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Turing patterns in simplicial complexes
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The spontaneous emergence of patterns in nature, such as stripes and spots, can be mathematically explained
by reaction-diffusion systems. These patterns are often referred as Turing patterns to honor the seminal work of
Alan Turing in the early 1950s. With the coming of age of network science, and with its related departure from
diffusive nearest-neighbor interactions to long-range links between nodes, additional layers of complexity behind
pattern formation have been discovered, including irregular spatiotemporal patterns. Here we investigate the
formation of Turing patterns in simplicial complexes, where links no longer connect just pairs of nodes but can
connect three or more nodes. Such higher-order interactions are emerging as a new frontier in network science, in
particular describing group interaction in various sociological and biological systems, so understanding pattern
formation under these conditions is of the utmost importance. We show that a canonical reaction-diffusion system
defined over a simplicial complex yields Turing patterns that fundamentally differ from patterns observed in
traditional networks. For example, we observe a stable distribution of Turing patterns where the fraction of
nodes with reactant concentrations above the equilibrium point is exponentially related to the average degree
of 2-simplexes, and we uncover parameter regions where Turing patterns will emerge only under higher-order
interactions, but not under pairwise interactions.
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I. INTRODUCTION

Patterns are common in nature, from the spots and stripes
on the bodies of animals, and the ripples and sand waves in
deserts, to the often peculiarly ordered distribution of vegeta-
tion in arid regions of the world. These patterns might appear
seemingly disordered at first glance, but in fact, it is quite
the opposite. They are the product of spontaneous emergence
and self-organization that give rise to almost unmatched order
and beauty. In 1952, Alan Turing noticed that many of these
patterns were far more organized than meets the eye, and he
proposed a theory that explained their emergence from funda-
mental reaction-diffusion processes where different reactants
interact and diffuse at different rates, and while doing so create
fascinating patterns even from homogeneous, uniform initial
states [1].

In fact, Turing’s theory provided a general explanation for
how different patterns can arise in natural and man-made
systems. However, his seminal contributions have not been
widely noticed until 1972, when Gierer and Meinhardt, who
at the time were still unaware of Turing’s work, found that
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stationary patterns can emerge in certain chemical systems
that consist of activators and inhibitors. The activator, as
the name suggests, promotes the growth of both the acti-
vator’s and the inhibitor’s density, which, on the contrary,
are restrained by the inhibitor. Gierer and Meinhardt also
showed that stationary patterns can emerge only when the
inhibitor diffuses faster than the activator [2]. After becoming
acquainted with Turing’s work, Gierer and Meinhardt realized
that their findings exactly confirmed Turing’s theory. Hence,
the 1970s saw the beginning of a growing interest in Turing
patterns, which persists today.

Although Turing’s theory was originally proposed in the
context of chemical systems, it had fruitful applications across
disciplines, such as biology [3,4], ecology [5,6], physics [7],
ethology [8,9], and engineering [10–14]. Subsequent studies
that extended Turing’s theory generally branched out into two
main categories, whereby one modeled the reaction-diffusion
process in the continuous space [15–24], while the other used
discrete space to accommodate the reaction-diffusion process
[25–32].

Othmer and Scriven were the first to apply Turing’s the-
ory in a discrete space medium to generate Turing patterns
[31]. In particular, they proposed a reaction-diffusion model
where nodes were occupied by reactants and links sup-
ported the transfer of these reactants. They found that Turing
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FIG. 1. The simplicial complex model. Panel (a) shows the structure of the fundamental elements, i.e., the d-simplex (for d = 0, 1, 2,...),
of simplicial complexes. A 0-simplex denotes an isolated node, which cannot participate in the dynamical processes. So the 0-simplex is not
considered in this work. When d > 0, a d-simplex indicates the connection between d + 1 nodes. In other words, A d-simplex has d + 1
all-connected nodes. Panel (b) shows an example of a simplicial complex of order D = 2 with size N = 4 on the left. The order D of a
simplicial complex indicates that the dimension of the simplices in it will not exceed D. All simplexes in this simplicial complex are shown
on the right. Note that the 2-simplex (1,2,3) and its corresponding 1-simplices (1,2), (1,3), and (2,3) are all taken into account, reflecting the
backward compatible characteristic of simplicial complexes.

patterns indeed emerge, and postulated also that they may also
arise in other networks, which was later confirmed by many
subsequent research efforts [33–35]. Another breakthrough
came in 2010, when Nakao and Mikhailov [30] successfully
extended Turing’s theory from simple networks to large-scale
networks, wherein they presented a general mathematical
framework that can theoretically derive the Turing instability
region of networked reaction-diffusion systems. Subsequent
studies then further extended Turing’s theory to directed
[32], multiplex [36–38], temporal [39,40], and nonnormal
networks [41].

However, these previously considered networks were all
limited to pairwise links, i.e., having links that connect only
two nodes at a time. But recent research has revealed that
such networks fail to comprehensively describe group inter-
actions [42–51]. In fact, a paradigm shift in the way we model
group interactions is underway and indeed urgent [43,52,53].
Thus the birth of higher-order networks of simplicial com-
plexes, where a single link can connect more than two nodes.
Although a simple change in principle, our research will
show that this fundamentally affects the emergence of Turing
patterns.

In what follows, we propose a reaction-diffusion model
embedded in simplicial complexes, where higher-order con-
nections also support the diffusion between patches. More
precisely, our model enables the transfer flux per unit time is
related not just to pairwise connections, but also to higher-
order connections. We will show that, as a consequence,
Turing patterns can sometimes emerge spontaneously only if
higher-order connections are enabled, but not in the corre-
sponding reduced “standard” network with just pairwise links.
We will also show that the statistical characteristic of the
stable distribution of the activator is exponentially correlated
to the average degree of higher-order connections, in turn
indicating a strong interrelation between Turing patterns and
higher-order connections.

