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Scale-free chaos in the confined Vicsek flocking model
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The Vicsek model encompasses the paradigm of active dry matter. Motivated by collective behavior of insects
in swarms, we have studied finite-size effects and criticality in the three-dimensional, harmonically confined
Vicsek model. We have discovered a phase transition that exists for appropriate noise and small confinement
strength. On the critical line of confinement versus noise, swarms are in a state of scale-free chaos characterized
by minimal correlation time, correlation length proportional to swarm size and topological data analysis. The
critical line separates dispersed single clusters from confined multicluster swarms. Scale-free chaotic swarms
occupy a compact region of space and comprise a recognizable “condensed” nucleus and particles leaving and
entering it. Susceptibility, correlation length, dynamic correlation function, and largest Lyapunov exponent obey
power laws. The critical line and a narrow criticality region close to it move simultaneously to zero confinement
strength for infinitely many particles. At the end of the first chaotic window of confinement, there is another
phase transition to infinitely dense clusters of finite size that may be termed flocking black holes.
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I. INTRODUCTION

The Vicsek model (VM) deals with the paradigm of dry
active matter whose components influence their collective
behavior without being immersed in a fluid or other medium
[1,2]. In the VM, N self-propelled particles move with con-
stant speed in a box with periodic boundary conditions, follow
discrete time dynamics, and their velocities are directed to
the average velocity of their neighbors plus an alignment
noise [3,4]. The VM undergoes an ordering transition for
noise below a critical value (or particle density above a critical
value) in which a gas of disordered particles filling the box
evolves to ordered patterns such as traveling bands, or to an
ordered “liquid” within boxes that are not sufficiently large
[2]. This flocking transition has attracted immense interest, for
it seems to describe similar phenomena in very many physical
and biological systems exhibiting critical behavior.

For reasons that are not completely understood, many
biological systems live close to criticality, which induces
power-law behavior of macroscopic variables [5–7]. Exam-
ples include networks of neurons in vertebrate retinas [5]
(see Ref. [7] for the influence of random subsampling of
large retinal datasets in signatures of criticality), amino acid
frequencies in proteins [8], or flocking phenomena in ani-
mals [9–11]. In many such systems, their components interact
only with neighboring ones, defined either metrically or topo-
logically [11]. However, the maximum correlation length
separating two mutually influencing components is propor-
tional to the system size and not to any intrinsic length
associated to individuals. This is a manifestation of scale-free
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behavior and power laws obeyed by macroscopic variables
such as the correlation length, susceptibility to changes in the
polarization order parameter, and dynamic correlation [11].

Insect swarms provide particularly rich empirical data and
peculiar critical behavior [12–20]. Male midges and other
diptera form swarms near visual markers to attract females
for reproductive purposes [12–14]. While small swarms track
the marker shape, larger swarms are more isotropic and shape
independent [14]. In laboratory experiments, swarms form far
from the walls of the enclosure that contains them [18]. Topo-
logical data analysis of experiments shows that the swarm
can be thought of as a condensed phase (the swarm nucleus)
surrounded by a vapor phase (insects leaving and entering
the nucleus [19]). Isotropic swarms lack translation invariance
and their cohesion may be explained by a confining harmonic
potential [20].

Natural swarms present collective behavior and strong
correlations but not global order. The polarization order pa-
rameter (the mean of the directions of insect velocities) is
quite small but the correlation length (measuring the largest
distance between two insects whose velocity fluctuations still
influence each other) is proportional to the swarm size [17]. It
is also much larger than all other length scales, such as insect
size, average separation between insects, etc. Macroscopic
variables, such as the correlation length, the susceptibility
to polarization changes and the dynamic correlation, follow
power laws as functions of the distance to criticality, with
critical exponents that differ from those of equilibrium and
many nonequilibrium phase transitions [15–17,21]. Cavagna
and coworkers have shown that the characteristic timescale,
static and dynamic connected correlation functions depend on
the control parameters (density, noise, etc.) only through the
correlation length. This is the finite-size scaling hypothesis,
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which is similar to that found in second-order equilibrium
phase transitions [21]. Finite-size scaling allows us to extrap-
olate power laws of macroscopic variables obtained for finite
N to the case of infinitely many particles, which characterize
phase transitions [22]. Attempts to use the ordering transition
of the three-dimensional (3D) VM to explain observed criti-
cal exponents produced exponent values quite different from
experimental ones [16,17].

In this paper, we study the 3D VM confined by a harmonic
potential [15–17]. Confining harmonic potentials have long
been proposed as models for swarm behavior [12,13,20]. We
have made a number of discoveries. As the confinement pa-
rameter β decreases, the VM changes from a period 2 attractor
at large confinement values to other periodic, quasiperiodic,
and chaotic attractors. Using β as control parameter, there
are windows of chaotic solutions followed by intervals of
nonchaotic behavior. As the number of particles N increases,
the first chaotic window begins at smaller values of β. Inside
this window, we have found scale-free chaos, for which the
correlation length is proportional to the size of the swarm
for increasing N , the polar order parameter is small and
macroscopic quantities such as correlation length, susceptibil-
ity, dynamic correlation, and the largest Lyapunov exponent
exhibit power laws. At the beginning of the critical region,
a line in the noise-β plane separates chaotic single cluster
from multicluster swarms. Similar to observations [19], the
single cluster swarm consists of a “condensed” nucleus and
particles leaving and entering it. The single-to-multicluster
chaos line and critical region move to β = 0 as N → ∞.
Thus, we have found a scale-free-chaos phase transition. At
the end of the first chaotic window, we have found a different
phase transition to infinitely dense clusters of finite size that is
reminiscent of gravitational collapse [23–25]. The finite-size
clusters of infinitely many particles may be termed flocking
black holes. As N → ∞, the critical line for collapse to them
occurs for β → ∞.

The rest of the paper is as follows. We present the confined
Vicsek model in Sec. II and find different attractors as the
confinement parameter decreases from a large value. Among
them, period 2, period 4 periodic solutions, quasiperiodic
solutions, large period solutions, and chaotic attractors with
positive Lyapunov exponents. Section III discusses algorithms
to calculate the largest Lyapunov exponent (LLE) and how
to distinguish deterministic and noisy chaos from noise, us-
ing Gao et al.’s scale-dependent Lyapunov exponents [26].
Section IV uses ideas from statistical physics, modified cor-
relation functions, and finite-size scaling to obtain the main
results of the paper: the existence of a line of phase transitions
within the noisy chaos region of the parameter space. Sec-
tion V describes a different phase transition from multicluster
chaos to the formation of clusters of finite size and infinite
particle density reminiscent of gravitational collapse [23–25].
Section VI uses topological data analysis to characterize the
phase transitions from single cluster to multicluster chaotic at-
tractors. Section VII discusses our findings and it contains our
conclusions whereas the Appendices are devoted to technical
matters. Appendix A describes our nondimensionalization of
the confined Vicsek model. Appendix B describes the Benet-
tin algorithm [27–29], scale-dependent Lyapunov exponents
[26], and the Gao-Zheng algorithm to extract the largest Lya-

punov exponent from high-dimensional reconstructions of the
chaotic attractor using lagged coordinates [30]. Appendix C
discusses dynamic and static correlation functions, how to
calculate them and different definitions of critical lines at
finite number of particles. Appendix D discusses two solvable
examples illustrating the relation between susceptibility and
correlation time.

II. CONFINED VICSEK MODEL

We have nondimensionalized the VM governing equa-
tions using data from natural swarms (see Appendix A):

xi(t + 1) = xi(t ) + vi(t + 1),

vi(t + 1) = v0Rη

⎡
⎣�

⎛
⎝ ∑

|x j−xi|<R0

v j (t ) − βxi(t )

⎞
⎠
⎤
⎦, (1)

where i = 1, . . . , N , v0 = 1 is a constant speed, R0 = 1, β is
the confinement strength. The position and velocity of the ith
particle at time t are xi(t ) and vi(t ), respectively. In Eq. (1),
�(x) = x/|x| and Rη(w) rotates the unit vector w randomly
within a spherical cone centered at its origin and spanning
a solid angle in (− η

2 ,
η

2 ). The 2D VM is defined similarly.
Initially, the particles are randomly placed within a sphere
with unit radius and the particle velocities point outwards.

The VM exhibits a variety of attractors for different values
of confinement β and alignment noise η, as depicted in Fig. 1
for η = 0 and N = 128. For large β, the swarm occupies the
unit sphere and it is pulsating with period 2: all particles
reverse their velocities at each time step. The center of mass
(CM) of the swarm occupies two positions (β = 60 000) or
four (β = 300, period 4 attractor) as shown in Fig. 1(a). As β

decreases, there appear quasiperiodic attractors interspersed
with periodic attractors with higher periods, and chaotic at-
tractors, cf. Figs. 1(b)–1(f).

Figures 2(a) and 2(b) show how different attractors in
Fig. 1 appear as the parameter β changes. Periodic and
quasiperiodic attractors exist for large confinement values and
quasiperiodicity turns into chaos below β ≈ 30. The chaotic
attractor first looks like a torus and its central hole is filled
as β decreases, cf. Figs. 1(d)–1(f). As shown in cf. Fig. 2(c),
the alignment noise increases LLE values, there are parameter
regions where noise induces chaos and there are scale-free
chaos transitions, which will be discussed later.

III. DETERMINISTIC AND NOISY CHAOS

For small confinement values and appropriate noise, the
VM exhibits chaotic attractors characterized by positive val-
ues of the largest Lyapunov exponent (LLE). It is important
to assess the role of noise. As explained in Appendix B, three
methods to calculate the LLE produce the same values and
yield complementary information: (i) applying the Benettin
algorithm to Eq. (1) [27–29]; (ii) using the Gao-Zheng test
[30] on time traces of the swarm center-of-mass (CM) motion
X(t ) (which could be acquired from measurements of natural
swarms); (iii) scale-dependent Lyapunov exponents from time
traces, which discriminate between chaos and noise [26].

Figure 3(a) is the phase diagram (η, β ) displaying phases
of deterministic, noisy chaos, and noise. Inside the noisy
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FIG. 1. Center of mass trajectories of different attractors for N = 128, R0 = v0 = 1, η = 0 and different β. (a) Period 2 (β = 60 000)
and period 4 (β = 300) attractors. (b) Quasiperiodic attractor that appears at β = 2N = 256. (c) Periodic solutions with larger periods: 6
(β = N = 128), 5 (β ≈ 177), and 13 (β ≈ 225). (d, e) Torus-like chaotic attractor for β = 1 depicted for a long and a shorter time interval. (f)
Chaotic attractor for β = 0.01: the center-of-mass trajectory will fill a sphere-like body if depicted for much longer times. Note that increasing
β confines the motion to smaller volumes.

chaos phase we have indicated the critical lines of scale-free
chaos for different N . Chaos is scale free on those lines
because the correlation length defined in the next section is
proportional to the swarm size for all values of N . To distin-
guish chaotic and noise phases, we have plotted in Fig. 3(b)
the scale-dependent Lyapunov exponent (SDLE) λ(ε). For
εt = ε, the SDLE satisfies ln λ(εt ) = (ln εt+�t − ln εt )/�t ,
where εt and εt+�t are the average separation between nearby
trajectories at times t and t + �t . Appendix B explains how
to calculate λ(ε) from time traces of center-of-mass mo-
tion with m-dimensional lagged vectors [26]. If m = 2, then
Fig. 3(b) shows that for η = 0, λ(ε) is flat at small scale and

decreases for ε ≈ 1. For nonzero noise, λ(ε) decreases,
reaches a plateau, and decreases again as the scale ε increases.
As noise increases, the curves λ(ε) permit distinguishing
regions in the phase plane (η, β ) of Fig. 3(a) where chaos
is either mostly deterministic, substantially altered or even
induced by noise (noisy chaos), and swamped by noise; see
Appendix B and Ref. [26]. The noise level used in the numer-
ical simulations of Refs. [15–17] is 5.65 in our units. Thus, it
is fully inside the noise region of Fig. 3(a), far from the noisy
chaos parameter values we consider here.

