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Pseudolaminar chaos from on-off intermittency
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In finite-dimensional, chaotic, Lorenz-like wave-particle dynamical systems one can find diffusive trajectories,
which share their appearance with that of laminar chaotic diffusion [Phys. Rev. Lett. 128, 074101 (2022)] known
from delay systems with lag-time modulation. Applying, however, to such systems a test for laminar chaos,
as proposed in [Phys. Rev. E 101, 032213 (2020)], these signals fail such a test, thus leading to the notion of
pseudolaminar chaos. The latter can be interpreted as integrated periodically driven on-off intermittency. We
demonstrate that, on a signal level, true laminar and pseudolaminar chaos are hardly distinguishable in systems
with and without dynamical noise. However, very pronounced differences become apparent when correlations of
signals and increments are considered. We compare and contrast these properties of pseudolaminar chaos with
true laminar chaos.
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I. INTRODUCTION

Recently, the phenomenon of laminar chaos was de-
tected in systems with periodically modulated delay [1]. It is
characterized by nearly constant laminar phases, which are pe-
riodically interrupted by irregular bursts, where the intensity
levels of the laminar phases vary chaotically. In contrast to its
generalizations [2], laminar chaotic signals with their plateau-
like structure have potential advantages in applications, such
as random number generators [3–5], chaos communication
[6–9], or reservoir computing [10–14], also because they can
be generated experimentally, e.g., by optoelectronic [15] or
electronic setups [16,17]. The appealing feature of such sys-
tems is the possibility to generate signals, which are basically
piecewise constant, while the levels of their intensity varies
chaotically as ruled by a deterministic one-dimensional (1D)
iterated map, which is robust against noise [15,18] and can
be designed by tuning the delayed nonlinearity of the system,
for instance, via electronic circuits [19]. The dynamics of the
durations of the laminar phases is governed by the modulated
delay, which can be experimentally implemented and tuned by
a variety of methods [15–17,20]. Very recently we found
that for a large class of nonlinearities such systems may also
show deterministic chaos with a diffusive variation of the
intensity levels [21]. In this paper we will show that finite-
dimensional ordinary differential equations (ODEs) may show
a similar piecewise constant, diffusive variation of the in-
tensity, which poses the question of whether their behavior
may also be considered as an instance of laminar chaos. The
specific system of ODEs to be considered is derived from the

*david.mueller-bender@mailbox.org
†rahil.valani@adelaide.edu.au
‡radons@physik.tu-chemnitz.de

dynamics of a one-dimensional classical wave-particle entity
[22–26]. Such wave-particle entities are motivated from the
hydrodynamical system of walking droplets and they have
been shown to mimic features that are typically associated
with quantum mechanical systems [27]. The corresponding
evolution equations considered by us are modifications of the
classic Lorenz equations [28,29]. In Ref. [18], we designed a
toolbox of testing experimental time series for laminar chaos.
We now apply these methods to the numerically generated
time series of the Lorenz-like wave-particle system and find
that they do not pass this test. Therefore, to characterize their
behavior and to distinguish it from “true” laminar chaos as
it appears in differential delay equations (DDE), we coin the
term pseudolaminar chaos. It turns out that pseudolaminar
chaos can be considered as integrated on-off intermittency,
more specifically, as the integrated version of periodically
driven on-off intermittency. On-off intermittency is a fun-
damental phenomenon [30,31], which is closely related to
synchronization phenomena in coupled systems [32–34]. In
past decades, it has been observed experimentally in many
systems [35–38]. In these classical papers, autonomous or
randomly driven [39,40] dissipative systems were considered,
which under suitable conditions can show power-law dis-
tributed off-periods of the variable of interest. The power-law
distribution of the off-periods can lead to anomalous transport
in diffusive systems driven by on-off intermittency [41–43].
However, the basic on-off mechanism, namely, the repeated
variation of a time-dependent parameter (or a second variable)
through a bifurcation point [31], can also occur with a periodic
variation, leading to a trivial distribution of the off-periods.
It is clear that the integrated version of the periodic on-off
process, which leads to pseudolaminar chaos, can also be
observed frequently. Therefore, it is rewarding to work out in
some detail similarities and differences between true laminar
and pseudolaminar chaos, as is done in this manuscript.
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This paper is organized as follows. In Sec. II we intro-
duce the systems of interest and show numerical solutions of
their evolution equations, which are subsequently classified as
laminar and pseudolaminar chaos, respectively. In Sec. III we
show the results of applying the test for laminar chaos and also
investigate statistical properties, and in Sec. IV we check the
sensitivity to noise. We discuss and conclude in Sec. V.

II. SYSTEM DEFINITION AND TIME SERIES

To explore the notion of pseudolaminar chaos, we consider
a finite-dimensional Lorenz-like dynamical system that is mo-
tivated from the physical system of walking droplets.

