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Meander pattern of spiral wave and the spatial distribution of its cycle length
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One of the most interesting dynamics of rotating spiral waves in an excitable medium is meandering. The tip
of a meandering spiral wave moves along a complex trajectory, which often takes the shape of an epitrochoid
or hypotrochoid with inward or outward petals. The cycle lengths (CLs) of a meandering spiral wave are not
constant; rather, they depend on the meandering dynamics. In this paper, we show that the CLs take two mean
values, outside T out and inside T in the meandering trajectory with a ratio of T in/T out = (n + 1)/n for the inward
and (n − 1)/n for the outward petals, where n is the number of petals in the tip trajectory. We illustrate this using
four models of excitable media and prove this result. These formulas are shown to be suitable for a meandering
spiral wave in an anatomical model of the heart. We also show that the effective periods of overdrive pacing of
meandering spiral waves depend on the electrode location relative to the tip trajectory. Overall, our approach can
be used to study the meandering pattern from the CL data; it should work for any type of dynamics that produces
complex tip trajectories of the spiral wave, for example, for a drift due to heterogeneity.

DOI: 10.1103/PhysRevE.107.014215

I. INTRODUCTION

Spiral waves are a special class of rotating self-sustaining
patterns in excitable media. They can be found in media
of different nature, from various chemical reactions [1] to
biological systems [2]. In the heart muscle, they underlie
dangerous cardiac rhythm disturbances and usually have to be
eliminated [3–5]. In the arrhythmia diagnostics and treatment,
spiral wave cycle length (CL) and dynamics play an important
role, as they can determine the type of arrhythmia [6,7].

There are several types of dynamics of spiral waves, the
most important ones being stable rotation, meandering, drift,
and breakup [8–10]. The tip of a stably rotating spiral wave
revolves around a circular core, and the rotation has a constant
period. A drift regime is the displacement of spiral waves in
space usually due to heterogeneity.

Here, we study a type of dynamics called meandering
[11,12], which is, in some sense, an intermediate type
of dynamics between stable rotation and drift. The tip
of a meandering spiral wave moves along a complex
trajectory, which is often bounded. Meandering can occur in
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homogeneous excitable media [13]. The meander dynamics
is subdivided into subtypes such as quasiperiodic and chaotic
meander based on the trajectory of a spiral wave tip [14]. The
motion of a spiral wave affects its period, for example, due
to the Doppler effect [15], so meandering also affects spiral
wave CLs. CL varies in a quasiperiodic meander regime, and
CL dispersion increases closer to the core [14]. However,
to the best of our knowledge, there are no detailed studies
on the spatial distribution of CL during meandering and its
relation to the meandering patterns. Such study is interesting
because the period of a spiral wave in the heart can be easily
measured; thus, the relation between CL and meandering type
can provide additional information on the dynamics of spiral
waves. The generic aim of our paper is to study the relation
between meandering patterns and spatial CL distribution for
different types of meandering dynamics.

We reproduced all main types of meandering in the Barkley
model [8,16], which is a classical model for meandering
studies. We also performed simulations in FitzHugh-Nagumo
models [17,18]. We showed that spatial period distribution
qualitatively differs for two main meandering types: trajec-
tories with inward or those with outward petals. For inward
petals, the CL inside the trajectory is longer; for outward
petals, CL is shorter inside than outside the trajectory. We
proved this result analytically and derived a simple formula
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that relates the number of petals in a trajectory and CL. This
equation allows us to predict type of meandering trajectory
from the measurements of a period. In addition, we studied
meandering patterns in a three-dimensional (3D) anatomical
model of the human heart and showed that the derived for-
mula correctly predicted the meandering dynamics from CL
measurement. Since an important way to remove spiral waves
in the heart is pacing it with a period faster than the spiral wave
period, we studied how CL distribution affects the process of
spiral removal in a 2D domain and a 3D heart model. We
tested how effective pacing periods are linked with meander-
ing and CLs and found that the location of the pacing electrode
plays an important role in the success of overdrive pacing.

II. METHODS

A. 2D simulations

Monodomain reaction-diffusion equations were used to
simulate waves in isotropic tissue. For meandering spiral
waves, we used a two-variable Barkley model of an excitable
medium:

∂u

∂t
= D�u + 1

ε
u(1 − u)

(
u − v + b

a

)
− Istim, (1)

∂v

∂t
= u − v, (2)

where u = u(�r, t ) is the cell potential at point �r = (x, y) at
time t , D is the diffusion coefficient, �u = uxx + uyy is the
Laplacian in plane (x, y), Istim(�r, t ) is the stimulation current,
and ε, a, b are the model parameters. A tip trajectory with
inward petals was obtained using Model 1, and a tip trajectory
with outward petals was obtained using Model 2 (all their
parameters are specified below in Table I).

