
PHYSICAL REVIEW E 107, 014211 (2023)

Analysis of temporal structure of laser chaos by Allan variance
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Allan variance has been widely utilized for evaluating the stability of the time series generated by atomic
clocks and lasers, in time regimes ranging from short to extremely long. This multiscale examination capability
of the Allan variance may also be beneficial in evaluating the chaotic oscillating dynamics of semiconductor
lasers— not just for conventional phase stability analysis. In the present study, we demonstrated Allan variance
analysis of the complex time series generated by a semiconductor laser with delayed feedback, including low-
frequency fluctuations (LFFs), which exhibit both fast and slow dynamics. While the detection of LFFs is difficult
with the conventional power spectrum analysis method in the low-frequency regime, the Allan variance approach
clearly captured the appearance of multiple time-scale dynamics, such as LFFs. This study demonstrates that
Allan variance can help in understanding and characterizing diverse laser dynamics, including LFFs, spanning a
wide range of timescales.
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I. INTRODUCTION

Allan variance has been widely utilized for evaluating
the stability of oscillators, such as atomic clocks [1], quartz
crystals [2], and lasers [3], at a variety of timescales rang-
ing from short to long. The phase stability of clocks and
lasers is particularly important from the viewpoint of relia-
bility [1–3]. On the other hand, intensive studies have been
conducted to utilize ultrafast irregular time series generated
by lasers, and to achieve improved levels of performance in
application systems. Examples include, but are not limited
to, reservoir computing [4], random number generation [5–7],
secure communications [8–10], and decision making [11]. In
these systems, irregularity, instability, or complexity of the
time series generated by lasers is utilized rather than their
stable operation.

We consider that the multiscale examination capability of
the Allan variance may be useful for evaluating the chaotic
oscillating dynamics of semiconductor lasers. In particular, a
semiconductor laser that is subjected to delayed feedback ex-
hibits versatile oscillatory dynamics [12,13]. Low-frequency
fluctuations (LFFs) exhibit both fast and slow dynamics. In
LFFs, in addition to chaotically oscillating fast dynamics,
a sudden dropout in the output light intensity and a grad-
ual recovery is observed [14]. Furthermore, such a dropout
does not occur in a periodic manner; that is, LFFs contain
multiscale attributes in the time domain. In this study, we
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demonstrate Allan variance analysis of a complex time series
generated by a semiconductor laser, which is described by
the Lang-Kobayashi equations, with delayed optical feedback,
including LFFs. The detection of LFFs via the conventional
Fourier transform approach has been difficult, hampering the
definition and classification of LFFs [15]. In the present study,
the Allan variance approach clearly captured LFFs in a stable
manner.

The remainder of this paper is organized as follows. We
review Allan variance and its conventional usage in Sec. II A.
The notion of LFFs in lasers and relevant literature are re-
viewed in Sec. II B. Section III examines the Allan variance
of the chaotic oscillating dynamics of lasers, including LFFs,
on the basis of time series described by the Lang-Kobayashi
equations [16], which are model equations for a semiconduc-
tor laser subjected to delayed optical feedback. The power
spectral density and Allan variance of the obtained time series
are examined and compared with regard to the discriminabil-
ity of the dynamics. Section IV discusses the advantages of
the Allan variance and its physical interpretation. Section V
concludes the paper.

II. THEORY

A. Allan variance

The Allan variance of a time series s(t ) is defined as

σ 2
s (τA) = 1

2

〈(
�s̄(τA )

k

)2〉
, (1)
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FIG. 1. Allan variance of a chaotic laser time series. (a), (c) Example of a laser chaos time series, normalized with respect to the intensity
in the single mode; I0 is the intensity of a laser intensity without optical feedback (κ = 0). The Allan variance considers the variability of a
time series for a given timescale (τA). The red dashed lines indicate the mean values of the original time series, with τA being 0.1 ns in (a) and
1.0 ns in (c). The difference between consecutive timeslots, i.e., �s̄(τA )

k is indicated by blue arrows. (b) Allan variance is defined as the variance
of �s̄(τA )

k with τA ranging from 10−2 to 102 ns. Both axes are logarithmic. The green and purple dots represent the Allan variance when τA is
0.1 and 1.0 ns, respectively.

where

�s̄(τA )
k = s̄(τA )

k − s̄(τA )
k−1, (2)

s̄(τA )
k = 1

τA

∫ tk+1=tk+τA

tk

s(t )dt, (3)

tk = t0 + kτA. (4)

Thus, the Allan variance considers the variance of the time
series under study with respect to the timescale given by τA. In
Fig. 1(a), the average of a time series over a period τA = 0.1 ns
is indicated by red dashed lines (s̄(τA )

k ), and the difference
between successive slots is indicated by blue arrows (�s̄(τA )

k ).
The variance is indicated by the green point in Fig. 1(b).