On vertically vibrating a bath of liquid, a droplet of the
same liquid can be made to walk horizontally on its free
surface [44–46]. Each bounce of the droplet generates a local-
ized standing wave on the liquid surface that decays slowly
in time. The droplet then interacts with its self-generated
waves on subsequent bounces to propel itself horizontally.
This gives rise to a classical millimeter-sized wave-particle
entity moving steadily across the liquid surface. Intriguingly,
these self-propelled classical wave-particle entities have been
shown to exhibit features that are typically associated with the
quantum realm [27,47].

Exploration of walking-droplet inspired wave-particle en-
tities in a generalized pilot-wave framework have shown a
plethora of rich dynamical walking behaviors. The general-
ized pilot-wave framework, introduced by Bush [47], is a
theoretical framework that extends models of walking droplets
beyond experimentally achievable regimes. It has allowed
for the exploration of a broader class of dynamical systems
and the discovery of new quantum analogs [27]. Oza et al.
[48] developed a theoretical stroboscopic model that averages
over the vertical periodic bouncing motion of the droplet
and provides a trajectory equation for the horizontal walking
dynamics in two dimensions. A one-dimensional reduction
of this model describing the dynamics of an idealized one-
dimensional wave-particle entity with a sinusoidal wave field
can be mapped directly to the classic Lorenz system [28].
This results in the following Lorenz-like dynamical system
governing the particle’s dynamics (in dimensionless form)
[23,25,26]:

ẋ(t ) = X (t ) (1a)

Ẋ (t ) = σ [Y (t ) − X (t )] (1b)

Ẏ (t ) = X (t ) [r − Z (t )] − Y (t ) (1c)

Ż (t ) = X (t )Y (t ) − b Z (t ), (1d)

where x(t ) is the particle position, X (t ) is the particle
velocity, and the variable Y (t ) and Z (t ) are related to the wave
forcing on the particle arising from its self-generated wave
field. The parameter b turns out to be unity in the Lorenz-
like dynamical equations of the wave-particle entity, while
σ−1 represents the dimensionless particle/droplet mass and
r represents the wave force coefficient. We refer the interested
reader to Valani et al. [25] and Valani [26] for a derivation and
more details on this model.

Superwalkers [46,49] are bigger and faster walking
droplets that emerge when the bath is vibrated at two

frequencies simultaneously, a frequency and half of it, along
with a constant phase difference. By detuning the two driving
frequencies by a small amount, one can get the phase dif-
ference to drift slowly in time. This detuned two-frequency
driving results in a walking motion for superwalkers known
as stop-and-go motion [46,50]. The stop-and-go motion of
droplets, enabled by the varying phase difference, results in
periodic traversals of the bouncing (no horizontal walking)
and the walking regime in the parameter space of the phys-
ical system. Hence, the stop-and-go motion of superwalkers
motivates periodically varying parameters in our idealized
Lorenz-like wave-particle model, Eqs. (1), which would al-
low us to periodically traverse between a stationary state and
walking states.

We consider a simple extension to the system in Eqs. (1)
by replacing the constant r in Eq. (1c) with the time-varying
parameter r(t ) = Ar sin( 2π

T t ), resulting in a parametrically
driven Lorenz-like system [51] [52]. The amplitude Ar and the
period T of r(t ) are chosen such that Eqs. (1b)–(1d) generate
dynamics that can be described as periodically driven on-off
intermittency. In classical on-off intermittency a random or
chaotic driving of a system leads to intermittent chaotic be-
havior, where phases of nearly zero intensity are interrupted
by chaotic bursts. Typically, the durations of the constant (off)
phases follow a power-law distribution. Replacing the chaotic
driving with a periodic driving leads to alternating nearly
constant and chaotic phases with periodic durations.

In Figs. 1(b) and 1(d), time series X (t ) of the system in
Eqs. (1) are shown for two sets of parameter values. When
the dashed black line appears, r(t ) < 1 is in a regime, where
all Jacobian eigenvalues of Eqs. (1b)–(1d) of the equilibrium
(X,Y, Z ) = (0, 0, 0) are negative and thus the trajectory is at-
tracted to this fixed point. This equilibrium becomes unstable
when the dashed line disappears, where we have r(t ) > 1,
and the system reaches a chaotic regime after a transiting
through a series of bifurcations [51]. Given that the timescale
of the parameter variation determined by the period T is
sufficiently larger than the correlation time of the system,
periodically alternating nearly constant and chaotic phases
develop as visible in Fig. 1(b), where the Lyapunov time
λ−1

max is much smaller than T , λ−1
max/T ≈ 0.01 [53]. In the

opposite limit shown in Fig. 1(d), where the Lyapunov time is
of the order of T , λ−1

max/T ≈ 1.18, the transitions are regular,
while the overall dynamics is still chaotic [53]. Integrating
over such time series, as done by Eq. (1a), leads to nearly
constant laminar phases with a chaotic intensity variation and
burst-like transitions between them [54]. In Figs. 1(a) and
1(c) the resulting time series x(t ) are shown corresponding
to Figs. 1(b) and 1(d), respectively. These time series appear
to be very similar to so-called laminar chaos, which was
originally discovered in time-delay systems defined by the
delay differential equation (DDE) [1]