For hypermeandering spiral waves, we utilized a two-
variable FitzHugh-Nagumo (FHN) Model 3 with the follow-
ing equations:

∂u

∂t
= D�u + 1

ε

(
u − u3

3
− v

)
− Istim, (3)

∂v

∂t
= ε(u + β − γ v), (4)

where ε, β, and γ are the model parameters.
The spiral wave tip was found as a solution �rtip of the

system [19]

u(�rtip, t ) = u∗, u(�rtip, t + �t ) = u∗, (5)

where u∗ and �t are model-specific parameters.
The sequential values of CL at a point A(x, y) form a se-

quence CLn. The CL at time t was computed as time between
adjacent solutions τ1 < t < τ2 of equation u(x, y, t ) = u∗ with
a condition ∂u/∂t > 0: CLn = τ2 − τ1. The average CL in
point A for a time segment [τi, τ j], denoted as 〈T A

sw〉, was
calculated as the mean value of the subsequence of CLn:

〈
T A

sw

〉 = τ j − τi

j − i
. (6)

Pacing was implemented using the stimulation current Ist

applied with a period Tstim using impulses with a duration
tstim from a moment τ0. This can be expressed using Iverson

TABLE I. Parameters of the 2D simulations with Models 1–4 (in
dimensionless model units).

Parameter Model 1 Model 2 Model 3 Model 4

Cell-level model parameters
a = 0.2661 a = 0.73 ε = 0.08 a = 0.28
b = −0.025 b = 0.0475 β = 1.25 b = −0.025
ε = 0.02 ε = 0.0125 γ = 0.5 ε = 0.02

Tissue and domain parameters
D 4 15 1 4
L 40 30 60 150

Numerical integration parameters
dr 0.125 0.25 0.2 0.125
dt 0.0005 0.001 0.008 0.0005

S1S2 stimulation parameters
tS2 4.5 3.86 32 9
wS2 0.55 0.3 0.5 0.3
ust 1 1 2 1
u0 0 0 −1.28 0
v0 0 0 −0.57 0

Tip and CL search parameters
�t 0.1 0.1 1 0.05
u∗ 0.5 0.5 0.5 0.5

Pacing parameters
Ist −5 −20 −10 –
tstim 0.1 0.1 1 –
rstim 2 2 1 –

brackets as

Istim(x, y, t ) = Ist[(x, y) ∈ 	stim][t � τ0]

×
[{

t − τ0

Tstim

}
� tstim

Tstim

]
, (7)

where 	stim is the pacing area, a circle with a radius of rstim,
and the curly brackets denote the fractional part.

The domain was a square L × L. The boundary condition
was zero flux of potential u. The spiral waves were created
using the S1S2 protocol; the area of the first stimulus (u =
ust, v = v0) was x < 10dr; the second stimulus (u = ust ) was
applied to area y < wS2L at time tS2. The initial condition
for other nodes was u = u0, v = v0. A numeric solution was
obtained using an explicit Euler method.

Model 4 is a Barkley model used for 2D and 3D computa-
tions. The 2D simulation parameters of Models 1–4 are listed
in Table I.

B. 3D simulations

A 3D heart model from [20] was used to examine our
2D findings in a more realistic case. We used a symmetric
model of the human heart left ventricle (LV). We neglected the
anisotropic nature of the myocardium and its mechanical de-
formations and used Barkley’s isotropic electrical model [see
Eqs. (1), (2)]. The shape of the 3D heart model is displayed
in Fig. 1. A special curvilinear coordinate system (γ ,ψ, ϕ)
is linked with the LV model. Coordinate γ changes from γ0

at the epicardium to γ1 at the endocardium. Coordinate ψ , an
analog of geographic latitude, is 0 at the base and ψ = π/2 at
the apex. Finally, ϕ is a longitude changing from 0 to 2π .
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FIG. 1. Left ventricle model. Section by plane y = 0. Axes in
mm. Red line, epicardium; blue line, endocardium; vertical black
line, apical segment with x = y = 0, ψ = π/2, ϕ undefined, h is the
apical thickness of the myocardial wall. Electrode 1 had ψ > 1.4; its
borders are shown as dashed black lines. Two horizontal black lines,
the base with z = 60 mm, ψ = 0.

The dynamics of a 3D spiral wave, also called a scroll
wave, are characterized by the dynamics of its filament. The
filament is an extension of the notion of the tip of a 2D spiral
wave. A 2D spiral wave has a point tip at each moment of time,
and a 3D scroll wave has a line of tip points, called a filament.

The scroll wave was created using the S1S2 protocol.
Stimulated zones are specified in the Cartesian coordinate sys-
tem in mm. First, nodes with coordinates x � 0, 0 � y � 5,
50 � z were excited. Thus, S1 was applied to a small area
at the LV base. Then, variable v at a control point (0,0,5)
was monitored; we performed the simulation until it exceeded
vup = 0.2 for the first time to ensure that the control point
was depolarized. Then, we simulated until v reduced below
vdown = 0.05 to ensure that the control point was repolarized.
At that moment, we applied the second stimulation S2 at
nodes with coordinates y � 0.