The same time series is evaluated on a longer timescale,
i.e., τA = 1.0 ns, in Fig. 1(c). The variance is indicated by the
purple point in Fig. 1(b). The Allan variance is indicated by
the black curve in Fig. 1(b), which captures the variability in
various timescales ranging from a short timescale, which can
correspond to the time resolution, to a long timescale that is
almost the total recording time. Here, the time series and the
calculated Allan variance in Fig. 1 are from the laser chaos
time series, which is discussed in Secs. III and IV.

It is known that the power spectral density of the frequency
fluctuations of atomic clocks and lasers can be approximately
expressed by the following equation [17]:

S( f ) ≈
2∑

α=−2

hα f α, (5)

where hα denotes the coefficients for the approximation. Cal-
culating these coefficients is equivalent to evaluating the phase
stability.

The Allan variance can be expressed as follows using the
power spectral density [17]:

σ 2
s (τA) = 2

∫ ∞

0
S( f )

sin4(π f τA)

(π f τA)2
df . (6)

Using Eq. (6), hα can be obtained from the Allan variance of
the phase time series data. For example, for α = 0 the Allan

variance is

2
∫ ∞

0
h0

sin4(π f τA)

(π f τA)2
df = h0

2τA
. (7)

We can estimate h0 from the Allan variance plot. Thus, the
Allan variance can be used to evaluate the variability charac-
teristics of time series data.

In this study, we show that the Allan variance can be used
to evaluate a chaotic time series from a new aspect, i.e., by
applying it to a laser intensity time series instead of a phase
time series.

B. Low-frequency fluctuations (LFFs)

Semiconductor lasers are known to exhibit complex dy-
namics with the introduction of optical feedback [18], current
modulation [19], etc. In recent years, these dynamics have
been actively studied as the basis for new types of computing,
such as reservoir computing [20]. LFFs are remarkable phe-
nomena where GHz-order chaotic oscillations and MHz-order
irregular dropouts and recoveries coexist. An example of an
LFF time series is shown in Fig. 2. LFFs involve both fast and
slow dynamics, which is a characteristic multiscale complex
phenomenon induced by delayed optical feedback. Further-
more, LFFs have been studied for application to random
number generation [21] and decision making [22]. However,
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FIG. 2. Example of an LFF time series. (a) Original time series.
(b) Time series obtained by applying an ideal low-pass filter with
a cutoff frequency of 100 MHz to the time series of (a). Sudden
dropouts with gradual recovery are observed.
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a systematic and unified method for detecting and evaluating
LFFs has not yet been established.

Yamasaki et al. [15] used the power spectrum density
(PSD) to detect LFFs. However, it is technologically diffi-
cult to evaluate power spectral density accurately enough to
stably distinguish LFFs from coherence collapse (CC), which
only exhibits fast irregular fluctuations [23]. Therefore, a new
method that can automatically identify the dynamics is desir-
able for advancing basic research, evaluating optical devices,
and establishing system principles.

In this study, we show that the Allan variance is useful for
automatic LFF detection. This can be intuitively understood
as follows. First, the Allan variance can be directly estimated
from time-series data. Therefore, there is no need to evaluate
the power spectral density. Second, the Allan variance can be
used to capture and compare the variability characteristics in
various timescales so that the fast chaotic oscillations and the
slow dropouts exhibited by LFFs can be captured simultane-
ously, as shown in the next section.

