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Speed of wave packets and the nonlinear Schrödinger equation
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The universal theory of weakly nonlinear wave packets given by the nonlinear Schrödinger equation is
revisited. In the limit where the group and phase velocities are very close together, a multiple-scale analysis
carried out beyond all orders reveals that a single soliton, bright or dark, can travel at a different speed than the
group velocity. In an exponentially small but finite range of parameters, the envelope of the soliton is locked to
the rapid oscillations of the carrier wave. Eventually, the dynamics is governed by an equation analogous to that
of a pendulum, in which the center of mass of the soliton is subjected to a periodic potential. Consequently, the
soliton speed is not constant and generally contains a periodic component. Furthermore, the interaction between
two distant solitons can in principle be profoundly altered by the aforementioned effective periodic potential and
we conjecture the existence of new bound states. These results are derived on a wide class of wave models and
in such a general way that they are believed to be of universal validity.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) has been with
us since the end of the 1960’s, when it emerged almost si-
multaneously in optics, hydrodynamics, and plasma physics
[1–4]. It is one of the central equations of nonlinear science
because it provides a unifying description of wave packets that
travel in uniform media in the presence of dispersion and a
weak nonlinearity. In this general frame, one considers waves
of the form

ψ (x, t ) exp i[β(ω0)x − ω0t] + c.c., (1)

i.e., an envelope ψ that multiplies a sinusoidal carrier wave at
a given frequency ω0. Above, c.c. means complex conjugate
and the function β(ω) contains all the relevant linear proper-
ties of the field in question. Provided that the envelope varies
slowly compared to the carrier, it generally satisfies

i

(
∂ψ

∂x
+ β ′(ω0)

∂ψ

∂t

)
− β ′′(ω0)

2

∂2ψ

∂t2
+ γ |ψ |2ψ = 0, (2)

which is the NLSE, where γ is a nonlinear coefficient that de-
pends on context. What makes the success of Eq. (2), besides
its universality and robustness, is its relative simplicity and
the fact that the envelope is decoupled from the underlying
oscillations of the carrier wave. This decoupling appears quite
reasonable owing to the separation of time scales between the
two, but the purpose of this paper is to challenge this view. It
will be shown that the envelope can be pinned to the carrier
wave in certain circumstances.

As is well known, and as directly transpires from Eq. (2)
the envelope travels at the group velocity vg = 1/β ′(ω0). On
the other hand, the oscillations of the carrier wave move
at the phase velocity vp = ω0/β(ω0) in the limit of a van-
ishing nonlinearity (γ = 0). From the point of view of the
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envelope, therefore, the carrier oscillations move at relative
speed vp − vg and whatever effect the latter could have on the
former, it rapidly averages to zero over time. The possibility
of a nontrivial interaction therefore rests on the assumption
that

|vp − vg| � vp. (3)

We thus specifically focus on wave systems whose linear
response allows that

β ′(ω0) = β(ω0)/ω0 (4)

for some ω0 and work in the vicinity of that angular frequency.
A mathematically equivalent condition to (4) is that the phase
velocity passes by an extremum

v′
p(ω0) = 0. (5)

Such a situation can happen, for instance, with gravity-
capillary waves, along elastic beams resting on a Winkler
foundation or in cold plasmas [4]. In optics and in acoustics,
the constitutive properties of the medium rarely, if ever, allows
(5) to happen in free space, but wave propagation in confined
geometries leads to a greater variety of dispersion relations
and makes that condition achievable.

Balancing the last two terms of Eq. (2), we see that ψ

evolves on a time scale |γ /β ′′(ω0)|1/2t , to be compared with
ω0t for the carrier wave. Hence, the separation of time scales
that underlies the validity of the NLSE rests on the smallness
of the following parameter:

ε = |γ /β ′′(ω0)|1/2/ω0. (6)

Equivalently, ε measures the ratio of the wavelength of the
sinusoidal oscillations to the width of the envelope. It is there-
fore essentially a geometrical parameter that can be identified
independently of the physical context. Note that the smallness
of ε does not imply the smallness of γ in Eq. (2), as it involves
a ratio with ω0, which does not appear in that equation. Rather,
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ε � 1 is implicit in the derivation of Eq. (2) from a given wave
equation.

The NLSE only admits soliton solutions that travel at a
constant speed. Within Eq. (2), that speed can differ from
vg(ω0), but in that case ψ is modulated by a complex expo-
nential, effectively shifting the frequency ω0 to a neighboring
value ω′. As a result, the soliton speed predicted by Eq. (2)
remains in agreement with vg(ω′) [5].

What we will show is that, in a narrow but finite range
of frequencies near ω0 defined by (5), envelope solitons de-
scribed to leading order by Eq. (2) do not move at a constant
speed. Instead, their location is given by

x = vpt + x0(t ), (7)

where

ẍ0(t ) + η
v2

l

4
κβ(ω0) sin [κβ(ω0)x0] = 0, (8)

κ =
{

2, in the presence of inversion symmetry,
1, without inversion symmetry, (9)

η = ±1, and

vl = Kε−1/2e−κπ/4εvp. (10)

Above, both η and K are model-dependent constants that can
only be obtained numerically.

Equation (8) is the central result of this paper. It holds both
for bright and dark solitons. It can only be derived from the
complete wave model, of which the NLSE is the leading-order
asymptotic reduction. Hence, it partially invalidates the NLSE
in the vicinity of an operating point given by Eq. (5).

The number κ appearing in Eqs. (8) and (10) is connected
to the set of harmonics generated by the nonlinearity. If the
system is unchanged by a reversal of sign of the field, then
the nonlinearity must be odd in that field. The lowest such
nonlinearity is cubic and couples harmonics separated by 2ω0

in the spectrum of the solution. Otherwise, the lowest possible
nonlinearity is quadratic in the field. In the presence of the
latter, successive peaks of the spectrum are separated by ω0.
Hence the spacing between peaks is κω0 with κ = 1 or 2,
depending on the symmetry.

According to Eq. (8), the motion of the wave packet in a
frame that moves at the phase velocity is analogous to that of a
pendulum. It has stable stationary points given by κβ(ω0)x0 =
[2n + (η − 1)/2]π , where n is an integer. It also has
unstable stationary points, κβ(ω0)x0 = [2n + (η + 1)/2]π .
Those unstable points are connected by separatrices in the
phase plane (x0, ẋ0), see Fig. 1. In the classical mechanical
language, the closed phase plane trajectories inside the sep-
aratrices describe motion of libration; outside, the pendulum
makes complete rotations about its point of attachment. The
speed at x0 = 0 that corresponds to the transition is vl . In the
phase portrait of Fig. 1, we thus identify closed trajectories
inside the separatrices as pertaining to the locking range,
where the average speed 〈v〉 of the soliton is equal to vp.

The pendulum equation (8) becomes compatible with the
classical theory of soliton motion, Eq. (2), when the ki-
netic energy of the pendular motion is very large. Indeed, if
|ẋ0| � vl , then the phase portrait in Fig. 1 indicates that ẋ0

FIG. 1. Top: Phase portrait of Eq. (8) in the case η = 1. The blue
lines are the separatrices that joins the unstable stationary points (red
crosses). Black dots are stable stationary points. Note that well above
the separatrices, ẋ0 becomes nearly constant, so that the pinning force
exerted by the carrier wave on the envelope becomes negligible.
Bottom: wave packets traveling exactly at the phase velocity and
corresponding to stable (black) and unstable (red) configurations in
an inversion-symmetric system (κ = 2). In this illustration, ε = 0.2.

becomes nearly constant. Hence, one recovers in that limit the
continuous family of constant-speed solitons of the NLSE [5].

However, as the energy of the effective pendulum de-
creases, the phase portrait in Fig. 1 clearly indicates that the
soliton velocity ceases to be constant and that the motion is
unsteady. The integration of Eq. (8) is a classical problem of
mechanics. Outside the locking range, such that the pendulum
makes complete rotations, the average speed 〈v〉 of the soliton
can be found as

〈v〉 = vp(ω) + π

2

⎡
⎢⎣∫ π

2

0

ds√
(vg(ω) − vp(ω))2 − v2

l cos s

⎤
⎥⎦

−1

.