We scale Model 4 using data on the polymorphic ventricu-
lar tachycardia as an arrhythmia associated with spiral waves
in the human heart. Its typical period is 224–270 ms [21]. We
take the reference spiral wave period Tsw equal to 250 ms.
Mean Tsw in the Model 4 is about 3.6 (see Sec. III E). So the
model unit of time (MUT) T is 70 ms. The reference diffusion
coefficient is 0.15 mm2/ms [22], and its model dimensionless
value is taken equal 0.05 L2/T [23] so the model unit of length
(MUL) L is 14.4 mm. Based on that we provide dimensional
data for the 2D and 3D simulations in Model 4 (see Table II).

The LV had thickness of 12 mm at the base and apex, cavity
radius of 21 mm at the base, cavity depth of 48 mm, and shape
factor of 0.85 (see details in Ref. [20]). Our numerical method
of finding the Laplacian in the curvilinear coordinates and for
the nonuniform LV grid was described in Ref. [24].

The reaction-diffusion system was integrated using the
explicit Euler scheme. We chose the temporal step dt
and the spatial step dr so that the stability criterion [25]
dim D dt (dr)−2 � 1/2, where dim is the domain dimen-
sionality, was satisfied for Models 1–4. Thus the explicit
numerical method was stable.

TABLE II. Parameters of Model 4.

Parameter Value

Cell-level parameters
a 0.28
b −0.025
ε 0.02

Scaling parameters
Model Tsw 3.6 T
Reference Tsw 250 ms
MUT T 70 ms
MUL L 14.4 mm

Tissue and domain parameters
D 0.15 mm2/ms
L in 2D 240 mm

Numerical integration parameters
dr in 2D 0.5 mm
dr in 3D 1.6 mm
dt 0.035 ms

Pacing parameters
tstim 7 ms
Ist −5

Tip and CL search parameters
�t 10.5 ms
u∗ 0.5

C. Software

A high-performance cluster URAN (Krasovskii Institute of
Mathematics and Mechanics, Ekaterinburg, Russia) was used
for the computations. Software was written in C using OPENMP

and ICC.

III. RESULTS

A. CL distribution and tip trajectories

Two main types of quasiperiodic meandering dynamics
[14] are patterns where the tip of a spiral wave follows
an epitrochoid trajectory (inward petals) or a hypotrochoid
trajectory (outward petals) [26,27]. Let us consider them sep-
arately.

1. Inward petals

A spiral wave and its tip trajectory for the Model 1 are
shown in Fig. 2(a). The curve has n = 9 inward petals and is
nearly closed. The spiral wave rotates CW. We divided the
entire domain into three concentric circular subdomains, a
ring containing the flower trajectory, a disk located inside the
ring, and an outside located exterior to the ring [Fig. 2(b)].
Let us consider two points, A, at the disk, and B, at the
outside. Plots of transmembrane potential at these two points
are visualized in Fig. 2(c). The CLs at the outside (blue) point
are shorter than those at the inside point. The action potentials
(APs) at these points almost coincide near t = 49 and t =
84.5 (these moments of time are shown as two dashed vertical
lines). However, we observed ten blue and only nine red APs
over that period. The time interval between the dashed vertical
lines corresponds to the full rotation of the tip along the
flower. We call it the full period of the tip rotation, which is
approximately T = 35.5. The CLs at the blue and red points
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FIG. 2. Results for Model 1 with inward petals. (a) Spiral wave (state variable u), its tip (black dot), and tip trajectory (red curve). (b) Tip
trajectory, points A, B, four detectors (circle, square, dot, and plus), and the subdomains. The disk is inside the black dashed circle; the ring is
between the black and blue dashed circles; the outside is the remaining part of the domain. (c) Potential 100u for two points with coordinates
A(24, 20) (red, inside the curve) and B(7, 10) (blue, outside the curve). Abscissa axis, time in model units. Vertical lines mark ends of a
segment of time with 9 APs in point A and 10 APs in point B. The tip follows one full flower trajectory during that time segment. (d) Cycle
lengths at the detectors outside the flower [see (b)]. (e) Average CLs in the entire domain (axes show indices of the nodes, not model units). (f)
Tip trajectory with pacing (details in Sec. III D). (a), (b), (f) Axes in MULs.

are not constant and oscillate between 3.9 and 4.0 at point A
and between 3.06 and 4.0 at point B. The average CLs are
T in

A = 3.94 and T out
B = 3.55; they are in ratio 10:9 with an

accuracy of 0.13%.
The CLs in different points at the outside are shown in

Fig. 2(d). All CLs with a good accuracy belong to the same
oscillating curve with a period of 35.5, maximum of approxi-
mately 3.99–4.01, minimum of 3.05–3.09, and average value
of 3.55 regardless of the distance between the detector and the
flower center. This curve can be reasonably well approximated
by a sine function (shown by the brown line).