When two lagged coordinates are sufficient to reconstruct
the chaotic attractor from CM data, the value of the SDLE

FIG. 2. (a) Bifurcation diagram of the sum of CM coordinates in nondimensional units and (b) largest Lyapunov exponent (LLE) versus
β for η = 0. The boxes in panel (a) about β = N and β = 2N correspond to period 6 solutions and others interspersed with quasiperiodic
solutions, and a period 4 to quasiperiodic transition, respectively. Chaotic solutions appear following the quasiperiodic route to chaos. In panel
(a), note the large increase of the range of CM values as β decreases. (c) Same as panel (b) for η = 0.5. Note how noise increases the value of
the LLE and induces chaos for confinement values that correspond to quasiperiodic attractors for η = 0. The area marked by green arrow in
panel (c) corresponds to the scale-free chaos transitions discussed in the present paper. Other parameters are as in Fig. 1.
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FIG. 3. Scale-free chaos. (a) Phase diagram β vs η exhibiting regions of deterministic and noisy chaos, and of noisy disorder. The vertical
lines at η = 0.2 and 0.9 correspond to the maximum correlation length observed in experiments and to the noise for which the dynamic
correlation function ceases to be flat near t = 0, respectively. Noise swamps chaos for η � 1. The three lines of critical points in the noisy
chaos region correspond to critical confinement βc(N, η) for N = 100, 150, 200. They separate multicluster (M-cluster) from single cluster
(S-cluster) chaos. (b) Largest scale-dependent Lyapunov exponent as a function of the scale parameter ε for N = 100, different values of η,
two lagged coordinates m = 2 and β = βc(N, η), see Appendix B. The LLE is the value of λ(ε) at a plateau (ε1, ε2) whose width satisfies
log10(ε2/ε1) � 1/2 (Appendix B). The vertical lines mark the width of the critical plateau at which: log10(ε2/ε1) = 1/2 and correspond to
the grey vertical dot-dashed line in Panel (a). The black line and arrow mark the very small slope of the SDLE for noise values close to
deterministic chaos. By convention [26], noise swamps chaos when log10(ε2/ε1) < 1/2. (c) Largest scale-dependent Lyapunov exponent as
a function of the scale parameter ε for N = 100, different values of η, and β = βc(N, η) with m = 6, instead of m = 2 as in panel (b).
The averages of the oscillations corresponding to the plateau region in panel (b) increase with the noise η indicating that so does the LLE:
λ1(0) ∼ 0.003, λ1(0.25) ∼ 0.0075, λ1(0.5) ∼ 0.0165, λ1(0.75) ∼ 0.03, λ1(1) ∼ 0.0476.

λ(ε) at the plateau coincides with the LLE calculated directly
from the equations of the model. This occurs for the Lorenz
or Rossler attractors, as explained in Ref. [26]. However, to
reconstruct safely a chaotic attractor, the dimension of the
lagged vectors should surpass twice the fractal dimension
D0 [28,29]. For the VM, we have found that properly re-
constructing the chaotic attractor requires at least six lagged
coordinates. Six-dimensional CM trajectories contain self-
intersections in dimension 2. Figure 3(c) shows that the SDLE
λ(ε) with m = 6 displays oscillations for different noise val-
ues, not a single plateau as in Fig. 3(b). Thus, we need a
different algorithm to calculate the LLE from data. We have
used the Gao-Zheng algorithm [30] that requires constructing
a quantity 	(k) whose slope near the origin produces the
LLE, see Appendix B. These LLE yield the horizontal lines in
Fig. 3(c), which coincide with the average values of the SDLE
oscillations. The latter coincide with LLE calculated from
Eq. (1) and increase with noise. Thus, noise enhances chaos
in the noisy chaos region of Fig. 3(a), which includes critical
lines of scale-free-chaos phase transitions, β = βc(N, η), to
be explained in Sec. IV. Numerical evidence for 100 � N �
5000 suggests that these lines move to β = 0 as N → ∞.
Without confinement, the LLE vanishes and chaos disappears.
This is corroborated by a different argument [31]. The corre-
lation length ξ is bound by the finite velocity of propagation
c multiplied by the time it takes two points to move exponen-
tially far from each other, i.e., 1/λ1:

ξ � c

λ1
. (2)

Thus, a phase transition with infinite correlation length can
only occur for λ1 = 0 [31,32].

IV. PHASE TRANSITIONS WITHIN REGIONS OF CHAOS

Insect swarms have a small polarization order parameter
and exhibit strong correlations [15,16]. To previous authors,

this suggests that insect swarms may be on the disordered
side, close to the ordering transition of the standard VM with
periodic boundary conditions for sufficiently small box size
[15,16]. Beyond a certain box size, the ordering transition
changes from continuous to discontinuous [2,33,34]. The rea-
son is that the uniform ordered phase issuing continuously
from the uniform disordered phase [35–37] is unstable for an
wave numbers below a certain value [38]. Consideration of
the standard VM for small boxes implies an almost uniform
disordered “gas” phase [2,34], despite experimental evidence
that real insect swarms form a “condensed nucleus” far from
walls surrounded by a “vapor” phase [19]. We shall show later
that swarms described by the confined VM near scale-free-
chaos phase transitions also have a small polarization, have
a condensed nucleus surrounded by a particle “vapor,” and
exhibit strong correlations.

Cavagna et al. have used data extracted from observations
of natural swarms to calculate static and dynamic correlation
functions and found power-law behavior for susceptibil-
ity, correlation length and the dynamic correlation function
[15–17]. Their work indicates that the Fourier transform of
the dynamic connected correlation function (DCCF) is the key
tool to find power laws and critical exponents from experi-
mental data [11,17]:

Ĉ(k, t ) =
〈

1

N

N∑
i, j=1

sin(kri j (t0, t ))

kri j (t0, t )
δv̂i(t0) · δv̂ j (t0 + t )

〉
t0

. (3)

Here k, ri j (t0, t ), V, δvi = vi − V, δv̂i = δvi/

√
1
N

∑
j |δv j |2

are the wave number, the distance between particles i and j at
different times (particle positions are calculated in the center
of mass reference frame), the center of mass velocity, the rela-
tive velocity, and the dimensionless velocity fluctuation of the
ith particle, respectively. The brackets in Eq. (3) indicate an
average over the earlier time t0 and an ensemble average over
random initial conditions [17]. See Appendix C for details.
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For natural swarms and their numerical simulations, con-
servation of the number of particles requires adapting the
statistical mechanics definitions of equilibrium correlation
functions, correlation length and susceptibility [21,22]; see
Ref. [11]. The equilibrium static connected correlation func-
tion (SCCF) Ĉ(k, 0) reaches a maximum at k = 0, which is
the susceptibility [22]. However, Eq. (3) yields Ĉ(0, 0) = 0.
For finite N and near a phase transition, Ĉ(k, 0) reaches a
maximum at a critical wave number kc > 0. This maximum
is the susceptibility χ , which tends to infinity as N → ∞ at
the critical point [11]. The FSS hypothesis implies that kcξ (ξ
is the correlation length) is a number of order 1 and a possible
choice is ξ = 1/kc [11].

How do we obtain the critical confinement βc(N, η)? From
the theory of equilibrium phase transitions, we would expect:
(i) the maximum and the inflection point of the SCCF versus
β tend to infinity as N → ∞ for fixed alignment noise; (ii)
the correlation (relaxation) time of the DCCF at wave number
kc tends to infinity as N → ∞ (critical slowing down). See
two solvable examples illustrating the relation between sus-
ceptibility and correlation time in Appendix D. We will use
criteria (i) and (ii) to identify lines of transitions in the chaotic
phases of the confined VM. As N → ∞, these lines all go
to β = 0 at the same rate, thereby characterizing a unique
scale-free-chaos phase transition at N = ∞. By an abuse of
notation, we also denote βc(N, η) and the other critical lines
(see below) at finite N as “lines of phase transitions.”

A. Critical confinement from correlation time

1. Correlation time

For the DCCF, the dynamic scaling hypothesis implies

Ĉ(k, t )

Ĉ(k, 0)
= f

(
t

τk
, kξ

)
= g(kzt, kξ ); g(t ) = Ĉ(kc, t )

Ĉ(kc, 0)
, (4)

with kc = argmaxkĈ(k, 0). Here z is the dynamic critical
exponent and τk = k−zφ(kξ ) is the correlation time of the
normalized DCCF (NDCCF) (4) at wave number k obtained
by solving the equation [17,39]:

tmax∑
t=0

1

t
sin

(
t

τk

)
f

(
t

τk
, kξ

)
= π

4
. (5)

In Eq. (5), tmax is the maximum time in experiments or in
VM simulations [17]. For pure exponential relaxation near an
equilibrium phase transition, τk obtained by solving Eq. (5)
equals the relaxation time [17,39]. The NDCCF of a chaotic
attractor first relaxes rapidly and then it exhibits damped
oscillations as time elapses, cf. Fig. 4(a). The rapid relax-
ation of g(t ) at short times is reminiscent of behavior near
equilibrium phase transitions captured by Eq. (5). In simple
models such as a damped harmonic oscillator forced by white
noise, the DCCF has poles whose real parts also appear as
reciprocal relaxation times in time-dependent exponentials;
see Appendix D. The SCCF contains the same poles and one
of them has zero real part at the beginning of instabilities.
In second order equilibrium phase transitions, one vanishing
pole corresponds to a diverging susceptibility maximum and
marks the critical temperature in the thermodynamic limit.
Similarly, the reciprocal relaxation-correlation time of the

FIG. 4. Dynamic scaling of the NDCCF. g(t ) versus (a) t , and
(b) kz

ct , for β = βc and the different values of N listed in the inset
and z ≈ 1. Here η = 0.5.

DCCF vanishes at the critical temperature and can also be
used to find it. Thus, in principle we could find the critical
value of the confinement by finding the susceptibility maxi-
mum or, equivalently, the maximum correlation time. At the
thermodynamic limit, the susceptibility becomes infinite and
so does the correlation time (critical slowing down). We now
use the same ideas to find the equivalent correlation time for
the confined VM. A caveat is in order. Due to conservation of
particles, Ĉ(0, 0) = 0 and the definition of susceptibility used
in equilibrium statistical mechanics has to be changed for the
VM; see Appendix C. That the real parts of the poles of the
susceptibility are proportional to reciprocal correlation times
is no longer guaranteed; see Appendix D.

Let us endeavor to give a physical interpretation of τkc , the
correlation time at kc ∼ 1/ξ . At fixed noise η, Fig. 5(a) dis-
plays the smallest time tm(β, N ) at which Ĉ(kc, t ) = 0 and the
correlation time τkc as functions of β for N = 100, 200, 400.
The time tm(β, N ) seems a reasonable choice for the cor-
relation time but it varies with β. The maximal possible
correlation time tm(β, N ) would correspond to the largest
negative real part of the eigenvalue posed by our hypothetical
linear stability criterion. It turns out that tm(β, N ) increases
abruptly for a certain value βc at which τkc is essentially min-
imum; see Fig. 5(a). Thus, β = βc marks the largest possible
correlation time based on the extension of tm(β, N ) for β �
βc. Alternatively, the minimum value of τkc given by Eq. (5)
and reached for β = βc, marks the same correlation time.
Figure 5(b) shows that the minimum of τkc follows a power
law τkc ∼ k−z, with exponent z = 1.01 ± 0.01. For N = 100,
Fig. 5(c) shows that, at β slightly larger than βc, the first
local minimum of Ĉ(kc, t ) becomes positive and the minimum
tm having Ĉ(kc, t ) = 0 jumps to a much larger value. This
explains the abrupt jump of tm(β, N ) at β = βc, which cor-
responds to the dashed line in Fig. 5(a). As N → ∞, βc → 0
and the characteristic timescale tends to infinity (critical slow-
ing down). Figure 5(c) also shows that the correlation length
decreases and the time-averaged polarization 〈W 〉t , where W
is defined by

W (t ; η, β ) =
∣∣∣∣∣∣

1

N

N∑
j=1

v j (t )

|v j (t )|

∣∣∣∣∣∣ (6)

(cf. Appendix A), decreases as the confinement decreases.

2. Collapse of the NDCCF

We have obtained a power law τkc ∼ k−z
c with z = 1.01 ±

0.01 for kcξ = 1, as shown in Fig. 5(b). For this value of
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FIG. 5. (a) Smallest time tm(β; N ) such that g(tm ) = 0 (dashed curves) and characteristic timescale τkc (β; N ) (continuous curves) as
functions of β for N = 100, 200, 400. The minimum characteristic timescale is close to the abrupt growth of tm(β; N ) and marks the
scale-free-chaos phase transition. (b) Characteristic timescale, τk , computed at kc = 1/ξ for different N , as a function of k (log-log scale):
τkc ∼ k−z

c with z = 1.01 ± 0.01. (c) Normalized DCCF vs nondimensional time for different confinement values marked and N = 100. The
inset lists the values of β, correlation length ξ and time-averaged polarization 〈W 〉t for the three curves g(t ). In this figure, η = 0.5.

z, Fig. 4(b) illustrates how NDCCF curves g(t ) collapse to
a single one in terms of kz

ct at the scale-free chaos line
for 0 < kz

ct < 4. Moreover, NDCCF curves drop to values
close to zero for kzt > 5 but they do not collapse for those
larger times unlike critical behavior near equilibrium phase
transitions. What happens? We surmise that some regions of
the chaotic attractors are much more frequently visited than
others, which indicates that different length and timescales
coexist within the attractor. This can be ascertained by finding
the multifractal dimension Dq. After a long transient (30 000
time steps), a set of M values of the CM position �xi = X(ti ),
i = 1, . . . , M, form a Poincaré map of the attractor. Then we
define the multifractal dimension Dq [40–42],

Dq = 1

q − 1
lim
r→0

ln[Cq(r)]

ln(r)
, (7)

Cq(r) = 1

M

M∑
i=1

⎡
⎣ 1

M

M∑
j=1

θ (r − |�xi − �x j |)
⎤
⎦

q−1

, (8)

where θ (x) is the Heaviside unit step function, M ≈ 70 000,
and Cq(r) is the generalized correlation function. D0, D1 and
D2 are the box counting (capacity) dimension, the information
dimension and the correlation dimension, respectively. As we
vary q, different regions of the attractor will determine Dq.
D∞ corresponds to the region where the points are mostly
concentrated, while D−∞ is determined by the region where
the points have the least probability to be found. If Dq is a
constant for all q, then the CM trajectory will visit different
parts of the attractor with the same probability and the point
density is uniform in the Poincaré map. This type of attractor
is called trivial, whereas a nonconstant Dq characterizes a
nontrivial attractor with multifractal structure. Figure 6 shows
that the box-counting dimension D0 and Dq for q > 0 undergo
a downward trend with increasing N (decreasing βc). Then
the dimension of the more commonly visited sites of the
attractor decreases. Furthermore, we shall see below that the
positive LLE tends to zero and chaos disappears as β → 0.
However, the chaotic attractor remains multifractal: different
timescales persist [29]. Thus, a single rescaling of time as in
Fig. 4(b) cannot collapse the full NDCCF in our simulations.
Curiously, the same collapse of the NDCCF as a function
of kz

ct only for 0 < kz
ct < 4 occurs using data from natural

swarms, as shown in Figs. 2(a) and 2(b) of Ref. [17] for

z = 1.2 (experimental data yield z = 1.12 ± 0.16, using the
power law τkc ∼ k−z

c [17]).

