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Scroll waves have been found in a variety of three-dimensional excitable media, including physical, chemical,
and biological origins. Scroll waves in cardiac tissue are of particular significance as they underlie ventricular
fibrillation that can cause sudden death. The behavior of a scroll wave is characterized by a line of phase
singularity at its organizing center, known as a filament. A thorough investigation into the filament dynamics
is the key to further exploration of the general theory of scroll waves in excitable media and the mechanisms of
ventricular fibrillation. In this paper, we propose a method to identify filaments of scroll waves in excitable media.
From the definition of the topological charge of filaments, we obtain the discrete expression of the topological
charge-density vector, which is useful in calculating the topological charge vectors at each grid in the space
directly. The set of starting points of these topological charge vectors represents a set of phase singularities,
thereby forming a line of phase singularity, that is, a filament of a scroll wave.
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I. INTRODUCTION

Excitable media governed by reaction-diffusion equations
support vortexlike rotating waves known as spiral waves in
two dimensions, and scroll waves in three dimensions [1,2].
These vortices are involved in the spatiotemporal organization
of wave dynamics in various complex systems of physical,
chemical, and biological origins [3–5]. One of the most im-
portant examples is the onset of scroll waves in the heart,
as they may cause the most dangerous cardiac arrhythmias
[6–8]. Furthermore, three-dimensional rotors (scroll waves)
are identified during sustained ventricular fibrillation, and it
is shown that the presence of scroll waves and their dynamics
determines the ventricular fibrillation duration [9].

Scroll waves in three dimensions are extensions of spiral
waves in two dimensions [10–14]. A scroll wave is usually
characterized by its filament [15], which is an extension into
three dimensions of the tip (i.e., the phase singularity) of a
spiral wave. The global behavior of a scroll wave is quite com-
plex, but some features can be well described by the motion
of its filament. Studies of the filament dynamics are important
for the general theory of scroll waves in excitable media, as
well as for applications in cardiac electrophysiology. Thus,
the identification of filaments is particularly important.

For a stationary or slowly drifting scroll wave, a filament
can be found by time-averaging sequential frames over one
rotation cycle of the scroll wave [16,17]. The method is based
on the established fact that the filament is surrounded by an
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area which is never excited by the circulating excitation wave.
However, excitation patterns during ventricular fibrillation are
not stationary and hence there is a need for algorithms that can
identify filaments from short sections of data.

The filament can also be defined as the line where the
excitation wavefront meets the repolarization wave back. The
so-called zero-normal-velocity method [18] consists of find-
ing the line on a chosen isopotential surface which exhibits
a zero time derivative, i.e., finding the intersection of two
successive isopotential surfaces. This method for the identi-
fication of filaments is independent of phase while the phase
analysis of cardiac electrical signals sometimes is of great
significance because it brings benefits to the study of the phase
singularity of spiral waves [19,20].

Bray and Wikswo [21] developed the convolution method
to identify the filament by using the concept of phase, which is
a robust methodology to detect filaments. However, the con-
volution kernel of the convolution method has two different
forms [22]. The final calculation results will also vary with
the change of the convolution kernel. That is, one result is
satisfied while the other is not well satisfied [23]. There is
still a lack of appropriate theoretical explanations for this issue
because the convolution method actually evolved from image
processing techniques [21].

From the above discussions, developing a robust method
to determine the filament with a strict theoretical derivation is
still an academic topic of concern. In this paper, a method
for the identification of filaments is proposed, named the
topological charge-density-vector method. According to the
concept of the topological charge and the topological current
theory, we derive the theoretical expression of the topologi-
cal charge-density vector in three-dimensional discrete space,
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thereby obtaining the spatial distribution of topological charge
vectors. Topological charge vectors distributed in the space
carry a lot of information about the filament, such as the
direction of the filament passing through a section, the loca-
tion of the filament in the space, and so on. Among them,
the filament localization is determined by the positions of
starting points of topological charge vectors. Then we verify
the practicability and stability of this proposed method in the
FitzHugh-Nagumo (FHN) model. Here we use this method
to detect filaments of different shapes, including linked and
knotted filaments. In the Bär model, we test the performance
of this method in detecting complex filaments of scroll wave
turbulence. Finally, we apply this method to scroll wave tur-
bulence in the Luo-Rudy model of cardiac tissue.

II. MODELS

In cardiac studies, the presence of scroll waves must be
inferred from epicardial or endocardial recordings [24–26].
Thus numerical models of excitable media are valuable in pro-
viding information about the dynamic properties of filaments.

A. FitzHugh-Nagumo model

To illustrate our method, we first consider a classic two-
variable FHN model [27,28] which is widely used as a
mathematical model to describe an excitable medium. It is
given by the following two-variable reaction-diffusion equa-
tions:

∂V

∂t
= 1

ε

(
V − V 3

3
− W

)
+ D∇2V, (1a)

∂W

∂t
= ε(V + β − γW ), (1b)

where V (�r, t ) is the fast (voltage) variable while W (�r, t )
represents the recovery (gating) variable; D is the diffusion
coefficient; ε, β, and γ are model parameters. In this paper, we
set D = 1.00, ε = 0.22, β = 0.70, and γ = 0.80. The value
V ∗ is set to be −1.139 [29]. We adopt an explicit Euler method
to solve the FHN equations (1) in a spatial region which is
a cube of Lx = Ly = Lz = 100, with a time step �t = 0.01
and a space step �x = �y = �z = 0.5. No-flux boundary
conditions are employed on all boundaries of the medium.
With these FHN model parameters, spiral waves are rotating
in a two-dimensional medium with the period T = 13.114,
which is a characteristic time for the excitable system.