Figure 2(e) shows the spatial distribution of the average
CLs at all nodes of the domain. We clearly see large regions
where the CL equals T in

A = 3.94 (yellow) and T out
B = 3.55

(green) and longer periods in the ring (4–4.9, orange; 4.9–5.2,
red). The longer CLs emerge because most of the points in any
petal are temporarily inside the core while the tip follows the
petal [see Fig. 2(a)]; thus, the wavefront cannot reach them.

Overall, the average CLs inside T in and outside T out the tip
trajectory are in ratio

T in

T out
= n + 1

n
, (8)

where n is the number of petals.

2. Outward petals

The model with parameter set 2 has spiral wave and tip
trajectory displayed in Fig. 3(a). The curve has five outward
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FIG. 3. Results for Model 2 with outward petals. (a) Spiral wave (state variable u), its tip (black dot), and tip trajectory (red curve). (b) Tip
trajectory, points C, D, four detectors, and the subdomains. The disk is inside the black dashed circle; the ring is between the black and blue
dashed circles; and the outside is the remaining part of the domain. (c) Potential 100u for two points with coordinates C(10, 15) (red, outside
the curve) and D(15, 15) (blue, inside the curve). Abscissa axis, time in model units. Vertical lines mark ends of a segment of time with 4 APs
in point C and 5 APs in point D. The tip drew one full flower during that time segment. (d) Cycle lengths at the detectors outside the flower
[see (b)]. (e) Average CLs in the entire domain (axes show indices of the nodes, not model units). (a), (b) Axes in MULs.

petals and is nearly closed. The spiral wave rotates CW, and
the tip follows its trajectory CCW. As in the previous case,
three subdomains can be specified: the disk, inside the flower;
the ring, which contains the tip flower, and the outside, the
remaining part of the entire domain [see Fig. 3(b)]. Again, two
points are chosen: C at the outside and D at the disk. A plot of
potential in points C and D is visualized in Fig. 3(c). The CL is
shorter in disk point D than in outside point C. The full period
of the tip rotation along the flower is approximately T = 10.8.

The potential develops four cycles in C and five cycles in D
during the full period between the moments of time, shown as
two dashed vertical lines. The CLs oscillate between 2.6 and
2.8 in point C and between 2.1 and 2.2 in point D. The average
CLs are T in

D = 2.16 and T out
C = 2.70; they are in ratio 4:5.

The CLs in different points at the outside are shown in
Fig. 3(d). All CLs with a good accuracy belong to the same
oscillating curve with a period of 10.8, with a maximum of ap-
proximately 2.76–2.78, minimum of 2.61–2.63, and average
value of 2.695, regardless of the distance between the detector
and the flower center. The sine function (shown by brown line)
approximates these points quite well.

Figure 3(e) shows the spatial distribution of the average
CLs at all nodes of the domain. We clearly see large regions
where the CL equals T in

D = 2.16 (green) and T out
C = 2.70 (or-

ange) and longer periods at the ring (red). The CLs at the ring
are longer because the meandering spiral wavefront cannot
reach most of points in the ring when the tip is between two
adjacent petals [see Fig. 3(a)].
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Thus the ratio of average CLs inside T in and outside T out

in the case of outward petals can be represented as

T in

T out
= n − 1

n
, (9)

where n is the number of petals. Now, let us consider the
meandering from the viewpoint of geometric curve theory and
explain the observed relations of CLs given by Eqs. (8), (9).

B. Curve theory

1. Closed tip curves

Notation used in the following consideration. For two rays
r1,2 having the same origin and continuously rotating with
time t � 0, let us denote ∠(r1, r2) the lifted angle from ray r1

to ray r2, which is a continuous function, so that ∠(r1, r2) ∈
[0, 2π ) at t = 0. For a ray r(t ) that continuously changes with
time t , let us denote ∠r|ba the signed full rotation angle of r for
t ∈ [a, b] in the coordinate system moving parallel together
with the ray origin.

Now, let us consider a domain with an excitable medium.
The function u(x, y, t ) is a spiral-wave solution of the partial
differential equations system, so the APs can be counted at
any point of the domain using an appropriate potential level
u∗. In the entire domain, for any moment of time, the level line
u(x, y) = u∗ is a curve that consists of two parts, a wavefront,
or forefront, where the potential is growing, and a waveback,
or backfront, where it is falling. These two fronts meet at a
point, wave tip, which can be numerically calculated using
various algorithms, for example, by Fenton-Karma [19].

We will now focus on a meandering spiral wave with a
smooth closed tip trajectory γ (t ), t � 0. The curve has a full
period T, that is, γ (0) = γ (T). The tip trajectory divides the
plane into three parts, the disk, the ring, and the outside, as
defined in Sec. III A 1.