ẋ(t ) = −� x(t ) + � f (x(R(t ))), with R(t ) = t − τ (t ),

(2)

where the delay varies periodically, τ (t + T ) = τ (t ). In
Fig. 1(e) an exemplary laminar chaotic time series is
shown, where we have chosen the nonlinearity f (x) =
x + μ sin(2π x) and the time-varying delay τ (t ) = τ0 +
Aτ T
2π

sin( 2π
T t ). According to Ref. [1], laminar chaos is
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FIG. 1. Time series of pseudolaminar chaos and laminar chaos.
In (a) and (c) pseudolaminar chaos generated from Eq. (1) is shown.
True laminar chaos generated from Eq. (2) is shown in (e). The
corresponding derivatives of the time series are plotted below in
Figs. (b), (d), and (f). For (a) and (b) we used the parameters σ = 5,
b = 1, Ar = 40, and T = 400. In (c) and (d) we have σ = 5, b = 1,
Ar = 15, and T = 10. For the laminar chaos in (e) and (f), we used
� = 50, μ = 0.9, τ0 = 1, Aτ = 0.76, and T = 1. For a sufficient
relaxation of the transient dynamics, plotting of the time series begins
after 100 periods of the time-varying parameter r(t ) or of the delay
τ (t ). The dotted lines in (b) and (d) correspond to r(t ) < 1, where
a stable fixed point exists at (X,Y, Z ) = (0, 0, 0) of the system in
Eqs. (1).

characterized by nearly constant laminar phases and burst-like
transition between them, where the intensity levels of the
laminar phases vary chaotically and the durations vary peri-
odically with period T , which equals the period of the delay.
The chaotic dynamics of the laminar phases is governed by
the one-dimensional iterated map x′ = f (x), which is defined
by the nonlinearity of the delayed feedback of Eq. (2). Since
all of the time series in Fig. 1 are chaotic time series [53]
that are characterized by nearly constant phases, which are
periodically interrupted by more or less irregular bursts, one
may think that they all can be classified as laminar chaos. That
would be surprising since laminar chaos is a phenomenon
observed in infinite dimensional systems, whereas the system

defined by Eq. (1) is effectively three-dimensional. In the
following we demonstrate that this is indeed not true and
that only the time-delay system produces true laminar chaos.
We show that there are significant differences between the
pseudolaminar chaotic dynamics shown in Figs. 1(a) and 1(c)
and true laminar chaos shown in Fig. 1(e). We explore in detail
the different mechanisms behind pseudolaminar chaos and
laminar chaos and show that pseudolaminar chaos fails the test
for laminar chaos introduced in Refs. [15,18]. Moreover, both
types of dynamics react significantly differently to additive
white noise.

III. TEST FOR LAMINAR CHAOS

In this section we apply the test for laminar chaos intro-
duced in Refs. [15,18] and show that it is passed only by
the time series shown in Fig. 1(e), which was generated by
the time-delay system, Eq. (2). We start by reviewing some
of the basics of the theory of laminar chaos from Refs. [1,2].
Equation (2) can be solved using the method of steps [55,56].
In this method, the solution x(t ) is divided into suitable solu-
tion segments xk (t ) = x(t ) with t ∈ Ik , where the boundaries
of the state intervals Ik = (tk−1, tk] are connected by the ac-
cess map given by

t ′ = R(t ) = t − τ (t ). (3)

Assuming that R(t ) is monotonically increasing, i.e.,
τ̇ (t ) < 1 for almost all t , which can be motivated by physical
and mathematical arguments [57,58], the state intervals cover
the whole time domain and the kth solution segment xk (t ) can
be interpreted as the memory of the delay system at time tk .
Given an initial segment x0(t ), the dynamics of the solution
segments is governed by an iteration of a nonlinear operator,
where subsequent segments are connected by

xk+1(t ) = xk (tk )e−�(t−tk ) +
t∫

tk

dt ′ �e−�(t−t ′ ) f (xk (R(t ′))).