(11)
This expression is illustrated in Fig. 2. Within the locking
range, the soliton oscillates about a coordinate that moves
at the phase velocity. Quite remarkably, this oscillation is
not due to noise, inhomogeneity of the supporting medium,
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FIG. 2. Average soliton speed 〈v〉 in the vicinity of ω0. Inside
the locking range [ω0 − �ωl/2, ω0 + �ωl/2], the soliton envelope
is locked to the phase velocity vp(ω). Moving away from the locking
range, 〈v〉 gradually tends to the group velocity vg(ω). Inset: exam-
ples of soliton trajectories just inside (orange) and just outside to the
right of the locking range (blue).

or the presence of another soliton. It results solely from the
oscillations of the carrier wave, which make an effective shal-
low periodic potential for the center of mass of envelope.
Figure 2 allows us to ascertain the locking range in frequency
as 2vl/|v′

g(ω0)|, that is,

�ωl = 2vl

v2
g (ω0)|β ′′(ω0)| . (12)

The right-hand side depends on the unknown constant K . Its
dependence on ε is plotted in Fig. 3 and shows that the effect
is generally more pronounced for systems lacking inversion
symmetry, due to the parameter κ .

Also, vl makes more precise condition (3) on the closeness
of the group and phase velocities. What is required in the
present study is that

|vp − vg| = O(vl ) = O(ε−1/2e−κπ/4εvp). (13)

FIG. 3. Locking range, ε−1/2 exp −κπ/4ε, as a function of the
scale separation ε and of the system inversion symmetry (κ = 1, 2.)

The quantity vl appearing in the pendulum equation is
exponentially small, i.e., smaller than any finite power of
ε. As a result, the physics presented here is not merely a
high-order correction to the NLSE. In other words, it is of a
different kind than the correction sometimes brought to the
NLSE for very short pulses by adding third-order, fourth-
order, or higher-order dispersion terms to the equation [6].
Rather, vl emerges because the multiple-scale expansion that
underlies the NLSE actually generates a diverging series. As
far back as 1857, George Gabriel Stokes studied diverging
asymptotic series that approximate the Airy function [7]. He
showed that the divergence is associated to the birth of expo-
nentially small corrections in precise regions of the complex
plane, corrections that grow exponentially as one moves away
from their place of birth to the point of completely invalidat-
ing the initial approximation. This process, known as Stokes
phenomenon, also takes place in the present situation. We
will show that a term of order v2

l will be switched on in
the complex plane and will grow exponentially away from the
center of the wave packet, thereby threatening to invalidate the
soliton approximation. To compensate for this correction, a
second exponentially growing term is born that is proportional
to ẍ0 so as to cancel the effect of the former. This summarises
in a few words the technique of beyond-all-orders asymp-
totics, which has been applied to multiple-scale problems in
only a few instances [8–21]. Among these works, the one by
Yang and Akylas [8] stands as particularly relevant. These
authors studied the possibility of asymmetric gravity-capillary
solitary waves in a simplified hydrodynamic model, namely
the fifth-order KdV equation. They were looking for constant
wave profiles in a frame moving at vp and concluded that
only symmetric profiles exist in that moving frame, i.e., that
the wave either has a crest or a trough at its center. This is
consistent with the results quoted here: the nonlinearity in
that example is quadratic (κ = 1), so stationary solutions of
the pendulum Eq. (8) require either x0 = 0 or β(ω0)x0 = π .
In the followup research coauthored by Calvo [12], it was
established that only one of them is stable, the one with a
depression in the middle. This is again fully consistent with
the present theory with η = −1. Further, one can immediately
read off from the pendulum equation that the rate of instability
of the unstable stationary state is 0.5vlβ(ω0) and the scaling
again agrees with Calvo et al. The present theory thus extends
the pioneering work by these authors by placing it into a
universal frame, completing the picture with dynamical asym-
metrical profiles and including dark solitons. Note, finally, that
a single computation can in principle allow one to determine
the numerical constant vl : from what has just been said, it
suffices to determine the rate of instability of the unstable
stationary profile.

Finally, it follows from what precedes that the carrier wave
exerts a small periodic force on the center of mass of the
envelope. This can of course alter the interaction between two
solitons. At large distance, two solitons are classically known
to interact through a Toda potential, which may be repelling or
attracting [22]. Such an interaction potential can now contain
ripples associated to the pendulum restoring force. As a result,
new stable bound states can appear in the vicinity of the
locking range, such that the two solitons, while interacting
with each other, are at the same time tied to the carrier wave.
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II. A GENERAL WAVE MODEL

We will demonstrate our result on the following general
class of wave equations:

∂2E

∂x2
+

∫ ∞

−∞
β2(ω)Ê (x, ω)e−iωt dω = N[E , ε], (14)

where

Ê (x, ω) = 1

2π

∫ ∞

−∞
E (x, t )eiωt dt (15)

is the Fourier transform of the scalar field E (x, t ) of interest
and N[E , ε] is the nonlinearity, which tends to zero as ε → 0.
We confine our study to a weak nonlinearity, i.e., to ε � 1.
In Appendix A, we show how the above equation naturally
arises in electromagnetic, elastic, and plasma wave propaga-
tion. The fifth-order KdV equation, allowing waves only in
one direction, is in fact not included in (14). The agreement
with the calculations of Calvo, Yang, and Akylas on that
equation support the claim that the results presented here are
general and not tied to a particular wave model. Notice that in
the linear limit ε → 0, Eq. (14) is merely a superposition of
Helmholtz equations.

The interest of formulating the wave equation in this
slightly unusual way is that it directly makes apparent the
all-important dispersion function β(ω). If we momentarily
neglect the right-hand side, it is immediate to see that the
general wave solution moving in the positive x direction is

ε = 0 : E (x, t ) =
∫ ∞

−∞
A(ω)ei[β(ω)x−ωt]dω. (16)

Hence β(ω) is indeed the wave number, or propagation con-
stant, as a function of angular frequency. In what follows, we
will adopt time and space units such that

ω0 = 1, β(ω0) = 1. (17)

In these units, and in the absence of nonlinearity, the phase
velocity is also unity at ω0.

When Eq. (14) models electromagnetic waves subjected to
a Kerr nonlinearity, Maxwell’s equations lead to

N[E , ε] = 2

3
ε2 ∂2

∂t2
(E3), (18)

where ε2 is a small parameter that is proportional to the
intensity of the wave and the factor 2/3 is introduced for
later convenience. However, it is common practice to simplify
the differential operator ∂2/∂t2 above by −ω2

0. In order to
simplify the algebra in this paper, we will therefore present
the calculation with the simpler cubic nonlinearity

N[E , ε] = − 2
3 ε2E3. (19)

(Recall that ω0 = 1 in our choice of units.) We wish to stress,
however, that we have also done the calculation with (18)
and obtained, as expected, the same result as with (19). The
algebra in the leading orders of the analysis is lightest with
(19) but at later orders, the calculation becomes universal. We
will therefore do the calculation explicitly with that nonlin-
earity and comment, whenever necessary in the course of our
analysis, what happens when a quadratic, rather than a cubic
nonlinearity is assumed.

Before embarking into a multiple-scale analysis, we note,
as in Ref. [23], that for a wave packet with central frequency
, we may expand β(ω) in Taylor series around  in the
integral of Eq. (14), giving∫ ∞

−∞
β2(ω)Ê (x, ω)e−iωt dω

= e−it
∑

n

1

n!

dn(β2)

dωn

∣∣∣∣


×
∫ ∞

−∞
(ω − )nÊ (x, ω)e−i(ω−)t dω + c.c.

= e−it
∑

n

1

n!

∂n(β2)

∂ωn

∣∣∣∣


(
i
∂

∂t

)n

(Eeit ) + c.c.

= e−itβ2( + i∂/∂t )(Eeit ) + c.c.. (20)

Remark. The attentive reader will have noticed that we
slightly changed the notation of the small parameter: ε vs
ε. The two differ by a numerical factor that we will specify
shortly. Using ε will be more useful from a notational point of
view in the asymptotic treatment to follow, but ε is universally
defined by (6), independently of context.