III. ALLAN VARIANCE ANALYSIS OF LASER CHAOS

We generate a time series using the Lang-Kobayashi equa-
tions, which are model equations of semiconductor lasers with
optical feedback and are given as follows:

dE (t )

dt
= 1 + iα

2

[
GN (N (t ) − N0)

1 + ε‖E (t )‖2
− 1

TP

]
E (t )

+ κE (t − τD)e−iωτD , (8)

dN (t )

dt
= J − N (t )

TS
− GN (N (t ) − N0)‖E (t )‖2

1 + ε‖E (t )‖2
, (9)

where E (t ) and N (t ) represent the complex electric field and
the carrier density of excited carriers, respectively [16]; α is
the linewidth enhancement factor; GN represents the gain; TP

and TS represent the lifetimes of photons and the inversion,
respectively; κ represents the feedback strength; τD repre-
sents the feedback delay; ω represents the optical angular
frequency; ε represents the gain saturation coefficient; and J
represents the injection current. N0 is a constant that defines
the relationship between the carrier density and the photon
lifetime at the lasing threshold, as follows:

GN (Nth − N0) = 1

TP
, (10)

where Nth represents the carrier density at the lasing thresh-
old. The parameter values used in this study are presented
in Table I [24]. In the numerical implementation, we utilized
the fourth-order Runge-Kutta method. The timestep was 5 ps.
In generating LFFs, J must be set near the lasing threshold,
which is determined by Jth = Nth/TS . In the simulation, J was
fixed to 1.005Jth.

The simulation generated a 100-μs time series. Because the
timestep was 5 ps, there were 20,000,000 time-series points
in total. The entire time series was used to compute the Allan
variance and PSD.

The dots in Fig. 3 show the intensity levels of the time
series with respect to the feedback strength κ in the range of
10−2 to 10 ns−1. As the feedback strength increases from zero,
the output of the laser undergoes constant (S), periodic (P),

TABLE I. Parameter values in the Lang-Kobayashi equa-
tions used in the numerical simulation.

Parameter value

GN 8.40 × 10−13m3s−1

N0 1.40 × 1024m−3

TP 1.927 × 10−12s
TS 2.04 × 10−9s
α 3.0
Nth 2.018 × 1024m−3

ω 1.215 × 1015s−1

ε 2.5 × 10−23m3

τD 2.0 × 10−8s
J 9.941 × 1032m−3s−1

quasiperiodic (QP), CC, and LFF dynamics [18]. However, in
such a bifurcation diagram, the LFFs cannot be distinguished,
because the transition to LFFs is not a bifurcation. Our objec-
tive is to systematically discriminate LFFs from other states.
Meanwhile, the black line indicates the LFF decision index
based on the Allan variance analysis, which is discussed in
detail in Sec. III.

Because the transition from CC to LFF is smooth, a distinct
boundary between CC and LFF cannot be immediately visual-
ized by the indicator based on Allan variance. Therefore, the
user must define a threshold appropriately depending on the
target of observation. The indicator based on Allan variance
varies smoothly with changes in the parameter values and can
be used to classify CC and LFF once a threshold value is
chosen.

Figures 4(a) and 4(b) show the time series of CC and
LFFs, where the optical feedback strength κ is 1.55 and 6.21
ns−1, respectively. Conventionally, the PSD has been used to
characterize such time series. Figures 4(c) and 4(d) present
the calculated PSDs of the time series of CC and LFFs,
respectively, both of which exhibit oscillatory behavior in
the high-frequency regime due to the external cavity modes
(ECMs) [18] of the delayed feedback.

FIG. 3. Bifurcation diagram of the light intensity levels I/I0

with respect to the optical feedback strength indicated by the dots.
As the feedback strength increases, the dynamics undergo stable
emission (blue dots), periodic oscillation, quasiperiodic oscillation
(green dots), CC, and LFFs (red dots). The LFFs are not clearly
distinguishable from the other dynamics in the bifurcation diagram.
The black curve represents a figure of merit calculated using the
Allan variance. A detailed analysis is presented in Section III. See
also Fig. 5.
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FIG. 4. Comparison of CC and LFFs based on their PSDs, autocorrelation (AC), and Allan variance. (a), (b) Time-domain snapshot, (c), (d)
PSD up to 1 GHz, (e), (f) PSD up to 5 MHz, (g), (h) AC up to 1000 ns, and (i), (j) Allan variance for time series generated with κ = 1.55 ns−1

for CC and κ = 6.21 ns−1 for LFFs. For the PSD, the red arrow indicates the global peak apart from the direct current (DC) component, and
the blue arrow indicates a local peak in the low-frequency regime apart from the DC component. The low-frequency regime is defined as
0–5 MHz. For the Allan variance, the red and blue arrows indicate the peaks in the fast and slow regimes, respectively. The slow regime is
defined as τA > τD, as the timescale of dropout dynamics of LFFs are longer than τD. Insets show magnified views of the Allan variance at
approximately 20 ns, corresponding to τD. Local minima are observed, indicating that the Allan variance can reveal τD.