At any point G of the tip trajectory, one can draw a wave-
front, which is a curve that begins at point G (see Fig. 4).
Thus, two tangents can be created, a tangent ray w to the
tip trajectory γ toward the tip movement and a tangent ray
s to the wavefront. Let angle ψ = ∠(w, s). Traditionally, this
angle can be from zero to π/2 for a rigidly rotating spiral
wave according to the definition of core boundary points (see,
e.g., definitions of the core based on points Q and q in Fig. 3
of Ref. [28]). Meandering spirals have this angle, generally,
variable; however, the change is less than π during any period.
Our literature search revealed that the question on the value of
ψ has no clear answer. The angle ψ was drawn as zero in some
papers, for example, Ref. [29], and not zero in others [14,30].
We will require ψ (t ) be a continuous function and

ψ (0) = ψ (T). (10)

We recall that the CL of the spiral wave at a given point is the
time between two successive wavefront arrivals to this point.

For a point B at the disk or outside, let us denote NB

the number of APs at B—that is, the number of times the
wavefront passes through B—during the full period T of the
spiral wave. Without loss of generality, we can consider that
point B is on the wavefront at time t = 0. We will show that
N is a constant Nin at the entire disk and is another constant
Nout at the entire outside.

FIG. 4. Schematic of spiral wave forefront (blue solid curve),
backfront (blue dashed curve), and tip trajectory fragment (red solid
curve). G, a tip at an arbitrary time; B, a point at the disk or outside; s
(blue straight line), the ray tangent to the forefront; w (black straight
line), the ray tangent to the tip trajectory. The arrow shows the
direction of tip motion.

Winding number WB of a point B not lying on the curve
is the number of turns the vector

−→
BG(t ) makes for t ∈ [0, T],

where G = G(t ) is a point on the curve (Fig. 4).
WE = 0 for any point E at the exterior part of the plane

(i.e., the unbounded connectivity component of the com-
plement of the curve). Winding number is an integer, and
changing the curve orientation changes its sign. Let us con-
sider CCW rotation as positive and CW rotation as negative.

Turning number T of a smooth closed plane curve γ (t ) is
the signed number of turns that the tangent vector to the curve
makes for the full period. Strict mathematical definitions for
the winding and turning number can be found in Ref. [31] for
example.

Statement. For an arbitrary point B at the disk or outside,
and for the full period,

NB = |WB − T |. (11)

Proof. Figure 4 displays a sketch of the spiral wavefront,
tip trajectory, rays, and angles we use in the proof. We refer to
angles α = ∠(GB, s), β = ∠(GB,w), and ψ = ∠(w, s).

The wavefront rotates in one direction only. Thus, after
a transition through point B, the wavefront may go through
it again only if the wavefront makes a full (or almost full)
rotation. As the entire picture repeats after the full period, the
absolute value of the change of α for t ∈ [0, T] is the number
of times the wavefront goes through B times 2π :

|α(T) − α(0)| = 2πNB.

We can write

α(t ) = ∠(GB, s) = ∠(GB,w) + ∠(w, s) + 2πk(t )

= β(t ) + ψ (t ) + 2πk(t )

for an integer function k(t ). Functions α(t ), β(t ), and ψ (t ) are
continuous; thus, k is a continuous integer function and hence
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TABLE III. Winding and turning numbers for flowerlike curves.

SW Tip curve
Petals rotation rotation Wout Win T Nout Nin

inward CW CW 0 −1 −n − 1 n + 1 n
inward CCW CCW 0 +1 n + 1 n + 1 n
outward CW CCW 0 +1 −n + 1 n − 1 n
outward CCW CW 0 −1 n − 1 n − 1 n

a constant. The change in ψ (t ) during T is zero (10). Thus,
the change in α during the full period T equals the change in
β during T:

α(T) − α(0) = β(T) − β(0).

Note that the latter equals ∠GB|T0 − ∠w|T0. The full rotation
angle of GB is the winding number times 2π , and that of w is
the turning number times 2π :

α(T) − α(0) = 2π (WB − T ).

Finally,

NB = |WB − T |.
�

Table III summarizes the winding and turning numbers for
the flowers with n outward and inward petals. The formal rules
for computing the numbers for arbitrary curves can be found,
for example, in Refs. [31,32]. As T = NB〈T B

sw〉 for any point B
at the disk or outside, the fraction T in/T out equals Nout/Nin,
which corroborates our Eqs. (8) and (9).

2. Nonclosed tip curves

If the tip curve is not closed and there is no distinct petal
number, we can still define areas of outside, ring, and disk and
generalize our results.

Outside is the exterior part of the plane (i.e., the unbounded
connectivity component of the complement of the curve).

Center is the mean of the tips.
Disk is the maximal circle of the center that has no inte-

rior intersection with the tip curve, except maybe an initial
segment of the curve.

Finally, ring is the complement of the outside and disk
union.

For the case of nonclosed curves, Eq. (11) can be rewritten
with winding and turning angles instead of numbers:

NB(t ) ≈
⌊ |∠WB(t ) − ∠T (t )|

2π

⌋
, (12)

where NB is the integer number of action potentials in the
point for time from 0 to t , ∠WB is the winding angle following
∠WB(0) = 0, ∠T is the turning angle following ∠T (0) = 0,
and 	. . . 
 denotes the floor function. This formula is valid
only approximately because the length GB changes with every
action potential.