III. MULTIPLE SCALES

Let us construct a solution with the multiple-scale ansatz

E ∼
∑
l�0

εlEl =
∑
l�0

2l+1∑
m=−2l−1,

εlAl,m(ξ, X )eim(x−t ), (21)

with the constraint that

Al,−m = Āl,m (22)

on the real line for E to be real (we use an overbar to denote
complex conjugation). Above, the function Al,m is the O(εl )
contribution to the slow amplitude that modulates the mth
harmonic of the fundamental carrier wave. Its evolution is
assumed to take place on the following spatiotemporal scales

ξ = ε[t − (x − x0)(1 − ε2ν)], X = ε2x, (23)

where ε2ν is a nonlinear correction to the phase velocity.
Above, ξ is a variable that is attached to a frame moving at
the speed vp ≈ vg and which serves to describe the envelope
profile. On the other hand, X is a slow evolution variable, akin
to time, and which allows us to monitor slow changes of the
envelope in the course of propagation.

Given (21), we have, using (20),∫ ∞

−∞
β2(ω)Ê (x, ω)e−iωt dω

=
∑
l,m

εl eim(x−t )[β(m + iε∂/∂ξ )]2Al,m(ξ, X )

=
∑
l,m,n

εl+neim(x−t )�m
n in ∂nAl,m

∂ξ n
, (24)

where we have introduced

�m
n = 1

n!

dnβ2(ω)

dωn

∣∣∣∣
m

. (25)

014219-4



SPEED OF WAVE PACKETS AND THE NONLINEAR … PHYSICAL REVIEW E 107, 014219 (2023)

(Above, evaluation at ω = m means evaluation at ω = mω0 in
a general set of units.) Furthermore, with our multiple-scale
ansatz, differentiation with respect to x becomes

∂

∂x
→ ∂

∂x
− ε[1 − ε2ν]

∂

∂ξ
+ ε2 ∂

∂X
. (26)

As a result, ∂2/∂x2 becomes

∂2

∂x2
→ ∂2

∂x2
− 2ε

∂2

∂x∂ξ
+ ε2

(
∂2

∂ξ 2
+ 2

∂2

∂x∂X

)

+ 2ε3

(
ν

∂2

∂x∂ξ
− ∂2

∂ξ∂X

)
+ ε4

(
∂2

∂X 2
− 2ν

∂2

∂ξ 2

)

+ 2ε5ν
∂2

∂ξ∂X
+ ε6ν2 ∂2

∂ξ 2
. (27)

Above the O(ε5) terms are unimportant for the leading orders
of the asymptotic analysis and are also negligible in first
approximation when it comes to late terms of the expansion.
However, we give them for the sake of completeness. We thus
have

∂2E

∂x2
∼

∑
lm

εl eim(x−t )

(
−m2Al,m − 2im

∂Al−1,m

∂ξ

+ ∂2Al−2,m

∂ξ 2
+ 2im

∂Al−2,m

∂X
+ 2imν

∂Al−3,m

∂ξ

− 2
∂2Al−3,m

∂ξ∂X
+ ∂2Al−4,m

∂X 2
− 2ν

∂2Al−4,m

∂ξ 2

+ 2ν
∂2Al−5,m

∂ξ∂X
+ν2 ∂2Al−6,m

∂ξ 2

)
. (28)

Finally,

E3 =
∑

ll ′l ′′mm′m′′
εlAl ′,m′Al ′′,m′′Al−l ′−l ′′,m−m′−m′′eim(x−t ). (29)

Putting everything together, we have to solve, for each order
l � 0 and each harmonic m,

− m2Al,m − 2im
∂Al−1,m

∂ξ
+ ∂2Al−2,m

∂ξ 2
+ 2im

∂Al−2,m

∂X

+ 2imν
∂Al−3,m

∂ξ
− 2

∂2Al−3,m

∂ξ∂X
+ ∂2Al−4,m

∂X 2
− 2ν

∂2Al−4,m

∂ξ 2

+ 2ν
∂2Al−5,m

∂ξ∂X
+ ν2 ∂2Al−6,m

∂ξ 2
+

∑
n

�m
n in ∂nAl−n,m

∂ξ n

= −2

3

∑
l ′l ′′m′m′′

Al ′,m′Al ′′m′′Al−2−l ′−l ′′,m−m′−m′′ . (30)

This is the general multiple-scale translation of Eq. (14) sub-
ject to the nonlinearity (19). In what follows, we will first
solve the above equations up to l = 2 to derive the NLSE
for the amplitude A0,1. We will next investigate the recurrence
for l � 1 and show that Alm grows factorially with l in that
limit, making the asymptotic series (21) diverge. Finding the
precise way in which this divergence occurs, we will be able

to truncate (21) optimally as

E =
L−1∑
l=0

εlEl + R (31)

for some large L and derive an equation for the remainder R.
The law governing the locking of the envelope to the carrier
wave is contained in R.

A. Leading orders

At l = 0, m = ±1, we obtain

(β(1)2 − 1)A0,1 = 0, (32)

which is automatically satisfied, since β(1) = 1. At
l = 1, m = 1, we have

i
(
�1

1 − 2
)∂A0,1

∂ξ
= 2i

vp − vg

vg

∂A0,1

∂ξ
= 0. (33)

By assumption, the difference vp − vg is exponentially small
so that the above equation is automatically satisfied at O(ε) of
our calculation.

Next, the equation for l = 1, m = 3, yields

(β(3)2 − 9)A1,3 = 0, → A1,3 = 0, (34)

β(3)2 being generally different from 9, due to dispersion.
Finally, the l = 2, m = 1 equation is

∂2A0,1

∂ξ 2
+ 2i

∂A0,1

∂X
− �1

2
∂2A0,1

∂ξ 2
= −2A2

0,1A0,−1, (35)

or, equivalently

i
∂A0,1

∂X
+ 1 − �1

2

2

∂2A0,1

∂ξ 2
+ |A0,1|2A0,1 = 0. (36)

Evaluating �1
2, we get

�1
2 = β ′(1)2 + β(1)β ′′(1) = 1 + β2, (37)

where β2 = β ′′(1). Eventually, we find the classical NLSE:

i
∂A0,1

∂X
− β2

2

∂2A0,1

∂ξ 2
+ |A0,1|2A0,1 = 0. (38)

One may check that the above equation is indeed equivalent to
Eq. (2) by substituting ψ = A0,1(ε(t − β ′(ω0)x), ε2x) in the
latter and setting γ = ε2.

B. Soliton solution

Given the sign of the nonlinear term in (38), the bright
soliton solution is obtained when β2 < 0 and is given by

A0,1 = eiX/2sech

(
ξ

|β2|1/2

)
, (39)

while the leading order amplitude of the m = −1 harmonic is
given by

A0,−1 = e−iX/2sech

(
ξ

|β2|1/2

)
. (40)
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On the other hand, if β2 > 0, the NLSE admits the dark soliton
solution

A0,±1 = e±iX tanh

(
ξ

|β2|1/2

)
. (41)

Hence, the leading-order soliton solution of the complete
model is

E0 =
⎧⎨
⎩

2sech
(

ξ

|β2|1/2

)
cos(x − t + X/2) if β2 < 0,

2 tanh
(

ξ

|β2|1/2

)
cos(x − t + X ) if β2 > 0.

(42)
Importantly for what follows, both solutions above have com-
plex singularities at ξ = i(n + 1/2)π |β2|1/2. In particular, for
the bright soliton solution

A0,±1 ∼ i|β2|1/2e±iX/2

ξ0 − ξ
(43)

as ξ → ξ0 = iπ |β2|1/2/2 while, in the same limit, the dark
soliton solution diverges as

A0,±1 ∼ −β
1/2
2 e±iX

ξ0 − ξ
. (44)

We may summarize the two possible behaviors in the vicinity
of ξ0 as

A0,±1 ∼ i∗|β2|1/2e±iX/2∗

ξ0 − ξ
. (45)

where we introduce the notation

i∗ = i, 2∗ = 2, if β2 < 0, (46)

i∗ = −1, 2∗ = 1, if β2 > 0. (47)

Note that the star does not mean complex conjugation, we use
an overbar for that purpose. Next, recalling that X = ε2x in
(42), the nonlinear correction to the phase velocity is

ε2ν =
{−ε2/2 if β2 < 0,

−ε2 if β2 > 0,
(48)

which can be summarized by writing ν = −1/2∗ in the starred
notation. Finally, comparing the scales of the envelope and the
carrier wave in (42), we see that the small parameter ε of the
Introduction is related to ε as

ε = ε/|β2|1/2. (49)

C. Galilean invariance

The above formulas for A0,1, whether they describe bright
or dark solitons, belong to a family of solutions of the NLSE
obtained by the transformation rule

ξ → ξ + cX, iX/2∗ → i

(
X/2∗ + c2X

2β2
+ cξ

β2

)
, (50)

where c is a constant parameter that produces a change εc of
the envelope velocity. The second transformation rule above
ensures that this change of group velocity is accompanied by
a change of frequency that is compatible with the dispersion
relation β(ω).

