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Circularly distributed multipliers with deterministic moduli assessing
the stability of quasiperiodic response
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The stability and bifurcation of a periodic solution of a dynamical system can be handled well by using the Flo-
quet multipliers of the perturbed system with periodic coefficients. However, for a quasiperiodic (QP) response
as a natural extension of a periodic one, it is much more difficult to do it quantitatively. Therefore, proposed
here is an approach for defining and obtaining effective multipliers for QP stability. The proposed approach
is based on a series of auxiliary variables via which the perturbed system with QP coefficients is transformed
approximately into a constant one, whereupon the multipliers are obtained efficiently by performing eigenvalue
analysis on the constant coefficient matrix. The major finding involves circularly distributed multipliers with
deterministic moduli, with the QP response being stable if all the moduli are less than or equal to unity; otherwise
it is unstable. When the QP response degenerates to periodic due to the reducibility of fundamental frequencies,
the proposed approach exactly provides the Floquet multipliers for the periodic solution. From this respect, the
obtained multipliers can be considered to some extent as being a generalization for QP response of the Floquet
multipliers for a periodic solution.
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I. INTRODUCTION

Quasiperiodic (QP) responses in nonlinear dynamical sys-
tems have been investigated extensively across the sciences
and engineering [1–5]. It has been known for decades
that QP solutions are closely associated with the classi-
cal Kolmogorov-Arnold-Moser theory for such systems [6].
In many cases, QP responses arise from periodic ones via
Neimark-Sacker [7] or Ruelle-Takens bifurcations [8], among
others, and quasiperiodicity has been reported extensively as
being responsible for certain routes to chaos [9–11]. From
these perspectives, QP responses play a pivotal role in the
dynamic evolution of nonlinear systems.

For continuous-time systems, a QP solution is charac-
terized mathematically by two or more incommensurate
fundamental frequencies, and hence is considered to be a nat-
ural extension of a periodic solution with a single fundamental
frequency. Although it is much more difficult to solve for
QP solutions than periodic ones, many powerful techniques
for doing so have been established during the past decade.
Actually, recent years have witnessed an increasing amount
of research on calculating QP responses arising in either con-
tinuous systems [12–15] or dissipative mappings [16].

One fundamental issue arises inevitably regarding the sta-
bility and further bifurcation of a QP response. According to
Lyapunov stability theory, the stability of the solution can be
characterized by a perturbed system obtained by introducing a
small perturbation to the solution itself [17]. Because the per-
turbed system is linear and governed by QP coefficients, under
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certain circumstances it can be reduced to an equivalent one
with a constant matrix by the Lyapunov-Perron transforma-
tion [18,19], and the eigenvalues of this constant matrix offer
necessary information about the stability of the considered QP
solution. Much research has been devoted to finding this trans-
formation quantitatively [20,21]; it is governed inherently by
a square matrix with each component being a QP function, so
for a system of dimension K , one must solve for K × K QP
functions.

The Floquet theory is used widely for analyzing the sta-
bility of periodic motion [17,22]. In this theory, the so-called
monodromy matrix is computed by integrating the perturbed
system over one period T . However, a major problem is that
a QP solution has no closed period, so this technique cannot
be implemented straightforwardly. For this issue, researchers
have suggested modifications to enable the Floquet theory to
be applicable to QP responses. Guskov and Thouverez [23]
defined an alternative matrix similar to monodromy in mul-
tidimensional representation and provided an approximation
for this matrix via interpolation, while Sharma and Sinha
[24] replaced the original system by a periodic one with an
appropriate and sufficiently large principal period.

Generally, the stability of a QP solution can be assessed
intuitively according to the evolution of the perturbation
acting on the considered solution. Liao et al. [25] con-
structed a generalized eigenvalue problem and used it to
determine the stability of a QP response. Suarez et al. [26]
expanded the perturbation as a generalized harmonic series
and solved the eigenvalue problem governing the harmonic
coefficients. Guennoun et al. [27] simplified the perturbed
system using the multiple-scales method, and predicted the
stability of a QP response according to the fixed-point stability
of the simplified system.
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Herein, we propose a simple yet efficient approach based
on a series of auxiliary variables, through which the perturbed
system with QP coefficients is converted approximately to a
constant one. The multipliers are then defined according to
the eigenvalues of the constant coefficient matrix, and test
examples show that the multipliers are distributed circularly
with deterministic moduli assessing the stability of the QP
response under consideration.