A nonclosed tip curve shows no distinct number of petals
n, so the use of the results from Table III requires a new, more
general definition for n. First, n is the number of rotations the

FIG. 5. Schematic of discrete full angle φ. C, arbitrary disk
point; blue dashed line, arbitrary axis; red curve, tip trajectory; red
circles, discrete tip positions (for clarity, every fifth tip is drawn);
black arrow displays the direction of tip motion near the (i − 1)th
tip. Green arrow and line show the lifted angle φi−1 for the (i − 1)th
tip, and gray arrow and line show φi for the ith tip. Note that ki = 1
here to neutralize the discontinuity of atan2.

spiral undergoes per turnover of the tip around the disk:

n = 1

ωT in
, (13)

where ω is the angular speed of the tip rotation around the
disk; note that T in is the average CL at the disk. Second,
consider a lifted angle φ of tip position relative to an arbitrary
ray that begins in a point at the disk (Fig. 5). Then, the tip
angular speed ω (in turnovers per time unit) can be estimated
using the limit of lifted angle φ per time:

ω = lim
t→∞

φ(t )

2πt
= lim

n→∞
φn

2πtn
, (14)

where discrete angles φn are computed for times tn and can be
found using a recurrent formula

φi = φi−1 + �φi, (15)

�φi = atan2(yi − yc, xi − xc)

− atan2(yi−1 − yc, xi−1 − xc) + 2πki, (16)

where (xc, yc) are the coordinates of the disk point, (xi, yi ) are
the coordinates of the ith tip, and the integer ki is chosen such
that |�φi| < π .

If a nonclosed trajectory is approximately closed after p
tip rotations around the flower center and q petals, which take
time t , we can estimate the angular rotation speed ω = p/t
and average CL at the disk T in = t/q, so n = q/p. Computing
the winding and turning numbers for all four configurations,
as shown in Table III, we find T in/T out = Nout/Nin = (q +
p)/q = (n + 1)/n for inward petals and |q − p|/q = (n −
1)/n for outward petals. Thus, Eqs. (8) and (9) can be still
applicable for nonclosed tip curves. In the following sections,
we will test the accuracy of those equations.
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FIG. 6. Results for a hypermeandering spiral wave, FHN model
3. (a) Tip curve for 180 T. (b) Tip points (not connected) for 104 T.
The disk, ring, and outside are clearly observable. (c) Tip coordinates
x, y vs. time. Axes in all plots in model units.

C. Hypermeander

For this regime, we use the FHN model 3 and obtain a tip
trajectory shown in Figs. 6(a), 6(b). Winfree proposed [10]
to define hypermeander as spiral tip dynamics in which “tip
paths could not be described in terms of two periods;” that is,
the coordinates as functions of time are not just sums of two
sinusoids and a linear function. We validate if such a property

is fulfilled in the considered case [see Fig. 6(c) for the tip
coordinate plots].

The CLs are measured in two points, E = (27, 36) inside
the curve and F = (10, 10) outside the curve.

Cycle lengths

Point min max mean Tmax

E 24.1 25.7 24.9 32.0
F 29.3 35.5 32.4 32.6

Model 3 shows ω = 9.4×10−3 turnovers per MUT, T in =
24.9 and thus n = 4.3 petals per tip turnover around point E .
Furthermore, as the petals are outward, the CL ratio has to be
[see (9)]

n − 1

n
= 3.3

4.3
= 0.767,

which is close to

T in

T out
= 24.9

32.4
= 0.769

with an accuracy of 0.15%.

D. Overdrive pacing

Previously, we performed extensive studies on the possibil-
ity to supersede a spiral wave by applying external stimulation
with a high frequency (overdrive pacing) [23,33–39]. These
studies indicated that the maximum effective period of over-
drive pacing Tmax is less than Tsw for stably rotating spirals.
However, CLs of meandering spirals vary in space and time,
and we cannot refer to Tsw as a single distinct value. CL can
be characterized by its minimal, maximal, and average 〈Tsw〉
values. To study the relation between these values and effec-
tive pacing periods, we simulated spiral waves and overdrive
pacing using electrodes located at points A, B for inward-petal
meandering (see Fig. 2) and points C, D for outward-petal
meandering (see Fig. 3). We paced for 1000 MUT, which is
approximately 300–400 rotation cycles. The computed values
of Tmax are shown in Table IV.

We expect that Tmax ≈ 〈Tsw〉 generally. However, at point
A, T A

max is substantially less than 〈T A
sw〉. This is because pacing

with the period close to 〈T A
sw〉 breaks the closed curve of the

tip trajectory, so that the pacing electrode is not inside the
curve anymore. Thus, the electrode has to be paced faster.
An example of the tip trajectory during ineffective pacing
with a period of 3.7 is shown in Fig. 2(f). The electrode is

TABLE IV. Cycle lengths and maximal pacing periods.

