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Using a generalized nonlinear Schrödinger equation, we investigate the transformation of a fundamental rogue
wave solution to a collection of solitons. Taking the third-order dispersion, self-steepening, and Raman-induced
self-frequency shift as the generalizing effects, we systematically observe how a fundamental rogue wave has
an impact on its surrounding continuous wave background and reshapes its own characteristics while a group
of solitons are created. Applying a local inverse scattering technique based on the periodization of an isolated
structure, we show that the third-order dispersion and Raman-induced self-frequency shift generates a group
of solitons in the neighborhood where the rogue wave solution emerges. Using a volume interpretation, we
show that the self-steepening effect stretches the rogue wave solution by reducing its volume. Also, we find
that with the Raman-induced self-frequency shift, a decelerating rogue wave generates a red-shifted Raman
radiation while the rogue wave itself turns into a slow-moving soliton. We show that when third-order dispersion,
self-steepening, and Raman-induced self-frequency shift act together on the rogue wave solution, each of these
effects favor the rogue wave to generate a group of solitons near where it first emerges while the rogue wave
itself also becomes one of these solitons.
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I. INTRODUCTION

After the discovery of a rogue wave solution in a nonlinear
Schrödinger equation (NLSE) by D. H. Peregrine in 1984,
there was a surge of interest because of its ability to explain
the formation of a sudden giant oceanic wave, which is often
called a rogue wave or a monster of the deep [1]. While at
the beginning, most of the investigations were focused on
applying the solution to oceanic rogue waves [2–4], the idea
has gradually expanded to other fields such as nonlinear optics
[5], plasma physics [6], atmospheric science [7], superflu-
ids [8], Bose-Einstein condensates [9], capillary waves [10],
acoustic waves [11,12], electromagnetic waves [13], matter
waves [14], and economics [15].

Among many systems where the concept of rogue wave
formation is materialized, hydrodynamics and optics are the
two areas where most new discoveries are made. This is
because both water and optical fiber possess dispersive and
nonlinear properties that can be modeled by the NLSE. Note
that two nonequivalent definitions of rogue waves are com-
monly used in the literature. In the first definition, the rogue
wave solution is derived from a periodic breather solution of
the NLSE [16]. When the period becomes infinite, the single
peak rogue wave solution emerges [17]. Most of the salient
features of this solution can be observed in rogue waves in
various chaotic systems [18]. Such definition is not equivalent
to the statistical description of rogue waves which is widely
used in the historical oceanographic case alone [19]. For the
sake of brevity, rogue waves in the rest of the article refer to
rogue wave solutions.

The presence of rogue waves in optics and hydrodynamics
has been confirmed experimentally [5,20,21]. Thus, rogue

wave observations can now be made in a water-wave tank or
on an optical table. In particular, due to the wide availability
of various optical components, the research on optical rogue
waves became popular since its discovery 14 years ago [20].
A comprehensive overview of the recent progress in optical
rogue wave research can be found in Refs. [17,22,23].

The basic form of a NLSE has limitations when modeling
ultrashort pulse propagation, as it can trigger higher-order
linear and nonlinear optical effects [24,25]. Among them,
the third-order dispersion (TOD), self-steepening (SS), and
Raman-induced self-frequency shift (RIFS) are the most dom-
inant mechanisms that can directly affect the pulse. The
inclusion of these terms in the NLSE destroys its integrability,
and hence a majority of theoretical studies of their effect
on optical rogue waves so far have been carried out either
numerically or by taking only one or two effects at a time.
The result is an incomplete picture of the rogue wave dynam-
ics under these higher-order effects. Moreover, many studies
focus only on how these effects impact the central structure of
the rogue wave solutions or whether the solutions can survive
the perturbations [26–29], and little effort has been made to
understand their impact on the neighboring continuous wave
background. The modulation instability (MI) which generates
rogue wavelike structures creates a variety of other substruc-
tures originating from this continuous wave background. This
is apparent in a MI-based supercontinuum generation, where
a long pulse undergoes MI, and the end product is a shower of
hundreds of fundamental solitons [30,31]. How these soliton
bunches are formed in the midst of MI has not yet been clearly
described.