3. Critical exponents

Having found the critical confinement βc(N ; η) as the value
of β for which τkc is minimum, we can find the power laws and
the critical exponents for the correlation length, susceptibility,
time-averaged polarization order parameter, and the LLE λ1

in terms of β = βc(N ; η):

χ (β, N, η) ≡ max
r

Q(r) ∼ β−γ ,

ξ ≡ argmaxrQ(r) ∼ β−ν, (9)

λ1 ∼ βϕ ∼ N− ϕ

3ν , 〈W 〉t ∼ βb, (10)

as β = βc(N ; η) → 0 with N 
 1. Here Q(r) is the cumula-
tive real-space correlation function, which we define below.

4. Real-space susceptibility

To calculate the susceptibility, we have used the maximum
of the cumulative real-space correlation function (correspond-
ing to the first zero r0 of the real-space correlation function,
which is now the correlation length) at βc(N ; η) [15,16]:

Q(r) = 1

N

N∑
i=1

N∑
j �=i

δv̂i · δv̂ jθ (r − ri j ). (11)

As shown in Appendix C, selecting Ĉ(kc, 0) as the suscep-
tibility does not produce a monotonic function of βc or of

FIG. 6. Multifractal dimension [42] Dq vs q at βc(N ; η = 0.5).
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FIG. 7. (a) Scaling of the dimensionless correlation length with
β: ξ ∼ β−ν , ν = 0.436 ± 0.009. (b) Scaling of the real-space suscep-
tibility with β: χ ∼ β−γ , γ = 0.92 ± 0.05 for N = 500, 750, 1000,
1100, 1200, 1300, 2500, 5000. (c) The correlation length increases
linearly with L. (d) Correlation length ξ = r0 and NDCCF flatness
h(0.1) vs noise. Black vertical bars delimit the region of noisy
chaos, occurring for smaller noise values than the ordering transition
[15–17]. Green vertical bars are compatible with observations of nat-
ural swarms: the leftmost bar marks the largest observed correlation
length and the rightmost bar marks when NDCCF flatness ends. (e)
Time-averaged polarization versus β: 〈W 〉t ∼ βb, b = 0.58 ± 0.01.
(f) LLE vs β for different N , λ1 ∼ βϕ , calculated by the Benettin
algorithm [27] for the complete system (crosses), from CM motion
(squares) and from the NDCCF (triangles). We get ϕ = 0.43 ± 0.03
(crosses and squares), and ϕ = 0.24 ± 0.02 (triangles). In panels (a),
(c), and (e), N values are as in Fig. 4(b), η = 0.5.

N . Thus, Ĉ(kc, 0) cannot be used to fit a power law over an
extended range. However, 1/kc and r0 are linearly related, and
using either one as correlation length yields the same critical
exponent ν; see Appendix C. A similar relation between 1/kc

and r0 also holds for midge data; see Fig. SF1 of Ref. [17].
To calculate the LLE we can use the Benettin algorithm for
the VM of Eq. (1) or a convenient time series obtained from
the simulations, e.g., the CM evolution or the NDCCF; see
Appendix B.

Figures 7(a) and 7(b) depict how correlation length and
real-space susceptibility scale with β and Fig. 7(c) confirms
that the correlation length is proportional to the size of the
swarm. For η = 0.5, we obtain the critical exponents ν =
0.436 ± 0.009 and γ = 0.92 ± 0.05, respectively. Figure 7(d)
shows that the correlation length decreases with alignment
noise at critical confinement. Correlation length values in the
region of noisy chaos are ξ times 4.68 cm, and they are
compatible with observations of natural swarms [15–17].

Another feature of swarm data compatible with our numer-
ical simulations of the confined VM is that the NDCCF is
flat at the origin. Referred to Eq. (4), we define the “flatness”
function as

h(x) = −1

x
ln f (x, 1), x = t

τk
, (12)

for a fixed value of the noise η. A perfectly flat NDCCF im-
plies that h(0) = 0. However, h(x) from experiments changes
abruptly below x = 0.1 as shown in Fig. 3(b) of Ref. [17].
The same figure yields an upper value 0.3 of h(0.1) for
natural swarms, which we arbitrarily select as the transition
value from flat to nonflat NDCCF. For the confined VM,
the transition value occurs at η = 0.9 in Fig. 7(d), which is
close to the change to noise from noisy chaos in Fig. 3(a).
Figure 7(d) shows that the correlation length decreases and
h(0.1) increases with increasing η. Thus, observed correlation
lengths and flat NDCCFs occur in the region of noisy chaos
of the confined VM that contains the scale-free-chaos phase
transitions. Figure 7(e) depicts the power law of the time-
averaged polar order parameter 〈W 〉t versus β, which shows
the scale-free-chaos phase transition to be of second order
with critical exponent b = 0.58 ± 0.01.

5. Bound for the LLE critical exponent

The LLE λ1 decreases as βc(N ; η) does according to the
power law (10) with critical exponent ϕ = 0.43 ± 0.03 pro-
vided the LLE is calculated using the Benettin algorithm on
Eq. (1) or time traces of the CM as explained in Appendix B.
See Fig. 7(f). For chaotic systems with short range interactions
such as the confined VM, Eq. (2) together with Eqs. (9) and
(10) imply that βϕ−ν � c. To be consistent as β → 0, this
relation then implies

ϕ � ν. (13)

Were the dynamic scaling of Eq. (4) to hold for all time,
eλ1t would be a function of kzt ; therefore λ1 ∼ kz

c ∼ βzν , and
ϕ = zν. Equation (13) then produces z � 1, which agrees with
all our simulations carried out with the Benettin algorithm
or reconstructing the chaotic attractor from center of mass
data. Thus, ϕ ≈ zν � ν approximately holds for one-time
functions such as the center of mass trajectory with η = 0.5.
However, this relation fails for the two-time NDCCF, which
has a smaller ϕ; see Fig. 7(f).

B. Critical confinement from the static correlation

At critical confinement, the susceptibility χ = maxrQ(r),
given by Eqs. (9) and (11) for fixed βc(N ; η), η and N , be-
comes infinity as N → ∞. For given values of the alignment
noise η, we can find other values of β, e.g., the local maximum
and the inflection point of χ = χ (β, N ; η) as a function of
β, which also tend to infinity as N → ∞. At finite N , these
confinement values, βi(N ; η) (inflection) and βm(N ; η) (local
maximum), are different from βc(N ; η), as shown in Fig. 8(a).
Figure 8(b) shows that there are different regions of positive
LLE separated by nonchaotic regions. The first chaotic win-
dow starts at very small positive values of β that cannot be
appreciated at the scale of the figure. The global maximum of
the susceptibility is reached at large values of β corresponding
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FIG. 8. (a) Real-space susceptibility (log-log scale) for N =
300, 500, 750, 1000, 2000. (b) LLE and susceptibility versus β for
N = 300, 500. Circles, squares, triangles and asterisks mark βc, βi,
βm (local χ maximum), and βM (global χ maximum of the sus-
ceptibility, at the beginning of the third chaotic window, marked
by I3 in panel (b), respectively. (c) βc, βi, βm, and βM versus 1/N .
(d) Ratios βc/βi = 0.48 + 37.76/N and βc/βm = 0.37 − 20.48/N as
N 
 1. (e) LLE versus β for N marked in the inset. (f) Same as
panel (e) with axes λ1/β

ϕi
i and β/βi, ϕi = 0.33, showing collapse of

curves. (g) Time-averaged polarization versus β for N marked in the
inset. Circles correspond to the critical confinement βc(N ; η), squares
correspond to the inflection point of the susceptibility βi(N ; η). Here
η = 0.5.

to the beginning of the third chaotic window in Fig. 8(b),
which is different from the scale-free chaos window of βc,
βi, βm. Unlike the isolated βM , the values βc, βi and βm tend
to 0 as N → ∞, as observed in Fig. 8(c). Figure 8(d) shows
that the ratios βc/βi and βc/βm tend to constant values (about
0.48 and 0.37, respectively) as N → ∞. Thus, for sufficiently
large N , the critical exponents are the same for the lines βc, βi,
βm and therefore they correspond to the same phase transition.

Figures 8(e) and 8(f) show that the LLE versus β curve
reaches a local maximum at βi. Thus, maximum “chaoticity”
is reached at the line of susceptibility inflection points. This
qualitative feature of the line of inflection points is one of
the reasons we have decided to use them to characterize the

FIG. 9. Collapse of NDCCF data as function of (a) k1.5t at the
inflection point and of (b) k2t at the local maximum of the suscepti-
bility on the indicated narrow interval near t = 0. Here η = 0.5.

transition at finite N , at the same level as the line of local
maxima usually selected in the statistical physics literature.
Figure 8(g) shows the average polarization as a function of
ln β for N = 250, 500, 1000. As N increases, βc, βi, βm si-
multaneously decrease to zero and so do the corresponding
polarization order parameters, which suggest that these lines
represent a second order phase transition at N = ∞. Fig-
ures 9(a) and 9(b) show NDCCF collapse of the NDCCF at
βi(N ; η) and βm(N ; η), respectively. The respective dynamical
critical exponents are zi = 1.5 on 0 < kzt < 0.5 and zm = 2
on 0 < kzt < 0.25. These exponents have been visually fitted
because the correlation times obtained using Eq. (5) were un-
able to collapse data, unlike what happened for the transition
from single cluster to muticluster chaos at βc. Furthermore,
the minima of g(t ) are all larger than 0.3, hence they are no
longer close to zero as in Fig. 4. The different dynamical criti-
cal exponents at the different critical lines could be associated
to different length scales in the multifractal chaotic dynamics
at the three critical lines. The connection between dynamics
and susceptibility in nonequilibrium phase transitions needs
further study.

V. SUBTRACTING ROTATION AND DILATION FROM CM
VELOCITY AND FLOCKING BLACK HOLE PHASE

TRANSITION

The confined VM is said to experience an ordering transi-
tion at high values of noise. In Refs. [16,17], the noise value
chosen for numerical simulations is η = 0.45 × 4π = 5.65
in our units. This value is well inside the noise region of
Fig. 3(a). We can expect some remnants of coherent structures
exhibiting rotation and dilation there. In equilibrium phase
transitions, the order parameter is independent of time and
space, and it is defined using ensemble averages. To mimic
these transitions, in our definitions of DCCF and SCCF for
large noise, it is convenient to subtract overall rotation and
dilation from the CM velocity at each time step when defining
fluctuations of the velocity, as explained in Appendix C; see
also Refs. [15,16]. What is the effect of these operations?
Below the critical line βc(N ; η) but close to it, the swarm
occupies a single cluster and it is disperse. Figure 10(a) shows
that βc(N ; η) and βi(N ; η) do not change upon subtracting
rotation and dilation from the CM velocity. However, the
points on βm(N ; η) are not local maxima of χ versus β in
Fig. 10(a). The line of global maxima of susceptibility versus
β moves to the end of the first chaotic window of Fig. 8(b).
The different chaotic windows for N = 500 are shown in
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FIG. 10. Real-space susceptibility (log-log scale) versus β

for N = 300, 500, 750, 850, 1000, 2000. Circles and squares mark
βc(N ; η) and βi(N ; η), which are the same with or without sub-
traction of rotation and dilation from CM motion. Triangles are the
local maxima of susceptibility, βm, without subtractions. Lines Ii, Fi
(i = 1, . . . , 4) mark the initial and final β value of the ith chaotic
window. Crosses mark βM (global χ maximum of the susceptibil-
ity), which coincides with the line F1. (b) LLE and susceptibility
versus β for N = 500. Note the different chaotic windows and the
lines Ii, Fi.

Fig. 10(b). When the swarm splits into several clusters, they
rotate and move with respect to each other. These effects
are small at β = βi(N ; η) (where the LLE reaches a local
maximum) but the local maxima of the susceptibility versus
β disappear. Thus, the lines βc(N ; η) and βi(N ; η) move to
β = 0 as N → ∞ at the same rate, thereby providing a finite-
size approximation of the scale-free-chaos phase transition.
Using β = βc(N ; η), the critical exponents ν = 0.43 ± 0.01
and z = 1.00 ± 0.03 do not change when rotation and dilation
are subtracted from CM motion in velocity fluctuations. We
now have γ = 0.85 ± 0.04. See Appendix C. What about the
line βM (N ; η) of global maxima?