B. Bär model

To figure out the performance of the topological charge-
density-vector method in detecting complex and chaotic
filaments, we use the Bär model [30] to exhibit scroll wave
turbulence. Involving activator V and inhibitor W variables,
this system can be described as

∂V

∂t
= f (V,W ) + D∇2V, (2a)

∂W

∂t
= g(V,W ). (2b)

Here f (V,W )=ε−1V (1−V )[V −(W +b)/a], and g(V,W )
= −W if 0 < V < 1

3 ; g(V,W ) = 1−6.75V (V −1)2−W if 1
3 �

V � 1; g(V,W ) = 1−W if V > 1 [30]. The diffusion coeffi-
cient D is set to be a unit and the parameters a = 0.84 and b =
0.07 are fixed to make sure that the system is excitable [30].
ε is the parameter controlling the intrinsic dynamics of scroll
waves and ε = 0.077 is chosen to ensure the scroll waves will
break up into turbulence. We set V ∗ = 0.66 for phase calcula-
tion. An explicit Euler method is adopted to solve Eq. (2) in a
spatial region which is a cube of Lx = Ly = Lz = 44, with a
time step �t = 0.01 and a space step �x = �y = �z = 0.4.
No-flux boundary conditions are employed on all boundaries
of the medium.

C. Luo-Rudy model

In order to make sure that the topological charge-density-
vector method is available when applying to the study of the
filament dynamics in cardiac modeling, we make a further in-
vestigation into its performance in the Luo-Rudy model [31].
The Luo-Rudy model is used as an action potential description
of cardiac dynamics and it is given by

∂V

∂t
= − Iion

Cm
+ ∇ · (D∇V ), (3)

where V is the transmembrane potential, Cm is the membrane
capacitance, D is the diffusion constant, and Iion is the total
ionic current density of the membrane. All the parameters
used in this paper are chosen to be the same as those in
Fig. 3A(d) in Ref. [32], which will lead to the scroll wave tur-
bulence. V ∗ = −35.0 mV is set for phase calculation. We use
the Euler method to integrate Eq. (3) on a 4.4 cm × 4.4 cm ×
1.8 cm three-dimensional medium with a spatial step �x =
�y = �z = 0.02 cm and a time step �t = 0.01 ms. No-flux
boundary conditions are employed on all boundaries of the
medium.

III. METHODS

A. Topological charge-density-vector method

Though a phase can be directly achieved from the two state
variables in numerical simulations, there is only one observ-
able variable (V , for instance) that may be recorded at a time
for practical purposes. Experimentally, a reconstructed state
space [19], generally formed by voltage V (t ) and V (t + τ ), is
used to calculate the phase with only one state variable. The
pseudo-empirical mode decomposition (PEMD) [33,23] is an
effective way to detrend the fast variable V , and after that the
expression of the phase for each grid is

φ(�r, t ) = arctan 2[V (�r, t + τ ) − Vmean(�r, t + τ ),V (�r, t )

− Vmean(�r, t )], (4)

where the function arctan 2 will return a value of the phase
within (−π,+π ]. However, using the PEMD to process the
data is complex and time consuming in a three-dimensional
case. For simplicity, we replace Vmean with the constant V ∗ as
described in Ref. [19], i.e.,

φ(�r, t ) = arctan 2[V (�r, t + τ ) − V ∗,V (�r, t ) − V ∗]. (5)

The time delay τ is taken to be 0.1T .
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Let there be a closed circuit 
 surrounding the filament,
giving this circuit an arbitrary direction and starting from a
point of origin on this circuit. If the phase φ turned in the
hodograph is �φ, the topological charge nt will be equal to
�φ/2π , namely,

nt = 1

2π

∮



�K · d�l, �K = ∇φ, (6)

where nt = +1 or nt = −1. Using the Stokes theorem, we get

nt = 1

2π

∫∫
S

(∇ × �K ) · d �σ , (7)

where the surface S is surrounded by 
 in Eq. (6). Thus, the
charge-density vector is expressed as

�ρ(�r) = 1

2π
∇ × �K . (8)

On the other hand, according to the topological current
theory [34,35], the charge-density vector �ρ(�r) can be given
by

�ρ(�r) = δ[V (�r, t + τ ) − V ∗]δ[V (�r, t ) − V ∗] �D(V/x), (9)

where δ is the Dirac’s delta function; �D(V/x) is the Jacobian
determinant vector, whose components are

D1(V/x) = ∂yV (t )∂zV (t + τ ) − ∂zV (t )∂yV (t + τ ),

D2(V/x) = ∂zV (t )∂xV (t + τ ) − ∂xV (t )∂zV (t + τ ),

D3(V/x) = ∂xV (t )∂yV (t + τ ) − ∂yV (t )∂xV (t + τ ).

As shown in Ref. [35], with the solution �r f (s) of the fila-
ment, we have

�ρ(�r) = nt

∫
d�r f δ

3(�r − �r f ). (10)

This means that �ρ(�r) is infinite at �r f (s) and zero at other
positions.