II. AUXILIARY CONSTANT SYSTEM

Consider the following general nonlinear dynamical sys-
tem that possibly exhibits a QP response

Ẋ = f (X, t ), (1)

where X is a K-dimensional state variable whose superscript
dash denotes differentiation with respect to time t . To describe
a QP solution either analytically or semianalytically, we use
the following truncated generalized Fourier expansion with
two incommensurate frequencies (ω1 and ω2):

Xq =
M∑

m=−M

N∑
n=−N

Cm,n exp (i(mω1 + nω2)t ), (2)

where i is the imaginary unit and Cm,n is a column vector of
dimension K , representing the coefficients of the combined
harmonics of the kth variable in Xq. Introducing a perturbation
Y into the QP solution Xq and substituting Xq + Y into Eq. (1),
we obtain the perturbed system by neglecting higher powers
Y n (n � 2)

Ẏ = A(t )Y, (3)

where the time-varying coefficient A(t ) = ∂ f (Xq,t )
∂X is a matrix

of dimension K × K with each component a QP function in t .
The local stability of the QP response can be characterized

via that of the perturbed system, being predicted from the evo-
lution of the perturbation. Recall that for a periodic response,
i.e., when Xq is periodic rather than QP, the time-independent
monodromy matrix can be constructed by integrating the per-
turbed system numerically during one principal period, with
the Floquet multipliers obtained as the eigenvalues of the
monodromy matrix. However, for a QP response, there is no
complete period, and so this strategy cannot be implemented
directly. Therefore, herein we propose an effective approach
to finding indicators for the stability of the QP response.

Given the QP solution Xq, the coefficient matrix can be
rewritten as the generalized Fourier series

A(t ) =
M1∑

m=−M1

N1∑
n=−N1

Am,n exp (i(mω1 + nω2)t ), (4)

in which each Am,n is a constant matrix dependent upon the
attained solution Xq. The numbers (M1 and N1) of combined
harmonics in A(t ) depend on both those of Xq (M and N) and
the nonlinear term in f (X, t ); for example, if the nonlinear
term is a cubic polynomial in X , then we have M1 = 3M and
N1 = 3N .

The key procedure is introducing the auxiliary variables

Yp,q = exp (i(pω1 + qω2)t )Y, (5)

where Y0,0 is the exact perturbation Y . Differentiating Yp,q with
respect to t gives

Ẏp,q = [i(pω1 + qω2)Y + Ẏ ] exp (i(pω1 + qω2)t )

= i(pω1 + qω2)Yp,q + exp (i(pω1 + qω2)t )A(t )Y

= i(pω1 + qω2)Yp,q +
M1∑

m=−M1

N1∑
n=−N1

Am,nYm+p,n+q (6)

according to which the perturbed system of Eq. (3) with
time-varying coefficients can be transformed into an infinite-
dimensional system. However, given the difficulty in dealing
with an infinite-dimensional system, we truncate is to a finite-
dimensional system with lower order combined harmonics as

Ż = BZ, (7)

where the auxiliary state is Z=[Y−P,−Q, . . . ,Y−P,Q,

Y−P+1,−Q, . . . ,Y−P+1,Q, . . . ,YP,−Q, . . . ,YP,Q]T and the super-
script T denotes the transpose. The integers P and
Q signify that the truncated harmonics range from
exp (i(−Pω1 − Qω2)t ) to exp (i(Pω1 + Qω2)t ). In Sec. III B,
the auxiliary system will be shown to be effective in
approximating the perturbed system accurately. Note
that the vector of auxiliary variables has dimension
K (2P + 1)(2Q + 1), where K is the dimension of Y .
Importantly, the auxiliary system is governed totally by
the constant matrix B, which can be determined from each
Am,n in A(t ) of the perturbed system.