D. Slowly accelerating soliton

If we now allow c to vary slowly in the course of propa-
gation, then Galilean invariance is broken. Letting c′(X ) � 1,
the bright soliton solution is changed, to first order, as

A0,1 ∼
[

sech(ζ ) − dc

dX
(Ra + iXζ )

]
ei[X/2+(c2X/2+cξ )/β2],

(51)
where

ζ = ξ + cX

|β2|1/2
, (52)

and Ra is the correction due to the acceleration:

Ra = 1 + e4ζ − 2ζ + 2ζ 2 − 2e2ζ (5 − 5ζ + ζ 2)

2(e3ζ + 2eζ + e−ζ )
. (53)

Note that the far-field behavior of Ra is

Ra ∼ eζ

2
, ζ → ∞, (54)

which, in principle, renders (51) physically unacceptable.
However, another exponentially growing term is hidden in the
remainder R of (31), which can compensate Ra and allow the
existence of accelerating solitons.

For dark solitons (β2 > 0) the same thing happens:

A0,1 ∼
[

tanh (ζ ) + dc

dX
(Ra + iXζ )

]
ei[X+(c2X/2+cξ )/β2],

(55)
this time with

Ra = sech2ζ

32
[−7 + 12ζ − 8ζ 2 + 8 cosh 2ζ

+ 8(1 − ζ ) sinh 2ζ + cosh 4ζ + sinh 4ζ ] (56)

and

Ra ∼ e2ζ

8
, ζ → ∞. (57)

IV. LATE-TERM EXPANSION

We now investigate the large-l behavior of the amplitudes
Alm. We first note that the nonlinearity (19) only couples odd
harmonics of the fundamental one and that two new harmon-
ics appear at each order of the calculation. As a result nonzero
amplitudes Alm only exist for

m odd, |m| � 2�l/2 + 1. (58)

(With a quadratic nonlinearity, even harmonics m exist too.)
As l becomes large, we anticipate from similar calculations
[15–18,20] that these amplitudes grow in size as �(l + αm)
for some αm. In order to determine this number, it is sufficient
to study the system (30) in the vicinity of the singularity ξ0.
This is what we do first.

A. Inner expansion near ξ = ξ0

In the vicinity of ξ0, we assume that

Al,m ∼ �(l + αm)Bl,meimX/2∗

(ξ0 − ξ )l+1 , (59)
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where αm is a constant to be determined. Substituting in
Eq. (30) and factoring out the factorial function, we obtain,
as ξ → ξ0,

− m2Bl,m − 2im
l�(l + αm − 1)

�(l + αm)
Bl−1,m

+ l (l − 1)�(l + αm − 2)

�(l + αm)
Bl−2,mm

+
∑

n

�m
n in l!�(l + αm − n)

(l − n)!�(l + αm)
Bl−n,m

= −2

3

∑
l ′l ′′m′m′′

�(l ′ + αm′ )�(l ′′ + αm′′ )

�(l + αm)
Bl ′,m′Bl ′′,m′′

× �(l − 2 − l ′ − l ′′ + αm−m′−m′′ )Bl−2−l ′−l ′′,m−m′−m′′ .

(60)

Compared to (30), Eq. (60) is a set of algebraic equa-
tions rather than differential ones, and are therefore more
tractable. They should in principle be solved by recurrence,
starting with

B0,±1 = i∗|β2|1/2/�(α1). (61)

In the large-l limit, the equations simplifies to

−m2Bl,m − 2imBl−1,m + Bl−2,m +
∑

n

�m
n inBl−n,m = O(1/l ).

(62)
We may then look for a solution of the form

Bl,m ∼ (i/κ )l b(0)
m + O(1/l ), (63)

where κ is to be determined. This yields(∑
n

�m
n κn − m2 − 2mκ − κ2

)
b(0)

m = 0. (64)

Recalling the definition of the coefficients �m
n , the above

equation can be written more simply as

[β2(m + κ ) − (m + κ )2]b(0)
m = 0. (65)

Given that β(±1)2 = 1, we thus have

m + κ = ±1, (66)

which can be solved for κ as a function of the harmonic m.
Since m is odd, the possible values of κ are

κ = ±2,±4,±6, . . . . (67)

In particular, κ = 2 is obtained for m = −1,−3, while κ =
−2 corresponds to m = 1, 3. (With a quadratic nonlinear-
ity, even values are allowed for m, so we have instead κ =
±1,±2,±3, . . .. In particular, κ = 1 is obtained for m =
−2, 0, while κ = −1 corresponds to m = 0, 2.) Given the κ−l

dependance in Eq. (63), we may expect that the Fourier modes
corresponding to smallest absolute value of κ are those that
will matter at very large orders and that the other Fourier
components will be subdominant as l → ∞.

To make further progress, let us generalize Eq. (63) as

Bl,m ∼ (i/κ )l
(
b(0)

m + l−1b(1)
m + l−2b(2)

m + · · · ). (68)

Then we find (see Appendix B) that

inl!�(l + αm − n)

(l − n)!�(l + αm)
Bl−n,m ∼ (i/κ )l

n∑
q=0

n!κn

(n − q)!
gq(l ) (69)

with

g0(l ) ∼ b(0)
m + l−1b(1)

m + l−2b(2)
m + · · · , (70)

g1(l ) ∼ (1 − αm)b(0)
m

l
+ (2 − αm)b(1)

m + (1 − αm)2b(0)
m

l2
, (71)

g2(l ) ∼ (1 − αm)(2 − αm)b(0)
m

2l2
, (72)

...

gq(l ) = O(1/lq). (73)

Now notice that ∑
n

�m
n κn = β2(m + κ ), (74)

∑
n

n�m
n κn = κ

d

dκ
(β2(m + κ )), (75)

∑
n

n(n − 1)�m
n κn = κ2 d2

dκ2
(β2(m + κ )), . . . (76)

Hence, for any q,∑
n

�m
n

n!κn

(n − q)!
= κq dq

dκq
(β2(m + κ )), (77)

Combining this last expression with Eq. (69), we find that
the various terms in the left-hand side of Eq. (60), can be
written as

il�(l + αm − 1)

�(l + αm)
Bl−1,m ∼ (i/κ )l [g0(l ) + g1(l )]κ,

(78)

i2l (l − 1)�(l + αm − 2)

�(l + αm)
Bl−2,m ∼ (i/κ )l [g0(l ) + 2g1(l )

+ 2g2(l )]κ2. (79)

and∑
n

�m
n in l!�(l + αm − n)

(l − n)!�(l + αm)
Bl−n,m

= (i/κ )l

[
g0(l )β2(m + κ ) + g1(l )κ

d

dκ
(β2(m + κ ))

+ g2(l )κ2 d2

dκ2

(
β2(m + κ )

) + · · ·
]
. (80)

Putting everything together, the left-hand side of (60) is

(i/κ )l

{
g0(l )[β2(m + κ ) − (m + κ )2]

+ g1(l )κ

[
d

dκ
β2(m + κ ) − 2(κ + m)

]

+ g2(l )κ2

[
d2

dκ2
β2(m + κ ) − 2

]
+ O(1/l3)

}
. (81)
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Above, we compute

dβ2(ω)

dω
= 2β(ω)β ′(ω), (82)

d2β2(ω)

dω2
= 2β ′(ω)2 + 2β(ω)β ′′(ω) (83)

If m + κ = 1, we find that (d/dκ )β2(m + κ ) = 2 and
(d2/dκ2)β2(m + κ ) = 2 + 2β2. On the other hand, from the
fact that β2(−ω) = β2(ω), we deduce that if m + κ = −1,
then (d/dκ )β2(m + κ ) = −2 and (d2/dκ2)β2(m + κ ) = 2 +
2β2. In both cases, the first two terms in the curly bracket of
(81) vanish. Hence, the left-hand side of Eq. (60) is found to
be asymptotic to −2β2(i/κ )l−2g2(l ), i.e., to

−β2(i/κ )l−2(1 − αm)(2 − αm)b(0)
m /l2 (84)