Cycle lengths Pacing

Petals Point in/out mean period
Point in/out the tip curve min max 〈Tsw〉 Tmax

A inward inside 3.9 4.0 3.94 3.6775
B inward outside 3.06 4.0 3.55 3.544
C outward outside 2.6 2.8 2.70 2.699
D outward inside 2.1 2.2 2.16 –
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FIG. 7. Simulation results with Model 4 in the LV model and in two dimensions. (a) The LV model, epicardium (semitransparent colored
surface, the color denotes z coordinate), endocardium (meshed surface, opaque in the left panel, semitransparent in the right panel), tip
trajectory on the epicardium (for time 700–7000 ms, black curve), electrode 1 border on the epicardium (red curve), and electrode 2 border
on the epicardium (yellow curve). Side and up view (left panel); bottom view (right panel). (b) Scroll wave shown on the model surface, up
view. X axis (red); Y axis (yellow); color denotes potential u. The circular wave is emerged by electrode 1. Pacing period of 189 ms. (c) Tip
trajectory in two dimensions. Axes in mm.

shown as a black circle and is located inside the flower, at the
disk. The first part of the curve is red (thin line; time from
4.6, when the tip appeared first, to 20.6, when the pacing
changed the tip dynamics); it is a fragment of the typical
nine-petal flower curve. The second part of the curve is blue
(dashed line; time from 20.6 to 30.1, when the tip repelled
from the border); it is caused by the pacing. The third part
is black (time 30.1–39.6); it is close to a shifted nine-petal
flower. Note that the electrode is not at the disk anymore
but at the new flower’s outside, where the average CL of the
spiral wave is shorter. The theory of overdrive pacing works
perfectly for point B, where T B

max ≈ 〈T B
sw〉. The same is true for

point C.
Finally, point D is located inside the outward-petal curve.

In this area, CLs are especially short, and the electrode cannot
assimilate pacing faster than that at which the spiral wave
excites it. Thus, no effective pacing periods are found for
stimulation at point D.

E. Simulations in the cardiac LV model

We use Model 4 for 3D simulations (Fig. 7). As a prelimi-
nary step, we study its 2D properties in the spiral-wave regime
first. The 2D spiral wave shows a typical meandering pattern
with tip trajectory of n2 = 34 inward petals [see Fig. 7(c)].
Its CLs oscillate between 207 ms and 291 ms outside the tip
curve (with an average of 3.6, or T out

2D = 249 ms) and between
252 ms and 267 ms inside it (with an average of T in

2D = 260
ms) (see Fig. 8, left panel). Equation (8) provides the average
CLs (T in

2D/T out
2D = (n2 + 1)/n2) with an accuracy of 1.3%.

The dynamics of the 3D scroll wave without pacing include
two phases. First, the wave core located between the apex and
the base and rotated approximately three times about the LV
vertical axis. The path has special coordinate ψ ≈ 1 [the first-
phase epicardial tip trajectory for time 700–7000 ms is shown
in Fig. 7(a) as a black curve]. During the first drift phase, the
spiral makes approximately n3 = 26 rotations about its core
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FIG. 8. A schematic comparison of CLs and pacing periods, ms,
for Model 4. CLs for the 2D spiral wave (empty bars on the left), for
the 3D scroll wave in the LV model (hatched bars in the middle), and
pacing periods for the 3D LV scroll wave (filled bars on the right).
Red, a node inside the tip curve and electrode 1 [red in Fig. 7(a)],
which is also located inside the curve. Yellow, a node outside the tip
curve and electrode 2 [yellow in Fig. 7(a)] also located outside the
curve.

per rotation about the LV axis. Then, the core drifts toward the
base, the rotation about the LV axis slows down, and finally,
the core stays near the base. CLs oscillate in three dimensions,
as in the 2D case, but minimal and maximal 3D CLs differ
from their 2D values (compare left and middle bars in Fig. 8).

Equation (8) can also be used to estimate the number n3 of
3D petals based on the average CLs:

n ≈
(

T in

T out
− 1

)−1

,

so the estimated number of petals is n3 ≈ 31. Thus, our ap-
proach estimates the number of petals (31 vs. 26) reasonably
well.

We measured the minimal and maximal effective pacing
periods from two electrodes. Electrode 1 is located at the apex,
and electrode 2 has coordinate ψ ≈ 0.6 between the core
drift trajectory and the base [Fig. 7(b)]. Pacing from apical
electrode 1 is effective if its period is between 188 ms and
242 ms (Fig. 8, see the red bar in the right panel), and pacing
from electrode 2 is effective if its period is between 205 ms
and 232 ms (the yellow bar in the right panel).