After discretization, the topological charge-density vector
�ρ(�r) can be written as a discrete expression, i.e.,

�ρ(i, j, k) = 1

2π
[∇ × �K]i, j,k = nt

∑
i∗, j∗,k∗

δi,i∗δ j, j∗δk,k∗

�x2 �ei∗, j∗,k∗ .

(11)
Therefore, the topological charge vector at each grid is

�ρ(i, j, k)�x2 = 1

2π
[∇ × �K]i, j,k�x2

= nt

∑
i∗, j∗,k∗

δi,i∗δ j, j∗δk,k∗ �ei∗, j∗,k∗ . (12)

Equation (12) contains some valuable information for us.
Firstly, (i∗, j∗, k∗) represents the coordinate of the intersection
of the filament and a local section �x2, so there must be a
topological charge vector �ρ(i, j, k)�x2 with modulus 1 at the
intersection of the filament and the local section �x2. It is
worth noting that there are only three types of local sections
with the area �x2 in a three-dimensional discrete space: the
�x−�y section, the �y−�z section, and the �x−�z section.
Secondly, the topological charge vector �ρ(i, j, k)�x2 only
points in a direction perpendicular to one of these three sec-
tions, which agrees with that given by applying the right-hand

rule to the spiral wave on the local section �x2. In other
words, the direction of �ρ(i, j, k)�x2 is parallel or antiparallel
to the direction of the coordinate axis.

Obviously, the key to the calculations is

1

2π
[∇ × �K]�x2 = 1

2π

[(
∂2φ

∂z∂y
− ∂2φ

∂y∂z

)
�ex

+
(

∂2φ

∂x∂z
− ∂2φ

∂z∂x

)
�ey

+
(

∂2φ

∂y∂x
− ∂2φ

∂x∂y

)
�ez

]
�x2. (13)

As for the numerical simulation, we take the z component
as an example to show the computation. Actually, a
three-dimensional discrete space φ(i, j, k) can be regarded
as a stack of two-dimensional layers k and each layer k
is formed by grids φ(i, j). The topological charge-density
method discussed in Ref. [23] is the method to calculate

1
2π

( ∂2φ

∂y∂x − ∂2φ

∂x∂y )�x2 in a two-dimensional layer. For more de-
tails about the computation of the topological charge-density
method with a 2 × 2 array and a 3 × 3 array, please read
Appendix A. If we apply the topological charge-
density method to each layer k, it will help us obtain

1
2π

( ∂2φ

∂y∂x − ∂2φ

∂x∂y )�x2 at each layer k. Finally, we get the z
component of Eq. (13) in a three-dimensional discrete space.

The other two components of Eq. (13) may be calculated
in a similar manner. As a result, the distribution of topological
charge vectors in a three-dimensional discrete space can be
obtained by the calculation of Eq. (13).

The result obtained by the topological charge-density-
vector method with a 2 × 2 array is straightforward: topo-
logical charge vectors with modulus 1 are distributed in the
three-dimensional discrete space. Each topological charge
vector has a corresponding local section �x2, as shown in
Fig. 1. The starting point of the topological charge vector is
located at the center of the local section �x2 and its direction
is normal to the local section �x2.

The result obtained by the topological charge-density-
vector method with a 3 × 3 array is slightly different: vectors
with modulus 0.25 are distributed in the three-dimensional
discrete space. From its partial, enlarged view, we found a
situation similar to that in Fig. 2(a) in Ref. [23]. There are four
vectors with modulus 0.25 in the same direction on the local
section �x2 with the filament passing through. The distribu-
tion of these four vectors is similar to that of the black squares
in Fig. 2(a) of Ref. [23]. Like the operation in Ref. [23], these
four vectors will sum up to a topological charge vector with
modulus 1, located in the center of the local section �x2. In
this way we can get the same result as that of the topological
charge-density-vector method with a 2 × 2 array.

B. Other methods

In the zero-normal-velocity method developed by Fenton
and Karma [18], the filament is defined by the line of inter-
section of the two surfaces:

V (�r, t ) = V ∗, ∂tV (�r, t ) = 0. (14)
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FIG. 1. The partial, enlarged view of the distribution of topologi-
cal charge vectors obtained by the topological charge-density-vector
method with 2 × 2 array. Black dots are the grids in the three-
dimensional discrete space. A blue vector with modulus 1 represents
a topological charge vector, which is located at the center of the local
section �x2.

In simulations and experiments, ∂tV (�r, t ) can be calculated
roughly from ∂tV (�r, t ) = [V (�r, t + τ ) − V (�r, t )]/τ . The task
of identifying the filament is then reduced to finding the line
of intersection of the two surfaces defined by

V (�r, t ) = V (�r, t + τ ) = V ∗. (15)

Fenton and Karma represent this line by the set of in-
tersection points of this line with the local section �x2. To
find the points of intersection of this line with a local sec-
tion �x2, they simply approximate V (�r, t ) and V (�r, t + τ )
inside this section �x2 by a bilinear interpolation formula.
There exists an intersection of the filament with this sec-
tion �x2 if V (�r, t ) = V (�r, t + τ ) = V ∗ has a solution. �x
is divided into N� equal intervals for bilinear interpolation.
If there is a point that satisfies |V (�r, t ) − V ∗| < Vdiff and
|V (�r, t + τ ) − V ∗| < Vdiff , this point is regarded as an in-
tersection of the filament with a section �x2. For detail,
please see the algorithm described in Ref. [18], Sec. VI, and
Appendix B.

