solution branches that extend
to the upper edge of the acoustic band. Utilizing the energy
versus frequency representation of the associated bifurca-
tion diagrams, we were able to showcase numerous solution
branches, and importantly identified the wealth of bifurca-
tions emerging between them. These included saddle-center
bifurcations (leading to exponential instabilities), symmetry-
breaking bifurcations (involving asymmetric branches) and,

finally, Hamiltonian-Hopf bifurcations associated with the
emergence of complex multipliers. We also briefly discussed
the nonlinear evolution dynamics associated with different
branch instabilities and showed how these could lead to a
restructuring of the wave forms toward stable DB patterns,
while shedding some dispersive wave radiation as a result of
the dynamical instability.

Naturally, we believe that this work paves the way for
further explorations of nonlinear wave structures in this class
of metamaterial lattices. The relevant possibilities emerge
at different levels of experiment, computation, and theory.
Experimentally, it remains to be seen whether parametric
regimes considered in this paper allow for the identification of
the DB wave forms we examined. Theoretically, we showed
that some of the obtained solutions bifurcate from the band
edges of the dispersion relation. This is a feature that calls for
the analysis of such a bifurcation via multiple-scale expan-
sions and the possible derivation of a nonlinear Schrödinger
type model to describe it, an effort that is already underway
[61]. Computationally, a detailed study of such DB states and
an identification of the optimal parametric set to ensure wide
intervals of not only existence but also dynamical stability,
would be of substantial value for future experimental and
theoretical investigations of these nonlinear structures. Lastly,
it would be particularly interesting to extend the relevant
considerations of breathing wave forms to (numerically) exact
computations of discrete traveling wave solutions along the
lines of recent connections between the two types of struc-
tures [62]. Such studies are currently in progress and may be
reported in future publications.
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