II. MATHEMATICAL MODEL

A. Simplicial complexes

Let us consider a simplicial complex S(V, E ) of order D,
where V = {1, . . . , N} indicates the collection of N nodes and
E = {E1, . . . , EM} denotes the set of M simplices. Each sim-
plex Em(m ∈ {1, . . . , M}) contains an unordered collection
of all-connected |Em| nodes with dm = |Em| − 1 � D, where
|Em| is the size of simplex Em (the number of nodes involved)
and dm denotes its order. The order of a simplicial complex
equals the largest order of all simplices in it, as shown by
D = max{dm, m = 1, . . . , M}.

The structure of simplices is depicted intuitively in Fig. 1.
Several properties are worth mentioning. First, all nodes in the
same simplex are linked. Second, the simplex m represents a
group connection when |Em| > 2 and reduce to a “standard”
edge with a pairwise connection when |Em| = 2, and a sim-
plicial complex will reduce to a “standard” network when
|Em| = 2 for ∀ m. Third, simplicies are backward compati-
ble, which means that a simplex of order d (d > 0) contains
simplicies of dimension d ′, where d ′ = d − 1, . . . , 0. This
compatibility is opposed to the cases in hypergraph structures
[46]. Hereafter, the simplex of order d is referred to as a
d-simplex for convenience.

We then move to define the adjacent matrix of a simplicial
complex. First, let us introduce the incidence matrix B of
N×M dimesion, whose element Bim indicates whether node
i belongs to simplex m,

Bim =
{

1 for i ∈ Em,

0 otherwise.
(1)

It is of note that “standard” networks also have the same
matrix. However, in the incidence matrix of a “standard” net-
work, the number of nonzero elements in each column is the
same, i.e., two, because only pairwise connections between
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FIG. 2. An illustration of how a simplicial complex’s adjacent matrix is built. The general mathematical calculation of the adjacent matrix
A is given in Eq. (3). Here the simplicial complex in Fig. 1(b) is taken as an example to explicitly show how its adjacent matrix is constructed.
Panel (a) displays the matrices B, Z, and BT of the simplicial complex and computes the result of BZBT . The simplicial complex in Fig. 1(b) is
composed of four nodes and five simplices (four simplices of order 1 and one simplex of order 2). Therefore, the matrix B is of 4×5 dimension,
and Z is of 5×5 dimension. In matrices B, Z, and BT , the light blue shadow covers the elements that correspond to the simplices of order 1,
while the light yellow shadow covers the elements that are dominated by the simplex of order 2. α1 and α2 indicate the simplex strength of
order 1 and order 2, respectively. For simplicity, we set α1 = α2 = 1 and then we get the concrete value of BZBT in panel (b). Panel (c) then
shows the adjacent matrix A as defined by A = BZBT − diag(BZBT ). Finally, panel (d) shows the Laplacian matrix L based on the adjacent
matrix using Li j = Ai j − δi j

∑N
k=1 Aik .

two nodes are considered. While in a simplicial complex’s in-
cidence matrix, each column can have more than two nonzero
entries, because the simplicial complex takes into account the
group connection of multiple nodes. Second, once the inci-
dence matrix B has been defined, we can construct an M×M
matrix C = BT B, with the entry Cmn indicating the number
of nodes in Em ∩ En. The entry Cmm on the diagonal equals
|Em|, which counts the number of nodes in the simplex Em.
Furthermore, dm, the dimension of the simplex Em, can be cal-
culated through dm = |Em| − 1 = Cmm − 1. Third, to portray
the relationship between nodes, we introduce the parameter
αd (d = 1, . . . , D), the d-simplex strength, which measures
the extent to which a d-simplex contributes to the connection
between the nodes in it.

As a result of the preceding definitions, the connection
between node i and j can be described as

Ai j =

⎧⎪⎪⎨
⎪⎪⎩

M∑
m=1

Bim Bjm αdm for i �= j,

0 for i = j,

(2)

where dm ∈ [1, D] indicates the order of the simplex Em. M
denotes the number of simplices in the simplicial complex.
Then we can get the adjacent matrix A of a simplicial complex
by rewriting Eq. (2) into the matrix form

A = BZBT − Diag(BZBT ), (3)

where B denotes the incidence matrix of N×M dimension. Z
is a diagonal matrix of M×M dimension:

Z =

⎛
⎜⎝αd1

. . .

αdM

⎞
⎟⎠. (4)

The operator symbol Diag(X ) denotes the extraction of the
diagonal entries of the square matrix X as a new diagonal
matrix. Because the main diagonal of the adjacency matrix
is generally set to 0, the latter term Diag(BZBT ) in Eq. (3) is
subtracted.

B. Reaction-diffusion systems in simplicial complexes

After constructing the adjacent matrix A, we introduce
the reaction-diffusion system on simplicial complexes. The
system can be depicted by a set of ordinary differential equa-
tions (ODEs). Each equation contains two terms: the local
reaction within the node and the diffusion between nodes.
These terms characterize different dynamical kernels that con-
tribute to the change in specie density.

In a two-species (activator u and inhibitor v) system, the
local dynamics in node i are generally described by two
nonlinear functions f (ui, vi ) and g(ui, vi ), where ui and vi

denote the activator and inhibitor densities in node i, respec-
tively. According to Ficks’ law, the change of ui per unit time
caused by diffusion is proportional to

∑N
j=1 Ai j (u j − ui ) =∑N

j=1 Li ju j . L represents the Laplacian matrix of the adja-

cent matrix A. Li j = Ai j − δi j
∑N

k=1 Aik , where δi j denotes the
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Kronecker delta, δi j = 1 if and only if i = j, otherwise δi j =
0. Similarly, the change of vi per unit time caused by diffu-
sion is proportional to

∑N
j=1 Li jv j . The Laplacian matrix L is

computed simply based on the adjacent matrix A. Although
the general construction of a simplicial complex’s adjacent
matrix A is mathematically shown in Sec. II A, an intuitive
illustration of the building process of a specific simplicial
complex’s adjacent matrix is still required. Therefore, Fig. 2
explicitly shows how we construct the adjacent matrix A and
corresponding Laplacian matrix L of the simplicial complex
shown in Fig. 1(b).