In this article, we conduct a comprehensive study on the
temporal and spectral properties of an optical rogue wave in
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the generalized nonlinear Schrödinger equation (GNLSE) that
includes TOD, SS, and RIFS effects. By first taking individual
effects separately, we study how each one impacts the rogue
wave solution in the temporal and spectral domains at the time
of the rogue wave appearance. We also present what changes
these three effects produce on the surrounding waves after the
emergence of the rogue wave and the fate of the rogue wave af-
ter it evolves for a long time. Finally, we apply the three effects
simultaneously and observe the combined evolution char-
acteristics. Employing numerical simulations complimented
with a local-inverse scattering transformation technique (IST)
[32] based on the periodization of isolated structures from the
chaotic wave field, we find that a fundamental rogue wave
triggers a collection of solitons from its emerging point while
the rogue wave itself also transforms into a soliton under the
influence of TOD, SS, and RIFS effects.

A. Model, solution, and techniques

The GNLSE in its normalized form is [24]

i
∂ψ

∂z
− β2

2

∂2ψ

∂t2
+ γ ψ |ψ |2

= iε3
∂3ψ

∂t3
− is

∂

∂t
(ψ |ψ |2) + τRψ

∂|ψ |2
∂t

, (1)

where β2, γ , ε3, s, and τR are the normalized coefficients of the
group-velocity dispersion, optical Kerr effect, TOD, SS, and
RIFS, respectively. The explicit expressions of the coefficients
in Eq. (1) are

ε3 = β3

6|β2| t0
, s = 1

ω0 t0
, τR = Tr

t0
,

where ω0 is the carrier angular frequency, t0 is the pulse
duration, β3 the TOD parameter, and Tr is the Raman time
constant [33]. The TOD, SS, and RIFS effects are inversely
proportional to the pulse duration t0, i.e., their contributions
can be negligible when t0 is large, or significant when it is
small. Setting ε3 = s = τR = 0, β2 = −1, and γ = 1, Eq. (1)
becomes NLSE, which can be solved analytically using the
standard-IST [34]. Note that the standard-IST can be used to
construct entire solutions for all z and t , whereas local-IST
can be employed to determine the IST spectrum of an isolated
localized structure, which only requires the t-dependent part
of the NLSE Lax-pair [32]. In this article, we apply the local-
IST procedure for all observations.

We assume that TOD, SS, and RIFS are the perturbations
to the NLSE. We take small values of these effects and study
their impact on the rogue wave dynamics. To find numerical
solutions in the perturbed system, we pick an initial condition
from the exact analytical first-order rogue wave solution of
NLSE, which is given as

ψ (z, t ) =
[

1 − G + iH (z − z1)

D

]
ei (z−z1 ). (2)

The solution can be derived by applying the Darboux trans-
formation technique using the plane wave ψ = exp(iz) as an
initial seed solution where G = 4, H = 8, and D = 1 + 4t2 +
4(z − z1)2 [35]. The initial condition in our study should start
practically from a minuscule amplitude that works as an in-
finitesimally small modulation on the background. Therefore,

FIG. 1. (a) Temporal amplitude evolution of the emergence of a
first-order rogue wave at z = 30 with ε3 = −0.03 (b) Corresponding
spectral intensity evolution. It shows the emission of dispersive wave
shown by the white arrow as observed in Ref. [39]. Note that in
the analytic solution, the rogue wave appears at z = 0 where as in
simulation it is at z = 30.

we use the solution well before it emerges into a full-height
rogue wave; i.e., we set z1 = 30. These effects exponentially
amplify the small modulation which eventually appears as a
rogue wave solution. The details of the numerical techniques
applied to solve the perturbed NLSE-type equation are pro-
vided in Ref. [36].

In a chaotic wave field, various types of wave coexist
together such as plane waves, solitons, and breathers. The
local-IST technique is a useful mean to classify a random
wave field into these types. We use it to identify the types
of waves formed on top of the background wave when NLSE
is perturbed. This involves finding the eigenvalues of a given
potential as a particular wave form, which provides a spec-
tral portraits of soliton-type solutions. The local-IST spectral
problem is generally solved in the framework of finite-gap
theory [32]. Depending on a given spectral portrait, the genus,
g, identifies what type of solution the spectrum belongs to.
g is measured as J − 1, where J is the number of spectral
bands in the spectrum. The rogue-wave-type solutions have
g = 2 as they have three spectral bands. The plane waves have
g = 0, while the soliton solutions have g = 1. The details of
the use of local-IST techniques to classify various localized
wave forms are discussed in Refs. [32,37,38]. Note that to
resolve the spectral identity and to determine the genus of
localized structures, we follow the framework employed in
Ref. [38] (e.g., see Figs. 2 and 7).