When τ is extremely small, e.g., τ = �t � 1, the calcu-
lated results are not robust for the localization of the phase
singularity of a spiral wave [36]. For practical usage, the time
delay τ tends to take a longer time interval rather than �t
[37,38]. Thus, we make τ in this method consistent with the
one mentioned in Eq. (5), namely, τ = 0.1T .

For comparison, the second method we use for the identi-
fication of a filament is the convolution method developed by
Bray and Wikswo [21]. They proposed that ∇ × �K in Eq. (12)
can be expressed as a convolution operation:

∇ × �K = [(∇x
z ⊗ Ky + ∇x

y ⊗ Kz
)
�ex

+ (∇y
x ⊗ Kz + ∇y

z ⊗ Kx
)
�ey

+ (∇z
x ⊗ Ky + ∇z

y ⊗ Kx
)
�ez

]
/�x, (16)

where ⊗ is the convolution operator, and

Kx = [φ(i + 1, j, k) − φ(i, j, k)]/�x,

Ky = [φ(i, j + 1, k) − φ(i, j, k)]/�x,

Kz = [φ(i, j, k + 1) − φ(i, j, k)]/�x.

It should be ensured that the value of the phase change
between two grids is within the range (−π,+π ]. ∇x

z , ∇x
y,

∇y
x, ∇y

z , ∇z
x, and ∇z

y are convolution kernels. We use the con-
volution method to find the filament following the operation
described in Ref. [21]. That is, the convolution kernels are
nabla 2 × 2 kernels and the filaments are delineated as the
points of which the convolutional results are nonzero; the
filaments are finally visualized by making the isosurface of
the grids using a threshold of zero.

IV. RESULTS

In this section, we demonstrate the applicability of the
topological charge-density-vector method to locate filaments
in three-dimensional excitable media and compare its per-
formance with other methods. All computer programs were
coded in FORTRAN 90, and all simulations were implemented
on a Sugon TC6000 computer.

The first model we chose for numerical simulation is the
FHN model. We apply the topological charge-density-vector
method to an arbitrary scroll wave and select a segment as
the research object, whose topological charge vectors are
displayed in Fig. 2(a) marked in blue. Figure 2(a) shows
that the spatial distribution of the topological charge vectors
can be used for the description of the filament. Figure 2(b)
is the filament formed by the starting points of topological
charge vectors in Fig. 2(a), but it is not smooth enough
due to discretization. According to the method described in
Appendix B, we process the filament and show the result in
Fig. 2(c). Compared with the filament formed by the starting
points directly, the processed filament no longer has obvious
creases. The results shown in both Figs. 2(b) and 2(c) can
be regarded as the filament. In this paper, we choose the
processed filament to display. In order to make the direction
of the topological charge vector change smoothly along the
filament, the direction of the topological charge vector of
the processed filament will be averaged by the seven vectors
(itself, and three vectors before and after it).

Figure 3 illustrates a case where the shape of the filament
is an oblique line. Figure 3(a) is the filament (blue line) iden-
tified by the topological charge-density-vector method. With
the filament passing through, the two sections d and e have
spiral waves rotating around the filament. The topological
charge vectors and the spiral waves on these two sections
are shown in Figs. 3(d) and 3(e), respectively. The topolog-
ical charge vectors in Figs. 3(d) and 3(e) are appropriately
magnified, making it easier to observe. The direction of the
topological charge vector also reveals the direction in which
the filament passes through a section. In other words, the
spatial orientation of the filament on a section given by the
topological charge vector agrees with the direction given by
applying the right-hand rule to the spiral wave on that section.
Figures 3(b) and 3(c) are the filaments identified by the zero-
normal-velocity method (red line) and the convolution method
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FIG. 2. (a) Topological charge vectors of a filament. The blue dots in (b), (c) represent the starting points of topological charge vectors. (b)
The starting points without processing. (c) The starting points after processing.

(green line), respectively. Comparing Figs. 3(a)–3(c), the fil-
ament positions located by these three methods are basically
the same.

Not only can the filament of the scroll wave end on the
boundary of the space, but it also typically forms an unknotted
closed ring itself. The scroll “unknot”, i.e., a scroll ring, is
believed to be capable of occurring in cardiac tissue [39,40].
We take it into consideration to test our method; the result is il-
lustrated in Fig. 4(a). It is known from Figs. 4(d) and 4(e), and
Figs. 4(f) and 4(g) that the chirality of spiral waves on sections
d and e, and sections f and g are opposite, respectively, which
reveals the fact that the direction of the topological charge

vector changes continuously along the ring. The filament
located by the zero-normal-velocity method is shown in
Fig. 4(b), and Fig. 4(c) is the filament obtained by the con-
volution method. Although these three filaments have some
difference in detail, their positions are roughly the same.