(4)
Since the integral kernel �e−�(t−t ′ ) can be interpreted as an
approximation of the delta distribution with width �−1 [59],
one has, in the limit � → ∞,

xk+1(t ) = f (xk (R(t ))), (5)

which can also be derived directly from Eq. (2) by dividing
both sides by �, taking the limit � → ∞ and replacing x(t )
and x(R(t )) with xk+1(t ) and xk (R(t )), respectively. Moreover,
Eq. (4) can be interpreted as application of the so-called limit
map, Eq. (5), and a subsequent smoothing with a kernel of
width �−1. Since the influence of smoothing can be neglected
inside the nearly constant laminar phases, given that the width
of the kernel is much smaller than the duration of the laminar
phases, in the laminar chaotic regime, the dynamics of Eq. (2)
can be well approximated by Eq. (5). The limit map, Eq. (5),
can be understood as the pointwise iteration of the graph
(t, xk (t )), with t ∈ Ik = (tk−1, tk], under the two-dimensional
map

yk = R−1(yk−1) (6a)

zk = f (zk−1), (6b)
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which consists of two independent one-dimensional maps:
Equation (6b) describes the dynamics of the function values
from solution segment to solution segment, and thus it governs
the dynamics of the intensity levels of the laminar phases.
Equation (6a) acts on the time-domain and describes the fre-
quency modulation of the solution segments caused by the
temporal variation of the delay τ (t ). Since the delay system
described by Eq. (2) is a feedback loop, this kind of frequency
modulation occurs with each round trip inside the feedback
loop, where the memory of the system after the kth round trip
is represented by the solution segment xk (t ). If there is a reso-
nance between the average round trip time inside the feedback
loop and the period of the delay variation, periodically al-
ternating low- and high-frequency phases develop, where the
low-frequency phases degenerate to nearly constant phases for
laminar chaos. Mathematically, the round trip of the signal
inside a feedback loop with time-varying delay is described by
Eq. (6a) and its inverse, the access map given by Eq. (3). For
periodically time-varying delays they are lifts of circle maps
(cf. Refs. [60,61]), and a resonance between the round trip
inside the feedback loop and the delay variation corresponds
to stable mode-locking dynamics of these circle maps, i.e.,
in this case the Lyapunov exponent λ[R] of the access map
is negative. Analyzing the stability of a piecewise constant
solution of Eq. (5) leads to the conclusion that laminar chaos
can be observed if the condition

λ[ f ] + λ[R] < 0 (7)

is fulfilled, where λ[ f ] is the Lyapunov exponent of the
map, Eq. (6b), defined by the nonlinearity of the delayed
feedback. A generalization of the theory of laminar chaos to
systems with quasiperiodic delay can be found in Ref. [62].
Laminar chaos was also found in systems with a more com-
plex structure than Eq. (2): The synchronization of laminar
chaotic systems was considered in Ref. [63] and, as shown in
Ref. [64], laminar chaos can be induced into a constant delay
system if it is coupled to a time-varying delay system.

According to Ref. [18], the test for laminar chaotic dy-
namics consists of the detection of two features, which are
robust against noise so that they can be detected even for
large noise strengths, where nearly constant phases are hard
to recognize. Only if both features are present can the dynam-
ics be classified as laminar chaos. The first feature consists
of laminar phases with periodic durations, which appear as
periodically repeating low-amplitude phases of the derivative
ẋ(t ) of the signal x(t ). These phases are present for all con-
sidered time series as illustrated in Figs. 1(b), 1(d) and 1(f).
The intensity levels xn of the laminar phases are measured,
which are numbered by the index n in the same order as they
appear in the time series. A natural approach for measuring the
intensity levels is setting xn = x(t∗

n ), where the t∗
n are members

of the drifting attractive orbits of the access map, Eq. (3).
The time instants t∗

n are crucial for the long time dynamics
of the intensity levels since, for large k, we have inside a
laminar phase xk (t ) = f k (x0(Rk (t ))) ≈ f k (x0(t∗

n )) according
to Eq. (5), where t∗

n is an attractive point inside the initial state
interval I0. When one considers systems with noise, fluctu-
ations of x(t ) are minimal at the t∗

n (cf. Ref. [18]), which is
convenient for detecting the second robust feature of laminar
chaos given by the fact that the dynamics of the intensity
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FIG. 2. Return maps of the levels xn of the (pseudo) laminar
phases and of the increments δn = xn+1 − xn. The parameters were
chosen as in Fig. 1, where (a) and (b) correspond to Fig. 1(a), (c) and
(d) correspond to Fig. 1(c), and (e) and (f) correspond to Fig. 1(e)
as indicated by the colors. The levels are estimated by setting xn =
x(n T ), where T is the period of r(t ) or of the time-varying delay τ (t )
for pseudolaminar and laminar chaos, respectively. For the laminar
chaos considered in (e) and (f), the time instants t∗

n = n T are the
members of the drifting attractive orbits of the access map, Eq. (3)
(see text).