The range of 2D spiral wave CLs is wider at the point out-
side the tip curve than inside it, and the average CLs are quite
close, 249 ms vs. 260 ms. We expect the maximal effective
pacing periods to be in the same relation, T out

max < T in
max. This

was actually the case because we obtained T out
max = 232 ms <

T in
max = 242 ms. The average 3D CLs are in relation (8) with

an accuracy of 0.6%.
The mean 3D CLs are 248 ms inside the tip curve and

240 ms outside it; the difference is 8 ms, which is about 3%.
In practice, a flowerlike scroll wave tip trajectory with petals
toward the apex means that the electrode should be placed at
the apex.

IV. DISCUSSION AND CONCLUSIONS

In this study, we perform a comprehensive analysis of CL
distribution in case of meandering spiral waves. The distribu-
tion has two main spatial areas: outside the meandering region
and inside it. The average CLs in these regions depend on the
type of the meandering pattern (outward or inward).

Winfree mentioned that excitation comes inside a flower’s
center three times when the spiral makes two rotations if the
tip trajectory is a triangular flower [10]. The interval between
the reexcitations inside the flower is proposed to be T in =
(1 − φ/2π )Tsw where φ is the angle between the successive
vertices of the meander flower [10].

Barkley considered meandering spirals in the laboratory
frame (stationary coordinates) and rotating frame [13,40]. The
rotational velocity of the rotating frame is ω1, and the spiral
wave frequency as seen in the rotating frame is ω2. The fre-
quency ratio ω2/ω1 is 5/4 for “a closed five-lobed tip path”
[40]. Spiral waves in heterogeneous media can show different
periods inside and outside the area of increased action poten-
tial duration (APD) [41].

Here, we generalize these results and show analytically that
the average CLs in the disk and outside areas follow Eqs. (8)
and (9). These equations can also be used to determine the
type of meandering pattern just from the measurement of
average CL of excitation. A similar approach works in 3D
anatomical models of the heart.

Use of dimensionless model units when describing di-
mensional objects may be unusual or misleading. However,
obtaining dimensional scaling for generic two-variable mod-
els is nontrivial, and various research groups use different
approaches. Time can be naturally scaled based on, for ex-
ample, the APD, which can work well for some models.
However, the Barkley model and FHN model were not spe-
cially designed for the cardiac tissue, in which the APD and
refractory period are similar. In contrast, the APDs in these
models are substantially shorter than their refractory periods.
The reason is that the small parameter ε, which determines the
model dynamics, is constant in these models. However, the
refractory period (not the excited state duration) is the main
determinant of the spiral wave period. This problem can be
solved by making ε dependent on the transmembrane voltage.
An example is the two-variable Aliev-Panfilov model [42]
where the APD is close to the refractory period. However,
we decided to use the Barkley and FHN models as they are
classical models to study various meandering patterns.

This paper is focused on spiral wave dynamics so the most
natural temporal scaling seems to be based not on the APD
but on the spiral wave period. We scale the 3D LV model
using data on the polymorphic ventricular tachycardia as it is
widely believed that this arrhythmia is associated with spiral
waves in the human heart. We also provide information on
the dimensionless version of Model 4, which is used in 2D
simulations.

We address the problem of removal of meandering spiral
waves using overdrive pacing and search for possible rea-
sons of its failure. Our earlier 2D simulations showed that
the interval of effective pacing periods depends essentially
on the model; it is usually wider in Aliev-Panfilov model
[37,38] than in the ionic Luo-Rudy I (LR-I) model or ten
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Tusscher-Panfilov 2006 model [33,36]. Too fast pacing can
lead to dynamical instabilities and breakup [35]. At the same
time, too slow pacing can be effective in 2D media but inef-
fective in a 3D slab if the scroll wave filament is unstable [39].

Our results can explain why overdrive pacing can lose its
tip-shifting effect after several stimuli. That could happen
if the tip trajectory has petals toward the pacing electrode.
For example, a scroll wave can meander in the cardiac LV
while revolving about the ventricle long axis and the apical
electrode.

Another source of CL change in spiral waves is local het-
erogeneities. It is well-known that a local heterogeneity of a
large enough size can anchor a spiral wave permanently. In
addition, a spiral wave can be trapped temporarily [43] if the
heterogeneity size is between certain limits. A possible direc-
tion of future research can be overdrive pacing of meandering
spiral waves in heterogeneous media.

Hypermeander is a meander subtype that is more complex
than a two-period tip motion. It is observed in several mod-

els, such as the Belousov-Zhabotinsky (BZ) medium model,
Oregonator, Beeler-Reuter, and Noble [10] models. The first
numerical demonstration of Winfree’s hypermeander in a BZ
model was in 1979 [44]. Our earlier simulations in the LR-I
model involved hypermeander patterns [36], but the tip trajec-
tory had no inner area. This paper shows that the methodology
of Eqs. (8) and (9) works for the hypermeander case. The LR-I
model can show a hypermeander with a clear hole inside the
tip curve [14,45–47], so it would be interesting to apply the
theory for some of the cited models.
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