In a three-dimensional medium, these scroll rings may
be linked and knotted in specific, allowed ways, which has
aroused widespread attention over the recent years [41–44].
The simplest case for linked filaments in a three-dimensional
space is two rings linked once [42], known as the Hopf link. To
create the initial condition of this link, we apply the method
introduced in Ref. [45]. The filament of this link identified

FIG. 3. (a) The filament identified by the topological charge-density-vector method. The two sections d and e have spiral waves rotating
around the filament. (b) The filament identified by the zero-normal-velocity method with N� = 100 and Vdiff = 0.001. (c) The filament
identified by the convolution method. (d) The topological charge vector and the spiral wave on section d . (e) The topological charge vector
and the spiral wave on section e.
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FIG. 4. (a) The filament identified by the topological charge-density-vector method. The four sections d , e, f , and g have spiral waves
rotating around the filament. (b) The filament identified by the zero-normal-velocity method with N� = 100 and Vdiff = 0.001. (c) The filament
identified by the convolution method. (d) The topological charge vector and the spiral wave on section d . (e) The topological charge vector
and the spiral wave on section e. (f) The topological charge vector and the spiral wave on section f . (g) The topological charge vector and the
spiral wave on section g.

by the topological charge-density-vector method is presented
in Fig. 5(a). We mark some topological charge vectors of this
linked filament at some positions in Fig. 5(a), and they give the
direction of the filament at those positions. For comparison,
we show the filaments obtained by the other two methods in
Figs. 5(b) and 5(c), respectively.

The simplest nontrivial knot is the trefoil knot, whose
structure is well displayed in Ref. [46]. To create the initial
condition of the trefoil knot, we use the method introduced in
Ref. [47]. After waiting for the scroll wave to run stably, we
use these three methods to identify the filament and the results
are shown in Figs. 5(d)–5(f). We also mark some topological
charge vectors of this knotted filament in Fig. 5(d). Unlike
the filaments in Figs. 5(d) and 5(f), we find that the filament
in Fig. 5(e) identified by the zero-normal-velocity method is
discontinuous.

Obtained by the topological charge-density-vector method,
the topological charge vectors in Figs. 5(a) and 5(d) can reveal
the direction of the filament at those positions while the other
two methods may not give such information.

Meanwhile, we introduce the filament-detecting accuracy
rate to judge whether a method is good enough. At first, we
need to define three types of points for a filament: the accurate
point, the false point, and the discontinuous point. Each time
the filament passes through a local section, it leaves only one
point at the local section, so if there is a point in a local section
�x2 and no other points in the eight local sections �x2 around

this section �x2, this point is defined as an accurate point.
Conversely, if there are other points in the eight local sections
�x2 around this section �x2, this point is defined as a false
point. A discontinuous point is a point of a filament whose
distance from the next point is more than

√
3�x (the longest

distance in a cube with a side length �x). This is because
filaments should be continuous in space, which occurs on a set
of one-dimensional curves that may be either closed loops or
infinite curves [48–50]. The appearance of the discontinuous
point and the false point will make the total accurate point
number of a filament found by a method be less than the total
point number of the “true filament”. The filament-detecting
accuracy rate is defined as the total accurate point number of a
filament found by a method divided by the total point number
of the “true filament”.

With different τ and different spatial resolution, we calcu-
lated the filament-detecting accuracy rates of the topological
charge-density-vector method and the zero-normal-velocity
method in the cases of Fig. 5. In all the cases shown in Tables I
and II, we find that the filaments identified by the topolog-
ical charge-density-vector method have neither a false point
nor a discontinuous point. Therefore, we regard the filament
identified by the topological charge-density-vector method as
the “true filament”. Namely, the filament-detecting accuracy
rate is 100%. Then, the filament-detecting accuracy rate of the
zero-normal-velocity method is the total accurate point num-
ber of the filament found by the zero-normal-velocity method
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FIG. 5. (a) The filament of the Hopf link identified by the topological charge-density-vector method. The arrows in (a) represent the
topological charge vectors. (b) The filament of the Hopf link identified by the zero-normal-velocity method with N� = 100 and Vdiff = 0.001.
(c) The filament of the Hopf link identified by the convolution method. (d) The filament of the trefoil knot identified by the topological
charge-density-vector method. The arrows in (d) represent the topological charge vectors. (e) The filament of the trefoil knot identified by the
zero-normal-velocity method with N� = 100 and Vdiff = 0.001. (f) The filament of the trefoil knot identified by the convolution method.

divided by the total accurate point number of the filament
found by the topological charge-density-vector method, which
is given in the last column of the table. We list the filament-
detecting accuracy rate of the zero-normal-velocity method
with N� = 100, Vdiff = 0.001 and N� = 100, Vdiff = 0.002 in
the table. N� controls the number of interpolation in �x2,
which greatly affects the computational time and interpolation

results. Vdiff controls the number of the discontinuous point
and the false point: a smaller Vdiff will cause more discon-
tinuous points, while a larger Vdiff will cause more false
points. Setting N� and Vdiff in this way may obtain accept-
able results with an appropriate computational time. The
convolution method is not included in statistics because
its filaments are visualized by making the zero-threshold

TABLE I. The filament-detecting accuracy rate of the zero-normal-velocity method with different τ . The data under the headings
“Zero-normal-velocity method” and “Topological charge-density-vector method” are in the form of “total accurate point number/total number
(computational time).” “Accuracy rate” is the result of the total accurate point number of the filament found by the zero-normal-velocity method
divided by the total accurate point number of the filament found by the topological charge-density-vector method.