III. CIRCULARLY DISTRIBUTED MULTIPLIERS

A. Definition of multipliers

Given the initial values Y (0) and Z (0), the time histories
of the perturbation and auxiliary states, respectively, can be
obtained via time-marching integration such as the Runge-
Kutta (RK) scheme. Then, based on these time histories,
the stability can be determined in a qualitative and intuitive
manner. Because the auxiliary system is governed by the
constant coefficient matrix B, its stability can be determined
straightforwardly and exactly from the eigenvalues of B. For
this, the closed-form solution of the auxiliary system is given
by a linear combination of basis functions as

Z (t ) =
∑

n

αnVn exp (ηnt ), (8)

where Vn is the eigenvector of B corresponding to the complex
eigenvalue ηn and each αn is a coefficient vector calculated by
matching the initial condition Z (0). In this way, the perturba-
tion state Y (t ) = Y0,0 can be extracted from Z (t ).

According to Eq. (8), the evolution (divergence or con-
vergence) of the perturbation state Z (t ) depends on exp (ηnt )
but neither αn nor Vn, because the latter are fixed vectors
if the initial condition is given. Consequently, the moduli
| exp (ηnt )| play the dominant role regarding the perturbation
state. Denoting each pair of conjugate complex eigenvalues as
ηn = ηr

n ± iηi
n, we obtain | exp (ηnt )| = exp (ηr

nt ) as the rate
of growth (or decay) during any time range [0, t]. Therefore,
| exp (ηnt )| can be taken as stability indicators, i.e., a modulus
greater (resp. less) than unity implies that the corresponding
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basis function causes the perturbation response to grow (resp.
decay). Note that the assessment result is independent of the
chosen time range because given any positive t , it holds uni-
formly that exp (ηr

nt ) > 1 if ηr
n > 0; exp (ηr

nt ) = 1 if ηr
n = 0;

and exp (ηr
nt ) < 1 if ηr

n < 0.
In Floquet theory, the Floquet multipliers for periodic solu-

tions are introduced by depicting the rate of growth or decay
of the perturbation over one fundamental period. However,
for QP responses, a complete period is unavailable, so for
convenience we introduce λn = exp (ηn2π/ω1) to obtain an
average rate of change over a fixed time range of duration
2π/ω1 (or 2π/ω2 without loss of generality). Moreover, in
the final example, to check the applicability of the proposed
method to periodic responses, the time range is fixed to be of
duration 2π/ω12, where ω12 is the greatest common divisor of
ω1 and ω2; note that the QP response degenerates to a periodic
one if ω1 and ω2 are reducible; i.e., they have a common
divisor.

Based on the above discussion, we now suggest the simple
criterion that the QP response is stable as long as the moduli
do not exceed unity, or unstable otherwise. This criterion is
similar to the counterpart for periodic responses in the Floquet
theory [17], and so for convenience we continue to refer to λn

as multipliers, but now for QP responses.

B. Validation of auxiliary system

Before computing the multipliers, it is necessary to ver-
ify the effectiveness of the auxiliary system. To do so, we
consider the following nonlinear system for a resonant circuit
with saturable inductors [12]

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = −k1x2 − 1
8

(
x2

1 + 3x2
3

)
x1 + 0.22 cos ω1t

ẋ3 = − 0.05
8

(
3x2

1 + x2
3

)
x3 + 0.03

. (9)

The evolution of its QP response has been investigated
intensively, showing that a series of bifurcations may appear
as k1 is decreased from 0.12 to approximately 0.5. At each
bifurcation, the difference halves between the two fundamen-
tal frequencies, so it is known as a torus-doubling bifurcation
[12]. It is similar to the common period-doubling bifurca-
tion for periodic responses, where the single fundamental
frequency halves and the principal period doubles.