The correlation length is finite at βM (N ; η), ξ ≈ 2.5 for
η = 0.5 and N values up to 2000. We have checked that
the end of the first chaotic window (at which the LLE be-
comes zero again) and the β values of all successive chaotic
windows increase with N . What happens? At the end of
the chaotic window the clusters in the chaotic swarms are
confined to regions of size ξ ≈ 2.5 or smaller (recall that
large β values confine all particles to a sphere of diameter
2 with period 2 motion in the deterministic case, η = 0). As
N , and therefore βM (N ; η), increase, more and more particles
enter these regions, which implies that the average minimal
distance between neighbors, x, decreases to zero as N →
∞. Thus, confinement becomes infinitely strong, the average
distance between neighbors tends to zero, and the particle
density inside clusters becomes infinite. We call these clusters
flocking black holes. Qualitatively, this situation resembles
gravitational collapse of self-gravitating particles [24,25]. In
particular, type II gravitational collapse to a zero mass black
hole is analogous to second-order phase transitions with x →
0 instead of ξ → ∞ [23]. By using 1/x instead of ξ , we can
define critical exponents analogous to ν and γ for this flocking
black hole phase transition:

x ∼ β−ν, χ ∼ βγ , τkc ∼ x−z, (14)

with β = βM (N ; η) → ∞ as N → ∞. Subtracting rotation
and dilation from CM motion, we find the critical exponents,
ν = 0.35 ± 0.08, γ = 0.97 ± 0.08. Using fluctuations about
the CM velocity without subtractions, βM (N ; η) is larger and
we can define similar critical exponents with it. We find

FIG. 11. (a) Flatness function h(x) and (b) NDCCF g(t ) for N =
300, η = 0.5 and β values indicated in panel (b) inset.

ν = 0.33 ± 0.02, γ = 1.03 ± 0.03. In both cases, the finite
correlation length takes on the value 2.5, and the dynamical
critical exponent is z = 0. The NDCCF decays at short times
and it later oscillates. All curves for different N exhibit the
same initial decay but the successive oscillations are irregular
and displaced from one another.

A. Critical exponents from confined VM simulations

We have found a line of phase transitions βc(N ; η) rep-
resenting the change from scale-free single to multicluster
chaos. See Sec. VI. The critical line is inside the confinement
region where the NDCCF is flat at the origin, which cor-
responds to underdamped relaxation dynamics. For η = 0.5
(middle of the noisy chaos region), as β = βc(N ; η) → 0,
N → ∞, we have obtained ν = 0.436 ± 0.009 (correlation
length), γ = 0.92 ± 0.05 (real-space susceptibility), and z =
1.01 ± 0.01 (dynamic exponent). The critical exponent for
the LLE law is approximately ϕ = zν. The critical exponents
change little for 0.1 < η < 1. Other critical lines based on the
inflection points or local maxima of susceptibility versus β

collapse to β = 0 at the same rate as N → ∞ and therefore
represent the same phase transition; cf. Fig. 8(d).

While βc(N ; η) and βi(N ; η) do not change after subtract-
ing rotation and dilation from the CM velocity, the values
of the correlation length and time change, while still grow-
ing with N . For the critical line βc(N ; η), we have found
the critical exponents ν = 0.43 ± 0.01, γ = 0.85 ± 0.04 and
z = 1.00 ± 0.03, which change but little with respect to the
previous values.

The line of maxima of the susceptibility versus confine-
ment curve, βM (N ; η), is near the end of the first chaotic
window and the LLE are small there. βM (N ; η) goes to infinity
with N and the correlation length goes to a finite constant.
This phase transition at infinite confinement strength produces
a collapse of particles inside bounded and infinitely dense
clusters with vanishing LLE and critical exponents given by
Eq. (14). For this flocking black hole phase transition, we have
found ν = 0.35 ± 0.08, γ = 0.97 ± 0.08 for η = 0.5 and N
values up to 2000.

B. Flatness function

A feature shared by swarm data and the scale-free-chaos
phase transition is that the NDCCF is flat at small times.
Figure 11(a) depicts the flatness function h(x) of Eq. (12)
for a range of β ∈ (0, βM ), where (after subtracting rotation
and dilation) βM is at the end of the first chaotic window of
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Fig. 8(b). For 0 < β 
 βc(N ; η), h(x) ∼ 1 (as x → 0), which
implies exponential relaxation of the NDCCF with time, typ-
ical of overdamped dynamics. For these small values of β,
noise overwhelms coherent dynamics induced by confinement
and the LLE is negative. As β increases towards βc(N ; η),
h(x) decreases until it is ≈0 for x → 0. Then, VM dynamics
is chaotic and underdamped. Figure 11(a) shows the change
in h(x) for different values of β. See Fig. SF4 of Ref. [17]
for examples of overdamped and underdamped dynamics in
the stochastic oscillator. Figure 11(b) shows that the NDCCF
exhibits oscillations for underdamped dynamics and a slower
decay for overdamped noisy dynamics. The lines NDCCF
oscillate at positive values of g(t ) for βi(N ; η) and βm(N ; η)
(this later line corresponds to the local maximum without
subtracting rotation and dilation from CM motion), whereas
the oscillations have larger amplitude for larger values of β

and g(t ) may take on negative values. Thus, the flatness func-
tion indicates that the confined VM displays underdamped
dynamics in the critical region about βc(N ; η) for the scale-
free-chaos phase transition.

Inside the noise region of Fig. 3(a), the NDCCF decays
exponentially at short times and it is nonflat according to the
definition (12). This is the case for the noise value η = 5.65
(in our units) used in Refs. [15–17]. This exponential decay
led to the hasty conclusion that the confined VM displays
overdamped dynamics [17], and to a subsequent search for
convenient underdamped dynamics producing a flat NDCCF
near t = 0 [43]. However, equations with discrete time dy-
namics, such as the harmonically confined VM, may exhibit
overdamped and underdamped dynamics on different param-
eter ranges.

In experiments, the smallest measured value of h(x) occurs
at x = 0.1 and h(0.1) < 0.3 for natural swarms [17]. At the
VM order-disorder phase transition, h(0.1) ≈ 1 > 0.3 (expo-
nential decay, clearly nonflat NDCCF) [17]. For the confined
VM, the transition value occurs at η = 0.9 in Fig. 7(d) and
in Fig. 3(a), which is close to the change to noise from
noisy chaos at η = 1 (much lower than the noise for the
order-disorder phase transition of the VM in a box with
periodic boundary conditions [15–17]). As noise increases,
Fig. 7(d) shows that the correlation length decreases and
h(0.1) increases with increasing η. Thus, observed correlation
lengths and flat NDCCFs occur in the region of noisy chaos
of the confined VM that contains the scale-free-chaos phase
transitions.

VI. PHASE TRANSITION AND TOPOLOGICAL DATA
ANALYSIS

The structure of clusters changes as β surpasses βc, the crit-
ical confinement calculated from relaxation time. Figure 12(a)
shows the swarm particles and their short time trajectories
for β < βc(N ; η): the particles form a single cluster. Fig-
ures 12(b) and 12(c) correspond to β = βc(N ; η) and β >

βc(N ; η), respectively. For β = βc(N ; η), the particles form
a single cluster and fill a smaller volume, whereas for β >

βc(N ; η), the swarm has split in several clusters. Figure 8(f)
shows that the average polarization is very small for sparse
single-cluster chaos, β < βc(N ; η), and it increases with β

in the multicluster chaotic region, β > βc(N ; η). Multicluster

FIG. 12. Chaotic swarms of N = 300 particles showing short
trajectories of the particles for confinements near its critical value,
β = βc(N ; η) and η = 0.5: (a) Sparse single cluster chaos for β <

βc(N ; η), (b) compact single cluster chaos at β = βc(N ; η), multi-
cluster chaos for (c) β > βc(N ; η) and for (d) β = argmax χ (β ) =
19.8 (global maximum without subtracting rotation and dilation from
CM motion). (e) For β = 21, three chaotic clusters move around a
central sphere (located by a black circle) where other particles are
confined; and (f) for β = 25, only two chaotic clusters remain and
more particles are trapped in the central sphere.

behavior is even clearer when β gives the global maximum of
the susceptibility as in Fig. 12(d). For larger values of β, some
particles start being confined in a sphere centered at the origin
and their number increases with β, as shown in Figs. 12(e)
and 12(f).

These findings can be rendered more precise by topo-
logical data analysis (TDA) [19,44,45]. TDA borrows ideas
from persistent homology, traditionally used to distinguish
structures in low-dimensional topological spaces (e.g., circle,
annulus, sphere, torus, etc.) by quantifying their connected
components, topological circles, trapped volumes. For in-
stance, given a point cloud x1, ..., xN in R3, we can infer
whether it represents a sphere or a torus by calculating the
homologies H0, H1, H2, and the corresponding Betti numbers
b0, b1, b2. The different homologies can be calculated regard-
less of the dimension of the underlying space, as long as a
distance or metric is defined [44].

We consider midges (or particles) as data points from a
sampling of the underlying topological space of the swarm.
Thus, we have a finite set of data points from a sampling of
the underlying topological space. We measure data homology
by creating connections between nearby data points, varying
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FIG. 13. Simplices for filtration values r = rM
2 r̃, r̃ =

0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12 at a representative time
of the swarm evolution. Here rM = 150.22 is the maximum distance
between two points in the cloud, β = 0.001 < βc(300) = 0.0075.
As r increases, a single dominant cluster absorbs neighboring points
and small components becoming a large “compact” component.

the scale over which these connections are made (as given by
the filtration parameter), and looking for features that persist
across scales [44,45]. This can be achieved by building the
Vietoris-Rips complex from all pairwise distances between
points in the dataset. Assume spheres of diameter r circle each
particle. For each value of the filtration parameter r > 0, we
form a simplicial complex Sr by finding all gatherings of k + 1
points such that all pairwise distances between these points
are smaller than r. Each such gathering is a k-simplex. The
simplicial complex Sr comprises finitely many simplices such
that (i) every nonempty subset of a simplex in Sr is also in Sr ,
and (ii) two k-simplices in Sr are either disjoint or intersect
in a lower-dimensional simplex. In Sr , 0-simplices are the
data points, 1-simplices are edges, connections between two
data points, 2-simplices are triangles formed by joining three
data points through their edges, 3-simplices are tetrahedra,
and so on. See Figs. 13 and 14, which are the counterparts
of Figs. 12(a) and 12(c), respectively. These figures illustrate
how TDA automatically characterizes the formation of a loose
single swarm for β < βc and of several tight smaller clusters
for β > βc. In the latter case, the single cluster resulting for
sufficiently large filtration parameter contains large holes.

FIG. 14. Same as Fig. 13 for β = 0.025 > βc(300) with rM =
33.48. As r increases, small separated components form and eventu-
ally connect leaving large holes.

To quantify the topological structure of the swarm data
points, the Betti numbers depicted in Fig. 15 are useful.
Within the set of all k-simplices in Sr , we can distinguish
closed submanifolds called k-cycles, and cycles called bound-
aries because they are also the boundary of a submanifold.
A homology class is an equivalence class of cycles modulo
boundaries. A homology class Hk is the set of independent
topological holes of dimension k, represented by cycles which
are not the boundary of any submanifold. The dimension of Hk

FIG. 15. (a) Time-averaged Betti number 〈b0〉t versus filtration
parameter r for βc(N ; η) and different N ; (b) Same for scaled av-
eraged Betti number 〈b0〉t/N versus scaled filtration parameter r/rc

where rc(N ) is the inflection point of each curve marked with dia-
monds in Panel (a). Here η = 0.5.
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is the kth Betti number bk . For instance, b0 is the number of
connected components shown in Fig. 15, b1 is the number of
topological circles, b2 is the number of trapped volumes, and
so on. See Refs. [44,45] for precise definitions. At critical con-
finement, we can depict average Betti numbers, 〈b0〉t (number
of connected clusters averaged over several time snapshots of
the swarm), versus r for different N . These Betti numbers
collapse when we rescale them using the inflection point of
each curve [19], rc(N ); see Figs. 15(a) and 15(b).

Figure 16 illustrates the trend to a more compact single
swarm and to swarm splitting as β increases past its critical
value. As r increases, the number of clusters with a single
particle decrease monotonically, as seen in the upper panel
of Fig. 16(a). However, the upper panel of Fig. 16(b) shows
that the number of particles in the largest cluster increase
monotonically for β < βc but it increases with plateaus and
abrupt jumps for β > βc. These abrupt features indicate that
the largest cluster absorbs single particles as r increases if
β < βc, whereas several large clusters form and are abruptly
absorbed by the largest cluster at particular values of r for
β > βc. The lower panels in Figs. 16(a) and 16(b) confirm
these observations. Clusters with more than one particle form
gradually if β < βc and abruptly if β > βc. The plateaus and
jumps in the number of particles within the second, third and
fourth largest clusters in Figs. 16(b) and 16(c) indicate absorp-
tions thereof by the largest cluster. These figures also illustrate
the different cluster structure below and above the critical
confinement βc. When β > βc, we observe the presence of
several relevant clusters with a large number of particles.
These clusters persist as the filtration parameter increases.
Note that it is possible to have more than one cluster with the
same number of particles.