τ Zero-normal-velocity method Topological charge-density-vector method Accuracy rate

Link 0.05T N� = 100 Vdiff = 0.001 861/987 (0.139 s) 924/924 (0.760 s) 93.18%
N� = 100 Vdiff = 0.002 757/1101 (0.139 s) 81.93%

0.10T N� = 100 Vdiff = 0.001 837/1001 (0.136 s) 928/928 (0.534 s) 90.19%
N� = 100 Vdiff = 0.002 761/1097 (0.137 s) 82.00%

0.20T N� = 100 Vdiff = 0.001 864/938 (0.147 s) 932/932 (0.522 s) 92.70%
N� = 100 Vdiff = 0.002 838/1030 (0.138 s) 89.91%

Knot 0.05T N� = 100 Vdiff = 0.001 1411/1566 (0.349 s) 1522/1522 (0.775 s) 92.71%
N� = 100 Vdiff = 0.002 1319/1748 (0.353 s) 86.66%

0.10T N� = 100 Vdiff = 0.001 1333/1377 (0.217 s) 1524/1524 (0.529 s) 87.47%
N� = 100 Vdiff = 0.002 1436/1618 (0.220 s) 94.23%

0.20T N� = 100 Vdiff = 0.001 1124/1136 (0.161 s) 1528/1528 (0.528 s) 73.56%
N� = 100 Vdiff = 0.002 1486/1557 (0.163 s) 97.25%

014217-7



YIN-JIE HE et al. PHYSICAL REVIEW E 107, 014217 (2023)

TABLE II. The filament-detecting accuracy rate of the zero-normal-velocity method with different spatial resolution.

Spatial resolution Zero-normal-velocity method Topological charge-density-vector method Accuracy rate

Link 100 × 100×100 N� = 100 Vdiff = 0.001 378/390 (0.038 s) 460/460 (0.092 s) 82.17%
N� = 100 Vdiff = 0.002 430/462 (0.040 s) 93.48%

50 × 50×50 N� = 100 Vdiff = 0.001 108/108 (0.016 s) 228/228 (0.012 s) 47.37%
N� = 100 Vdiff = 0.002 174/174 (0.034 s) 76.32%

Knot 100 × 100×100 N� = 100 Vdiff = 0.001 302/308 (0.081 s) 762/762 (0.094 s) 39.63%
N� = 100 Vdiff = 0.002 615/631 (0.082 s) 80.71%

50 × 50×50 N� = 100 Vdiff = 0.001 49/49 (0.065 s) 379/379 (0.013 s) 12.93%
N� = 100 Vdiff = 0.002 147/153 (0.067 s) 38.79%

isosurface of the grids where the convolutional results are
nonzero.

Table I shows the filament-detecting accuracy rate of the
zero-normal-velocity method with different τ . By uniformly
spaced sampling of the original system, 200 × 200 × 200,
Table II shows the filament-detecting accuracy rate of the
zero-normal-velocity method in low spatial resolutions: the
spatial step is changed from �x to 2�x for 100 × 100 × 100
and is changed from �x to 4�x for 50 × 50 × 50. Table II
illustrates that the performance of the zero-normal-velocity
method in low spatial resolution is not very good, especially
in the case of the knotted filament.

Figure 6 is a system in a completely disorganized state
simulated by the Bär model. We use the topological charge-
density-vector method to detect the complex filaments of
scroll wave turbulence and the result is illustrated in Fig. 6(a)
with computational time 0.105 s. Not only is our method
effective in detecting the complex and chaotic filaments, but
it also can point out the direction of the filaments, as the
topological charge vectors shown in Fig. 6(a). The result of
the zero-normal-velocity method is presented in Fig. 6(b) and
the computational time is 0.172 s. We find the filaments in
Fig. 6(b) are discontinued at some positions with careful ob-
servation. Taking 0.490 s for Fig. 6(c), the filaments identified
by the convolution method are basically consistent with those
in Fig. 6(a), while, unlike the topological charge-density-
vector method shown in Fig. 6(a), the zero-normal-velocity

method and the convolution method may not give the direction
of the filament.

We further calculated the filament-detecting accuracy rate
of the topological charge-density-vector method and the zero-
normal-velocity method in Figs. 6(a) and 6(b), respectively.
All filaments identified by the topological charge-density-
vector method are continuous without false points. So we
regard those filaments as the “true filaments” and the filament-
detecting accuracy rate of the topological charge-density-
vector method is 100%. The filament-detecting accuracy rate
of the zero-normal-velocity method is shown in Table III.

Now we investigate whether the topological charge-
density-vector method is also applicable to the cardiac model.
The scroll wave turbulence in Fig. 7 is generated by the
Luo-Rudy model. In Fig. 7(a), we plot topological charge
vectors of the scroll wave calculated by the topological
charge-density-vector method. Figure 7(b) shows the starting
points of topological charge vectors after processing. When
using the zero-normal-velocity method to identify the filament
in the Luo-Rudy model, we set N� = 100 and Vdiff = 0.1 mV.
The filament identified by the zero-normal-velocity method is
shown in Fig. 7(c). We can see that the filaments in Fig. 7(c)
are discontinued at some positions. Figure 7(d) is the result
obtained by the convolution method. From the results shown
in Fig. 7, we know that the performance of the topologi-
cal charge-density-vector method in the Luo-Rudy model is
satisfactory.