II. EFFECT OF THIRD-ORDER DISPERSION

Taking the effect of TOD only, the generalized NLSE takes
the form

i
∂ψ

∂z
+ 1

2

∂2ψ

∂t3
+ ψ |ψ |2 − iε3

∂3ψ

∂t3
= 0. (3)

No analytic rogue wave solutions exist for the NLSE with
the TOD term. Numerical descriptions of the rogue wave solu-
tions in wave turbulence have been presented in Refs. [40,41].
Similarly, the dispersive wave emission from a rogue wave
as a result of TOD, shown in Fig. 1 indicated by the white
arrow, has been demonstrated in Ref. [39]. The rogue wave
emerges at around z = 30 in Fig. 1 with a drift velocity while
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FIG. 2. Top panel: Temporal amplitude evolution of a rogue
wave under the influence of TOD. The rogue wave appears at z = 30,
and a skewed background wave dynamics is visible with a combina-
tion of different types of wave entities. Midpanel: The wave envelop
is an instance extracted at z = 40 after the emergence of the rogue
wave. Bottom panel: Local-IST spectra of various types of wave
profiles.

radiating a phase-matched dispersive wave following the re-
lation ωDW = 3/β3. A similar type of radiation also occurs
when higher-order soliton is perturbed by TOD [42].

TOD has a significant influence on the surrounding wave
environment as well as reshaping the rogue wave while it
evolves for a long time. Our earlier study [36] indicated that
TOD transforms a rogue wave eventually to a collection of
solitons. It is the lateral evolution of the rogue wave after
its development that gives rise to the soliton-type waves. For
instance, as shown in Fig. 2 (top panel), the background waves
are creating a host of various other types of waves beyond the
point of the rogue wave emergence at z = 30 as a result of
TOD.

To identify the types of waves generated, we use the local-
IST technique for spectral analyses. We take an instances
of the solution at z = 40 after the emergence of the rogue
wave in Fig. 2 and choose six localized formations from the
profile presented in the midpanel. There are two types of
waves formed, breather and soliton-types, which are grouped
by green and red shaded areas. As indicated in the insets (bot-
tom panel), the entire transverse profile reveals IST spectra
of solitons with the appearance of breathers and new rogue
waves. Note that the rogue wave is also a class of breather-
type solution. The breather or g = 2-type solution arises near
the edges of the field showing three distinct IST-spectral bands
in insets i, ii, and vi. Soliton-type structures arise in the middle
of the profile, where they are ejected from near the emerging
point of the rogue wave at z = 30.

To be exact, the local-IST spectra in insets iii, iv, and
v show three spectral bands. However, the small-amplitude
bands crossing the real line arise due to the background per-
turbation, which are not as extended as in insets i, ii, and vi.
Thus, the local IST-spectra in iii, iv, and v are of two complex

conjugate bands making them approximately g = 1-type soli-
ton [38]. This shows that TOD has a direct influence on the
rogue wave, transforming it toward solitons.

III. EFFECT OF SELF-STEEPENING

To observe the change arising from the SS term on a rogue
wave, we consider the equation

i
∂ψ

∂z
− β2

2

∂2ψ

∂t2
+ γ ψ |ψ |2 + is

∂

∂t
(ψ |ψ |2) = 0. (4)

We note that analytic rogue wave solutions of the derivative
NLSE, which is similar to Eq. (4), have been derived and dis-
cussed in several previous works [43–45]. These solutions can
be converted to the rogue wave solutions of Eq. (4) through a
gauge transformation [43]. However, this makes it difficult to
observe the solutions in the limit of s → 0, as the coefficient s
appears in the solution with an inverse relation, making them
indeterminate at a small s [43,46].

We look for a solution that can be studied without this
restriction. We reformulate the rogue wave solution of the
modified NLSE presented in Refs. [47,48] into a simpler form,
revealing its clear connection with the NLSE rogue wave
solutions. This is given as

ψs(z, t ) =
(

1 − G + iHz + 8isτ

Ds

)
ei[z(1+ 1

2 s2 )−ts+	], (5)

where τ = t − zs, κ = 1 + s2, and

Ds = D + 4is(2τ − t ) + 4sτ (sτ − 2z),

	 = 2 tan−1

[
4s(zs − τ )

1 + 4κ (z2 + τ 2)

]
.