Hereinafter, the range of 0–5 MHz in the frequency domain
is referred to as the low-frequency regime, as the peak power
associated with LFFs is typically observed in this regime [14].
In LFFs, the PSD in the low-frequency regime has a high
value, which stems from the sudden dropouts [Fig. 4(f)]. Com-
paring the magnified views of the PSD in the low-frequency
regime for CC and LFFs shown in Figs. 4(e) and 4(f), respec-
tively, reveals a peak at approximately 3 MHz in the case of
LFFs. However, detecting such a low-frequency peak can be
technologically challenging, as mentioned in Sec. I, which is

also indicated by the significant fluctuations of the PSD curves
in Figs. 4(e) and 4(f).

Figures 4(i) and 4(j) present the Allan variance for CC and
LFFs, respectively. We observe a peak of the Allan variance
at approximately τA = 0.5 ns in both cases, as indicated by
the red arrows. For LFFs [Fig. 4(j)], another distinct peak or
local maximum is observed at approximately τA = 100 ns, as
indicated by a blue arrow, which we refer to as the slow peak.
In the following, the slow peak of the Allan variance is defined
as the maximum in the slow regime, which is referred to as
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the region where τA > τD in the Allan variance plot, as the
dropout dynamics of LFFs are longer than τD. In contrast, CC
[Fig. 4(i)] does not exhibit such an evident slow peak in the
slow regime.

In fact, small local minima in the Allan variance curve are
observed in Figs. 4(i) and 4(j) at τA = 20 ns, corresponding
to the round-trip time τD of the optical delay. These small
changes are shown in the insets of Figs. 4(i) and 4(j). This
is one of the remarkable capabilities of the Allan variance: it
can detect the signature corresponding to the round-trip delay.

A peak in the Allan variance indicates that the time series is
highly variable on that timescale. The fast peaks indicated by
the red arrows, which were observed for both CC and LFFs,
correspond to the relaxation oscillations. In contrast, the slow
peaks, which were observed only for the LFFs, capture the
irregular dropout feature of the LFFs. The number of Allan
variance peaks was at most one in each of the relaxation
oscillation and LFF regions. In experiments using a spectrum
analyzer, there is always a possibility that the PSD peak will
be missed, which is not the case with the Allan variance.

Another approach for analyzing temporal structures is
the use of the autocorrelation function. Similar to the Allan
variance, the autocorrelation can be directly computed from
time-series data. Figures 4(g) and 4(h) show the autocorrela-
tion functions of CC and LFF, respectively, where the latter
exhibits a nonzero correlation in a larger time lag. Thus, the
CC and LFFs can be distinguished via autocorrelation as well.
However, the autocorrelation does not clearly capture the two
types of timescales of LFF, i.e., the slow and fast dynamics.
Rather, the round-trip time τD and its harmonics are clearly
indicated by the peaks of the autocorrelation. From these con-
siderations, the autocorrelation may be suited for applications
such as identifying delay times in experiments. In contrast,
the Allan variance is considered to be superior for capturing
multiple timescales of systems from the time series observed.

In Figs. 4(i) and 4(j), the Allan variance exhibits smooth
curves compared with the PSD. Therefore, the Allan variance
provides a robust figure of merit to systematically identify
LFFs according to the features associated with the peaks.
Therefore, we propose the following three features for eval-
uating the slow peak:

(1) The ratio of the slow peak to the fast peak.
(2) The ratio of the slow peak to the minimum between the

fast and slow peaks.
(3) The width of the slow peak, evaluated according to the

minimum between the peaks.
The third feature is defined as

τ1 − τ0, (11)

where σ 2
s (τ0) represents the minimum between the fast and

slow peaks, and τ1 satisfies σ 2
s (τ1) = σ 2

s (τ0) and τ1 > τ0.
These three features, i.e., figures-of-merit, were examined
with respect to the feedback strength, as shown in Figs. 5(b),
5(c), and 5(d), respectively.