Therefore, the reaction-diffusion system organized in sim-
plicial complexes can be depicted by the following ODEs:

dui

dt
= f (ui, vi ) + ε

N∑
j=1

Li ju j,

dvi

dt
= g(ui, vi ) + σε

N∑
j=1

Li jv j, (5)

where ε and σε denote the diffusional mobilities of activator
and inhibitor, respectively, and σ indicates the ratio between
them.

There is no discernible difference between the mathe-
matical expressions of the reaction-diffusion system in a
“standard” network and a simplicial complex. However, the
outcomes of the systems in these two structures differ due
to the distinct Laplacian matrices, which will be discussed in
detail in the following section.

III. RESULTS

A. Setup of simulations

To investigate how simplicial complexes influence the for-
mation of Turing patterns in reaction-diffusion systems, we
carry on several simulations. This subsection introduces the
preliminary work, including the generation of simplicial com-
plexes, the configuration of dynamical models, and initial
conditions for simulations.

1. The simplicial complex generation

Without loss of generality, the simplicial complexes we use
are all of order 2, which means that pairwise connections (1-
simplices) and three-node group connections (2-simplices) are
taken into account. As a crucial characteristic of simplicial
complexes, the average degree of order d is usually utilized to
distinguish various simplicial complexes and is defined as

〈k(d )〉 = nd
(d + 1)

N
, (6)

where 〈k(d )〉 denotes the average degree of order d , nd in-
dicates the number of d-simplices, and N is the number
of nodes in the simplicial complex. The efficient degree-
adjustable algorithm proposed in Ref. [42] is used to generate
the simplicial complex. As shown below, the algorithm goes
through two stages to generate a simplicial complex of order
D = 2. Given a set V of N nodes, we first construct pairwise
connections (1-simplices) for any i, j ∈ V with probability
p(1). At this stage, the number of generated 1-simplices is

approximately N (N−1)
2 p(1). Therefore, the current average de-

gree of order 1 approximately equals N (N−1)
2 p(1) 1+1

N = (N −
1)p(1). Then, we construct three-node group connections (2-
simplices) for any i, j, k ∈ V with probability p(2). At this
point, there are approximately N (N−1)(N−2)

6 p(2) 2-simplices
generated. So the average degree of order 2, i.e., 〈k(2)〉, is
approximately N (N−1)(n−2)

6 p(2) 2+1
N = (N−1)(N−2)

2 p(2). It is of
note that the second stage of constructing 2-simplices also
contributes to the increase of the average degree of order 1.
The specific contribution can be calculated by taking into
account the various possibilities for attaching a 2-simplex
(i, j, k) to a node i. Specifically, the 1-order degree of node
i increases by 2 for the construction of each 2-simplex (i, j, k)
when neither the 1-simplex (i, j) nor the 1-simplex (i, k)
is constructed during the first stage; the probability of this
scenario is (1 − p(1) )2. Similarly, the construction of each
2-simplex (i, j, k) increases the 1-order degree of node i by
1 with probability p(1)(1 − p(1) ) when either the 1-simplex
(i, j) exists during the first stage but the 1-simplex (i, k) not,
or vice versa. Each of these two cases has the same prob-
ability to happen. So the contribution of these two cases is
2p(1)(1 − p(1) ). Considering all possible scenarios, the overall
contribution of each 2-simplex to the increase of the 1-order
of node i is 2(1 − p(1) ). Therefore, adding together the two
contributions made by 1-simplices and 2-simplices, the ex-
pected average degree of order 1, i.e., 〈k(1)〉, can be calculated
as 〈k(1)〉 ≈ (N − 1)p(1) + 2〈k(2)〉(1 − p(1) ). We can therefore
construct simplicial complexes with desired 〈k(1)〉 and 〈k(2)〉
by adaptively calculating the values of p(1) and p(2) as

p(1) = 〈k(1)〉 − 2〈k(2)〉
(N − 1) − 2〈k(2)〉 ,

p(2) = 2〈k(2)〉
(N − 1)(N − 2)

. (7)

One can refer to Methods in Ref. [42] for more details.

2. Dynamical model reaction kernels
and parameter configurations

Here, we introduce the dynamical model used in the
reaction-diffusion system (5). We choose three paradigmatic
models ranging from biology to physics to provide a com-
prehensive view of Turing pattern formation in simplicial
complexes. The following are the nonlinear functions and
detailed information.

(a) Gierer-Meinhardt (GM) model [2]: The GM model was
first proposed to model the chemical dynamics in cellular,
which well explained the pattern formation in morphogenesis.
Its nonlinear reaction terms are as follows:

f (u, v) = u2

v
− au,

g(u, v) = bu2 − cv. (8)

Through all simulations, the parameters are fixed to a = 1,
b = 9, c = 3, ε = 0.01, σ = 100.

(b) Leslie-Gower-Holling (LG) model: Leslie and Gower
proposed a two-species model that characterize the interaction
between predator and prey populations [54]. Studies show that
the LG model has rich dynamics, from which diverse patterns
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can spontaneously arise [55,56]. The reaction terms of the LG
model are as follows:

f (u, v) = u(1 − u) − u2v

au2 + 1
,

g(u, v) = bv

(
1 − cv

u

)
. (9)

We set the parameters to a = 80, b = 0.6, c = 0.01568, ε =
0.0015, σ = 120 for all simulations.

(c) FitzHugh-Nagumo (FHN) model: In 1961 FitzHugh
proposed a set of nonlinear differential equations that de-
scribed the periodic oscillations of neuronal action potentials
in response to suprathreshold norm current stimulation [57].
In the next year, Nagumo et al. proposed a mathematically
equivalent circuit model to FitzHugh’s equations, revealing
the mechanism of action potential generation and conduction
in the giant axons of the gunny squid [58]. Their pioneering
model is often investigated [59,60] and referred to as the FHN
model, whose reaction terms are

f (u, v) = c

(
u − u3

3
− v

)
,

g(u, v) = c(au − bv). (10)

The parameters are set to a = 3, b = 2, c = 1, ε = 0.01,
σ = 15.