VII. DISCUSSION AND CONCLUSIONS

A. Purpose

Here we discuss a hitherto unsuspected and unexplored
phase transition of free-scale chaos in the harmonically con-
fined 3D Vicsek model. The same model exhibits a different
phase transition to clusters of finite size containing infinitely
many particles. This work is motivated by observations of
natural midge swarms, which comprise at most hundreds of
insects and form about a marker [15–20]. The validation of
the scale-free-chaos scenario by experimental data is outside
the scope of this paper.

B. Experiments and methodology

Cavagna et al.’s observations unveiled finite-size scaling
and power laws in swarms of male midges. They adapted def-
initions from statistical physics to define correlation functions,
correlation lengths and calculate critical exponents from data
[15–17]. To interpret data, they used the “gas” phase of the 3D
VM confined in a finite box with periodic boundary conditions
and ideas about universality. Contrastingly, midge swarms in
an enclosure form a “condensed” nucleus far from enclosure
walls surrounded by a “vapor” of insects that exit from, re-
turn to, and hover about the nucleus [19]; see Fig. 12(b) for
a similar configuration of the scale-free-chaos phase in our
simulations. While this is different from an gas filling a box

FIG. 16. Hierarchical TDA clustering. (a) Number of clusters
with 1 particle (up) and with more than 1 particle (down) for β =
0.025 (left red points) and β = 0.001 (right blue points) vs filtration
parameter r at a single time. (b) Number of particles in (up) the
largest cluster and (down) the second largest cluster vs r. (c) Number
of particles in (up) the third largest cluster and (down) the fourth
largest cluster vs r. Here N = 300 and η = 0.5.

with uniform density, definitions from correlation functions,
finite size, and dynamical scaling apply to both numerical
simulations of the model and experimental data [15–17]. We
apply the methodology based on correlation functions to our
simulations of the confined VM to unveil the scale-free-chaos
phase transition.
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C. Dynamical systems tools

As the confinement strength decreases, the VM with fixed
number of particles N displays a variety of periodic, quasiperi-
odic and chaotic attractors, which may be strongly modified
by alignment noise. To distinguish chaos, we have calculated
the largest Lyapunov exponent directly from the VM using
the Benettin algorithm [27]. This is particularly well adapted
to the discrete time dynamics of the VM. We have also calcu-
lated the LLE by reconstructing the attractor from time traces
of the center of mass motion using lagged coordinates. Us-
ing only two lagged coordinates, scale-dependent Lyapunov
exponents help distinguishing deterministic and noisy chaos
from parameter regions where noise is dominant [26]. This is
important because the phase transitions exist within the noisy
chaos region. While scale-dependent Lyapunov exponents
give qualitative information, we need six lagged coordinates
to faithfully reconstruct the chaotic attractor and obtain (by
the Gao-Zheng algorithm [30]) the same LLEs as provided by
the Benettin algorithm. This methodology will be important to
ascertain whether a real system in nature exhibits scale-free-
chaos phase transitions.

D. Statistical physics tools

It is instructive to compare the scale-free-chaos phase tran-
sitions in the confined VM to the canonical paraferromagnetic
equilibrium phase transition whose universality class com-
prises the Ising and φ4 models. A phase is an ergodic measure
that exists in the thermodynamic limit (infinite volume and
number of particles, finite density) and a phase transition
corresponds to a discontinuous change from one to more than
one phase as a parameter changes, i.e., to a bifurcation of
the measure; see precise definitions and proofs in Ref. [46].
Pure phases have different values of the magnetization order
parameter. At the critical point that ends a line of first order
phase transitions at zero external field, the correlation length
becomes infinity in the thermodynamic limit [46]. The mag-
netization order parameter undergoes a pitchfork bifurcation
at the critical temperature with critical exponent 0.327 instead
of 0.5 [22,47].

The main objects to characterize critical points of second-
order equilibrium phase transitions are static and dynamic
correlation functions. To study flocking and other nonequi-
librium phase transitions, we need to adapt the definitions
of correlation functions, correlation length, susceptibility, and
so on, to models such as Vicsek’s. Averages over the num-
ber of particles, time averages and averages over realizations
replace the ensemble averages of equilibrium statistical me-
chanics [11]. Since it is important that correlation functions
reflect underlying dynamic attractors, velocity fluctuations
are about center of mass velocities (which may be chaotic);
see Ref. [11] for extended discussion. Subtracting an overall
rotation and/or dilation at each time step [15–17] does not
change the critical lines βc(N ; η) and βi(N ; η) but the local
maxima of the susceptibility versus β curve disappear. We
still have a critical line separating single from multiclus-
ter chaos followed by a narrow criticality region, both of
which tend at the same rate to zero confinement as N → ∞
and therefore represent the same phase transition; see
Appendix C.

The chaotic phases in scale-free-chaos transitions are er-
godic [28,29]. The transitions are second order: as N 
 1, the
order parameter is close to zero in the sparse single-cluster
chaotic phase and the polarization is positive in the multi-
cluster chaotic phase. Let us discuss now the different critical
lines at finite N that characterize the scale-free-chaos phase
transition at N = ∞.

As discussed in Sec. IV, it would be ideal if we had a rela-
tion between the poles of the susceptibility and the reciprocal
correlation time, as it happens in simple models. Then vanish-
ing of the pole would be the same as the correlation time going
to infinity (critical slowing down) and this would locate the
critical point. In the absence of such a relation, we have first
used the correlation time that solves Eq. (5) for kc = 1/ξ as a
reasonable substitute. The critical line βc(N, η) is the value of
β that minimizes τkc for fixed N and noise η. Equivalently,
it is the maximum value of the continuous extension of a
correlation time defined as the first zero of the NDCCF. We
have obtained a dynamic scaling exponent z = 1.01 ± 0.01
and critical exponents ν = 0.436 ± 0.009, γ = 0.92 ± 0.05,
with ϕ ≈ zν (critical exponent corresponding to the decay
of the largest Lyapunov exponent). For fixed N , βc(N, η) is
a line on the plane (β, η) within the region of noisy chaos
in Fig. 3(a). We have checked that the correlation length is
proportional to the size of the swarm for all the simulated
values of N , and therefore the system is scale free on this
critical line. The critical line is inside an interval of con-
finement values for which the NDCCF is flat and relaxation
dynamics is underdamped. Outside this interval, the confined
VM exhibits overdamped dynamics. By using topological data
analysis, we lend support to the numerical observation that
chaos is single-cluster below this critical line and multicluster
above it. The phase of single-cluster chaos has the smallest
polarization order parameter and is therefore the most sym-
metric. Multicluster chaos has larger polar order. As N → ∞,
βc(N, η) tends to 0 and so does the LLE on that line: chaos
disappears, as required by the correlation length becoming
infinity and Eq. (2) for finite velocity of propagation. Further
study involving the invariant measure of the chaotic attractors
would be desirable to explore analogies with the phase ergodic
measures of equilibrium thermodynamics.

Using the susceptibility of the real-space static correlation
function and finite-size scaling, we have found other lines
βi(N ; η) and βm(N ; η), with βc < βi < βm, that go to zero
at the same rate as βc(N ; η) for N 
 1, cf. Fig. 8(d). Thus,
they represent the same phase transition and produce the
same critical exponents as N → ∞. For the N values in our
simulations, we have checked that the correlation length is
proportional to swarm size (therefore they are scale free) and ν

is the same. The chaotic attractors are multicluster on the lines
βi(N ; η) and βm(N ; η) based on the inflection point and the
local maximum of the susceptibility, respectively; see Fig. 12.
This indicates that the swarm center of mass experiences more
important rotation and dilation effects than on the single-to-
multicluster line βc(N ; η).

The critical exponent z is different on the three criti-
cal lines, which may simply point to the multiple time and
length scale involved in the mulifractal chaotic attractors of
the phase transition, cf. Fig. 6. That different timescales are
involved in the same transition is a common occurrence in
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codimension two bifurcations of dynamical systems [48]; see,
e.g., the scaled normal form in Ref. [49]. The mean field
version of the standard two-dimensional Vicsek model with
periodic boundary conditions also involves two timescales
near the order-disorder transition. The mean field VM (in a
box with periodic boundary conditions) can be described by
a discrete-time Enskog-type kinetic equation which preserves
the overall number of particles [36]. The order-disorder phase
transition appears as a supercritical bifurcation of the kinetic
equation when one multiplier crosses the unit circle in the
complex plane; another multiplier corresponding to particle
conservation is always one [37]. On the ordered side, the
scaled bifurcation equations contain two timescales, one with
z = 1 (hyperbolic scaling), the other with z = 2 (parabolic
scaling). At the hyperbolic short timescale, undamped wave
propagation and resonance phenomena arise [37], whereas
different band patterns appear at the parabolic timescale fur-
ther from the bifurcation point [50]. These patterns exist on
the ordered side of the ordering phase transition. They can be
found in direct simulations of the standard Vicsek model and
include bands [51] and crossbands [52].

In Sec. V and Appendix C, we show that subtracting overall
rotation and dilation from CM motion in velocity fluctuations
does not change the lines βc(N ; η) and βi(N ; η) but the line of
local maxima βm(N ; η) disappears. The line of global max-
ima, βM (N ; η), appears now at the end of the first chaotic
window. On βM (N ; η), the correlation length is finite and does
not change appreciably with N , the average minimal distance
between particles tends to zero and the density inside these
clusters of finite extension tends to infinity. This transition has
βM (N ; η) → ∞ as N → ∞ and therefore it is no longer scale
free. Instead, it is analogous to type II gravitational collapse
[23], and it has its own critical exponents, cf. Eq. (14). In
conclusion, subtracting rotation and dilation from CM motion
leaves only two critical lines where the system is scale free,
namely, βc(N ; η) and βi(N ; η). Only these two critical lines
need to be taken into consideration when describing the phase
transition based on subtracting overall translation, rotation
and dilation from particle velocities to define velocity fluc-
tuations. These two lines illustrate the existence of a narrow
criticality region following βc(N ; η) that also collapses to
β = 0 as N → ∞. Numerical simulations produce the same
critical exponent ν as obtained without rotation and dilation
but γ changes as explained in Appendix C.

E. Critical exponents from experiments and theory

In observations of natural swarms, the measured critical
exponents are ν = 0.35 ± 0.10, γ = 0.9 ± 0.2 (Ref. [15,16]),
and z = 1.12 ± 0.16 (Ref. [17]), while the real-space suscep-
tibility is between 0.32 and 5.57 for the measured swarms
[15,16]. More recent observations give an interval 0.93 � z �
1.42 of possible values of the dynamical exponent based on a
resampling procedure; see Fig. 3 of Ref. [43].

Here we have discussed the scale-free-chaos phase tran-
sition of the harmonically confined Vicsek model. For each
adequate noise value within the interval of noisy chaos, cf.
Fig. 3(a), three critical lines coalesce at the same rate to β = 0
as N → ∞. Thus, they represent the same phase transition.
For βc(N, 0.5), we have found ν = 0.436 ± 0.009 (correla-

tion length), γ = 0.92 ± 0.05 (real-space susceptibility), and
z = 1.01 ± 0.01 (dynamic exponent). The critical exponent
for the LLE law is approximately ϕ = zν. These critical ex-
ponents change little for 0.1 < η < 1 and are reasonably near
experimentally measured ones.

F. Qualitative features

In addition to reasonable critical exponents, the scale-
free-chaos phase transition produces disperse chaotic swarms
below βc(N, η) that are confined to a bounded region of space
with a few particles entering and leaving the nucleus of the
swarm, cf. Fig. 12. This is akin to the observed condensed and
vapor phases of natural swarms [19]. Furthermore, as shown
in Sec. IV, the normalized dynamic correlation function co-
alesce to a single curve as a function of kz

ct for an interval
0 < kz

ct < 4 (cf. Fig. 4), which is similar to that observed in
natural swarms (Fig. 2(b) of Ref. [17]). Moreover, the flatness
values given by Eq. (14) are compatible with those observed
in natural swarms [17]. These similitudes to experimental
observations and the involved theoretical challenges make
worthwhile exploring more fully the confined Vicsek model
and the phase transition we have discovered.

G. Critical exponents from models in the literature

The ordering transition of the VM confined in a finite
box with periodic boundary conditions has received much
attention; see, e.g., the reviews in Refs. [2,34]. Near this
transition, the particles form a gas and are distributed in the
box with almost constant density [2,34]. This contrasts with
observations of natural swarms in an enclosure where most of
the swarm is far from walls (condensed phase) and individual
insects hover around the swarm nucleus, enter and exit from
it [19]. It is fair to say that the single-cluster chaotic phase
of the confined VM resembles observations better than the
ordering transition of the standard VM. Calculated critical
exponents near the ordering transition of the VM in a box
with periodic boundary conditions are also further away from
observations: γ = 1.6 ± 0.1, ν = 0.75 ± 0.02 (Ref. [16] for
noise η = 0.45 × 4π = 5.65 in our units), z = 2 (Ref. [17]).