levels xn is governed by the one-dimensional map defined
by Eq. (6b). In particular, we have xn+p = f (xn), where p
is the number of laminar phases per state interval Ik , which
follows directly from the required monotonicity of the access
map, Eq. (3): Since the access map is monotonically increas-
ing, it is clear that the first laminar phase in Ik is mapped
by Eq. (4) to the first laminar phase in Ik+1, the second to
the second, and so forth. This feature can be detected by
trying to reconstruct the nonlinearity f from the intensity
levels xn, where we plot xn+p′ over xn. If we find a positive
integer p′ such that the points (xn, xn+p′ ) resemble a graph
of a function, the dynamics is classified as laminar chaos,
where the function is an iteration f l (x) of the right-hand
side of Eq. (6b). For the smallest p′ = p, the nonlinearity f
of the delayed feedback is reconstructed. In Figs. 2(a), 2(c)
and 2(e) such return maps with p′ = 1 are shown for time
series of Eqs. (1) and (2), where the parameters are chosen
as in Fig. 1 as indicated by the coloring. While for the time
series generated by Eq. (1) no p′ was found with the property
that the points (xn, xn+p′ ) resemble a function, for the delay

014208-4



PSEUDOLAMINAR CHAOS FROM ON-OFF INTERMITTENCY PHYSICAL REVIEW E 107, 014208 (2023)

system defined by Eq. (2) the reconstructed nonlinearity f (x)
is clearly visible in Fig. 2(e). It follows that the exemplary
time series of Eq. (2) can be classified as laminar chaos,
whereas the two exemplary time series of Eq. (1) are pseu-
dolaminar chaos since they fail the test for laminar chaos.
Similar results are obtained if the sinusoidal variation of the
parameter r in Eqs. (1) is replaced by a periodic, piecewise
constant function that switches between +Ar and −Ar as
shown in Appendix A. These qualitative observations can be
verified by quantifying nonlinear correlations of the return
maps of the levels xn as done in Appendix B, where the results
of two methods are compared. For all considered parameter
values, both methods lead to a clear distinction between pseu-
dolaminar and true laminar chaos. To summarize, while all
considered time series show nearly constant laminar phases
with chaotically varying levels, only the time series generated
by the delay system, Eq. (2), satisfy the central property of
true laminar chaos: The dynamics of the levels is governed by
a one-dimensional iterated map. This property is not satisfied
by the time series generated by Eqs. (1), and therefore we call
the dynamics pseudolaminar chaos.

If one considers the increments δn = xn+p′ − xn instead of
the levels xn, which seems to be a reasonable approach since
the δn are bounded whereas the xn are unbounded for chaotic
diffusion, the picture is not that clear. While the return map
of the increments shown in Fig. 2(b) appears clearly different
from the return map obtained for laminar chaos, Fig. 2(f), in
Fig. 2(d) line-like structures appear, which are somewhat sim-
ilar to the structures obtained for laminar chaos in Fig. 2(f).
The numerical analysis of the nonlinear correlations of these
return maps in Appendix B confirms these qualitative obser-
vations: While the quantitative analysis for Fig. 2(b) indicates
the absence of nonlinear correlations, strong correlations are
found in Fig. 2(d) similar to Fig. 2(f), although only the latter
one corresponds to true laminar chaos. As a consequence, one
should be aware that only the return map of the levels of the
laminar phases should be used for the detection of laminar
chaos and not the return map of the increments. However, as
we demonstrate in Sec. IV, the line-like structures in Fig. 2(d)
disappear in the presence of noise, whereas the features of
true laminar chaos are robust against noise as demonstrated in
Refs. [15,18].

The differences of the structures in the return maps
observed for laminar and pseudolaminar chaos are direct con-
sequences of the differences between the mechanisms behind
these dynamics. For laminar chaos the one-dimensional map
that generates the levels xn is induced by the nonlinear de-
layed feedback: If the condition for laminar chaos, Eq. (7), is
fulfilled and � is large enough, the dynamics in the laminar
phases can be well described by the two-dimensional map,
Eq. (6). At the transition between these phases, this approx-
imation breaks down, since there the smoothing in Eq. (4)
becomes relevant. In this sense, the dynamics of the levels of
the laminar phases is independent of the dynamics of the tran-
sitions in between. In strong contrast, for the pseudolaminar
chaos introduced here, the level dynamics are dictated by the
transitions since pseudolaminar chaos is the integral of chaotic
bursts according to Eq. (1a), and thus each increment δn =
xn+1 − xn is given by the integral of a chaotic burst between
two subsequent laminar phases. Assuming that the duration of
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FIG. 3. Histogram of the increments δn = xn+1 − xn shown in
Fig. 2(b) and Gaussian approximation (solid line) with zero mean,
where the standard deviation was computed from the data.

the chaotic bursts is large compared to the correlation length
of the chaotic oscillations in the chaotic burst phase, the incre-
ments δn can be viewed as a sum of a large number of nearly
independent pseudorandom numbers. As a result in this limit,
the increments δn are nearly uncorrelated as visible in Fig. 2(b)
and, according to the central limit theorem, are nearly Gaus-
sian distributed as illustrated in Fig. 3, where a histogram of
δn for the parameters used in Figs. 1(a), 1(b), 2(a), and 2(b)
is shown together with a Gaussian approximation. Line-like
structures in the increments, which imply strong (nonlinear)
correlations and a non-Gaussian distribution in general, as
shown in Fig. 2(d), can be obtained if one tunes the pa-
rameters such that the duration of the bursts is close to the
correlation time of the chaotic oscillations so that each burst
consists of one short oscillation as visible in Fig. 1(c). As
one may expect, this kind of behavior is not robust, i.e.,
it is very sensitive to noise. We explore this in the next
section.