FIG. 6. The complex filaments of scroll wave turbulence simulated by the Bär model. (a) The filaments identified by the topological
charge-density-vector method. The arrows in (a) represent the topological charge vectors. (b) The filaments identified by the zero-normal-
velocity method with N� = 100 and Vdiff = 0.001. (c) The filaments identified by the convolution method.

014217-8



TOPOLOGICAL CHARGE-DENSITY-VECTOR METHOD … PHYSICAL REVIEW E 107, 014217 (2023)

TABLE III. The filament-detecting accuracy rate of the zero-normal-velocity method in the Bär model.

Zero-normal-velocity method Topological charge-density-vector method Accuracy rate

N� = 100 Vdiff = 0.001 1374/1804 (0.172 s) 1561/1561 (0.105 s) 88.02%
N� = 100 Vdiff = 0.002 1141/2099 (0.176 s) 73.09%

V. DISCUSSION

From the previous discussions and comparisons, we con-
clude that the topological charge-density-vector method has
the following three advantages. First, compared with the
convolution method, the topological charge-density-vector
method is strictly derived in theory and the algorithm used
in numerical simulations is unique and simple. Second,
compared with the zero-normal-velocity method, the topo-
logical charge-density-vector method is more robust in the
cases of this paper. The performance of the zero-normal-
velocity method is unstable and affected by N� and Vdiff .
Third, the topological charge vector obtained by our method
reveals the direction of the filament passing through a lo-
cal section �x2, which agrees with the direction given by
applying the right-hand rule to the spiral wave on that
section.

The direct extension of the two-dimensional topological
charge-density method [23] into three dimensions can indeed

be used to find the filament: a three-dimensional discrete
space can be regarded as a stack of two-dimensional planes
xy along the z axis; the phase singularities in each plane are
identified by the two-dimensional topological charge-density
method; one can get the filament by connecting these phase
singularities. However, such calculations fail to identify the
parts of the filaments parallel to the xy plane. This is why
we need the topological charge-density-vector method, which
is a complete theory derived from the concept of topological
charge in three-dimensional space.

Our method requires choosing the state space origin V ∗.
Gray et al. [29] pointed out that the choice of V ∗ influences
the identification of the phase singularity in two dimensions.
For example, inappropriate origin choice will lead to an error
in the identification of the number and the lifetime of spiral
waves. The best choice of V ∗ can be obtained for simple
models such as FHN; however, in realistic cardiac myocyte
models and in experiments, V ∗ is hard to obtain [29].

FIG. 7. Filaments of scroll wave turbulence simulated by the Luo-Rudy model. (a) Topological charge vectors of the filament calculated by
the topological charge-density-vector method. The inset shows the details of vector distributions. (b) The starting points of topological charge
vectors after processing. (c) The filament identified by the zero-normal-velocity method with N� = 100 and Vdiff = 0.1 mV. (d) The filament
identified by the convolution method.
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The PEMD [33] is a reliable method for phase calcula-
tion without the choice of V ∗. The first step of PEMD is to
construct the envelope of the maximum and the minimum of
V (t ), marked Vmax(t ) and Vmin(t ), respectively. Then we get
the envelope midline Vmean(t ) by

Vmean(x, y, z, t ) = Vmax(x, y, z, t ) + Vmin(x, y, z, t )

2
.

Making a similar operation on V (t + τ ), we obtain

Vmean(x, y, z, t + τ )

= Vmax(x, y, z, t + τ ) + Vmin(x, y, z, t + τ )

2
.

Finally, the expression of the phase is

φ(x, y, z, t ) = arctan 2[V (x, y, z, t + τ )

− Vmean(x, y, z, t + τ ),V (x, y, z, t )

− Vmean(x, y, z, t )].

At present, the main problem with using PEMD is that this
method is too time consuming in a three-dimensional case to
be used in our work. However, through parallel computing,
the problem may be solved.

VI. CONCLUSION

In summary, we have developed a method for detecting fil-
aments of scroll waves, named the topological charge-density-
vector method. The discrete expression of the topological
charge-density vector of the filament is derived from the topo-
logical current theory and the concept of topological charge.
According to this discrete expression, we calculate the topo-
logical charge vector at each grid in the three-dimensional
space directly, which is useful for the description of the fil-
ament. Topological charge vectors are vectors with modulus
1 at the positions of the filament, with modulus 0 at other
positions, and the direction of the topological charge vector
agrees with the direction given by applying the right-hand rule
to the spiral wave on that section. By connecting the starting
points of the topological charge vectors directly or operating
these starting points properly, we can locate the position of
the filament. In the three-dimensional excitable medium sim-
ulated by the FHN model, we illustrate the effectiveness of
this method with the scroll waves of specific shapes, including
the linked and knotted filaments. For the complex filaments of
scroll wave turbulence simulated by the Bär model, the topo-
logical charge-density-vector method shows the robustness of
the filament identification. We further apply this method to the
scroll wave turbulence in the Luo-Rudy model, and the result
is satisfactory.

Having strictly theoretical derivation, the topological
charge-density-vector method is available for research of the
filament localization. The numerical simulation results sug-
gest that the algorithm of this method is practical and robust.
We therefore expect that the topological charge-density-vector
method will make a positive contribution towards exploring
the general theory of scroll waves and the mechanism of
ventricular fibrillation induced by scroll waves in the future.
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APPENDIX A

Here we will show in detail how to use the topological
charge-density method for numerical simulations.