Many theoretical works study hydrodynamic equa-
tions with white noise forcing terms near a critical point which
resembles that of the ordering transition of the standard VM.
The idea is that all such descriptions could be analyzed using
renormalization group (RG) theory and produce critical expo-
nents compatible with experimental observations. This would
then show that the appropriate hydrodynamic-type description
belongs to the same universality class as the real natural
swarms. These RG theories are based on weakly nonlinear
expansions about a simple symmetric state. Chen et al. study
incompressible Toner-Tu hydrodynamic equations [53,54]
using RG about a unidirectional velocity and produce an
exponent z = 1.72 in 3D [55,56]. See also Ref. [57] for nu-
merical confirmation. Cavagna et al. consider incompressible
Toner-Tu hydrodynamics coupled to underdamped soft spin
equations under white noise forces [43]. They study weakly
nonlinear expansions about linear stochastic differential equa-
tions with constant coefficients and additive noise to obtain
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RG equations and calculate z = 1.3. These values are within
the range of experimental observations [43].

Recently, Holubec et al. have studied the VM with time de-
lay and periodic boundary conditions. They found γ ≈ 1.53,
ν ≈ 0.75 (larger than measured in midges), and z ≈ 1 for
very long delay times using an undersampled NDCCF [58].
Their NDCCF exhibits regular oscillations as the time de-
lay increases, which are interpreted using a time-delayed
reaction-diffusion equation (see Supplementary Information
in Ref. [58]). It is not clear whether there is a single phase
transition responsible for these results. In time-delayed or-
dinary differential equations, oscillations often appear as
Hopf bifurcations at critical delays [59] and may evolve
to relaxation oscillations as delays increase [60]. Delayed
reaction-diffusion equations can have stable relaxation-type
wavetrain solutions that depend on the variable (x + ct ), cf.
Ref. [60]. This would give a dynamic exponent z = 1. Fur-
ther study of the time-delayed VM may shed light on these
connections.

A universality class comprises all physical systems that
evolve to the same fixed point of the renormalization group
equations under a rescaling of space and time and therefore
have the same critical exponents [21]. We have discovered a
scale-free-chaos phase transition in the discrete time Vicsek
model confined by a harmonic potential, which has qualitative
features of natural swarms, underdamped dynamics, and com-
patible critical exponents. At moderate N , this transition is
different from the well-known period-doubling, intermittency
and quasiperiodic routes to chaos (which have RGs based
on maps [28,29,61]) and from the ordering transition of the
discrete time Vicsek model confined by a box with periodic
boundary conditions [2,34]. The scale-free-chaos phase tran-
sition encompasses phenomena at different timescales, from
dynamical exponent z ≈ 1 to larger z for βi and βm, which
might require additional theoretical tools to understand. While
there are RG calculations about Hopf bifurcations to stable
oscillatory states [62,63], it would be desirable to have RG
calculations about a single-cluster chaotic attractor, instead of
the ordering transition of the standard VM (or related simple
states of other models). Would it be possible to derive effective
equations near the scale-free-chaos phase transition playing
roles similar to amplitude equations in bifurcation theory
[62]? Could these effective equations exhibit new instabilities
and coexistence of stable solutions and spinodal lines akin
to those found in the Vicsek model with periodic boundary
conditions [2,34]? Time will tell.

Summarizing, we have numerically simulated the harmoni-
cally confined Vicsek model, which is an idealized description
of insect swarms. Depending on confinement strength β and
noise η, the model exhibits different periodic, quasiperiodic,
and chaotic attractors. Our results support the existence of a
line of phase transitions in a noisy chaos region of η values
as the number of particles N tends to infinity and β → 0. For
finite N , there is a line βc(N ; η) at which the correlation time is
minimal and the correlation length is proportional to the sys-
tem size. Topological data analysis supports the interpretation
of βc(N ; η) as a line separating single from multicluster chaos.
The time-averaged polarization acts as an order parameter:
near βc(N ; η), it is almost zero for β < βc(N ; η) and posi-
tive and increasing with β for β > βc(N ; η). On the line of

scale-free chaos, the dynamic critical exponent is z ≈ 1 and
the dynamic correlation function collapses on an interval of
the same length as in measured swarms. Close to the critical
line βc(N ; η) and for fixed N and η, there are other critical
lines obtained from the inflection point and local maximum
of the susceptibility versus confinement curve. As N → ∞,
βc(N ; η) ≈ 0.48βi(N ; η) and βc(N ; η) ≈ 0.37βm(N ; η). Thus,
the three lines represent a narrow criticality region, collapse
at the same rate to β = 0 as N → ∞ and stand for the same
phase transition. Different exponent z on the lines may reflect
the multiplicity of time and length scales involved in the
chaotic attractors. The particle swarms at the scale-free-chaos
phase transition share qualitative features and similar critical
exponents of insect swarms. Our simulations also point to a
different phase transition reminiscent of gravitational collapse
to clusters of finite size containing infinitely many particles.

This work paves the way to studies in many directions.
Possible directions consist of exploring other possible tran-
sitions on chaotic and nonchaotic windows of the parameter
space and the effect of anisotropic confinement on the phase
transition studied here. Exploring a possible phase transition
to flocking black holes in self-gravitating models of swarms
[20] might be worth pursuing. On the theoretical side, can
we find the invariant measure of the chaotic attractors and
characterize scale-free-chaos phase transitions as N → ∞ in
terms of the invariant measure? This could bring together
dynamical systems and nonequilibrium statistical mechanics
studies and yield fruitful new ideas and methods.

ACKNOWLEDGMENTS

We thank the anonymous referees for insightful and useful
comments that have helped improving our paper. This work
has been supported by the FEDER/Ministerio de Ciencia,
Innovación y Universidades–Agencia Estatal de Investigación
Grants No. PID2020-112796RB-C21 (R.G.-A. and A.C.)
and No. PID2020-112796RB-C22 (L.L.B.), by the Madrid
Government (Comunidad de Madrid-Spain) under the Mul-
tiannual Agreement with UC3M in the line of Excellence of
University Professors (EPUC3M23), and in the context of the
V PRICIT (Regional Programme of Research and Techno-
logical Innovation) (L.L.B.). R.G.-A. acknowledges support
from the Ministerio de Economía y Competitividad of Spain
through the Formación de Doctores program Grant PRE2018-
083807 cofinanced by the European Social Fund.

APPENDIX A: NONDIMENSIONALIZED EQUATIONS
OF THE CONFINED VICSEK MODEL

We consider the three-dimensional confined Vicsek model:

xi(t + �t ) = xi(t ) + �t vi(t + �t ),

vi(t + �t ) = vRη

⎡
⎢⎣
∑

|x j−xi|<r1R0
v j (t ) − β0xi(t )∣∣∣∑|x j−xi|<r1R0
v j (t ) − β0xi(t )

∣∣∣
⎤
⎥⎦, (A1)

where Rη(w) rotates the unit vector w randomly within a
spherical cone centered at it and spanning a solid angle
in (− η

2 ,
η

2 ) [64]. Initially, the particles are randomly placed
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TABLE I. LLE for η = 0.5 and different N at βc(N ; η) as cal-
culated using the BA for the complete VM equations, Eq. (B2), and
Eq. (B4) for CM motion and for the NDCCF g(t ). Note that the LLE
as calculated using the BA and Eq. (B4) for CM motion are similar
whereas the LLE corresponding to the NDCCF g(t ) is smaller.

N 100 300 500 750 1000 1300

BA 0.0118 0.0095 0.0078 0.0070 0.0067 0.0058
CM 0.017 0.0092 0.008 0.007 0.0063 0.0059
g(t ) 0.0055 0.0044 0.0041 0.0038 0.0035 0.0033

within a sphere with unit radius and the particle velocities are
pointing outwards.

We nondimensionalize the model using data from the ex-
periments on midges reported in the Supplementary Material
of Refs. [15–17]. We select the event labeled 20120910_A1
in Table I [17]. We measure times in units of �t = 0.24 s,
lengths in units of the time-averaged nearest-neighbor dis-
tance of the 20120910_A1 swarm, which is r1 = 4.68 cm, and
velocities in units of r1/�t , whereas v = 0.195 m/s. Then
Eq. (1) is the nondimensional version of Eq. (A1) with �t = 1
and

v0 = v
�t

r1
, β = β0�t . (A2)

For the example we have selected, v0 = 1, whereas other
entries in the same table produce order-one values of v0 with
average 0.53. For these values, the confined Vicsek model
has the same behavior as described here. Thus, the Vicsek
model describing midge swarms is far from the continuum
limit v0 
 1. Cavagna et al. consider a much smaller speed,
v0 = 0.05, closer to the continuum limit where derivatives
replace finite differences [17].

Collective consensus is quantified by the polarization W ∈
[0, 1]:

W (t ; η, β ) =
∣∣∣∣∣∣

1

N

N∑
j=1

v j (t )

|v j (t )|

∣∣∣∣∣∣. (A3)

The time average 〈W 〉t coincides with the ensemble average
of Eq. (A3) by ergodicity.

1. Effect of the boundary conditions

In the standard VM, the particles are enclosed in a cubic
box, the boundary conditions are periodic and the system is in-
variant under translations. However, in the confined VM, there
are no boundaries, the particles are confined by a harmonic
potential, and translation invariance is broken. There are many
studies of the standard VM, which is not the case for the
confined VM. In fact, the confined VM has time-dependent
attractors that are different from those of the standard VM.
Among them, chaotic attractors. Another qualitative differ-
ence between both VMs is that broken translation symmetry
precludes particles filling uniformly the available space for the
confined VM. Thus, the ordering transition of the periodic-
box VM cannot be the same for the confined VM.

APPENDIX B: CHAOTIC AND NOISY DYNAMICS

We calculate the LLE in different ways that are comple-
mentary to each other: (i) directly from the equations by using
the Benettin et al. (BA) algorithm [27–29], (ii)–(iii) using
from time traces of the center-of-mass motion or the NDCCF
to reconstruct the phase space of the chaotic attractor. We
need model equations to use the BA, whereas time traces can
be obtained from numerical simulations of equations or from
experiments and observations. To obtain the LLE from time
traces, we have used (ii) the scale-dependent Lyapunov expo-
nent (SDLE) algorithm [26] and (iii) the Gao-Zheng algorithm
[30]. The SDLE algorithm is useful to separate the cases of
mostly deterministic chaos from noisy chaos and mostly noise
even in the presence of scarce data and a reconstruction of the
attractor that is not very precise [26], whereas the Gao-Zheng
algorithm requires more data points [30]. We now describe
these different algorithms and illustrate the results they pro-
vide for the confined VM. In all cases, we eliminate the effects
of initial conditions by leaving out the first 30 000 time steps
before processing the time traces.

1. Benettin algorithm

We have to simultaneously solve Eqs. (1) and the linearized
equations

δx̃i(t + 1) = δx̃i(t ) + δṽi(t + 1), i = 1, . . . , N, (B1a)

δṽi(t + 1) = v0Rη

⎛
⎝
⎧⎨
⎩I3 −

[∑
|x j−xi|<R0

v j (t ) − βxi(t )
]T [∑

|x j−xi|<R0
v j (t ) − βxi(t )

]
∣∣∑|x j−xi|<R0

v j (t ) − βxi(t )
∣∣2

⎫⎬
⎭ ·

∑
|x j−xi|<R0

δṽ j (t ) − βδx̃i(t )∣∣∑|x j−xi|<R0
v j (t ) − βxi(t )

∣∣
⎞
⎠,

(B1b)

in such a way that the random realizations Rη are exactly the same for Eqs. (1) and (B1). The initial conditions for the distur-
bances, δx̃i(0) and δṽi(0), can be randomly selected so that the overall length of the vector δχ = (δx̃1, . . . , δx̃N , δṽ1, . . . , δṽN )
equals 1. After each time step t , the vector δχ(t ) has length αt . At that time, we renormalize δχ(t ) to χ̂(t ) = δχ(t )/αt and use
this value as initial condition to calculate δχ(t + 1). With all the values αt and for sufficiently large l , we calculate the Lyapunov
exponent as

λ1 = 1

l

l∑
t=1

ln αt , αt = |δχ(t )| = |(δx̃1(t ), . . . , δx̃N (t ), δṽ1(t ), . . . , δṽN (t ))|, (B2)
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FIG. 17. Largest Lyapunov exponent as a function of l as given
by Eq. (B2) for η = 0.5, β = βc(N ), and different N .

Figure 17 plots λ1 versus l at critical confinement β = βc(N )
showing convergence of the exponent for different values of
N . For N = 750, Fig. 18(a) depicts the LLE versus l for
different values of β, whereas Fig. 18(b) fixes β = βc(750) =
0.0035 and shows the LLE versus l for different values of N ,
including N = 750. The insets of these figures indicate that
the LLE is not a monotonic function of either β or N . See also
Fig. 8(e).

2. Scale-dependent Lyapunov exponents

We use scale-dependent Lyapunov exponents (SDLE) from
the CM motion to characterize deterministic and noisy chaos
as different from noise [26].