Therefore, the right-hand side of (60) must be O(l−2). The
right-hand side mixes and couples different harmonics. It is
natural to consider a couple of harmonics related by the same
κ , as in Eq. (66). Let them be m and m + 2 and let us assume
that αm = αm+2 = α. It is easy to see that in the large-l limit
the leading terms in the right-hand side of (60) will be those
for which two of the three indices l ′, l ′′, l − 2 − l ′ − l ′′ are
zero. Thus, using (61), (66), and the definition of i∗, the right-
hand side of (60) is asymptotic to

−2(i/κ )l−2

l2

∑
m′,m′′

�(αm′ )�(αm′′ )B0,m′B0,m′′b(0)
m−m′−m′′

= −2(i/κ )l−2

l2
(i∗)2|β2|

∑
m′,m′′

b(0)
m−m′−m′′

= −2β2(i/κ )l−2

l2

∑
m′,m′′

b(0)
m−m′−m′′

= −2β2(i/κ )l−2

l2

(
b(0)

m−2 + 2b(0)
m + b(0)

m+2

)
(85)

Eventually Eq. (60) evaluated for the two values, m and m + 2,
corresponding to a given κ , yield

[(1 − α)(2 − α) − 4]b(0)
m − 2b(0)

m+2 = 0, (86)

[(1 − α)(2 − α) − 4]b(0)
m+2 − 2b(0)

m = 0. (87)

Then we find that either b(0)
m+2 = b(0)

m and

(1 − α)(2 − α) − 6 = 0, → α ∈ {−1, 4}. (88)

or b(0)
m+2 = −b(0)

m , in which case

(1 − α)(2 − α) − 2 = 0, → α ∈ {0, 3}. (89)

Out of all the above possibilities, the case where α = 4 will
yield the dominant factorial growth as l � 1. We therefore
only keep that value into consideration in what follows. We

have thus shown that

El ∼ i∗
∑

κ

∑
m=−κ±1

λκ

(i/κ )l�(l + 4)

(ξ0 − ξ )l+1 eim(x−t+X/2∗ ) (90)

at order l in the expansion of E . Above, λκ is a constant
that can only be computed numerically or by actually solv-
ing the recurrence equations (60) all the way from l = 0 to
l � 1. Note that there is a similar expression near ξ = −ξ0

and indeed in the vicinity of all complex singularities of the
leading-order soliton. Although the constant λκ is not univer-
sal, we note that, after making the change Bl,m = (i/κ )l bl,m,
the resulting equations for bl,m have only real coefficients.
Hence, given the factor i∗ in (90), we may deduce that λκ

is real.

B. Outer expansion away from ξ = ξ0

The result of our investigation in the vicinity of ξ0, Eq. (90),
suggests to look for contributions in the late-term expansion
of the form

El ∼
∑

κ

∑
m=−κ±1

λκ

(i/κ )l�(l + 4)

(ξ0 − ξ )l+4 fm(ξ, X )eim(x−t ). (91)

Note that the exponent in the denominator was slightly
changed with respect to that in (90). This small variation,
which is allowed by the undetermined factor fm(ξ, X ), will
significantly simplify the ensuing algebra. Thus, the Alm are
of the form

Al,m = λκ

(i/κ )l�(l + 4)

(ξ0 − ξ )l+4 fm(ξ, X ). (92)

Considering (30), we see that we will need to evaluate expres-
sions of the form

∂nAl−n,m

∂ξ n
= λκ (i/κ )(l−n)�(l + 4 − n)

× ∂n

∂ξ n

fm(ξ, X )

(ξ0 − ξ )l+4−n
= λκ (i/κ )(l−n)�(l + 4 − n)

×
n∑

o=0

(
n
o

)
�(l + 4 − o)

�(l + 4 − n)

1

(ξ0 − ξ )l+4−o

∂o fm(ξ, X )

∂ξ o

= λκ (i/κ )(l−n)
n∑

o=0

(
n
o

)
�(l + 4 − o)

(ξ0 − ξ )l+4−o

∂o fm(ξ, X )

∂ξ o
,

(93)

where we have used the binomial formula for the derivative of
a product. Developing this expression further:

∂nAl−n,m

∂ξ n
= λκ

(i/κ )l�(l + 4)

(ξ0 − ξ )l+4

× (κ/i)n
n∑

o=0

(
n
o

)
�(l + 4 − o)

�(l + 4)
(ξ0 − ξ )o ∂o fm

∂ξ o
.

(94)
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Expanding the sum above up to order 1/l2:
n∑

o=0

(
n
o

)
�(l + 4 − o)

�(l + 4)
(ξ0 − ξ )o ∂o fm

∂ξ o

= fm + n

l + 3
(ξ0 − ξ )

∂ fm

∂ξ

+ n(n − 1)

2(l + 3)(l + 2)
(ξ0 − ξ )2 ∂2 fm

∂ξ 2
+ . . .

∼ fm + n

(
1

l
− 3

l2

)
(ξ0 − ξ )

∂ fm

∂ξ

+ n(n − 1)

2l2
(ξ0 − ξ )2 ∂2 fm

∂ξ 2
+ O(l−3). (95)

Hence, following a similar path as in the previous section, the
dispersive term in the equation for Alm is∑

n

�m
n in ∂nAl−n,m

∂ξ n

∼ λκ

(i/κ )l�(l + 4)

(ξ0 − ξ )l+4

(
fmβ2(m + κ )

+
(

1

l
− 3

l2

)
(ξ0 − ξ )

∂ fm

∂ξ
κ

d

dκ
(β2(m + κ ))

+ 1

2l2
(ξ0 − ξ )2 ∂2 fm

∂ξ 2
κ2 d2

dκ2

(
β2(m + κ )

) + O
(
l−3

))

= λκ

(i/κ )l�(l + 4)

(ξ0 − ξ )l+4

(
fm + 2κ (m + κ )

×
(

1

l
− 3

l2

)
(ξ0 − ξ )

∂ fm

∂ξ

+ κ2(1 + β2)

l2
(ξ0 − ξ )2 ∂2 fm

∂ξ 2
+ O

(
l−3)), (96)

where we recall that m + κ = ±1. Eventually we find that the
left-hand side of (30) is

λκ

(i/κ )l�(l + 4)

(ξ0 − ξ )l+4

κ2(ξ0 − ξ )2

l2

×
[

2(m + κ )

(
−νκ fm − i

∂ fm

∂X

)
+ β2

∂2 fm

∂ξ 2
+ O(l−3)

]
.

(97)

As for the nonlinear terms of Eq. (30), the leading-order terms
in the large-l limit are

− 2
∑
m′m′′

A0,m′A0,m′′2Al−2,m−m′−m′′

∼ 2λκ

(i/κ )l�(l + 4)

(ξ0 − ξ )l+4

κ2(ξ0 − ξ )2

l2

× (
A2

0,−1 fm+2 + 2A0,−1A0,1 fm + A2
0,1 fm−2

)
. (98)

Eventually, we obtain

(m + κ )

(
νκβ1 fm + i

∂ fm

∂X

)
− β2

2

∂2 fm

∂ξ 2

+ A2
0,1 fm−2 + 2A0,−1A0,1 fm + A2

0,−1 fm+2 = 0. (99)

Let now fm be given by

fm = F (ξ )eimX/2∗
, m = −κ ± 1 (100)

and be zero otherwise. Then,

(m + κ )
(
νκ − m

2∗
)

F − β2

2

d2F

dξ 2
+ 3|A0,1|2F = 0. (101)

The equation for F is identical for the two possible values of
m because ν = −1/2∗, so that

− F

2∗ − β2

2

d2F

dξ 2
+ 3|A0,1|2F = 0. (102)

This is the linearized equation for the modulus of |A01|. There-
fore, we may immediately spot one solution:

F1(ξ ) ∝ d|A0,1|
dξ

, (103)

and, using that particular solution to reduce the order of (102),
we find a second solution:

F2(ξ ) ∝ F1(ξ )
∫ ξ

ξ0

1

F1(s)2
ds. (104)

Another way to solve (99) is to let

fm = ±G(ξ )eimX/2∗
, m = −κ ± 1, (105)

then we obtain

− G

2∗ − β2

2

d2G

dξ 2
+ |A0,1|2G = 0. (106)

One solution is, simply,

G1 ∝ |A0,1|. (107)

Again, reducing the order of (106), we find a second one:

G2 ∝ G1(ξ )
∫ ξ

ξ0

1

G1(s)2
ds. (108)

In the case β2 < 0, 2∗ = 2, we obtain

F1(ξ ) = − 1

|β2| sech

(
ξ

|β2|1/2

)
tanh

(
ξ

|β2|1/2

)
, (109)

F2(ξ ) = 5|β2|3/2

4
F1(ξ )

[
6
ξ − ξ0

|β2|1/2
+ sinh

(
2ξ

|β2|1/2

)

− 4 coth

(
ξ

|β2|1/2

)]
, (110)

G1(ξ ) = −1

|β2|1/2
sech

(
ξ

|β2|1/2

)
, (111)

G2(ξ ) = −3|β2|3/2

2
G1(ξ )

[
ξ − ξ0

|β2|1/2
+ 1

2
sinh

(
2ξ

|β2|1/2

)]
.