Here, β2 = −1 and γ = 1, while s can be an arbitrary value.
Now s arises in a way that the solution is not indeterminate as
s → 0 but, rather, it directly reduces to the fundamental rogue
wave solution in Eq. (2). Equation (5) tells exactly how the
SS term modifies the fundamental rogue wave solution. The
denominator Ds is a complex polynomial which is real for a
fundamental rogue wave solution. This solution profile can
now be translated to any point on the z-t plane following the
relations t = t1 − ts and z = z1 − zs.

The broken symmetry in the solution is captured in the
parameter s. The seed modulation acquires a velocity in the
transverse direction at the initial stage of the rogue wave
development. It gives rise to a new term τ = t − zs, where s
introduces the velocity as shown in Fig. 3. With s = 0, τ = t ,
and eliminating the velocity component, Eq. (5) directly re-
duces to the fundamental rogue wave solution of the NLSE.

The effect of s on the rogue wave can be best described by
the volume of the rogue wave. The volume is given by [49,50]

V = 1

8π

∫ ∞

−∞

∫ ∞

−∞
Is(z, t )2 dt dz, (6)

where the intensity solution, Is(z, t ) = (|ψs|2 − 1), in the in-
tegral can be given as

Is(z, t ) = 8[1 − 4t2 + 8ts(z + sτ ) + 4(z − sτ )(z + 3sτ )]

DgD∗
g

,
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FIG. 3. (a) Amplitude and (b) phase profiles of the rogue wave
from Eq. (5), with s = 0.2. It has a maximum amplitude of 3 with a
distorted phase shift of π across the peak.

where Dg = 1 + 4t2 + 4its − 8isτ + 4(z − sτ )2, and D∗
g is its

complex conjugate. From this, we obtain the volume V and
the rate of volume change with respect to s, which are

V = 1

1 + s2
,

dV

ds
= − 2s

(1 + s2)2
. (7)

We subtract the background amplitude 1 in the integral to
avoid having infinite energy from the intensity solution. It is
clear that the volume of a rogue wave under the influence of
SS effect is varying with the coefficient s. A rogue wave is
localized both in space (t) and time (z), and therefore V must
be finite.

From Fig. 4(a), we have a finite volume of 1 when s = 0,
which is the volume of fundamental rogue wave. With an in-
creasing s, rogue wave’s volume V decreases asymptotically.
What this means in the rogue wave behavior is evident in
Fig. 4(b). When s = 2, the rogue wave is stretched in the
t dimension, creating an elongated profile with V = 0.2. At
a larger value of s, this elongation increases with a small
V , keeping the center amplitude 3 unchanged. The more
stretched the rogue wave becomes, the less volume it can
contain. A rogue wave with a large SS effect (s � 1) becomes
an infinitely extended horizontal entity with V ≈ 0.

Note that, in a real system, s generally remains small, hence
the dynamics remain within a stretched and small volume
(V < 1) rogue wave-type entity. When the SS effect with a
small s value acts upon a rogue wave with other asymmetrical
optical effects, it works like a strong stimulus, steering the

FIG. 4. (a) Rogue wave volume V (blue) and the rate of volume
change dV/ds (red) versus s. (b) Onset of a rogue wave departing
from its original state to become a soliton when s = 2.

rogue wave toward a soliton. The rate of change of volume as
a function of s is also plotted in Fig. 4(a). The fastest change
is observed at s = 0.58 with dV/ds = −0.65.

A. Effects on phase and spectral evolution

The SS term also induces a significant change in the rogue
wave’s temporal phase and spectral intensity. This term in
Eq. (4) is a first-order t derivative of the self-phase modulation
implying that instead of a π phase shift for NLSE rogue wave,
the phase is varying in the transverse t dimension. Due to this,
an asymmetric phase term 	 arises in the NLSE rogue wave
solution. From Eq. (5), this can be given as

ei	 = D∗
s

Ds
, (8)

which indicates that the asymmetrical phase profile has its
origin in the denominator of the rational solution Eq. (5). The
t varying phase means an instantaneous frequency changes
across the envelope. The origin of this change comes from the
SS term, which in the Fourier domain becomes ∂

∂t (ψ |ψ |2) =
−iω(ψ |ψ |2), replacing ∂/∂t = −iω. To deal with this type of
asymmetric spectrum, a Heaviside step function is required,
which makes the full derivation with arbitrary s, z, and t rather
complicated. We take the Fourier transformation of Eq. (5) at
z = 0:

F (ω, s, z = 0) = 1√
2π

∫ ∞

−∞
ψs(z = 0, t )eiωt dt . (9)

For a fundamental rogue wave with s = 0, the spectrum is

F (ω, s = 0, z = 0) =
√

2π
[−e− |ω|

2 + δ(ω)
]
, (10)

where δ is the Kronecker delta. For s = 0.2, the expression
becomes

F (ω, s = 0.2, z = 0) = 5
√

2πδ(1 − 5ω)

− 1

1521

{
25e− 1

52 (−1+3
√

3)(−1+5ω)

√
π

2
(5 + ω)

× [
a1θ (0.2 − ω)e

3
26

√
3(−1+5ω) + a2θ (−0.2 + ω)

]}
,

where a1 = (9 + 14
√

3), a2 = (−9 + 14
√

3), and θ is a
Heaviside step function. Similar spectral expressions can be
derived for any values of s. For simplicity, we omit the cum-
bersome mathematical expressions.

The impact of the SS effect on the phase and spectrum
for all z and t is demonstrated in Fig. 5 using the solution
presented in Eq. (5). In Fig. 5(a), the flat-top π phase shift
for the fundamental rogue wave with s = 0 is now distorted in
Figs. 5(c) and 5(e) for s = 0.2 and 1, respectively. As a result,
the corresponding asymmetrical spectral intensity broadening
is observed around ψ (z = 0, t = 0) which shown in Figs. 5(d)
and 5(f). Note that with s = 0, the spectrum becomes triangu-
lar, which represents a rogue wave, as shown in Fig. 5(b). With
an increasing s, the spectral profile broadens asymmetrically
toward the blue side. The maximum phase distortion is seen
when s = 1, which is accompanied by the widest spectral
bandwidth.
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FIG. 5. (a) Temporal phase and (b) spectral intensity evolutions
of the rogue wave solution, Eq. (5) with s = 0, 0.2, and 1. Note a
spectral discontinuity is arise in the spectrum indicated by the red
arrow.

B. Extended evolution and translation

To investigate how the SS effect influences the background
after the emergence of the rogue wave, we simulate the fun-
damental rogue wave for an extended propagation length. The
evolution is presented in Fig. 6. It induces a skewed asym-
metry in the recurring breathers after the emergence of the
rogue wave. Unlike the effects of TOD, no solitary waves nor
dispersive waves are observed in the neighborhood.

FIG. 6. (a) Extended amplitude evolution of a rogue wave with
the SS effect when s = 0.2. The recurring emergence of breathers is
also achieved with the same amount of translations as the primary
rogue wave. The rogue wave has appeared at a translated distance
t ≈ 13.

FIG. 7. (a) Temporal and (b) spectral intensity evolutions of a
fundamental rogue wave under the influence of RIFS effect when
τR = 0.012. The rogue wave appearing at z = 30 is decelerating
along the propagation. A frequency down-shifting is observed in the
spectral domain.

Another important aspect of our current observation with
the SS effect is the fundamental rogue wave solution Eq. (2)
undergoes a natural translation on the z-t plane. We observe
that instead of the rogue wave appearing at t = 0, it emerges
translated at t ≈ 13 when s = 0.2. This indicates that the
translational parameter ts in the analytic solution Eq. (5) is
naturally triggered by the finite s in the system. We observe
that in the analytic solution, the same amount of translation
can be achieve by setting ts = 13 and zs = 0.

IV. ROGUE WAVE SELF-FREQUENCY SHIFT

To investigate the RIFS effect on a rogue wave, we employ

i
∂ψ

∂z
− β2

2

∂2ψ

∂t2
+ γ ψ |ψ |2 − τRψ

∂|ψ |2
∂t

= 0. (11)

The Raman term in Eq. (11) is a non-Hamiltonian dis-
sipative term [51]. Therefore, Eq. (11) does not render an
analytical solution, and the study is undertaken numerically.
Our investigation shows that the RIFS effect does not impact
the main rogue wave solution structure in a significant way
keeping the amplitude and phase profiles unaltered. However,
the impact becomes significant after the emergence of the
rogue wave. The RIFS effect mainly induces a steering effect
on the rogue wave slowing it down in a transverse direction
and gradually transforms it into a soliton.