IV. SENSITIVITY TO NOISE

In this section we analyze the influence of additive
white noise on pseudolaminar chaos and laminar chaos. We
demonstrate that pseudolaminar chaos reacts fundamentally
differently to noise than laminar chaos. While it is known that
the robust features of laminar chaos considered in Sec. III can
survive for larger noise strengths [18], it turns out for pseu-
dolaminar chaos that even small noise strengths can change
properties such as line-like structures in the return map of the
increments drastically. In order to do this we add white noise
to Eqs. (1) and (2). We then perform the same analysis as in
Sec. III and compare the results. For simplicity we add noise
only to the right-hand side of Eq. (1b). So we consider the
stochastic differential equation

ẋ(t ) = X (t ) (8a)

Ẋ (t ) = σ [Y (t ) − X (t )] + ε ξ (t ) (8b)

Ẏ (t ) = X (t ) [r − Z (t )] − Y (t ) (8c)

Ż (t ) = X (t )Y (t ) − b Z (t ), (8d)
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FIG. 4. Effect of dynamical noise on time series of pseudolami-
nar chaos and laminar chaos. In (a) and (c) pseudolaminar chaos and
in (e) true laminar chaos is shown, where additive Gaussian white
noise with a small standard deviation ε = 0.01 was added to the
right-hand side of Eq. (1b) for pseudolaminar chaos and to Eq. (2)
for laminar chaos. The corresponding derivatives of the time series
are plotted in (b), (d), and (f), where, for laminar chaos, the approxi-
mate derivative 
h(x)(t ) = h−1[x(t + h) − x(t )] with h ≈ 0.0023 is
shown. The parameters were chosen as in Fig. 1.

for pseudolaminar chaos, where qualitatively equivalent
results are obtained if noise is added to another or to more
than one of Eqs. (1b)–(1d). We also expect equivalent results if
colored noise with a correlation length much smaller than the
period of the variation of the parameter r = r(t ) is considered.
Adding noise to Eq. (1a) is less interesting since this noise
does not feed back to the dynamical system and it is basically
the same as adding Brownian motion to x(t ). For laminar
chaos we consider the stochastic DDE

ẋ(t ) = −� x(t ) + � f (x(R(t ))) + ε ξ (t ), (9)

where ξ (t ) is Gaussian white noise with mean 〈ξ (t )〉 = 0 and
covariance function 〈ξ (t )ξ (t ′)〉 = δ(t − t ′).

In Fig. 4 time series x(t ) and their derivatives ẋ(t ) are
shown for these systems, where we have set ε = 0.01 and
used the same parameters as in Fig. 1. The corresponding
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FIG. 5. Return maps of the levels xn of the (pseudo) laminar
phases and of the increments δn = xn+1 − xn in systems with noise.
While the features of laminar chaos shown in (e) and (f) persist,
the line-like structures obtained for pseudolaminar chaos, which are
shown in Figs. 2(c) and 2(d), are destroyed by the noise as illustrated
in (c) and (d). The parameters were chosen as in Fig. 1, where (a) and
(b) correspond to Fig. 1(a), (c) and (d) correspond to Fig. 1(c), and (e)
and (f) correspond to Fig. 1(e), as indicated by the colors. Additive
Gaussian white noise with a small standard deviation ε = 0.01 was
added to the right-hand side of Eq. (1b) for pseudolaminar chaos
and to Eq. (2) for laminar chaos. The levels are estimated by setting
xn = x(n T ), where T is the period of r(t ) or of the time-varying
delay τ (t ) for pseudolaminar and laminar chaos, respectively. For the
laminar chaos considered in (e) and (f), the time instants t∗

n = n T
are the members of the drifting attractive orbits of the access map,
Eq. (3), where the fluctuations due to the noise are minimal (see
Sec. III).

return maps of the levels xn of the laminar phases and of
their increments δn are shown in Fig. 5. We find that in
the presence of noise laminar phases are visible for both
pseudolaminar chaos and laminar chaos. At first sight, the
laminar phases of true laminar chaos, Fig. 4(e), appear more
perturbed than the laminar phases of pseudolaminar chaos,
Figs. 4(a) and 4(c). However, despite the deviations from
the nearly constant behavior of the laminar phases in the
noiseless system, Fig. 1(e), the nonlinearity of the feedback
f can be nicely reconstructed as shown in Fig. 5(e), which is
also reflected by the return map of the increments shown in
Fig. 5(f) and confirms the robustness of this feature of laminar
chaos against noise. In strong contrast, the line-like behavior
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of the return map of the increments observed for pseudolami-
nar chaos in Fig. 2(d) is completely destroyed. Moreover, the
structures observed in the return maps become similar to the
ones observed for the limiting case, Figs. 5(a) and 5(b), where
the transitions between the laminar phases are given by the
integration over many chaotic fluctuations. This indicates that
such a behavior is typical for pseudolaminar chaos. In other
words, the line-like behavior shown by the noiseless system
is not robust, and thus it is unlikely to observe it in exper-
iments unless the noise strength is sufficiently small. These
observations are confirmed by the analysis in Appendix B,
where nonlinear correlations of the return maps are quantified
for the considered set of parameter values. While correlations
detected in the noiseless system persist in the presence of
noise for true laminar chaos, for pseudolaminar chaos the
correlations visible in Fig. 2(d) vanish in the presence of
noise.