3. The initial condition for numerical simulations

During the numerical simulations, we need to add small
perturbations around the equilibrium for initialization. When
all of the settings satisfy the requirement of Turing instability,
the perturbations will grow exponentially and the system will
reach a new heterogeneous stable state, appearing as Turing
patterns. Otherwise, the perturbations will fade away and the
system will return back to the homogeneous equilibrium. For
all simulations, we define the initial condition with perturba-
tions as follows:

ui(0) = ue + η′
i,

vi(0) = ve + η′′
i , (11)

where η′
i, η

′′
i ∼ N (0, 0.0001).

B. Turing patterns mediated by higher-order connections

Topology plays a vital role in the formation of Turing
patterns. According to a recent study, the Turing instability
condition is related to topological properties. Turing pat-
terns can emerge spontaneously only when the topology’s
Laplacian has eigenvalues located in the instability region
(�∗, �∗∗) (see Appendix A). �∗ and �∗∗ denote the bound-
aries between which eigenvalues satisfy the Turing instability
condition [29].

Originating from the relationship between Laplacian’s
eigenvalues and Turing instabilities, we furthermore investi-
gate how higher-order connections in simplicial complexes
affect the formation of Turing patterns. Let us first consider
a simplicial complex with 100 vertices of order 2. We set
α1 = 1 and vary the value of α2 to see how the domain of
Laplacian’s eigenvalues changes. Figure 3 shows that when

FIG. 3. The distribution of Laplacian eigenvalues � of a two-
dimensional simplicial complex with varying 2-simplex strength α2.
The simplicial complex contains 100 vertices with 〈k(1)〉 = 1.38 and
〈k(2)〉 = 0.69. The 1-simplex strength α1 is fixed to 1, and the 2-
simplex strength α2 is set to 0, 1 and 2. When α2 = 0, the simplicial
complex is a “standard” network with pairwise connections. When
α2 > 0, the higher-order connections, i.e., three-body group connec-
tions, are considered. As α2 increases, the domain of the distribution
of Laplacian eigenvalues becomes wider.

α2 = 0, where the simplicial complex reduces to a standard
network, the eigenvalues are tightly distributed and narrow in
range. Moreover, the width of the eigenvalues’ range of the
Laplacian matrix appears to have a positive correlation with
α2, i.e., as α2 increases, the Laplacian has wider eigenvalue’s
ranges.

This phenomenon implies that there may be a situation
where Turing patterns can only emerge in the simplicial com-
plex when higher-order connections are considered (α2 > 0).
To explore such a situation, we perform numerical calcula-
tions for the GM, LG, and FHN models in the same simplicial
complex used in Fig. 3. We also fix α1 to 1 and vary the value
of α2 during the simulations.

Figure 4 shows the Laplacian eigenvalue distributions of
the simplicial complex (with different 2-simplex strengths) on
the dispersion curve (GM model) on the first row and corre-
sponding patterns on the second row. The dispersion curve
λ is calculated through the Turing instability analysis (see
Appendix A). Turing patterns will spontaneously arise only
when there are Laplacian eigenvalues � that satisfy λ(�) > 0.
Figure 4(a) shows that there are no eigenvalues that satisfy
λ(�) > 0, and the corresponding stable distribution of ui

shown in Fig. 4(d) are homogeneous, i.e., no Turing patterns.
Interestingly, when α > 0, such as α = 1, 2, the eigenvalue
distributions meet the Turing instability requirement that ∃�,
λ(�) > 0 [Figs. 4(b) and 4(c)], and the system reaches new
heterogeneous stable states, i.e., Turing patterns [Figs. 4(e)
and 4(f)]. It is interesting that patterns develop only on a
subset of nodes in Fig. 4. This may be due to the fact that
only a subset of values is nonzero in the critical eigenvectors
which correspond to the unstable eigenvalues [the abscissa of
the red points in Figs. 4(b) and 4(e)] of the Laplacian matrices.
Because the growth of the initial perturbations is linearly
related to the critical eigenvectors as shown in Eq. (A3) in
the Appendixes. The perturbations will grow only on nodes
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FIG. 4. Turing patterns induced by three-body connections (2-simplices) for GM model. Panels (a), (b), and (c), respectively, show the
dispersion relationship between the system growth factor λ and Laplacian eigenvalue � for α2 = 0, 1, and 2. The simplicial complex used
here is the same as the one used in Fig. 3. The 1-simplex strength α1 is fixed to 1. The dispersion curve is calculated through Turing instability
analysis (see Appendix A). Turing patterns will arise only if Laplacian eigenvalues meet the condition that ∃�, λ(�) > 0. Panels (d), (e), and (f)
respectively present the corresponding distributions of ui after numerical calculations for α2 = 0, 1, and 2. α2 = 0 implies that the simplicial
complex returns to a “standard” network. When α2 = 0, the Turing instability condition is not satisfied (a), resulting in a homogeneous
distribution of ui (d). Interestingly, when α2 > 0, such as α2 = 1, 2, the three-body connections are taken into account, and the Turing instability
condition is satisfied as shown in panels (b) and (c). The dispersion points that meet the instability requirement are colored in red in panels
(b) and (c). Panels (e) and (f) then exhibit the corresponding distributions of ui as Turing patterns for α2 = 1, 2. In this case, Turing patterns can
only spontaneously when α2 > 0. Therefore, it can be inferred that Turing patterns can be induced by three-body connections in the simplicial
complex.

whose corresponding values in the critical eigenvectors are
nonzero and will fade away on those with zero values in the
critical eigenvectors. Turing patterns, therefore, can develop
only on nodes where the initial perturbations can grow over
time. One can turn to Fig. 8 in the Appendixes for more
information on the value distribution of critical eigenvectors.

Similar phenomena to that shown in Fig. 4 are also found
in the LG and FHN models (see Figs. 9 and 10 in the
Appendixes). Therefore, in this case, Turing patterns are
induced by the higher-order connections in the simplicial
complex, which are similar to the case in hypergraphs [46].