In Figs. 5(b), 5(c), and 5(d), several outliers (or burstlike
signals) are observed with the κ value being greater than
10 ns−1 and less than 1 ns−1. The underlying mechanism
is explained as follows. When the feedback strength is low,
periodic or quasiperiodic dynamics are observed. In such
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FIG. 5. Characterizing fast and slow peaks in the Allan vari-
ance. (a) Representative features. The Allan variance curve is for
κ = 6.21 ns−1. (b) Ratio of the slow peak to the fast peak. (c) Ratio
of the slow peak to the minimum between the two peaks. (d) Width
of the slow peak. Large outliers are saturated and displayed as large
dots for visibility.

cases, the Allan variance exhibits a large number of minima,
leading to a burstlike output with regard to the figure of merit
defined above [see also Fig. 8(a)]. Indeed, the Allan variance
of periodic or quasiperiodic signals exhibits an oscillatory
curve, which is a clear signature differentiating such periodic
or quasiperiodic signals from chaotic dynamics, e.g., counting
the number of minima in the Allan variance is useful for
distinguishing periodic or quasiperiodic signals from chaotic
ones.

When the feedback strength is high, the outliers come from
so-called periodic or stable windows, where the laser intensity
oscillates with tiny amplitude near the stationary solution
and sometimes even converges to the stationary solution.
Therefore, the value of the Allan variance is extremely small
compared to coherence collapse and LFFs, leading to bursty
behavior in the figure-of-merit through the Allan variance.
Therefore, such an attribute can also be utilized to identify
the underlying dynamics.

All the indices change smoothly as the feedback intensity
changes, except for the bursts, and any of them or a combina-
tion of them can be used for reliable detection of LFFs. For
example, we can define the obtained time series as exhibiting
LFFs if the ratio of the slow peak to the minimum exceeds
1.5 in Fig. 5(c). Note that users should set the threshold
considering their parameters or experimental setups.

IV. DISCUSSION

A. Comparison of the PSD and Allan variance

In this section, the PSD and Allan variance are compared
with regard to the identifiability of the LFFs. In a previous
study [15], a time series was defined as LFFs when the in-
equality,

�P = PLFF( f ) − Pmain( f ) � −15 dB, (12)
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downsampled LFF time series. Dashed and dotted curves indicate
the Allan variance for the low-pass filtered LFF time series. Offsets
are introduced to each curve except for the original line (black solid
curve) for visibility.

holds. Here, PLFF( f ) and Pmain( f ) represent the spectral peak
power of the low-frequency region and the global spectral
peak power, respectively. One drawback of this definition is
that estimation of the PSD is not very stable [see Fig. 7]; there-
fore, the decision based on the inequality given by Eq. (12) is
unstable.

In the simulation results of Figs. 4(c), 4(d), 4(e), and 4(f),
the estimated PSD is not smooth with frequency changes but
oscillates violently. This is also the case in experiments, where
radiofrequency (RF) spectrum analyzers are frequently used
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FIG. 7. PSD-based characterization. The ratio of the LFF peak
power to the overall peak power was evaluated as a function of
feedback strength. Large outliers are saturated and displayed as large
dots for visibility. In a previous study [15], when the ratio exceeded
−15 dB, as indicated by the red line, the time-series data were
classified as LFFs. The ratio was less stable and fluctuates more
significantly compared to the Allan variance-based measures (see
Fig. 5).

to evaluate the PSD in this setting. However, the resolution
of an RF analyzer is technologically limited. Figures 4(c) and
4(d) present several peaks associated with the ECM around
the global peak. Depending on the resolution of the apparatus
being used, the global peak may be flattened and reduced
by aliasing effects. In particular, because the LFF is often
observed when the external cavity length is relatively long,
the number of ECMs increases, and the widths of adjacent
peaks decrease. Therefore, this problem becomes more severe.
Additionally, the settings of the analyzer may have to be
modified for measuring the peak power in the low-frequency
region, as the global peak appears at a few GHz, whereas the
LFF peak usually appears at several MHz.