(112)
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On the other hand if β2 > 0, 2∗ = 1, we obtain

F1(ξ ) = 1

|β2| sech2

(
ξ

|β2|1/2

)
, (113)

F2(ξ ) = 5|β2|3/2

4
F1(ξ )

[
3

2

ξ − ξ0

|β2|1/2
+ sinh

(
2ξ

|β2|1/2

)

+ 1

8
sinh

(
4ξ

|β2|1/2

)]
, (114)

G1(ξ ) = −1

|β2|1/2
tanh

(
ξ

|β2|1/2

)
, (115)

G2(ξ ) = −3|β2|
[

ξ − ξ0

|β2|1/2
tanh

(
ξ

|β2|1/2

)
− 1

]
. (116)

With that particular choice of integration constants, the above
solutions have the following asymptotic behaviors in the
vicinity of ξ0:

F1 ∼ i∗

(ξ − ξ0)2 , F2 ∼ i∗(ξ − ξ0)3, (117)

G1 ∼ i∗

ξ − ξ0
, G2 ∼ i∗(ξ − ξ0)2. (118)

Out of these asymptotic behaviours, only that of F2 is com-
patible with (90). The other solutions connect with late terms
in the vicinity of ξ0 that correspond to smaller values of
α and which are therefore subdominant in the large-l limit.
Matching with (90), we thus find, away from ξ = ξ0 that

El ∼ �(l + 4)F2(ξ )

(ξ0 − ξ )l+4

∑
κ

∑
m=−κ±1

λκ (i/κ )l eim(x−t+X/2∗ ).

(119)

In this sum, the contributions associated to κ = ±2 dominate
as l → ∞ and are therefore the only ones that matter to
our discussion. So far, we have only been treating the singu-
larity ξ = ξ0. Additional terms arise from the singularity at
ξ = −ξ0. They can be deduced from the former ones by the
fact that the solution must be real where x, t , and ξ are real.
Eventually, we obtain

El ∼ �(l + 4)F2(ξ )

(ξ0 − ξ )l+4

∑
κ

∑
m=−κ±1

λκ (i/κ )l eim(x−t+X/2∗ )

+ �(l + 4)F̄2(ξ )

(−ξ0 − ξ )l+4

∑
κ

∑
m=−κ±1

λκ (−i/κ )l eim(x−t+X/2∗ ).

(120)

Note that the far field behavior of F2 as ξ → ∞ is

F2(ξ ) ∼
{−(5/4)|β2|1/2eξ/|β2|1/2

if β2 < 0,

(5/16)|β2|1/2e2ξ/|β2|1/2
if β2 > 0,

(121)

C. Location of the Stokes line

Following Dingle [24], a Stokes line occurs in the region
of the complex-ξ plane where successive terms have the same
phase. Here, there is a Stokes line (or ray) emanating from
the singularity ξ0. In the first line of (120) on passing from

one order of the calculation to the next, a factor i/κ (ξ0 − ξ ) is
applied. This factor must be a positive real number, say 1/μ.
Thus the Stokes ray is given by

ξ = ξ0 − iμ/κ, μ ∈ R+
0 . (122)

The Stokes ray points in the downwards direction if κ > 0
and upwards if κ < 0. Hence, from the singularity ξ0, only
the ray with κ = 2 will cross the real axis and generate a
new contribution to the solution there. Conversely, with the
singularity −ξ0, located below the real axis, one should only
count the late terms of the series associated to κ = −2. (With
a quadratic nonlinearity, the same discussion holds with the
substitution κ = ±2 → ±1.)

V. TRUNCATING THE SYSTEM

From what precedes, each new terms of the series expan-
sion (21) gets smaller by a factor ε but larger by a factor (l +
4)/κ|ξ0 − ξ |. At a given distance r = |ξ0 − ξ | from the top
singularity, optimal truncation thus happens at order L − 1,
where L = �|κr|/ε. We define

E (L−1) =
L−1∑
l=0

εlEl , (123)

so that

E = E (L−1) + R, (124)

and we must now derive an equation for the remainder R.
An estimation of the size of R is given by εLEL, which is
exponentially small in ε. Hence, we may safely neglect R2

compared to R and anticipate that R satisfies a linearized
version of (14) plus forcing terms:

∂

∂x2
R +

∫ ∞

−∞
β2(ω)R̂(x, ω)e−iωt dω + 2ε2E2

0 R

∼ rhs+ + rhs−, (125)

where rhs± stem from the truncation of the asymptotic se-
ries (21) at order L − 1. More specifically, there are two
contributions: rhs+, associated to the singularity ξ0 of the
leading-order soliton approximation, and rhs−, associated to
the singularity at −ξ0 in that same approximation. All of the
intricate foregoing calculations precisely aimed at deriving
rhs+ and rhs−, which is what we are about to do. But first,
let us note that, by the linearity of Eq. (125), we may write R
as the sum of particular solutions

R = R+ + R− (126)

associated to rhs+ and rhs−, respectively. Once R+ has been
calculated, R− can be deduced by the fact that R+ + R− is
real on the real axis. We may therefore restrict our attention to
rhs+, and hence, on (119) to derive it.

The various terms appearing in E (L−1) are such that all the
O(εl ) terms up to l = L − 1 vanish when substituting (124) in
Eq. (14). Let us therefore focus on the terms of order εL and
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higher. We have

∂

∂x2
E (L−1) ∼ . . . − 2ε

∂2

∂x∂ξ
εL−1EL−1

+ ε2 ∂2

∂ξ 2
(εL−1EL−1 + εL−2EL−2)

= . . . +
∑

m

eim(x−t )

[
−2imε

∂

∂ξ
εL−1AL−1,m

+ ε2 ∂2

∂ξ 2
(εL−1AL−1,m + εL−2AL−2,m)

]
, (127)

where we omitted to write all terms up to order L and kept
only the dominant remaining ones. Similarly,∫ ∞

−∞
β2(ω)Ê (L−1)(x, ω)e−iωt dω

∼ . . . +
∑

m

eim(x−t )
∑
q�1

∑
n�q

�m
n (iε∂/∂ξ )nεL−qAL−q,m.

(128)

Next, the nonlinear terms are

2ε2

3
(E (L−1))3 ∼ . . . + 2ε2E2

0

2∑
q=1

εL−qEL−q. (129)

Now, near optimal truncation, all terms εL−qEL−q with q =
O(1) approximately have the same magnitude. Moreover, the
operator ε∂/∂ξ , when applied to a function of the form (92)
yields a contribution that is proportional to ε(l + 4), which
is O(1) when l = O(L). As a result, the nonlinear terms just
derived are a factor ε2 smaller than those in (127) and in (128)
and can be neglected in comparison. We thus have

rhs+ + rhs− =
∑

m

eim(x−t )

[
2imε

∂

∂ξ
εL−1AL−1,m

− ε2 ∂2

∂ξ 2
(εL−1AL−1,m + εL−2AL−2,m)

−
∑
q�1

∑
n�q

�m
n (iε∂/∂ξ )nεL−qAL−q,m

]
, (130)

Focusing on rhs+, that is on (119), the terms with κ = 2,
i.e., the harmonics m = −1,−3, dominate upon crossing the
Stokes line, so we ignore the others. (With a quadratic nonlin-
earity, κ = 1, m = −1, 0.) With κ = 2, each successive term
is identical in phase and amplitude, up to an O(1/L) difference
on the Stokes line: εL−qAL−q,m ∼ εL−1AL−1,m for all integers
q of order one. rhs+ thus simplifies as

rhs+ ∼
∑

m=−κ±1

eim(x−t )