In the pioneering work on investigating Turing patterns on
networked reaction-diffusion systems, Nakao and Mikhailov
found that the outcome of the system’s evolution is quite
sensitive to the initial conditions and revealed the multista-
bilities of the system [30]. Here we found such multistabilities
still hold on reaction-diffusion systems organized in simplicial
complexes. Figure 5 shows how Turing patterns’ amplitude,

calculated as amplitude = {∑N
i=1 [(ui − ue)2 + (vi − ve)2]}

1
2 ,

changes when the 2-simplex strength α2 is gradually changed
in either an upward or downward direction for the GM model.
The value of α2 reflects the strength of three-body connections
and indicates how important the 2-simplices are in the simpli-
cial complex. We start by gradually increasing the 2-simplex
strength α2 from α2 = 0. The amplitude undergoes a sudden
jump from 0 to a high value at α2

∼= 1, implying the arising
of Turing instability. This sudden jump explains the finding
in Fig. 4 that three-body connections can induce Turing insta-
bility. As α2 is further increased to 2, the amplitude grows

FIG. 5. Multistabilities of the GM model on simplicial com-
plexes. The amplitude of the solutions under varying α2 in either an
upward or downward direction is plotted vs the 2-simplex strength
α2. Starting to increase α2 from 0 with the initial condition (11), the
amplitude goes through a sudden jump from 0 at α2

∼= 1. Further
changing the value of α2, the coexistence of multiple stable solu-
tions can be observed. The changing direction of α2 is directed by
arrows. The inset zooms the amplitude scale into a narrow one, i.e.,
[4.5,5.25], for a better view. The simplicial complex used here is the
same as the one used in Figs. 3 and 4.
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FIG. 6. Spontaneously arising Turing patterns in simplicial complexes of order 2 with different average degrees of order 2 〈k(2)〉. The
Turing patterns, i.e., the stable distribution of ui, of the GM, LG, and FHN models are shown in the first, second, and third rows, respectively.
While the first, second, and third columns show the results in the simplicial complex with 〈k(2)〉 = 1, 10 and 25, respectively. In each panel,
the dashed black line represents the equilibrium ue. From panel (a) to panel (c) (the GM model), the number of points above the equilibrium
decreases as 〈k(2)〉 increases. From panel (d) to panel (f) (the LG model), the points below the equilibrium have the trend to move up and the
number of points above the equilibrium appears to increase as 〈k(2)〉 increases. From panel (g) to panel (i) (the FHN model), the number of
points near the equilibrium appears to increase as 〈k(2)〉 increases. Considering these phenomena together, we may infer that the structure of
Turing patterns, i.e., the stable distribution of ui, may be correlated to the average degree of order 2. Here the simplicial complexes of order
2 are generated according to the algorithm in Sec. III A. For comparability, we set that all simplexes comprise 1000 nodes and have the same
average degree of order 1, i.e., 〈k(1)〉 = 50.

and will go through several sudden jumps. Decreasing α2

at α2 = 2, the amplitude does not decrease but instead con-
tinuously increases. Reversing the changing direction of α2

during the decreasing process of α2 at three points (α2 = 0.25,
α2 = 0.5, and α2 = 1), we further observe multiple stable
solutions coexisting in the system. Such multistabilities are
also found in the LG and FHN models; one can refer to Fig. 11
in the Appendixes for more information.

C. Correlations between the structure of Turing patterns
and the average degree of higher-order connections

This study focuses on Turing patterns on simplicial com-
plexes, which differs from the conventional subjects in that
the underlying structure contains higher-order connections.
The impact of higher-order connections on the Turing patterns
is then naturally focused on. The preceding subsection dis-
cusses the effect of the existence and strength of three-body

connections (2-simplex) on the formation of Turing patterns
in a simplicial complex of order 2. In this subsection, we will
look at how the density of higher-order connections, i.e., the
average degree of higher order, affects the formation of Turing
patterns.

We generate several random simplicial complexes of order
2 with 1000 nodes using the algorithm introduced in Sec. II.
These simplicial complexes differ in terms of 〈k(2)〉, which
ranges from 1 to 25, but they all have the same 〈k(1)〉 = 50
for comparability. In these simplicial complexes, we perform
numerical calculations for the GM, LG, and FHN models.
Some typical patterns (the stable distribution of ui) obtained
by one single trial are shown in Fig. 6, where the black dashed
line indicates the equilibrium ue for each model. The first row
of Fig. 6 shows the results of the GM model, where we can
find that as 〈k(2)〉 increases, fewer points are located above the
equilibrium, and this trend strengthens as α2 increases. The
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TABLE I. The detailed information for the nonlinear regression fitting curves for numerical results in Figs. 7(a), 7(b), and 7(c).

Model α2 r1 ∈ CI(99%) r2 ∈ CI(99%) r3 ∈ CI(99%) R2

0 0.7327 −0.58885 −6.67346E-4 0.93256
GM 0.5 0.00414 0.14053 −0.02205 0.99655

1 0.01546 0.1309 −0.05082 0.99848
1.5 0.01018 0.13593 −0.06906 0.99933

0 0.71042 −0.00258 −0.15871 0.27254
LG 0.5 0.80597 −0.09659 −0.01773 0.99046

1 0.79036 −0.0834 −0.04626 0.99582
1.5 0.78226 −0.07597 −0.08259 0.9964

0 −0.04956 0.04956 1.80228E-4 0.55505
FHN 0.5 −0.00315 0.00207 0.11316 0.99349

1 −0.01505 0.00948 0.12675 0.99579
1.5 −0.03052 0.01629 0.15755 0.99562

results of the LG model are shown in the second row of Fig. 6.
As 〈k(2)〉 increases, the points located under the equilibrium
tend to be closer to the equilibrium, and the number of points
presented under the equilibrium decreases. The third row of
Fig. 6 shows the results of the FHN model. Unlike the GM
and LG models, the number of points on either side of the
equilibrium appears not to change as 〈k(2)〉 increases, but the
number of points near the equilibrium point is increasing.