The calculation described in Ref. [23] involves a lot of fi-
nite difference operations. Thus, the key point of the algorithm
is to realize the operation φ(i + 1, j) − φ(i, j) efficiently.
When designing the algorithm, only one calculation is needed
to obtain φ(i + 1, j) − φ(i, j) at each grid with the array
φ(2 : Nx, 1 : Ny) minus the array φ(1 : Nx−1, 1 : Ny) directly.
The operation in the y direction also uses one calculation. This
algorithm greatly simplifies the calculation. Based on this al-
gorithm, the topological charge-density method is performed
as follows.

1. Topological charge-density method with 3 × 3 array

The gradient of the phase at each grid is defined as

∂φ

∂x
(i, j)

= 1

2

[
φ(i + 1, j) − φ(i, j)

�x
+ φ(i, j) − φ(i − 1, j)

�x

]
,

(A1a)

∂φ

∂y
(i, j)

= 1

2

[
φ(i, j + 1) − φ(i, j)

�x
+ φ(i, j) − φ(i, j − 1)

�x

]
.

(A1b)

All terms on the right side of Eqs. (A1a) and (A1b) can
be solved by the above algorithm. It should be ensured that
the value of the phase change between two grids is within the
range (−π,+π ].

Using a similar operation, namely, with the array ∂φ

∂x (1 :
Nx, 3 : Ny) minus the array ∂φ

∂x (1 : Nx, 1 : Ny−2) and with the
array ∂φ

∂y (3 : Nx, 1 : Ny) minus the array ∂φ

∂y (1 : Nx−2, 1 : Ny)
directly, we get

∂2φ

∂x∂y
(i, j) =

∂φ

∂x (i, j + 1) − ∂φ

∂x (i, j − 1)

2�x
, (A2a)

∂2φ

∂y∂x
(i, j) =

∂φ

∂y (i + 1, j) − ∂φ

∂y (i − 1, j)

2�x
, (A2b)

at each grid. Finally, we have ρ(i, j)�x2 by

1

2π

[
∂2φ

∂y∂x
(i, j) − ∂2φ

∂x∂y
(i, j)

]
�x2. (A3)
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2. Topological charge-density method with 2 × 2 array

The gradient of the phase at each grid is defined as

∂φ

∂x

(
i + 1

2
, j

)
= φ(i + 1, j) − φ(i, j)

�x
, (A4a)

∂φ

∂y

(
i, j + 1

2

)
= φ(i, j + 1) − φ(i, j)

�x
, (A4b)

which is easily calculated by the above algorithm.
With the array ∂φ

∂x (1 + 1
2 : Nx − 1

2 , 2 : Ny) minus the array
∂φ

∂x (1 + 1
2 : Nx − 1

2 , 1 : Ny−1) and with the array ∂φ

∂y (2 : Nx,

1 + 1
2 : Ny − 1

2 ) minus the array ∂φ

∂y (1 : Nx−1, 1 + 1
2 : Ny −

1
2 ) directly, we have

∂2φ

∂x∂y

(
i + 1

2
, j + 1

2

)
=

∂φ

∂x

(
i + 1

2 , j + 1
) − ∂φ

∂x

(
i + 1

2 , j
)

�x
,

(A5a)

∂2φ

∂y∂x

(
i + 1

2
, j + 1

2

)
=

∂φ

∂y

(
i + 1, j + 1

2

) − ∂φ

∂y

(
i, j + 1

2

)
�x

,

(A5b)

at each grid. As a result, we have ρ(i + 1
2 , j + 1

2 )�x2 by

1

2π

[
∂2φ

∂y∂x

(
i + 1

2
, j + 1

2

)
− ∂2φ

∂x∂y

(
i + 1

2
, j + 1

2

)]
�x2.

(A6)

APPENDIX B

Figure 8(a) is a set of starting points of topological
charge vectors without processing. The initial coordinate

FIG. 8. (a) A set of starting points of topological charge vectors
without processing and its partial, enlarged view. (b) A set of starting
points of topological charge vectors after processing and its partial,
enlarged view.

�S(m) at each point is [Sx(m), Sy(m), Sz(m)]. Figure 8(b) is
a set of starting points of topological charge vectors af-
ter processing, whose coordinate �S′(m) at each point is
[S′

x(m), S′
y(m), S′

z(m)]. �S′(m) is the weighed sum of the co-
ordinates and it is calculated by

S′
x(m) = q1 × Sx(m − 3) + q2 × Sx(m − 2) + q3Sx(m − 1)

+ q4 × Sx(m) + q5 × Sx(m + 1)

+ q6 × Sx(m + 2) + q7 × Sx(m + 3),

S′
y(m) = q1 × Sy(m − 3) + q2 × Sy(m − 2) + q3Sy(m − 1)

+ q4 × Sy(m) + q5 × Sy(m + 1)

+ q6Sy(m + 2) + q7 × Sy(m + 3),

S′
z(m) = q1 × Sz(m − 3) + q2 × Sz(m − 2) + q3Sz(m − 1)

+ q4 × Sz(m) + q5 × Sz(m + 1)

+ q6 × Sz(m + 2) + q7 × Sz(m + 3),

where qα represents the weights and we set q1 = 0.1, q2 =
0.1, q3 = 0.2, q4 = 0.2, q5 = 0.2, q6 = 0.1, and q7 = 0.1.
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