The QP solutions are obtained by the incremental harmonic
balance (IHB) method [14] with M = N = 7. To achieve
a relatively high precision with a reasonable computational
burden, we select P = Q = 3M = 3N to deduce the trun-
cated auxiliary system, and the initial conditions are Y (0) =
[0 0 0]T. Figure 1(a) shows the numerical results for the
perturbed system as obtained by the Runge-Kutta method, and
these are compared with the solution of the auxiliary system
provided by Eq. (8). There is very good agreement in the early
stage for t � 100, and then the solutions deviate gradually,
with the first observable difference appearing at t ≈ 2000.

Figure 2(a) shows all the multipliers distributed circularly
in a ring structure without any deterministic moduli. For
the high-dimensional auxiliary state Z , only the perturbation
state Y of dimension K is directly related to the stability of
the considered QP response. The coefficient αn in Eq. (8)

(a)

FIG. 1. Time histories of perturbation state Y provided by per-
turbed and auxiliary systems with k1 = 0.08 and using (a) all basis
functions or (b) only those with |αn| � 10−6.

represents the contribution to Y of the corresponding basis
function Vn exp (iηnt ), and Fig. 2(b) shows that the moduli of
most of the coefficients are very much smaller than those of a
few others, e.g., those with |αn| � 10−6 or somewhat lower.

Therefore, as a test example, we truncate the basis func-
tions to those with |αn| � 10−6 to compute the perturbation
response according to Eq. (8). As Fig. 1(b) shows, the solu-
tions now remain together for much longer, indicating that
the retained basis functions do indeed provide the majority
of the solution. Moreover, it is interesting and surprising
that the truncated basis functions give more accurate results
than the linear combination of all basis functions. The likely

FIG. 2. (a) All multipliers (λn) provided by auxiliary system (7)
for QP response of system (9) with k1 = 0.080; (b) moduli of coeffi-
cients (αn) vs n; (c) moduli of multipliers truncated with |αn| � 10−6

vs n; (d) retained multipliers in complex plane.
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FIG. 3. Time histories of perturbation state Y provided by per-
turbed and auxiliary systems with (a) k1 = 0.081 and (b) k1 = 0.079.
The basis functions with |αn| � 10−6 are retained.

reason for this is that truncating the auxiliary system results in
additional basis functions containing redundant erroneous in-
formation about the perturbation state. From this perspective,
it is reasonable to truncate the basis functions to those with
relatively large coefficients.

The retained multipliers with |αn| � 10−6 are distributed
circularly in rings with deterministic moduli, shown in
Fig. 2(d). To examine this feature further, the multipliers are
presented individually in Fig. 2(c) according to their moduli.
Three deterministic moduli are clearly distinguished, although
two are very close to unity. Therefore, with such high sen-
sitivity, the deterministic moduli can be used to estimate the
stability of the perturbation state and hence of the QP response
itself.

Another two numerical cases are provided in Fig. 3 as
examples of (a) decaying and (b) growing time responses.
Now the results agree well for much longer, demonstrating
the effectiveness of truncating the multipliers to those with
relatively large coefficients. Intuitively, the QP solution is pre-
dicted to be stable for k1 = 0.081 and unstable for k1 = 0.079.
Section IV will present quantitative analysis based on the
circularly distributed multipliers with deterministic moduli.

C. Influence of truncation of auxiliary system

As mentioned above, two different truncation procedures
were made to the auxiliary system and the basis functions,
respectively. The truncation of basis functions warrants that
the auxiliary system can approximate the perturbed system
accurately for much longer. In this subsection, we discuss how
truncating the auxiliary system possibly affects the multipli-
ers, more specifically the deterministic moduli of circularly
distributed multipliers.