The drastic differences between pseudolaminar chaos and
laminar chaos with respect to the reaction to noise reflect the
drastic differences of the generating mechanisms of the related
laminar phases. During the laminar phases of pseudolaminar
chaos, noise drives the subsystem Eqs. (1b)–(1d) away from
the equilibrium (X,Y, Z ) = (0, 0, 0), which is stable during
these phases. This leads to larger side peaks of ẋ(t ) = X (t ) in
Fig. 4(d) in comparison to the small side peaks in Fig. 1(d).
Since the increments of the intensity levels are given by the in-
tegral over X (t ), these deviations are even more amplified, so
that potential low-dimensional structures disappear from the
return map as reflected by the differences between Figs. 2(c)
and 2(d) and Figs. 5(c) and 5(d). In contrast, a delay system
given by Eq. (2), which can generate true laminar chaos, reacts
in a completely different way to additive noise, which is a
consequence of the infinite dimensional phase space of the
delay system, whereas the system defined by Eq. (1) is finite
dimensional. Using the definitions of the solution segments
from Sec. III, the solution operator of the stochastic system
given by Eq. (9) reads

xk+1(t ) = xk (tk )e−�(t−tk )

+
t∫

tk

dt ′ �e−�(t−t ′ ) f (xk (R(t ′))) + ε�k (t ), (10)

which differs from the solution operator, Eq. (4), of the noise-
less system by the random function segment �k (t ) defined by

�k (t ) =
t∫

tk

dt ′ e−�(t−t ′ ) ξ (t ′). (11)

So �k (t ) is generated by an Ornstein-Uhlenbeck process with
initial value �k (tk ) = 0. For large �, we can neglect the in-
fluence of the smoothing operator in Eq. (10), leading to the
approximation

xk+1(t ) = f (xk (R(t ))) + ε�k (t ), (12)

which can be viewed as a stochastic version of the limit map,
Eq. (5), and thus it can be interpreted as the iteration of the

graph (t, xk (t )) under the two-dimensional map

yk = R−1(yk−1) (13a)

zk = f (zk−1) + ε�k (yk ), (13b)

where the dynamics of the function values of the segments,
and thus the dynamics of the levels of the laminar phases, is
governed by Eq. (13b). So from this first-order approximation
it follows that additive white noise in the delay system leads
to additive noise in the map, Eq. (13b), generating the lev-
els of the laminar phases, where the mechanism behind and
thus the features of laminar chaos remain intact. For larger
noise strengths, where the smoothing by the kernel �e−�(t−t ′ )

cannot be neglected, it was demonstrated experimentally and
numerically in Refs. [15,18] that the nonlinearity f of the
delayed feedback can be reconstructed even if the laminar
phases are hard to recognize, which verifies the robustness of
laminar chaos.

V. DISCUSSION

It would be interesting to investigate whether pseudolami-
nar chaos can be realized in experiments, for example, in the
hydrodynamical system of single-frequency driven walkers
and two-frequency driven superwalkers. One way this could
be achieved is by periodically driving the droplets between a
stationary (nonwalking) state similar to a laminar phase and
a chaotic walking state similar to a chaotic burst. The stop-
and-go motion of superwalkers [46,49] arising from slight
detuning of two driving frequencies provides a convenient
way to periodically drive the system between a stationary
state and a walking state. However, only steady walking states
have been observed in experiments with a superwalker in free
space. For a walker in free space, in addition to steady walking
states, oscillatory walking states have also been reported in
experiments [65]. However, chaotic walking regimes that are
predicted to arise in theoretical models [23,25,26,66,67] have
not been realized in experiments yet. Nevertheless, chaotic
walking states have been observed for a walker in confin-
ing potentials [68–71] and rotating frames [72], and similar
chaotic states might be expected for superwalkers in confining
potentials. Hence, if one investigates stop-and-go motion of
superwalkers in confining potentials, then one may be able to
oscillate between a stationary and chaotic walking states, and
pseudolaminar chaos may be realized in such an experimental
setup.