We infer from such phenomena that some statistical fea-
tures of Turing patterns may be related to 〈k(2)〉. To reveal
potential relationships, we propose the metric PM , which mea-
sures the fraction of the nodes that have density within the
range [ue − 0.1, ue + 0.1] for the FHN model,

PM =
{

2N −
N∑

i=1

|sgn(ui − ue − 0.1)

+ sgn(ui − ue + 0.1)|
}/(

2N
)
, (12)

and define PT , which measures the fraction of the nodes with
higher density than equilibrium ue for the GM and LG models,

PT =
∑N

i=1 sgn′(ui − ue)

N
, (13)

where sgn(x) and sgn′(x) are the sign function and modified
sign function, respectively,

sgn(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for x > 0,

0 for x = 0,

−1 for x < 0,

(14)

sgn′(x) =
{

1 for x > 0,

0 for x � 0.
(15)

As mentioned, the system has multistabilities. To mitigate the
influence of such multistabilities, we increase the number of
trials to 25 by repeating experiments. Specifically, for each
parameter setting, we repeat the calculations on five different
networks (with the same degree of both order 1 and order 2 for
consistency) with five different initial conditions. Figures 7(a),
7(b), and 7(c) then plot the scatter diagrams of the averaged
values of PT and PM in regard to varying 〈k(2)〉 obtained by

numerical simulations. When α2 = 0, the simplicial complex
contains only pairwise connections, which is in accordance
with a “standard” network. In this case 〈k(2)〉 barely influence
the value of PT (for the GM and LG models) and PM (for the
FHN model). However, when α2 > 0, the correlation between
these metrics and 〈k(2)〉 gradually appears. For example, PT

will decrease as 〈k(2)〉 increases for the GM model. While PT

will increase as α2 increases for the LG model. For the FHN
model, PM will increase in an accelerated manner as 〈k(2)〉
increases. Moreover, all these correlations for the GM, LG,
and FHN models will be enhanced as α2 increases. Following
the powerful theory proposed in [30], we further calculate the
theoretical predictions to support these findings in numerical
simulations using the mean-field analysis (see Appendix C
for more information). The theoretical results for the GM
[Fig. 7(d)] and LG [Fig. 7(e)] models are in great agree-
ment with their corresponding simulation results [Figs. 7(a)
and 7(c)]. The FHN model’s theoretical [Fig. 7(f)] and sim-
ulation [Fig. 7(c)] results both exhibit strong correlations
between PM and 〈k(2)〉, though they differ in terms of the exact
values of PM .

To gain a better understanding of such correlations, we
attempted to fit them with the exponential model

P̂ = r1 + r2er3〈k(2)〉. (16)

The lines in Fig. 7 indicate the fitting curves obtained from
nonlinear regressions. The fitting appears to be successful
for both theoretical and numerical results. It is of note that
many other nonlinear functions may also well fit the data,
and they are all practicable in our work. For simplicity, we
herein chose a simple function, i.e., the exponential function
(16), to quantitatively verify the correlation between the struc-
ture of Turing patterns on simplicial complexes and 〈k(2)〉
of simplicial complexes. The quantitative information of the
fitting is shown in Tables I (for numerical results) and II (for
results obtained by mean-field analysis) in the Appendixes. In
detail, the estimated parameters are r1, r2, and r3 in Eq. (16).
The coefficient of determination R2 is also calculated to de-
scribe the goodness of the exponential fitting. Compared to
the situation where α2 = 0, when α2 > 0, R2 has much higher
value, and nearly holds beyond 0.97 in all three models in
the regression of both theoretical and numerical results. Such
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FIG. 7. The correlation between the proposed statistical indicators of Turing patterns and the average degree of order 2. The first row
[panels (a), (b), and (c)] and the second row [panels (d), (e), and (f)] are obtained by numerical simulations and mean-field analysis, respectively.
Hollow dots and solid dots represent the data obtained by numerical simulations and mean-field analysis, respectively. While lines indicate the
exponential fitting cure obtained by nonlinear regression. The detailed information of the fitting is shown in Tables I (for numerical simulations)
and II (for mean-field analysis) in the Appendixes. In terms of simulations results, panels (a) and (b) show the relation between PT and 〈k(2)〉
for the GM and LG models, respectively. Panel (c) shows the relation between PM and 〈k(2)〉 for the FHN model. Intuitively, when α2 > 0,
the data are fitted successfully for all these three models, implying underlying correlations between the average degree of order 2 (〈k(2)〉) and
the statistical indicators of Turing patterns (PT and PM ). PT and PM , on the other hand, reflect the stable distribution of ui, i.e., the structure
of Turing patterns. Therefore, it is reasonable to conclude that the average degree of order 2 has an obvious correlation with the structure
of Turing patterns. Such phenomena observed from numerical simulations are further validated by mean-field analysis. Specifically, panels
(d) and (e) show the results obtained by mean-field analysis for the GM and LG models, respectively, and are in a good agreement with the
simulation results in panels (a) and (b). The FHN model’s mean-field analysis results and simulation results both exhibit strong correlations
between PM and 〈k(2)〉, though they differ in terms of the exact values of PM . The simplicial complexes of order 2 used here are generated
using the algorithm introduced in Sec. III A. To ensure comparability, we set that all simplexes comprise 1000 nodes and have the same average
degree of order 1 〈k(1)〉 = 50.

values of R2 are significantly close to 1, and therefore, indicate
perfect fittings for both theoretical and numerical results when
α2 > 0.

In brief, when higher-order connections are considered
(α2 > 0), it can be seen that the average degree of higher-
order connections has strong correlations with the structure of

TABLE II. The detailed information for the nonlinear regression fitting curves for theoretical results in Figs. 7(d), 7(e), and 7(f).

Model α2 r1 ∈ CI(99%) r2 ∈ CI(99%) r3 ∈ CI(99%) R2

0 0.75531 −0.61146 −6.44407E-4 0.9325
GM 0.5 0.00424 0.14043 −0.02208 0.99651

1 0.01546 0.1309 −0.05082 0.99848
1.5 0.01018 0.13593 −0.06906 0.99933

0 0.71041 −0.0026 −0.15985 0.27748
LG 0.5 0.80569 −0.0963 −0.01769 0.99026

1 0.79119 −0.08412 −0.04531 0.99595
1.5 0.85823 −0.14685 −0.02818 0.98798

0 8.85211E-4 3.85103E-40 3.37722 0.19775
FHN 0.5 −0.08143 0.06075 0.07764 0.9873

1 −2.89297 2.78589 0.01232 0.98468
1.5 1.49872 1.49872 −0.05247 0.97794
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Turing patterns, i.e., the distribution of ui. Simple functions,
such as exponential functions, can be used to depict such
correlations. Therefore, we may call these phenomena the
exponential correlations induced by higher-order connections
in simplicial complexes.