Since the RIFS parameter τR is inversely proportional to
the pulse duration, its role becomes greater when the rogue
wave reaches the maximum compression point. The dissipa-
tive nature of the RIFS effect means that the solution does
not preserve the energy. As shown in Fig. 7, when the rogue
wave solution is maximally compressed, its bandwidth is wide
enough to amplify the low-frequency components at the ex-
pense of the blue-side. At this stage, the rogue wave is no
longer robust, but instead it loses energy by generating red
spectral components. As the energy dissipation continues, the
rogue wave slows down and decelerates. Each time the rogue
wave appears with less energy, the compression becomes
strong, resulting in a broader spectrum as shown in Fig. 7(b).
Note that the RIFS-induced radiation in the red side appears to
be small in the first few rogue wave events along z. This means
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FIG. 8. Trajectories of the center of mass of the rogue wave
solution in the temporal (blue) and spectral (red) domains under the
influence of RIFS effect.

that the pulse duration in the first few rogue wave emergences
are still not short enough to fully activate the RIFS effect.

The propagation dynamics can be more effectively de-
scribed by the progression of the center of mass of rogue wave
solution while it is under the influence of RIFS effect. The
centers of mass in temporal and spectral amplitudes, ν0 and
�0, are defined as

ν0 =
∫ ∞
−∞ t |ψ (z, t )|2dt∫ ∞
−∞ |ψ (z, t )|2dt

, �0 =
∫ ∞
−∞ ω |ψ (z, ω)|2dω∫ ∞

−∞ |ψ (z, ω)|2dω
.

(12)
Figure 8 shows the trajectories for three different values of

the RIFS coefficient, τR = 0.010, 0.012, and 0.014. For high
values of τR′ , the magnitude of RIFS is also large. With this,
the spectrum shifts toward the negative frequency side along
the propagation. This results in the rogue wave slowing down
in the temporal domain, making an increasingly skewed bow-
shaped trail.

We carry out simulations for a longer distance of z = 50
to investigate the fate of the rogue wave after an extended
propagation and its impacts on the neighboring wave field.
This is shown in the top panel of Fig. 9. We can see that
after its appearance at z = 30, the rogue wave triggers a
group of solitons at the central region similar to TOD while
its trajectory bends toward the positive t direction. As the
propagation progresses, the continuous dissipation of energy
significantly reduces its velocity and gradually becomes a me-
andering high-amplitude solitonlike entity. Note that before
transforming to a soliton, in the initial stage the decelerating
rogue wave collides multiple times with neighboring other
solitons and breather-type substructures, leading to a higher
amplitude soliton [52].

The rogue wave, in its first appearance, extensively
changes the nearby background wave. In the top panel of
Fig. 9, the manifestation of a variety of wave groups is clearly
visible. To classify types of the wave forms, we conduct a
local-IST analysis. We take a cross section of the wave en-
velop at z = 46 as shown in the midpanel of Fig. 9. This is
similar to the analysis we carried out earlier in the case of
the TOD effect. We select various localized structures from
the envelop highlighted in the shaded areas and group them
in two separate category according to the genus g. The green

FIG. 9. Top panel: Temporal amplitude evolution of a rogue
wave solution under the influence of the RIFS effect. A skewed
background wave is visible with a various types of wave entities
appearing atop. Midpanel: An extracted wave envelop at z = 40 after
the emergence of rogue wave. Bottom panel: Local-IST spectra of
various localized wave profiles.

shaded areas are breather-type, (g = 2) localized structures,
and under the red and magenta-shaded areas are the soliton
type, where g = 1. Note that the transformed soliton which
is created from the slow-moving rogue wave is shaded in
magenta. The localized structures in (i) and (vi) exhibit three
distinct spectral bands, which indicates that they belong to the
family of breather-type solutions.

Similar to Fig. 2, the isolated structures in (ii), (iii), and
(iv) each appear to have three spectral bands for fixed size
windows (shaded areas). The small amplitude-bands crossing
the real line arise from the background perturbation.

At this point, we must investigate how the local-IST win-
dowing affects the spectrum and classification of the structure
under study. For this, we select the local structure (iii) and
change its window by taking three different ranges (−4, 1),
(−5, 2), and (−5, 3) in the t axis as shown in Figs. 10(a)–
10(c). The choice of the window is restricted within these
ranges, because a wider range overlaps with the adjacent
structure. Each of them are periodized 100 times [partially
presented in Figs. 10(d)–10(f)]. The corresponding local-IST
spectra are shown in Figs. 10(g)–10(i), respectively.