[
2iε

∂

∂ξ

(
m + iε

∂

∂ξ

)

−
∑
q�1

∑
n�q

�m
n (iε∂/∂ξ )n

]
εL−1AL−1,m (131)

with κ = 2. Regarding the double sum above, we note the
following identity: ∑

q�1

∑
n�q

an =
∑
n�1

nan, (132)

provided the right-hand side exists. Therefore,

rhs+ ∼
∑

m=−1,−3

eim(x−t )

[
2iε

∂

∂ξ

(
m + iε

∂

∂ξ

)

−
∑
n�1

n�m
n (iε∂/∂ξ )n

]
εL−1AL−1,m. (133)

Further, and again with O(1/L) accuracy, ∂/∂ξ ∼ L/(ξ0 − ξ ):

rhs+ ∼ iεL

ξ0 − ξ

∑
m=−1,−3

eim(x−t )

[
2

(
m + iεL

ξ0 − ξ

)

−
∑
n�1

n�m
n

(
iεL

ξ0 − ξ

)n−1
]
εL−1AL−1,m. (134)

A. Local behavior near the Stokes line

Berry showed on some examples that exponentially small
terms are switched on not discontinuously but in an O(ε1/2)-
thin region comprising the Stokes line [25]. This observation
has been confirmed in many instances [15,16,25–28]. Based
on this knowledge, let us write

ξ = ξ0 − ir + ε1/2s. (135)

In the following, it will sometimes be convenient to write the
asymptotically equivalent expression

ξ0 − ξ = ir − ε1/2s ∼ ireiε1/2s/r+ 1
2 ε(s/r)2

. (136)

In (134), we have, using (135),

2

(
m + iεL

ξ0 − ξ

)
−

∑
n�1

n�m
n

(
iεL

ξ0 − ξ

)n−1

∼ 2

(
m + κ − iε1/2 κs

r

)
−

∑
n�1

n�m
n

(
κ − iε1/2 κs

r

)n−1

∼ 2

(
m + κ − iε1/2 κs

r

)

−
∑
n�1

�m
n

(
nκn−1 − n(n − 1)κn−2iε1/2 κs

r

)

= 2

(
m + κ − iε1/2 κs

r

)
− d

dκ
β2(m + κ )

+ iε1/2 κs

r

d2

dκ2
β2(m + κ )

= 2iβ2ε
1/2 κs

r
. (137)

Next, we must evaluate εL−1AL−1,m in the vicinity of the
Stokes line. With (136) and using �(z) ∼ √

2π/z(z/e)z, we
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have, in (119), with l = L − 1 ∼ κr/ε,

εL−1�(L + 3)

(ξ0 − ξ )L+3 (i/κ )L−1

∼ (κ/ε)4

√
2π

L + 3

(
iε(L + 3)

eκ (ξ0 − ξ )

)L+3

∼ (κ/ε)4

√
2επ

κr
e−κ/ε(r+iε1/2s)− 1

2 κs2/r

= (κ/ε)4

√
2επ

κr
eiκ/ε(ξ0−ξ )− 1

2 κs2/r

= (κ/ε)4

√
2επ

κr
eiκ (x−t−x0+X/2∗ )e−|κ�(ξ0 )|/εe− 1

2 κs2/r . (138)

Hence, we obtain

∂

∂x2
R+ +

∫ ∞

−∞
β2(ω)R̂+(x, ω)e−iωt dω + 2ε2E2

0 R+

∼ 2iεβ2λκF2(ξ )(κ/ε)4e−|κ�(ξ0 )|/ε
√

2κπ

r
e−iκx0

×
∑

m

ei(m+κ )(x−t+X/2∗ ) κs

r
e− 1

2 κs2/r . (139)

We thus see that the right-hand side of (139) varies very
rapidly, on the s scale, becoming negligible as soon as s2

exceeds a few times r/κ . On the ξ scale, this is an O(ε1/2)-thin
region. In the vicinity of the Stokes line, we let

R+ ∼ 4iπλκF2(ξ )(κ/ε)4e−|κ�(ξ0 )|/εe−iκx0

×
∑

m

ei(m+κ )(x−t+X/2∗ )Sm(r, s) (140)

with r fixed and s related to x and t through (136) and (23).
Substitution in (139) yields

− (m + κ )2Sm − 2i(m + κ )ε1/2 ∂Sm

∂s
+ ε

∂2Sm

∂s2

+ β2(m + κ + iε1/2∂/∂s)Sm

∼ −εβ2
∂2Sm

∂s2
∼ εβ2

√
κ

2πr

κs

r
e− 1

2 κs2/r . (141)

The solution of this last equation is

Sm(r, s) = 1√
π

∫ √
κ/(2r)s

−∞
e−u2

du. (142)

With this solution, R+ → 0 as s → −∞, and

R+ → 8iπλκF2(ξ )
(κ

ε

)4
e−|κ�(ξ0 )|/ε

× e−iκx0 cos (x − t + X/2∗) (143)

as s → ∞. Hence, upon crossing the Stokes line that joins ξ0

and −ξ0, one obtains the contribution

R+ + R− ∼ 16πκ4λκε
−4e−κ�(ξ0 )/ε

× �(
iF2(ξ )e−iκx0

)
cos(x − t + X/2∗) (144)

to the remainder R.

VI. SOLITON EQUATION OF MOTION

Let us first consider the bright soliton case. Adding the
leading-order expression of the slowly accelerating soliton,
see Eq. (51), and the remainder, Eq. (144), we finally obtain,
as ξ → ∞ and with c exponentially small

E ∼ cos (x − t + X/2)eξ/|β2|1/2

×
(

− dc

dX
− 20πκ4|β2|1/2λκε

−4e−κ�(ξ0 )/ε sin κx0

)
,

(145)

where we have used the large-ξ asymptotic expressions (54)
for Ra and (121) for F2, and where ζ ∼ ξ/|β2|1/2 on ac-
count of the exponential smallness of c. In order to prevent
unacceptable exponential divergence, we must set the factor
between parentheses to zero. This is the sought-after result,
since ẋ0 = εvpc and ċ = ε2β0vp

dc
dX . Eventually, in the original

variables, and reverting to ε as the small parameter, we obtain

ẍ0 + η
v2

l

4
κβ0 sin (κβ0x0) = 0 (146)

with

v2
l = 80πκ3|λκ |ε−1e−κπ/2εv2

p, η = sign(λκ ). (147)

Second, we consider dark solitons (β2 > 0). Here, as
ξ → ∞,

E ∼ 0.25 cos (x − t + X )e2ξ/|β2|1/2

×
(

dc

dX
+ 20πκ4|β2|1/2λκε

−4e−κ�(ξ0 )/ε sin κx0

)
,

(148)

where we used the far-field expressions (57) and (121) for
Ra and F2, respectively. We thus obtain exactly the same
equation of motion as with the bright soliton.

VII. CONCLUSIONS AND PERSPECTIVES

The law of propagation of wave packets at the group ve-
locity is one of the most fundamental in physics, given its
simplicity and scope of application. This paper brings an
exception to the rule, in the case where phase and group
velocities are very close. In an exponentially small range
of parameter, the nonlinear Schrödinger equation becomes
invalid as far as soliton dynamics is concerned. There, the
motion of bright and dark solitons is locally equivalent to
that of a pendulum. To obtain this rather simple looking
result, it was necessary to carry out a calculation beyond
all orders of the classical multiple scales expansion that un-
derlies the NLSE. We have treated a general class of wave
equations that describes many physical situations, which gives
confidence in the generality of our findings. What is required
is a weak nonlinearity and the existence of an extremum of
the phase velocity. The weak nonlinearity, which exists in
almost any classical physical system, leads to the existence
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of harmonics of the fundamental wave. These harmonics in-
teract very weakly with the fundamental one to produce the
pinning force. The higher the separation between harmon-
ics, the weaker the interaction. This explains why quadratic
nonlinearities lead to stronger pinning forces than cubic ones,
for the latter only lead to odd harmonics of the fundamental
signal.

The ultimate result of the present beyond-all-orders cal-
culation, Eqs. (145) and (148), correspond to the smallest
possible absolute value of κ , i.e., to the closest nonlinear
harmonics of the fundamental ones. The other harmon-
ics, associated to larger absolute values of κ , contributes
in principle to the equation of motion too, even though
they are exponentially smaller than first term. This suggests
that the set of all these contributions would form a trans
series.