In contrast, the Allan variance is far more stable and
makes it easier to identify LFFs because the averaging process
smooths out fluctuations, as shown in Figs. 4(i) and 4(j).
Indeed, the proposed method based on the Allan variance
can determine the LFF in a stable manner, even under the
experimental constraints.

Figure 6 presents the Allan variance of the LFF, taking into
account the technological limitation of typical oscilloscopes
with regard to data acquisition. First, the time resolution of
the time series was 5 ps in the original analysis [shown in
Fig. 4(j)]. We considered time series that are downsampled to
50, 100, and 200 ps. Second, the resolution of the signal was
limited in the experimental apparatus. Here, we consider 8-bit
quantization, i.e., 256 signal levels between the maximum
and minimum values of the time series, which applies to our
former experimental observation of LFF [15]. We also assume
a sufficiently long time series to prevent the total number
of points from decreasing because of downsampling. After
downsampling, the total number of points in the time series
was 20,000,000.

The blue, green, red, and magenta curves in Fig. 6 show
the Allan variance with an 8-bit resolution when the sampling
was conducted with intervals of 5, 50, 100, and 200 ps, re-
spectively. The smallest evaluable τA is the sampling interval.
Thus, for a coarser time resolution, a smaller τA become inac-
cessible. In general, we see from Fig. 6 that as the sampling
interval increased, the fast peak was slightly overestimated,
while the slow peak remained almost the same. The differ-
ence is attributed to the downsampling, as the quantization
reduced the averaging effect for small τA values in the fast
peak, whereas the slow peak did not suffer from such effects.
The analysis in Fig. 6 considers downsampling up to 200 ps
to evaluate the fast peak; it would be possible to utilize an
experimental apparatus with even longer sampling intervals
when the main objective is the LFF determination and the
detection of the slow peak only.

In addition to the sampling interval and the resolution of
the signal level, the bandwidth of the data acquisition appara-
tus may be a concern. To quantitatively evaluate this effect, we
evaluated the Allan variance of LFF time series after infinite
impulse response low-pass filtering and examined the impacts
of bandwidth limitations. The dashed and dotted curves in
Fig. 6 show the Allan variance when the cutoff frequency
of the low-pass filter was 1 GHz and 100 MHz, respectively.
The slow peak of LFF was successfully captured, even after
the low-pass filtering, whereas the 100-MHz low-pass filter
missed the fast peak. The 1-GHz low-pass filter changed the
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shape of the Allan variance, but only in the small-τA regime.
From these results, similar to the former sampling-interval
discussions, we conclude that even a small-bandwidth appa-
ratus can detect the slow peak and is suitable in cases where
accurate recognition of the fast peak is not needed. Mean-
while, typical laboratory oscilloscopes for chaotic lasers, such
as those used in Ref. [15], have sufficiently large bandwidths
for fast-peak characterization.

Regarding the length of the required time series, although it
is empirical, approximately 100 points of s̄(τA )

k for the largest
τA (τmax

A ) should be sufficient. τmax
A × sampling frequency ×

100 gives the required length of the time series. In our simula-
tion, τmax

A was 103 ns, and sampling frequency was 200 GHz;
thus, the length of the time series was 20,000,000. However,
as shown in Fig. 6, a lower sampling frequency was sufficient
to capture the characteristics of the slow peak, and because the
peak was approximately 100 ns, a smaller τmax

A could be used.
Therefore, a shorter time series should be sufficient for LFF
detection. The number of points can be further reduced using
the refined composite method [25], which has been proposed
in the field of nonlinear time-series analysis in recent years.

Finally, the curve in Fig. 7 shows the ratio of the LFF
peak power to the overall peak power obtained via the PSD
as a function of the optical feedback strength κ . In a previous
study [15], when the ratio exceeded −15 dB, as indicated by
the red line, the time-series data were classified as LFFs. The
threshold value used here (−15 dB) was set with consider-
ation of the device under study, which was a quantum-dot
laser; hence, this threshold value may not be appropriate for
other situations. However, regardless of the threshold level,
the ratio crossed the threshold many times. Thus, it is difficult
to define a specific value of κ for discriminating different
dynamics. The ratio obtained via PSD does not allow stable
identification.