When the window size is increased, a small vertical
band crossing the real axis grows as shown in the insets
in Figs. 10(h) and 10(i), while the conjugates become more
focused. This observation is an indication that the conjugate
bands arise from the central structure while small bands on
the real lines come from the background perturbation. In all
three windows, eigenvalues of the conjugate pairs are tightly
focused nearly on the same spot, making the structure in Fig. 9
inset (iii) likely to be a g = 1-type solitonlike entity. In a
conventional measure, as the structure under investigation is
on a constant background, it belongs to g = 2-type solution.
However, the complex conjugate bands in (iii) are closely
focused nearly at the same spot similar to a regular soliton. We
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FIG. 10. (a)–(c) are three different window sizes of the structure
(iii) in the midpanel from Fig. 9. Corresponding periodization are
presented in (d)–(f). Insets (g)–(i) are the respective local-IST spec-
trums of (d)–(f).

then classify them as a g = 1-type solution. A similar standard
of determining the genus is also demonstrated in [38]. See
Fig. 7 and the description therein.

The localized structure in Fig. 9(v) is the soliton that is
created from the decelerating rogue wave, which has a five
local-IST spectral bands making it a g = 4-type solution [32].
Three small irregular bands crossing the real line result from
the highly perturbative background. The conjugate eigenval-
ues are largely shifted away from the imaginary axis due to
the asymmetry of the profile.

We conclude that the RIFS effect heavily influences the
continuous wave background and triggers a host of other
waves such as solitons and breathers. The RIFS effect triggers
the formation of a group of low-amplitude solitons around
the central region, where the first rogue wave appeared while
the rogue wave itself becomes a relatively high-amplitude
slow-moving soliton. The breather-type waves form near the
edge of the field away from the center.

V. COMBINED EFFECTS

Applying all three effects simultaneously leads to Eq. (1).
We solve it numerically to observe their combined influence
on the rogue wave solution. The early stage amplitude evolu-
tion is shown in Fig. 11 both in temporal and spectral domains,

FIG. 11. (a) Temporal and (b) spectral intensity evolutions of the
fundamental rogue wave when ε3 = −0.03, s = 0.2, and τR = 0.012.

which bears a clear signature of the TOD, SS, and RIFS
effects. As shown in Fig. 11(a), the SS-induced translation
shifts the emergence of rogue wave in the positive t direction.
Both the TOD and RIFS effect slow down the rogue wave after
its appearance. Their mutual interaction affects the trajectory
of rogue wave propagation. This trajectory depends on the
magnitude of these two effects.

The TOD onsets the generation of dispersive wave indi-
cated by the white arrow from the first appearance of rogue
wave at z = 30 as shown in Fig. 11(b). The subsequent emer-
gence of a rogue wave in the extended evolution also radiates
dispersive waves. The rogue wave compresses to shorter du-
rations and generates broader spectra further along z. The
asymmetry in the spectral profile arises due to the SS and
RIFS effects. The SS causes the asymmetry toward the blue,
while RIFS produces the red-shifted frequency as shown by
the dashed long white arrow. The competing effects cause the
total spectral profile to be uneven in the transverse directions.

Note that the spectral discontinuity indicated by the red
arrow on the red side of the spectral profile in Fig. 11(b) is also
due to the SS effect. The similar spectral gap can be seen to
the left of ω = 0 in the analytically obtained spectral profiles
in Figs. 5(d) and 5(f) when s = 0.2 and s = 1.

Finally, we investigate the long-term evolution of the rogue
wave under the combined influence. We observe that at the
moment of the rogue wave appearance at z = 30, it im-
mediately triggers breathers near the edges and a group of
low-amplitude solitons around the central part of the propaga-
tion field as presented in Fig. 12. At the same time, due to the
RIFS effect, the decelerating rogue wave gradually transforms
into a soliton as shown in Fig. 12 with a bent trajectory.

FIG. 12. Decelerating rogue wave under the influence of TOD
(ε3 = 0.03), SS (s = 0.1), and RIFS (τR = 0.008). It transforms into
a soliton.
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FIG. 13. (a) Temporal and (b) spectral intensity evolutions show-
ing disintegration of N = 200 soliton under the influence of TOD
(ε3 = 0.03), SS (s = 0.1), and RIFS (τR = 0.001).