Note that the basis functions are truncated microscopically
based somewhat on prior knowledge about an appropriate and
effective threshold, e.g., |αn| � 10−6 as above. Furthermore,
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0
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FIG. 4. Discrete weight function W (|λ|) with �|λ| = 10−5 vs
moduli of multipliers provided by auxiliary system (7) for system
(9) with k1 = 0.080.

we examine the distribution of all the multipliers at a macro-
scopic level without neglecting any basis functions. The key
point is to define a discrete weight function of the multipli-
ers with respect to the moduli. To do this, first the interval
[|λ|min, |λ|max] from the minimum to maximum modulus is
discretized with an equidistance �|λ| such as [|λ|min, |λ|min +
�|λ|, . . . , |λ|max − �|λ|, |λ|max]. The discrete weight func-
tion can then be defined as

W (|λ|) =
∑

n

|αn|, if ||λn| − |λ|| < �|λ|/2, (10)

where |λ| takes all the discrete values over [|λ|min, |λ|max]
ergodically. In this manner, the non-negative function W (|λ|)
quantitatively represents the contribution to the perturbation
response Z (t ) of the basis functions with moduli at the neigh-
boring of λ as (λ − �|λ|/2, λ + �|λ|/2).

The discrete weight function is technically threefold, in-
volving (i) separating the modulus interval into a series of
intervals, (ii) classifying each multiplier into one interval,
and finally (iii) accumulating the contributions of the basis
functions in each interval to the perturbation response. With
the same truncation, i.e., P = Q = 3M = 21, Fig. 4 shows
that the weight function has three peak values, with all the
others being much smaller without observable magnitudes,
and these peak values are reached exactly at the deterministic
moduli shown in Fig. 2(c).

The weight function not only shows the distribution of
the moduli macroscopically, but also makes it convenient to
discuss how the system truncation influences the deterministic
moduli. With P = Q = M = 7, there are small differences in
the locations of the deterministic moduli, and there is a re-
dundant modulus having an observable magnitude. When P =
Q = 8, the differences in the locations of the deterministic
moduli decrease significantly, meanwhile the observable re-
dundant modulus disappears. If P and Q are increased further
to 10, then the deterministic moduli can be located very accu-
rately, although small differences still remain in the values of
the weight function. With P = Q = 2M = 14, the differences
in the values of the weight function are eliminated at the
deterministic moduli. With P = Q = 2M and P = Q = 3M,
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FIG. 5. Discrete weight function vs moduli close to unity for
system (9) with (a) k1 = 0.081, (b) k1 = 0.080, and (c) k1 = 0.079.

there are no observable differences regarding the distribution
of the weight function between the two cases.

Based on the above results, the proposed method provides
the multipliers accurately with deterministic moduli if the
auxiliary system is truncated with relatively few combined
harmonics, e.g., about two or three times those of the QP
solution itself. To this end, P and Q are selected to be 3M
throughout this study unless specified otherwise.

IV. STABILITY ANALYSIS BASED ON MULTIPLIERS

To discuss the implication of the multipliers for QP sta-
bility, we consider other cases close to each other with
neighboring values of k1. There are three deterministic moduli
in each case, and the two close to unity are presented in Fig. 5
via the weight function. Interestingly, as k1 is decreased very
slightly, one modulus (black) remains close to unity while
another (red) increases beyond unity. This regular modulus
at unity for the multipliers of a QP response is similar to the
universal Floquet multiplier at unity for a periodic solution
of a self-excited system [28]. As is known, for a self-excited
system, the frequency of a periodic solution is undetermined
a priori. Consequently, for a QP response, it is reasonable
to conjecture that there is a series of multipliers with unit
modulus, with at least one of the fundamental frequencies
undetermined a priori. Another example without this feature
is discussed below.

An even more important issue is how to depict the stability
of the QP response based on the obtained multipliers. Accord-
ing to the Floquet theory for periodic solutions, we recall that
the solution is stable if and only if there is no multiplier with
modulus greater than unity. As shown in Fig. 5, as k1 is varied
slightly from 0.081 to 0.079, one of the multipliers (red) has
modulus greater than unity, so we predict that the QP response
loses stability as k1 crosses such a narrow range. More specif-
ically, as Table I shows the second modulus remains the same
and the third varies through unity as k1 increases to 0.0799.