Adding the components of X(t ), we form the time se-
ries x(t ) = X1(t ) + X2(t ) + X3(t ). To calculate the SDLE, we
construct the lagged vectors: Xα = [x(α), x(α + τ̃ ), .., x(α +
(m − 1)τ̃ )]. The simplest choice is m = 2 and τ̃ = 1 (other
values can be used, see below). From this dataset, we de-
termine the maximum εmax and the minimum εmin of the
distances between two vectors, ‖Xα − Xβ‖. Our data is con-
fined in [εmin, εmax]. Let ε0, εt and εt+�t be the average
separation between nearby trajectories at times 0, t , and t +
�t , respectively. The SDLE is

ln λ(εt ) = ln εt+�t − ln εt

�t
. (B3a)

FIG. 18. (a) LLE versus l as in Eq. (B2) for N = 750
and β = 0.001, 0.0035, 0.007, 0.01, 0.05. Inset: LLE vs β;
marked: βc = 0.0035. (b) LLE vs l for β = 0.0035 and
N = 100, 300, 500, 750, 1000, 1300, 1600, 2000. Inset: LLE
vs N for βc = 0.0035; marked: N = 750. Here η = 0.5.

The smallest possible �t is of course the time step τ̃ = 1, but
�t may also be chosen as an integer larger than 1. Gao et al.
introduced the following scheme to compute the SDLE [26].
Find all the pairs of vectors in the phase space whose distances
are initially within a shell of radius εk and width �εk:

εk � ‖Xα − Xβ‖ � εk + �εk, k = 1, 2, . . . . (B3b)

We calculate the Lyapunov exponent as follows:

λ(εt ) = 〈ln ‖Xα+t+�t − Xβ+t+�t‖ − ln ‖Xα+t − Xβ+t‖〉k

�t
,

(B3c)
where 〈〉k is the average within the shell (εk, εk + �εk ). The
shell-dependent SDLE λ(ε) in Fig. 3(b) displays the dynam-
ics at different scales for τ̃ = 1 and m = 2 [26]. Using two
lagged coordinates produces plateaus having a value of λ(ε)
equal to the LLE of deterministic chaos. This value differs
from the LLE calculated using the BA or a more appropriate
reconstruction of the phase space involving more lagged coor-
dinates (see below). However, the SDLE with m = 2 yields a
qualitative idea of the effects of noise on chaos. In determinis-
tic chaos, λ(ε) > 0 presents a plateau with ends ε1 < ε2 
 1,
in noisy chaos, this plateau is preceded and succeeded by re-
gions in which λ(ε) decays as −γ ln ε, whereas it shrinks and
disappears when noise swamps chaos. As η increases, λ(ε)
first decays to a plateau for η = 0.1. A criterion to distinguish
(deterministic or noisy) chaos from noise is to accept the
largest Lyapunov exponent as the positive value at a plateau
(ε1, ε2) satisfying

log10
ε2

ε1
� 1

2
. (B3d)

For η = 0.5, the region where log10(ε2/ε1) = 1/2 is
marked in Fig. 3(b) by vertical lines. Plateaus with smaller
values of log10(ε2/ε1) or their absence indicate noisy dynam-
ics [26]. This occurs for η = 1. The ends of the interval (0.1,1)
of noisy chaos are marked by two vertical dashed lines in
Fig. 3(a).

The chaotic dynamics of the swarm is reflected in quanti-
ties that depend on the positions and velocities of the particles.
Important global quantities are the motion of the CM and the
NDCCF of Eq. (3). Figure 19 displays the CM trajectory,
thereby visualizing the dynamics of the swarm. For increas-
ing values of noise corresponding to the different regions
in Fig. 3(a), the CM motion goes from deterministic chaos
[Fig. 19(a)], to noisy chaos [Fig. 19(b)], to mostly noise
[Fig. 19(c)].

Note that all the plateaus in Fig. 3(b) produce the same
positive value of the LLE λ(ε). This is not very realistic
because the BA yields different values of the LLE depending
on the noise strength η. Why? Recall that we have used m = 2
(two lagged coordinates) in the reconstruction of the attractor
from the time traces. However, as shown in Fig. 6, the CM
chaotic attractor has fractal dimension D0 between 2 and 3,
and we need m � 2D0 to faithfully reconstruct the chaotic
attractor [28,29]. Thus, we need at least m = 6 to reconstruct
it. Using m = 6 and its optimal value of τ̃ (Ref. [30]) produces
Fig. 3(c). Now λ(ε) presents large oscillations whose averages
in the plateau regions coincide with the LLE as calculated by
the Gao-Zheng algorithm [30].
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FIG. 19. (a) Trajectory of the center of mass for η = 0.01, which corresponds to deterministic chaos with flower shape phase portrait.
(b) Same for η = 0.3, which corresponds to noisy chaos: the trajectories of the center of mass cover more densely part of the space.
(c) Predominantly noisy motion for η = 5.5. The trajectories from t0 = 1000 to t f = 50 000 are depicted. Here, N = 100, β = βc, for each η.

3. Largest Lyapunov exponent from high-dimensional
reconstructions of CM motion

As explained above, the previous reconstruction of the
phase space for CM motion used to calculate SDLE considers
2D lagged vectors (m = 2). This produces useful qualitative
phase diagrams with flat plateaus, but the dimension of this
vector space is too small to reconstruct faithfully the attractor.
More realistic CM trajectories in higher dimension contain
self-intersections in dimension 2. This explains the different
values of the LLE found in the SDLE plateaus of Fig. 3(b)
as compared with those found by the BA of Eq. (B2). To
reconstruct safely a chaotic attractor, the dimension of the
lagged vectors should surpass twice the fractal dimension
D0 [28]. For the confined VM, m = 6 is sufficient in view
of Fig. 6. However, the SDLE λ(ε) presents oscillations as
indicated in Fig. 3(c) and their average values replace the
plateaus in Fig. 3(b). In contrast with Fig. 3(b), the averaged
oscillations produce LLEs that increase with noise. Averaging
oscillations is not going to produce precise values of the LLE.
Thus, we calculate the LLE from the lagged coordinates with
m = 6 using the Gao-Zheng algorithm [30]. This requires
constructing the quantity 	(k) whose slope near the origin
gives the LLE [30]

	(k) =
〈
ln

‖Xi+k − Xj+k‖
‖Xi − Xj‖

〉
. (B4)

Here the brackets indicate ensemble average over all vector
pairs with ‖Xi − Xj‖ < r∗ for an appropriately selected small
distance r∗. Figure 20 displays the graph of 	(k) given by
Eq. (B4). The slopes of 	(k) for different values of N at βc(N )
equal the LLEs, increase with β and agree with the averaged
oscillations marked in Fig. 3(c).

For different particle numbers with η = 0.5, Table I lists
the LLEs calculated using the BA for the complete system
as in Eq. (B2), and using Eq. (B4) for CM motion and for
the NDCCF g(t ). We observe that the LLE values calculated
from the CM motion are similar to those found by the BA,
whereas they are noticeably smaller if calculated for the ND-
CCF. While the NDCCF is still chaotic, we speculate that the
subtraction of the CM motion and ensemble average involved
in two-time NDCCF g(t ) dilute chaos by lowering the LLE.
We observe that the difference between LLEs calculated from
BA and CM motion and those from g(t ) in Table I decreases
as N increases. Thus, it could happen that both sets of LLEs
eventually converge to similar smaller values as N → ∞ and
chaos disappear.

APPENDIX C: DYNAMIC AND STATIC CONNECTED
CORRELATION FUNCTIONS

1. Definitions

Following Refs. [15,16], we define the dynamic connected
correlation function (DCCF) as

C(r, t ) =
〈∑N

i=1

∑N
j=1, j �=i δv̂i(t0) · δv̂ j (t0 + t )δ[r − ri j (t0, t )]∑N

i=1

∑N
j=1, j �=i δ[r − ri j (t0, t )]

〉
t0

, C(r) = C(r, 0), δv̂i = δvi√
1
N

∑
k δvk · δvk

,

δvi = vi − V, ri j (t0, t ) = |ri(t0) − r j (t0 + t )|, ri(t0) = xi(t0) − 1

N

N∑
j=1

x j (t ), 〈 f 〉t0 = 1

tmax − t

tmax−t∑
t0=1

f (t0, t ). (C1)

In these equations, δ(r − ri j ) = 1 if r < ri j < r + dr and
zero otherwise, and dr is the space binning factor. The usual
dynamic correlation function and susceptibility in statistical
mechanics are

C(r, t ) = 〈(φ(0, 0)− 〈φ(0, 0)〉)(φ(r, t )− 〈φ(r, t )〉)〉, (C2a)

χ =
∫

C(r, 0) dr = Ĉ(0, 0), (C2b)

respectively, where 〈. . .〉 are averages over the appropriate
ensemble average and we have set t0 = 0. In Appendix D, we
show two solvable examples indicating the relation between
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FIG. 20. Plot of 	(k) vs k for different values of β. Thick dashed
lines mark the slope of 	(k) for different values of N at βc(N ).

correlation time and susceptibility for different dynamics,
which may or may not lead to thermal equilibrium.

In Eq. (C1), we have replaced arithmetic means instead of
the ensemble averages and added a time average. Dropping
the condition j �= i adds one term proportional to δ(r) to
numerator and denominator of Eq. (C1), which is the choice
made in Refs. [11,17].

The function C(r, t ) sums all the products δvi(t0) · δv j (t0 +
t ) for those pairs i and j with a distance ri j (t0, t ) between r and
r + dr, and then divides by the number of such pairs (denom-
inator). It depends only on the distance r at time t because
inter-particle interactions are local and distance dependent.
The static connected correlation function (SCCF) is the equal
time connected correlation function given by Eq. (C1). As dis-
cussed in Ref. [11], these definitions are inspired in statistical
mechanics taking into account

∑
j δv̂ j = 0 because ensemble

averages have been replaced by averages over the particles.

2. Susceptibility

For a SCCF that decays exponentially, the correlation
length ξ is such that C(ξ ) = 1/e. In the present work, there
is finite-size scaling [15–17] and C(r) or C(r, t ) do not decay
exponentially with r and can take on negative values. Then the
correlation length ξ is the first zero of C(r), corresponding
to the first maximum of the cumulative correlation function
[15,16]:

Q(r) = 1

N

N∑
i=1

N∑
j �=i

δv̂i · δv̂ jθ (r − ri j ), χ = Q(ξ ),

ξ = argmaxQ(r), C(ξ ) = 0 with C(r) > 0, r ∈ (0, ξ ),

(C3)

where θ (x) is the Heaviside unit step function. It turns out
that this correlation length ξ is proportional to the swarm
size �, which is the hallmark of scale-free behavior. At
equilibrium, the susceptibility measures the response of the
order parameter to changes in an external field linearly cou-
pled to it, and equals the integral of the SCCF (C2b) with
C(r) > 0. A susceptibility thus defined would be Q(∞). How-
ever, by Eq. (C3), Q(∞) = Q(�) = −1 because θ (� − ri j ) =
1 and

∑
i δv̂i = 0. Thus, we cannot define susceptibility by

Eq. (C2b). Instead, we define susceptibility χ as the value of
Q(r) at its first maximum, as in Eq. (9) and Refs. [15,16]. For

FIG. 21. (a) Log-log scale plot of the susceptibility as given by
maxkĈ(k, 0) of Eq. (3) versus βc. (b) Scaled susceptibility versus
scaled confinement showing data collapse at the inflection point
(square) and the local maximum (triangle) of the susceptibility. The
local maximum is followed by a plateau of the scaled confinement.
Here η = 0.5, νi = 0.44, and γi = 1.2.

values of N corresponding to insects in measured swarms, our
numerical simulations produce susceptibility values defined
by Eq. (C3) between 0.7 and 1.2, which are included in the
measured interval (0.32,5.57) [15,16].

At equilibrium and for N = ∞, the susceptibility becomes
infinity at critical points and it marks a phase transition. The
susceptibility scales as

χ (x) ∼ (x − xc)−γ , (C4)

where x is the control parameter and xc the value thereof
for N = ∞. In our case, x = βc(N, η) and xc = βc(∞, η) =
0, which produces γ = 0.92 ± 0.05 as shown in Fig. 7(b).
Eq. (3) is related to the Fourier transform of C(r, t ), as dis-
cussed in Ref. [11]. Figure 21(a) shows that Ĉ(k, 0) of Eq. (3)
oscillates with βc(N ; η). Thus, maxk Ĉ(k, 0) is not a conve-
nient definition of susceptibility. Contrastingly, Fig. 7(b) plots
the real-space susceptibility maxrQ(r) using many more val-
ues, 500 � N � 5000, which makes this fitting more reliable.
Figure 21(b) shows data collapse of scaled susceptibility and
scaled confinement at βi (susceptibility inflection point) and
βm (susceptibility local maximum). For our data, the relation
between the correlation length as defined by Eq. (C3) and
1/kc, given by kc = argmaxkĈ(k, 0) is

1

kc
= 0.44 r0 + 0.36; (C5)

see Fig. 22. Since our unit of length is 4.68 cm, the straight
line in Fig. 22 is quite close to that of Fig. SF1 of Ref. [17]
(Supplementary data) obtained from measurements in natural
midge swarms.