IV. DISCUSSION

We investigated the formation of Turing patterns in sim-
plicial complexes and their associated properties. Unlike in
traditional networks, a link in a simplicial complex can con-
nect more than just two nodes. We have emphasized that in the
absence of higher-order interactions the theory of networks
fails to comprehensively describe group interactions, and that
thus a paradigm shift is under way in network science where
this is remedied by means of simplicial complexes [52]. In this
light, it is therefore of significant interest to investigate the
theory of Turing patterns in this new theoretical framework.
We have thus developed a reaction-diffusion model that is
embedded in simplicial complexes, and where higher-order
connections support the diffusion between patches such that
the transfer flux per unit time is correctly determined.

We have shown that there exist conditions where the pres-
ence of higher-order connections is a necessary condition for
the emergence of Turing patterns. In other words, higher-
order connections alone can be the trigger for the spontaneous
emergence of spatiotemporal pattern formation, which has
far-reaching implications for a variety of social, biological,
and technological systems. Moreover, we have performed ex-
tensive simulations with three paradigmatic dynamical models
that can be used to describe a reaction-diffusion process, and
apart from the fact that Turing patterns can sometimes spon-
taneously emerge only if higher-order connections are present
but not in the corresponding reduced “standard” network with
pairwise connections, we have shown also that the structure of
Turing patterns is strongly correlated with the average degree
of higher-order connections in simplicial complexes.

Taken together, we here make an important step forward in
the investigation of Turing patterns that arise from reaction-
diffusion systems in higher-order networks, although several
directions remain open for future research. In particular, it re-
mains of interest to consider simplicial complexes with higher
orders, as well as with distributions other than random, such as
exponential random simplicial complexes [47,48] and scale-
free simplicial complexes [49]. We hope that our results will
prove inspirational to that effect and motivate future research
of Turing patterns in higher-order networks.
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APPENDIX A: TURING INSTABILITY CONDITION

The underlying topology where reaction-diffusion pro-
cesses are defined plays a decisive role in the emergence of
Turing patterns [29]. We give a detailed derivation of the
Turing instability conditions in regard to the topology’s Lapla-
cian matrix. Let f (ui, vi ) = 0 and g(ui, vi ) = 0, we can get the
equilibrium point (ue, ve). Adding small perturbations to the
equilibrium point, we have

(ui, vi ) = (ue, ve) + (	ui,	vi ), (A1)

substituting Eq. (A1) into Eq. (5) and carrying Taylor expan-
sion of f (ui, vi ) and g(ui, vi ), we get

d	ui

dt
= fu	ui + fv	vi + ε

N∑
j=1

Li j	u j,

d	vi

dt
= gu	ui + gv	vi + σε

N∑
j=1

Li j	v j, (A2)

where fu and fv are the partial derivatives in regard to the
equilibrium point (ue, ve) of f (ui, vi ). Similarly, gu and gv are
the ones of g(ui, vi ). Then the perturbations are expanded as

	ui(t ) =
N∑

α=1

Cα
u eλαtφα

i , 	vi(t ) =
N∑

α=1

Cα
v eλαtφα

i , (A3)

where φα
i is the ith entry of the eigenvector φα . �α denotes

the eigenvalue of L which corresponds to φα . Therefore

N∑
j=1

Li jφ
α
j = �αφα

i , α = 1, . . . , N. (A4)

By substituting Eqs. (A3) and (A4), Eq. (A2) turns to a equa-
tion about the linearized growth factor λα[

λα − fu − ε�α fv
gu λα − gv − σε�α

][
Cα

u
Cα

v

]
= 0 (A5)

whose characteristic equation is

λ2
α − P(�α )λα + Q(�α ) = 0, (A6)

where

P(�α ) = fu + gv + ε(1 + σ )�α,

Q(�α ) = σε2�2
α + ε(gv + σ fu)�α + fugv − fvgu. (A7)

Equation (A6) has two solutions:

λα1 = P(�α ) +
√

P(�α )2 − 4Q(�α )

2
,

λα2 = P(�α ) −
√

P(�α )2 − 4Q(�α )

2
. (A8)

In line with the Turing theory, when there is no diffusion,
the perturbations must reduce to zero, which requires

P(0) = fu + gv < 0,

Q(0) = fugv − fvgu > 0, (A9)

and Eq. (A9) can be satisfied by adjusting model-specific
parameters.
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FIG. 8. The value distribution of critical eigenvectors corresponding to the unstable eigenvalues (the abscissa of the red points) in
Figs. 4(b) and 4(c). There are three and ten eigenvalues unstable in Figs. 4(b) and 4(c), respectively. Panels (a) and (b) plot the value distribution
of critical eigenvectors corresponding to the unstable eigenvalues in Figs. 4(b) and 4(c), respectively. It can be seen that only a subset of values
are nonzero in both panels (a) and (b), which can explain that Turing patterns only develop on a subset of nodes in Figs. 4(b) and 4(c).

Moreover, Turing instability requires Re(λα > 0) when
diffusion is taken into account. Note that P(�α ) = P(0) +
ε(1 + σ )�α < 0, because P(0) < 0 (as Turing instability re-
quires when there is no diffusion) and (1 + σ )�α < 0 (σ is a
positive parameter and the eigenvalue of the Laplacian matrix
is negative). Therefore only λα1 is possible to have positive
real part. To ensure Re(λα1 ) > 0, we demand that Q(�α ) < 0:

Q(�α ) = σε2�2
α + ε(gv + σ fu)�α + fugv − fvgu < 0.

(A10)

Solving the equation Q(�α ) = 0, we get the following solu-
tions:

�∗ = −(gv + fuσ ) +
√

(gv + σ fu)2 − 4σ ( fugv − fvgu)

2σε
,

�∗∗ = −(gv + fuσ ) −
√

(gv + σ fu)2 − 4σ ( fugv − fvgu)

2σε
.