The phase planes in Fig. 6 show no observable difference
between the cases with k1 = 0.081 and 0.0799. For k1 =
0.081, the Poincare section is one simple closed orbit with

TABLE I. Deterministic moduli vs k1 for QP responses of system
(9).

k1 1st modulus 2nd modulus 3rd modulus

0.0810 0.4569 0.9998 0.9942
0.0805 0.4571 0.9998 0.9970
0.0800 0.4573 0.9998 0.9997
0.0799 0.4574 0.9998 1.0002
0.0795 0.4576 0.9998 1.0024
0.0790 0.4579 0.9998 1.0050

a single lap, whereas for k1 = 0.0799 it is a more complex
closed orbit with two laps. For k1 = 0.081, the spectrum
obtained by fast Fourier transform (FFT) has two indepen-
dent peak frequencies, i.e., ω1 = 1 from the external force
and ω2 = 0.8942 as a self-excited frequency, while for k1 =
0.0799 there is the additional frequency of 0.9467 ≈ (ω1 +
ω2)/2. Based on the observable differences in the Poincare
sections and FFT spectra, we reason that the QP response
undergoes a bifurcation in this narrow parametric range. In
this bifurcation, the existing stable QP solution loses stability
and another stable one appears, and it is similar to the period
doubling of a periodic solution in that the frequency gap
suddenly halves. The multipliers distributed on cycles provide
deterministic moduli, according to which the stability of QP
responses can indeed be assessed accurately and efficiently.

To examine the proposed approach further, we consider the
Duffing oscillator subjected to dual harmonic excitations with
incommensurate frequencies, i.e.,

ẍ + 0.1ẋ + x + x3 = 5 cos ω1t + 0.5 cos ω2t (11)

with ω2 = √
5/2 and ω1 as the control parameter. Figure 7(a)

shows the QP solutions obtained semianalytically using the
IHB method plus arc-length continuation. As ω1 is increased,

FIG. 6. The phase plane of the QP responses obtained by the RK
method for system (1) with k1 = 0.081 (a), the Poincare sections (c),
and the FFT spectrum (e); and their counterparts for k1 = 0.0799 are
provided in panels (b), (d), and (f), respectively.
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FIG. 7. (a) Amplitudes of QP responses of Duffing system vs ω1;
(b) deterministic moduli provided by weight function.

a branch of asymmetric QP solutions arises from the sym-
metric ones near ω1 = 0.935, at which a symmetry-breaking
bifurcation occurs. Meanwhile, Fig. 7(b) shows the moduli
of the corresponding multipliers, showing that the leading
modulus exceeds unity at the bifurcation point. At the same
time, the asymmetric QP solution has multipliers for which
the leading modulus decreases from unity. According to the
criterion for assessing stability, the symmetric QP response
loses stability because of the symmetry breaking, whereupon
the stable asymmetric solution arises.

Recall that the QP response of system (9) has multipliers
with a universal unit modulus regardless of the control param-
eter, whereas that is not the case for the considered Duffing
system, in which both fundamental frequencies comes from
the external forces. The latter case is similar to there being no
universal unit multiplier for the forced periodic vibration of a
nonlinear dynamical system [28].

The assessment result is verified by the phase planes in
Fig. 8 of the QP responses obtained using the IHB and
RK methods. The RK method was implemented by select-
ing the IHB solution at time t = 0 as the initial condition.
In Figs. 8(a1) and 8(a2) for ω1 = 0.8 and Figs. 8(c1) and
8(c2) for ω1 = 1, the modulus of each multiplier is less than
unity, and the IHB results are fully consistent with the RK
ones, which implies that the QP responses can be considered
intuitively as being stable. By contrast, in Figs. 8(b2) and
8(b2) for ω1 = 1, one of the moduli exceeds unity, and the
RK result switches from the original symmetric orbit to a new
asymmetric one. The symmetric solution loses stability due
to the symmetry-breaking bifurcation, accompanied with the
onset of the stable asymmetric one.