Note that as this soliton is propagating on a modulated wave
field, the soliton profile is not uniform. It collides with the
surrounding breathers-type waves as it advances and develops
ridges on top, as seen in Fig. 12.

To give an example of the implication of the current
analysis of how rogue waves can trigger the formation of
a large number of solitons, we simulated N = 200 solitons
with TOD (ε3 = −0.03), SS (s = 0.1), and RIFS (τR = 0.001)
using Eq. (1). It is highlighting the processes of continuous
wave supercontinuum generation in optical fiber [53]. The
evolution dynamics in the temporal domain can be observed
in Fig. 13(a). Clearly, the conventional perturbation induced
soliton-fission involving a low number of soliton does not
takes place in this case. Instead, the presence of noise among
the closely packed high number of solitons triggers the onset
of MI, which in its initial stage gradually amplifies along the
evolution. When the growth of MI is at its peak value, first, it
creates a large number of highly compressed rogue-wave-type
localized structures.

Under the influence of the combined effects, in the final
stage, these localized structures deliver a shower of solitons
moving toward the positive t direction. These ejected solitons
have a close dynamical resemblance to the solitons that we
discussed in Fig. 12 under the combined effects of TOD, SS,
and RIFS. The evidence of the onset of MI is clearly seen
in the spectral profile Fig. 13(b) with the presence of side
lobes indicated by the white arrows. Moreover, a spectral gap
is observed next to the left side-lobe that arises from the SS
effect shown by the red arrow.

VI. CONCLUSION

We studied the dynamical properties of a fundamental
rogue wave under the influence of TOD, SS, and RIFS effects.
We showed these effects acting on the rogue wave separately
as well as simultaneously. In a real system, hundreds of rogue
wave-type structures are formed due to MI. The purpose of
this article is, in light of the systematic analysis of one of
them, to explain their collective behavior in a system where
they may arise.

We revealed the key mechanisms of TOD, SS, and RIFS
effects that can significantly impact an optical rogue wave’s
long-time behavior on a continuous wave background. Using
numerical analysis, complemented with a local-IST proce-

dure, we explain how these three effects play key roles in
producing multiple soliton-type structures from the modulated
wave background.

Under the TOD effects, the dynamics of the standard
breather solution can trigger the formation of solitonlike
structures together with modified breathers and new rogue-
wave-type formations in its surroundings. To confirm the
nature of the developed localized structures, we employed
the local-IST procedure to reveal their spectra. We found that
the soliton-type structures are triggered from the central area
where the rogue wave solution first appeared. New breather
and rogue wave-type localized structures are formed near the
edges.

We observed similar dynamics under the RIFS effect too.
However, the major revelation here is that, after its appearance
the rogue wave solution itself gradually slows-down via radi-
ating a continuous red-shifted frequency components. While
decelerating, it loses energy and slowly transforms into a
high-amplitude soliton.

Using the rogue wave solution volume interpretation, we
showed that under the SS effect, the rogue wave becomes
stretched by reducing its volume. The SS effects can act like a
catalyst, stimulating rogue waves to turning into a soliton. Im-
portantly, we showed that this effect can relocate the emerging
point of the rogue wave solution in the transverse dimension.
We also observed that the SS effect induces an instantaneous
spectral change in the rogue waves’ spectrum.

When these three effects were applied simultaneously, after
an extended period of propagation, we observed the creation
of a collection of solitons that corresponds to an asymmetric
spectral profile. Both the spectral and temporal profiles show
the signatures of all three effects. By simulating 200 solitons,
we demonstrated that the rogue waves shaped by the noise-
driven MI finally become an ensemble of solitons.

We believe these observations present a coherent overview
of long-term continuous wave propagation inside an opti-
cal fiber. As a representative case, the observation revealed
how MI leads to the formation of rogue waves at the ini-
tial stage of continuous wave supercontinuum generation,
which at the final stage transforms into a large collection of
soliton-type structures. Also, a comprehensive understanding
of the first-order rogue wave solution evolution in the presence
of the higher-order effects may shed light on propagation
dynamics of the higher-order rogue wave solutions. The ap-
plication of a local-IST procedure to investigate how the
symmetry-breaking effects changes the local-IST spectrums
of the local-periodized structure may provide insights of the
dynamics that arise in experiments. We observe that higher-
order optical effects locally change the genus of the solutions
under investigation, which currently remains a field of active
research. These open questions may stimulate more debates
and discussions, leading toward more concrete answers to
these questions.
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