(A11)
Given that σ and ε are parameters with positive values,

Q(�α ) is then a quadratic function of �α with openings
upwards. Therefore, when �α is in the range (�∗,�∗∗), the
condition Q(�α ) < 0 is satisfied. Hence, the topology will
meet the Turing instability condition if its Laplacian matrix
has eigenvalues located in the range (�∗,�∗∗).

APPENDIX B: TURING PATTERNS INDUCED
BY HIGHER-ORDER CONNECTIONS

Figure 8 shows the value distribution of eigenvectors that
correspond to the critical mode in Figs. 4(b) and 4(c), explain-
ing why only a subset of nodes deviate from the equilibrium
in the stationary Turing patterns.

Similar to the results in Fig. 4 for the GM model in the main
text, the phenomenon that Turing patterns can be induced
by higher-order connections is also found in the LG (Fig. 9)

and FHN (Fig. 10) models. Figure 11 shows the bifurcation
diagrams of the LG and FHN models, supporting the claim
in Figs. 9 and 10 that Turing patterns can be induced by
higher-order connections for the LG and FHN models.

APPENDIX C: MEAN-FIELD ANALYSIS OF TURING
PATTERNS ON SIMPLICIAL COMPLEXES

Following the theory proposed by Nakao and Mikhailov
[30], we establish the mean-field approximation for the
reaction-diffusion model on simplicial complexes. First, the
equation (5) can be rewritten as

dui

dt
= f (ui, vi ) + ε

(
h(u)

i − kiui
)
,

dvi

dt
= g(ui, vi ) + σε

(
h(v)

i − kivi
)
, (C1)

where h(u)
i = ∑N

j=1 Ai ju j and h(v)
i = ∑N

j=1 Ai jv j are the lo-
cal fields perceived by each node. These local fields can
be approximated as h(u)

i ≈ kiH (u) and h(v)
i ≈ kiH (v), where

H (u) = ∑N
j=1 w ju j and H (v) = ∑N

j=1 w jv j are global mean

fields. The weights w j = k j/(
∑N

l=1 kl ) account for the varying
contributions made by each node to the global mean field.

According to this approximation, we have the following
dynamics characterized by the global mean fields:

dui

dt
= f (ui, vi ) + εki(H

(u) − ui ),

dvi

dt
= g(ui, vi ) + σεki(H

(v) − vi ). (C2)

In the system characterized by (C2), the activator and in-
hibitor in each node only interact with the global mean fields
H (u) and H (v) instead of the the activator and inhibitor in other
nodes.
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FIG. 9. Turing patterns induced by three-body connections (2-simplices) for LG model. Panels (a), (b), and (c) respectively show the
dispersion relationship between the system growth factor λ and Laplacian eigenvalue � for α2 = 0, 1, and 2. The simplicial complex used
here is the same as the one used in Fig. 3. The 1-simplex strength α1 is fixed to 1. The dispersion curve is calculated through Turing instability
analysis. Turing patterns will arise only if Laplacian eigenvalues meet the condition that ∃�, λ(�) > 0. Panels (d), (e), and (f) then respectively
present the corresponding distributions of ui after numerical calculations for α2 = 0, 1, and 2. α2 = 0 implies that the simplicial complex returns
to a “standard” network. When α2 = 0, the Turing instability condition is not satisfied (a), resulting in a homogeneous distribution of ui (d).
Interestingly, when α2 > 0, such as α2 = 1, 2, the three-body connections are taken into account, the Turing instability condition is satisfied
as shown in panels (b) and (c). The dispersion points that meet the instability requirement are colored in red in panels (b) and (c). Panels (e)
and (f) then exhibit the corresponding distributions of ui as Turing patterns for α2 = 1, 2.

In Fig. 7 we first calculate the global mean fields H (u)

and H (v) according to the stationary Turing patterns (the sta-
ble heterogeneous distribution of ui) obtained by numerically
solving Eq. (5). We then can solve Eq. (C2) with specific
global mean fields H (u) and H (v).

APPENDIX D: DETAILED INFORMATION
FOR THE NONLINEAR REGRESSION FITTING

The detailed information for the nonlinear regression fit-
ting curves of results obtained by numerical simulations and
mean-field analysis in Fig. 7 is shown in Tables I and II.

FIG. 10. Turing patterns induced by three-body connections (2-simplices) for FHN model. Panels (a), (b), and (c) respectively show the
dispersion relationship between the system growth factor λ and Laplacian eigenvalue � for α2 = 0, 1, and 2. The simplicial complex used
here is the same as the one used in Fig. 3. The 1-simplex strength α1 is fixed to 1. The dispersion curve is calculated through Turing instability
analysis. Turing patterns will arise only if Laplacian eigenvalues meet the condition that ∃�, λ(�) > 0. Panels (d), (e), and (f) then respectively
present the corresponding distributions of ui after numerical calculations for α2 = 0, 1, and 2. α2 = 0 implies that the simplicial complex returns
to a “standard” network. When α2 = 0, the Turing instability condition is not satisfied (a), resulting in a homogeneous distribution of ui (d).
Interestingly, when α2 > 0, such as α2 = 1, 2, the three-body connections are taken into account, the Turing instability condition is satisfied
as shown in panels (b) and (c). The dispersion points that meet the instability requirement are colored in red in panels (b) and (c). Panels (e)
and (f) then exhibit the corresponding distributions of ui as Turing patterns for α2 = 1, 2.
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FIG. 11. Multistabilities of the LG (a) and FHN (b) models on simplicial complexes. The amplitude of the solutions under varying α2 in
either an upward or downward direction is plotted vs the 2-simplex strength α2. Starting to increase α2 from 0 with the initial condition (11),
the amplitude goes through a sudden jump from 0 at α2

∼= 0.1 (the LF model) and α2
∼= 0.8 (the FHN model). Further changing the value of α2,

the coexistence of multiple stable solutions and hysteresis can be observed. The changing direction of α2 is directed by arrows. The simplicial
complex used here is the same as the one used in Figs. 3 and 4.
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