Finally, we discuss the relationship between the multipliers
provided by the proposed method and the Floquet multipli-
ers of periodic responses by the monodromy matrix. To do
this simply, we continue to use the Duffing system (11),
but we modify its frequencies slightly to be reducible so
that QP responses degenerate in essence to periodic ones.
While the frequencies are still irreducible, Fig. 9(a) shows that
the multipliers are distributed continuously on a circle with

FIG. 8. (a) QP responses of Duffing system for ω1 = 0.8 (top
row) and ω1 = 1.0 (middle and bottom rows) obtained by [(a1)–(c1)]
IHB method and [(a2)–(c2)] RK method. [(a3)–(c3)] Moduli of cor-
responding multipliers provided by weight function in comparison
with the unit cycle (i.e., |λ| = 1).

deterministic moduli. By contrast, when we change the fre-
quencies slightly to ω1 = 0.8 and ω2 = 1, Fig. 9(b) shows that
the multipliers gather at several discrete points.

In the case of reducible frequencies, the perturbed system
has a periodic coefficient matrix, and the obtained multipliers
are associated with the Floquet multipliers for the correspond-
ing periodic response. In such cases, the frequency of the

FIG. 9. Multipliers with deterministic moduli provided by
weight function for Duffing system with (a) irreducible (ω1 = 0.8,
ω2 = √

5/2) or (b) reducible (ω1 = 0.8, ω2 = 1) frequencies. Red
triangles, λn = exp (ηn2π/ω1); black squares, λn = exp (ηn2π/ω2);
blue cycles, λn = exp (ηn2π/ω12) with ω12 = 0.2 as common divisor
of ω1 = 0.8 and ω2 = 1. Red crosses, Floquet multipliers of corre-
sponding periodic response.
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periodic response is the common divisor ω12 of ω1 and ω2.
The number of discrete points is ω1/ω12 times 2 (that is
the number of Floquet multipliers) when the multipliers are
defined as λn = exp(ηn2π/ω1) and ω2/ω12 times 2 when they
are defined as λn = exp(ηn2π/ω2). Interestingly, when the
multipliers are given as λn = exp(ηn2π/ω12), the obtained
ones are exactly the same as those given by the Floquet theory.
From this, the proposed method can provide multipliers for
both periodic and QP solutions.

As discussed above, for periodic responses the number of
independent multipliers attained by the proposed approach is
related with the definition of multiplier, whereas neither for
that of the deterministic moduli. For QP responses, the num-
ber of multipliers is dependent upon not only the definition
of multiplier but also the truncated number (i.e., P and Q)
of variables in the auxiliary system. For any frequency ω we
have that |λn| = | exp(ηn2π/ω)| = exp (ηr

n2π/ω). Though
the modulus are in relation with ω, the number of deter-
ministic moduli is regardless of the definition. Moreover,
the definition does not violate the stability criterion because
whether the modulus is larger (equal or smaller) than unity is
dependent upon the sign of ηr

n.

V. CONCLUSION

Presented herein was a simple yet efficient approach to
defining and calculating multipliers for analyzing the stability
of QP responses of nonlinear dynamical systems. In general,
this approach is based on the perturbed system that depicts
the stability of the QP response. Key to this is a series of
auxiliary variables, according to which the perturbed system

with QP coefficients can be transformed into an auxiliary
one governed by a constant matrix. The multipliers can be
obtained efficiently for the QP responses, with the definition
based on the eigenvalues of the constant matrix.

The main finding was that the predominant multipliers
are distributed circularly on cycles with deterministic mod-
uli, which more importantly indicate the stability of the QP
response. The suggested stability criterion was validated by
numerical examples, i.e., that the QP response is stable if and
only if no moduli exceed unity for the circularly distributed
multipliers. Furthermore, the circularly distributed multipliers
degenerate to Floquet multipliers when the QP response is
tuned to be periodic. For this reason, the obtained multipliers
for QP responses can be considered to some extent as being a
logical extension of Floquet multipliers.

Numerical examples showed that the multipliers given by
the proposed approach are indeed effective quantitative indi-
cators for analyzing the stability of QP responses. However,
some open problems still require further investigation, such as
(i) how to depict bifurcations that are usually accompanied by
stability reversals and (ii) general rules for truncating to dif-
ferent numbers of auxiliary variables. Also interesting would
be a possible relationship between the circularly distributed
multipliers and the Lyapunov-Perron transformation, which
would shed light on the reducibility of QP systems.
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