3. Perception range

Instead of setting x = β, we can use the rescaled aver-
age nearest-neighbor distance x = r1/R0 (perception range,
inversely proportional to density), as in Refs. [15,16].
The perception range is calculated as the time average of
the arithmetic mean of the minimal distance between each
particle and its closest neighbor. We find a critical perception
range xc = 2.945 ± 0.047, with (x − xc) proportional to β.
This is larger than xc = 0.421 ± 0.002 at the order-disorder
transition of the standard VM [15,16], indicating a less dense
swarm at critical confinement. As xc = 12.5 ± 0.1 in natu-
ral swarms (measured in units of the average insect size)
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FIG. 22. The correlation length ξ = 1/kc computed from the
static correlation function in Fourier space as a function of the corre-
lation length ξ = r0 computed from the static correlation function in
real space.

[15,16], the critical perception range is 4.2 insect bodies for
the scale-free chaotic transition of the confined Vicsek model
versus 30 insect sizes at the ordering transition of the VM
with periodic boundary conditions. At the phase transition
to clusters of finite size containing infinitely many particles,
x → 0 as x ∼ β−ν and χ ∼ βγ , with βM → ∞ for N → ∞.
The critical exponents for this transition are ν = 0.33 and
γ = 1.03.

As chaos disappears when β → 0, it may seem surprising
that an ordered chaotic phase is less dense than the disordered
phase at the larger noise of the order-disorder transition for
the standard VM with periodic boundary conditions. Recall
that density is inversely proportional to the average nearest-
neighbor distance (perception range). However, the confined
VM does not morph seamlessly to the standard VM as
βc(N ; η) → 0. First, confinement by a harmonic potential and
confinement due to a large box with periodic boundary condi-
tions are qualitatively different and they may not produce the
same swarm patterns in the thermodynamic limit. Second, the
standard VM with periodic boundary conditions experiences
a crossover to a discontinuous order-disorder phase transition
for N 
 1 [2,33,34]. Third, the noise values (η = 5.65 in our
units) for which the confined VM and the standard VM with
periodic boundary conditions have similar critical behaviors
according to [15–17] are much larger than the noisy chaos
interval of Fig. 3(a). Thus, we think that the scale-free-chaos
phase transition of the confined VM as β → 0 is not related
to the continuous ordering transition of the standard VM.

4. Numerical calculation of the connected correlation functions

Fixing the parameters N , η, and β, we simulate the VM
for five different random initial conditions during 10000
iterations. After a sufficiently long transient period, the po-
larization of Eq. (A3) fluctuates about a constant value. Once
this regime is established, we use the last 2000 iterations to
calculate the static correlation function Ĉ(k, 0), whose first
maximum provides the critical wave number kc. Using the
definition in Eq. (3) and averaging over the five realizations,
we obtain the time-dependent correlation function.

5. Rotation and dilation

In Refs. [15,16], the average swarm velocity is defined
subtracting overall rotations and dilations from V at each time
step. Note that an overall rotation does not change the distance
between trajectories (which are used to calculate Lyapunov
exponents) but an overall dilation does. To subtract an overall
rotation, we proceed as follows. The fluctuations of the veloc-
ity are

δvi(t + 1) = yi(t + 1) − yi(t ), (C6a)

yi(t ) = xi(t ) − X(t ), (C6b)

X(t ) = 1

N

N∑
j=1

x j (t ), (C6c)

X(t + 1) − X(t ) = V(t + 1). (C6d)

We can define the optimal rotation matrix as the 3 × 3 orthog-
onal matrix U that minimizes

U = argminUT U=I

[
1

2

N∑
i=1

[yi(t + 1) − Uyi(t )]2

]
. (C7a)

The optimal dilation is

	 = argmin	

[
1

2

N∑
i=1

[yi(t + 1) − 	Uyi(t )]2

]
. (C7b)

From Ref. [65], the optimal rotation matrix for Eq. (C7a)
is

Ui j =
N∑

k=1

BkiAk j, (C8a)

Bki =
N∑

n=1

3∑
l=1

Yni(t + 1)Ynl (t )
Akl√
μk

, (C8b)

where Yni(t ) is the N × 3 matrix formed by the components of
the vector yn(t ). The orthogonal matrix Akl is formed by the
orthogonalized eigenvectors of the eigenvalue problem

N∑
lm=1

N∑
n,p=1

[Yli(t )Yln(t + 1)Ymp(t )Ymn(t + 1)]Akp = μkAki,

μk � 0, (C8c)

for the 3 × 3 positive semidefinite symmetric matrix within
square brackets appearing in this expression. In the generic
case, the three eigenvalues μk are positive. If one eigenvalue is
zero, e.g., μ3 = 0, then Eq. (C8b) yields only two vectors, B1i,
B2i, corresponding to the eigenvectors with nonzero eigenval-
ues, A1i, A2i. The other eigenvector A3i and B3i are

A3i =
3∑

j,k=1

εi jkA1 jA2k, B3i =
3∑

j,k=1

εi jkB1 jB2k, (C8d)

where εi jk is the completely antisymmetric unit tensor with
ε123 = 1 [65]. With these definitions of A3i and B3i, Eq. (C8a)
holds.
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FIG. 23. Normalized dynamic correlation function with ξ =
1/kc for different values of β calculated from (a) Eq. (3) and (b) from
Eq. (3) subtracting rotation and dilation in the velocity fluctuations.
Here, N = 300, η = 0.5.

To subtract overall dilation, we use the optimal dilation
matrix from Eq. (C8b),

	 =
∑N

j,k=1

∑N
i,l=1 Yjl (t + 1)BkiAklYjl (t )∑N

j,k=1

∑N
i,l=1[BkiAklYjl (t )]2

. (C8e)

Then the fluctuations in Eq. (3) are [15]

δvi(t0) = yi(t0 + 1) − 	Uyi(t0). (C9)

Note that
∑

i δvi(t0) = ∑
i yi(t0 + 1) − 	U

∑
i yi(t0) = 0.

Subtracting only overall rotations, we would use δvi(t0) =
yi(t0 + 1) − Uyi(t0) instead of Eq. (C9).

6. Results

Figures 23(a) and 23(b) compare the NDCCF g(t ) calcu-
lated as in Eq. (3) and the same function subtracting rotation
and dilation. We observe that both functions look alike
and that subtracting rotation and dilation changes slightly
the times tm(β, N ), where g(tm) = 0. Then the critical line
βc(N, η) is unchanged by subtractions of rotation and dilation;
see also Fig. 24 for the collapse of the NDCCF with dynamical
exponent z. The relation (C5) becomes kcr0 = 2 after subtrac-
tions. We expect small rotation and dilation for single-cluster
chaos and larger rotation and dilation for multicluster chaos.
Thus, subtracting rotation and dilation brings down g(t ). In
Fig. 23, this effect is largest for β = 0.025, well inside the
region of multicluster chaos.

The critical lines βc(N ; η) and βi(N ; η) do not change by
subtractions from CM motion but the local maxima defin-
ing the line βm(N ; η) disappear. The critical exponent ν =
0.45 ± 0.02 rests unchanged by subtractions. However, for
N � 2000, γi = 0.70 ± 0.06 (on the line of inflection points
of χ versus β) drops from the value 1.2 obtained without

FIG. 24. Same as Fig. 4 but calculated subtracting rotation and
dilation: NDCCF g(t ) versus (a) t and (b) kzt with z = 1.00 ± 0.03.

FIG. 25. (a) Correlation time versus β at the critical line
βc(N ; 0.5). (b) Susceptibility versus β at the critical line βi(N ; 0.5).
Both power laws calculated subtracting rotation and dilation from
CM motion.

subtractions, cf. Fig. 25(b). Together with the larger value of
the polar order parameter, this confirms that the critical line
βi(N ; η) lies in the multicluster chaos region where rotation
and dilation effects are more prominent; see Figs. 12(c)–(e)
for pictures of swarms splitting into different clusters.

The global maxima βM (N ; η) of the susceptibility versus
confinement curve in Fig. 8(a) move to the end of the first
chaotic window when subtracting rotation and dilation from
CM motion and do not correspond to scale-free transitions.
Figure 26(a) shows that the correlation length for these states
does not change with the number of particles maxima and is
no longer proportional to the swarm size. At the line βM (N ; η),
chaos is multicluster and rotation and dilation effects are
stronger. As shown in Figs. 12 and 26(b), these chaotic clus-
ters are not connected, and their correlation length remains
unchanged with N : it takes on a value similar to the diameter
of the sphere of influence (2.5 versus 2, in nondimensional
units). In conclusion, using the critical lines βc(N ; η) and
βi(N ; η) (for which rotation and dilation effects are very mi-
nor), and not βm(N ; η), is crucial to unveil the scale-free-chaos
phase transition in the limit of infinitely many particles.

APPENDIX D: SUSCEPTIBILITY
AND CORRELATION TIME

Here we illustrate the relations between reciprocal corre-
lation time and singularities of the susceptibility by solvable
examples. Note that these examples could be linearizations of

FIG. 26. (a) Correlation length versus N obtained without (trian-
gles) and with (crosses) subtraction of rotation and dilation from CM
velocity at confinements corresponding to the susceptibility maxi-
mum. (b) Chaotic swarm showing short trajectories of 300 particles
for βM (N ; η): Subtractions shift the critical line to larger confinement
well inside the multicluster chaos region. Here, η = 0.5.
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stochastic equations about a time-independent homogeneous
state. Thus, they are still far from the phase transition about
a chaotic spatially nonhomogeneous state and are not directly
applicable to the confined VM.

I. Consider the diffusive and noisy overdamped oscillator

∂φ

∂t
= D∇2φ − ω2

0φ +
√

2T ξ (x, t ), (D1a)

where ξ (x, t ) is a zero mean δ correlated white noise. The
equilibrium probability density corresponding to Eq. (D1a)
is Z−1e− ∫

H dx/T , with Hamiltonian density H = (D|∇φ|2 +
ω2

0φ
2)/2 and temperature T . The Fourier transformed solution

and the Fourier transformed correlation function are

φ̂(k, t ) =
∫ t

−∞
e−(ω2

0+Dk2 )(t−s)ξ̂ (s, k) ds, (D1b)

Ĉ(k, t ) = 2T
∫ t0

−∞
e−(ω2

0+Dk2 )(t0−s)e−(ω2
0+Dk2 )(t0+t−s)ds

= T

ω2
0 + Dk2

e−(ω2
0+Dk2 )t . (D1c)

Here we have taken the initial time to be −∞ and a zero ini-
tial condition. Instability of the trivial state φ = 0 is reached
when ω2

0 = 0, k ∝ 1/L = 0, which is pole of the susceptibil-
ity, Ĉ(0, 0) = T/ω2

0, and, equivalently, infinite value of the
maximal correlation time, 1/ω2

0. The nonlinear version of
Eq. (D1a),

∂φ

∂t
= D∇2φ − ω2

0φ − ζφ3 +
√

2T ξ (x, t ), (D1d)

produces an equibilibrium probability density corresponding
to the Landau-Wilson Hamiltonian density H = (D|∇φ|2 +
ω2

0φ
2)/2 + ζφ4/4, which has a paradigmatic second order

phase transition provided ω2
0 may become negative [22].

II. To ascertain the influence of dynamics, consider the
underdamped version of Eq. (D1a):

∂2φ

∂t2
+ 2ωd

∂φ

∂t
= D∇2φ − ω2

0φ +
√

4ω′
d T ξ (x, t ). (D2a)

Proceeding as before, we find

φ̂(k, t ) =
∫ t

−∞
G(t − s; k)ξ̂ (s, k) ds, (D2b)

G(t ; k) = e−ωd t sin[�(k)t]

�(k)
θ (t ), (D2c)

�(k) =
√

ω2
0 + Dk2 − ω2

d , (D2d)

Ĉ(k, t ) = 4T ω′
d

∫ ∞

0
G(s; k)G(t + s; k) ds

= T ω′
d e−ωd t

ω2
0 + Dk2

(
cos[�(k)t]

ωd
+ sin[�(k)t]

�(k)

)
,

(D2e)

χ = Ĉ(0, 0) = T ω′
d

(ω2
0 + Dk2)ωd

. (D2f)

Here we assume �(k)2 > 0. For ω′
d = ωd , the under-

damped dynamics about thermal equilibrium yields the same
susceptibility as Eq. (D1c). The pole of the susceptibility is
again ω0(k)2 = ω2

0 + Dk2. Allowing ω2
0 to change sign and

adding a nonlinearity as in Eq. (D1d) leads to the same
equilibrium phase transition as Eq. (D1a). However, for 0 <

ω′
d �= ωd , ω2

0 > 0, and allowing ωd to change sign, the system
cannot reach thermal equilibrium as it did in the overdamped
case. We have an additional pole of the susceptibility (D2f),
ωd , which coincides with the reciprocal relaxation time of
Eq. (D2e). Adding a nonlinearity −ζφ2∂φ/∂t to the right
hand side of Eq. (D2a) may produce a quite different van der
Pol-like instability and phase transition for ωd < 0. Certainly,
the van der Pol limit cycle appears as a supercritical Hopf
bifurcation [48] and the corresponding nonequilibrium phase
transition would be similar to that analyzed in Ref. [63] by RG
calculations. For this nonequilibrium phase transition, vanish-
ing of the reciprocal relaxation time coincides with vanishing
of the pole ωd = 0.
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