It would be desirable to numerically demonstrate the dy-
namics described here but this is a challenging task. One
should indeed simulate the complete wave model Eq. (14),
including both the fast oscillations of the carrier wave and
their slow envelope at the same time, since the dynamics
is precisely governed by the interplay between these widely
separated spatiotemporal scales. Moreover, one should let the
field evolve over distances or durations that are exponentially
larger than the elementary oscillations, since the characteristic
speed of the soliton center of mass relative to the carrier wave
is given by the exponentially small vl in the region of interest.
This requires an efficient and stable numerical algorithm. An
attempt was made in the course of this research but it was
unsuccessful: our numerical code with explicit time stepping
was prone to numerical instabilities as soon as the nonlinearity
was present. As a result, soliton pulse evolution could be mon-
itored for only about 40 time units and ε was constrained to be
no larger than 0.1. This was not enough to confirm the phase
portrait of Fig. 1, because the acceleration and deceleration
of the soliton takes place over an O(1/vl ) characteristic time.
This is a similar situation to the one encountered with lo-
calized patterns pushed by distant boundaries [17,29], where
the slow dynamics requires numerical integration over tens of
thousands or even 106 of unit time. In the absence of a proper
numerical investigation, let us stress that a partial numerical
confirmation of Eq. (8) already exists: its stationary solutions
and their stability are consistent with the numerical results
obtained in the particular case of Refs. [8,12].

Beside challenging the conventional view of wave propa-
gation at the fundamental level, the results of this paper may
find their way to application. One example is soliton-based
optical frequency combs [30,31]. In this frame, the phase of
wave packets (light pulses) must be tightly controlled, and
it is precisely that phase that is governed by Eq. (8). In the
same vein, nonlinear optical pulses can travel over very long
distances compared to their width in optical fibers with low at-
tenuation. Over such distances, exponentially small effects, if
present, may have time to qualitatively affect the propagation
of wave packets.
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APPENDIX A: DERIVATION OF THE WAVE
EQ. (14)

1. Electromagnetic waves

In a nonmagnetic medium, the electric and magnetic fields,
respectively, E and H are governed by [32],

∇ × H = ∂D
∂t

+ ∂Pnl

∂t
,∇ × E = −μ0

∂H
∂t

, (A1)

where the displacement field is separated into a contribution
D that is a linear functional of E , and a nonlinear polarization
term Pnl . By cross differentiation and using the fact that
the fields are divergence free, we may rewrite the above two
equations as

∇2E − μ0
∂2D
∂t2

= μ0
∂2Pnl

∂t2
. (A2)

Let us now particularize the equation to an electric field with
a single component in the y direction, and an input amplitude
E0: E = E0E (x, t )ŷ. Then, with

−μ0
∂2D
∂t2

=
∫ ∞

−∞
β2(ω)Ê (x, ω)e−iωt dω (A3)

and Pnl = ε0χ
(3)|E|2E (see, for instance, Refs. [23,33]), we

get

∂2E

∂x2
+

∫ ∞

−∞
β2(ω)Ê (x, ω)e−iωt dω = χ (3)|E0|2

c2

∂2

∂t2
(E3).

(A4)
Hence, we recover (14) and the nonlinearity (19) with

ε2 = 3χ (3)|E0|2ω2
0

2β(ω0)2c2
� 1. (A5)

If, instead of free space, one considers wave propagation
in a waveguide, then we may approximately write E =
E (x, t )�(r⊥), where �(r⊥) is the vector distribution of a
waveguide mode, which depends on the transverse coordi-
nates r⊥ (see, e.g., Ref. [34]). Then Eq. (A3) can again be
used, provided that β(ω) is the dispersion function of the
waveguide and not that in free space. In general �(r⊥) also
depends on frequency but for a wave packet, this dependence
can safely be neglected.

2. Elastic waves

Let us next consider waves propagating along an elastic
beam. There, the vertical displacement w(x, t ) satisfies [35]

ρ
∂2w

∂t2
− T

∂2w

∂x2
+ B

∂4w

∂x4
= f , (A6)

where T is the tension in the beam, B its bending stiffness, and
f is a distributed force, which may depend nonlinearly on w.
Let us assume a nonlinear restoring force f = − f1w − f2w

2.
Then by way of using the spatial Fourier transform of w,

ŵ(k, t ) = 1

2π

∫ ∞

−∞
w(x, t )e−ikxdx, (A7)

the beam equation can be rewritten as

∂2w

∂t2
+

∫ ∞

−∞
ω2(k)ŵ(k, t )eikxdk + f2w

2/ρ = 0, (A8)
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with ω2(k) = (T k2 + Bk4 + f1)/ρ. This is of the same form
as (14), except for the exchange of coordinate x and t and
the replacement β(ω) → ω(k). A minimum of vp is obtained
at the wave number k0 = ( f1/B)1/4. Note in particular that
if the constants B, T , f1, f2, and ρ are chosen such that the
equation reads ∂2w/∂t2 + 1

2 (w + ∂4w/∂x4) + √
9/38 εw2 =

0, then the critical wave and angular frequency are both unity
and the NLSE reads i∂A/∂T + ∂2A/∂ξ 2 + |A|2A = 0, where
T = ε2t .

3. Plasma waves

Finally, let us consider the model for cold plasmas used by
Taniuti et al. [4]

∂n

∂t
+ ∂ (nu)

∂x
= 0, (A9)(

∂

∂t
+ u

∂

∂x

)
u + n−1 ∂

∂x

(
1

2
|B|2

)
= 0, (A10)

(
∂

∂t
+ u

∂

∂x

)(
V + iR−1

e n−1 ∂B
∂x

)
− n−1 ∂B

∂x
= 0, (A11)

∂

∂t

(
B − iR−1

i

∂V
∂x

)
− ∂V

∂x
= − ∂

∂x

[
u

(
B − iR−1

i

∂V
∂x

)]
,

(A12)

V = v − iw, B = By − iBz, (A13)

where n is the density, (u, v,w) is the cartesian velocity field,
By and Bz are the transverse components of the magnetic
field, with a constant applied magnetic field in the x direction.
Finally, Re and Ri are normalized cyclotron frequencies for
the electrons and ions, respectively. Assuming n = 1 − εn̂ and
u = εû, Eqs. (A11) and (A12) read

∂

∂t

(
V + iR−1

e

∂B
∂x

)
− ∂B

∂x
= ε f1(û, n̂,B,V ), (A14)

∂

∂t

(
B − iR−1

i

∂V
∂x

)
− ∂V

∂x
= ε f2(û, n̂,B,V ). (A15)

Defining F = V + iR−1
e

∂B
∂x and G = B − iR−1

i
∂V
∂x , we have,

using (A14) and (A15), V ∼ F − iRe
∂F
∂t and B ∼ G +

iR−1
i

∂G
∂t in the small-ε limit. Furthermore, let us introduce a

new function H as

H =
(

1 + iR−1
i

∂

∂t

)(
1 − iR−1

e

∂

∂t

)
F . (A16)

Then Eqs. (A14) and (A15) can be combined to yield

∂2H
∂x2

+
∫ ∞

−∞

ω2Ĥ(x, ω)e−iωt(
1 − iR−1

i ω
)(

1 + iR−1
e ω

)dω = εN, (A17)

where N is a nonlinear functional of H.

APPENDIX B: DERIVATION OF THE FUNCTIONS gq(l )

In this section, we derive the expressions of the functions
gq(l ) appearing in (69). Omitting the label m, we have

n∑
q=0

n!gq(l )

(n − q)!
= l!�(l + α − n)(i/κ )n−lBl−n

(l − n)!�(l + α)
(B1)

where

(i/κ )n−lBl−n ∼ b(0) + (l − n)−1b(1) + (l − n)−2b(2) + · · ·
(B2)

Evaluating (B1) with n = 0, we directly obtain

g0(l ) = (i/κ )−lBl ∼ b(0) + l−1b(1) + l−2b(2) + · · · (B3)

For n � 1, the gn(l ) are obtained by recurrence:

gn(l ) = l!�(l + α − n)(i/κ )n−lBl−n

n!(l − n)!�(l + α)
−

n−1∑
q=0

gq(l )

(n − q)!
, (B4)

which, upon expansion in the large-l limit yields (70)–(72).
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