B. Physical insights into the Allan variance peaks

In this section, we discuss the physical interpretation of the
Allan-variance peaks. The Allan variance can be expressed
using the PSD; as indicated by Eq. (6), it is the integral of the
PSD filtered with a window function, which is specified by τA.
Therefore, Eq. (6) indicates that the Allan variance is closely
related to the filter function, which depends on τA. When
the Allan variance exhibits its peak at a certain τA, the filter
function is considered to cover the PSD in the most dominant
way, i.e., that τA represents the dominant band. As mentioned
previously, Eq. (6) indicates that the Allan variance is the PSD
smoothed with the window function varying according to τA.

Thus, the change in the Allan variance with respect to
τA exhibits smaller oscillations than the change in PSD with
respect to the frequency. This indicates that the Allan variance
is a more stable indicator than the PSD, and the LFF determi-
nation method based on Allan variance is considered to be
stable.

From this perspective, the meanings of the two peaks in
the Allan variance of the LFFs become clear. The fast peak
represents the dominant band on the order of GHz, and the
slow peak represents the dominant band on the order of MHz.
From Eq. (6), we can understand why the Allan variance
exhibits many minima in the case of periodic dynamics, as
mentioned in Sec. III. Because the filter function is propor-
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FIG. 8. Resolution of the Allan variance. (a) Allan variance of
the sinusoidal function with additive Gaussian noise. (b) Allan vari-
ance of sine waves of different frequencies added together at a fixed
rate. The red and blue arrows indicate the peaks corresponding to the
5- and 1-GHz components, respectively.

tional to the fourth power of the sinusoidal function, it goes to
zero periodically. In contrast, when the dynamics are periodic,
the PSD is spiky, and when τA is changed, the spikes coincide
with the zeros of the filter function many times, causing the
Allan variance to reach a minimum each time.

C. Resolution of the Allan variance

The representative timescales observed for LFF, i.e., the
slow and fast peaks in the Allan variance, differed by a factor
of approximately 1000. In general situations, however, sys-
tems may contain numerous timescales (more than two), and
these timescales may be closer. Here, we examine the resolu-
tion of the Allan variance using a simple model to clarify how
closely located timescales can be distinguished. The dashed
and solid curves in Fig. 8(a) indicate the Allan variance for
1- and 5-GHz sinusoids, respectively, with 10 dB of additive
Gaussian noise imposed. The frequency difference between
these two is significantly smaller than that in the LFF case.

The solid curve in Fig. 8(b) indicates the Allan variance for
the sum of these sinusoidal signals with a ratio of 1:1. The two
peaks of the Allan variance are successfully distinguished de-
spite the small timescale difference. However, when one of the
components dominates, it becomes difficult to distinguish the
two types of inherent timescales according to their peaks. The
dashed curve in Fig. 8(b) indicates the Allan variance when
the ratio of the 5-GHz amplitude to the 1-GHz amplitude
is 4:1, where the two original components cannot be distin-
guished. In such cases, the timescales need to be farther apart.

V. CONCLUSION

We performed Allan variance analysis of laser chaos-based
complex-intensity time series for the first time. The results in-
dicated that the Allan variance can be used to reliably evaluate
the variability characteristics of time series over a wide range
of timescales, which are manifested by a two-peak structure
in the case of LFFs. Low-frequency components can be char-
acterized in a stable manner compared with conventional PSD
approaches.

Finally, we discuss future prospects. In the present study,
we employed a numerical approach based on the Lang-
Kobayashi equations. Experimental approaches may enhance
the practical advantages of the Allan variance over pure
PSD—particularly for evaluating slow dynamics in the region
from 1 to 10 Hz and below, where RF spectrum analyzers have
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difficulties with accurate measurements. Meanwhile, a deeper
understanding of the multiscale dynamics in lasers and laser
networks, which may interact with external stimuli, will be
important for future functional photonic devices and systems.
Furthermore, an information theory-based understanding of
multiscale chaotic dynamics is an interesting future research
direction inspired by the Allan variance analysis of the present
study. This study paves the way for the understanding and
utilization of fast and slow dynamics and reveals how the
analysis can benefit from the ideas behind the Allan variance.
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