Although our investigations of pseudolaminar chaos were
inspired by models of walking droplets with a periodic driv-
ing, our results are obviously more general: any system
showing periodic on-off intermittency would show signatures
of laminar chaos in the time-integrated intermittent variable,
but a proper analysis, as done in this paper, would reveal
that one has observed actually pseudolaminar chaos instead
of true laminar chaos. There are many reports on experiments
[35,37,38] and numerical simulations [38–40] on driven on-
off intermittency, usually with a random driving. Obviously
the latter could be changed to a periodic driving, which
then would produce examples of pseudolaminar chaos in
the integrated intermittent variable, as reported here for the
walking droplet dynamics, which led to an integrated Lorenz-
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like dynamical system. Potential candidates of systems where
pseudolaminar chaos can be induced are given by systems that
show chaotic deterministic diffusion [73]. In such systems, the
velocity shows bounded chaotic dynamics and its time inte-
gral, i.e., the state variable shows diffusion. Let us consider
such a system with an experimentally accessible parameter,
which can be tuned such that the velocity shows chaos for one
parameter value and converges to a stable equilibrium equal
to zero for another value. If one periodically switches the
parameter value between these regimes, the velocity shows
periodically driven on-off intermittency given that the pe-
riod of the switching is large compared to the correlation
time of the system. As a result, the state variable shows
pseudolaminar chaos. This concept can be easily applied
to the periodically forced nonlinear pendulum considered in
Ref. [74], which is also a model for phase-locked loops and
Josephson junctions [75,76]. If the external periodic driving is
periodically switched on and off, where the pendulum rotates
chaotically in the on phase and relaxes to the equilibrium
in the off phase, pseudolaminar chaos is observed in the
angular position. A subclass of chaotic deterministic diffu-
sion is the so-called deterministic Brownian motion [77,78],
which is also found in time-delay systems where the velocity
shows turbulent chaos [79]. Therefore, pseudolaminar chaos
can even be induced in time-delay systems by periodically
switching the dynamics of the velocity between turbulent
chaos and relaxation to a stable equilibrium equal to zero. This
highlights the relevance of our test for distinctive features of
pseudolaminar and true laminar chaos provided in Sec. III,
especially in experimental situations where the mechanism
generating the measured time series is unknown.

On the other hand, on-off intermittency in the narrow
sense as formulated originally in Refs. [30,31] is connected
to the appearance of laminar phases, whose durations are not
roughly constant as with periodic driving, but power law dis-
tributed. In this case, the time-integrated intermittent variable
would consist of a sequence of randomly varying plateaus,
with durations governed by the same power-law distribution.
In such cases one would observe a generalized version of
pseudolaminar chaos. A similar dynamical behavior that is
also based on on-off intermittency is the so-called multistate
on-off intermittency [80,81] and the dynamics shown by the
phase difference of coupled periodically driven pendula close
to the onset of synchronization [82]. If one allows for other
statistical variations of the durations, such generalized pseu-
dolaminar chaos could also be observed for walking droplets.
For example, in the chaotic walking regimes realized in the-
oretical models of walking droplets in two dimensions, a
run-and-tumble-like trajectory is observed [66,67]. For such
trajectories, if one plots the time series of the particle’s ori-
entation, then it would be a constant during the run phase
(laminar phase) and vary chaotically during the tumble phase.
Hence, the durations of the run phases determine the statistics
of laminar phases, while the random variations of the angle
in the tumble phases determine the increments between the
angles of subsequent laminar phases. The time dependence
of the angle is naturally monitored as a time-continuous real
variable without discontinuities after full revolutions, thus
leading to a phase diffusion process, which may be normal or
anomalous depending on the duration statistics of the walking

phases. Moreover, this more general idea of pseudolaminar
chaos could also be transferred to stochastic processes such as
Lévy flights [83], where a trajectory may be partitioned into a
“laminar” phase of a long step and a “chaotic” burst of small
steps. This could be relevant for the description of human stick
balancing, where a combination of on-off intermittency and
Lévy flights was found [84].

So far all the discussed pseudolaminar chaotic processes
were actually diffusion processes. They arise naturally be-
cause integrating over chaotic bursts leads to independent
random increments. It appears to be difficult to generate
bounded pseudolaminar chaotic processes because this would
need systematic correlations between subsequent chaotic
bursts, which is not to be expected for on-off intermittency. In
contrast, for true laminar chaos a bounded signal appears nat-
urally, as in systems studied in Ref. [1], but also true laminar
chaotic diffusion with an unbounded signal variation arises
naturally [21]. As an outlook we may wonder whether, as a
counterpart to generalized pseudolaminar chaos as discussed
above, true laminar chaos from delay systems can also show
randomly varying durations of the laminar phase, at variance
with the periodic variation obtained in Ref. [1]. The tentative
answer is affirmative: a random variation of these durations
is expected to occur for delay systems with randomly vary-
ing delay. As a first step, it was confirmed that the random
counterparts of circle maps, which arise from the delayed
argument, typically show mode locking [85], which is a con-
dition to be fulfilled for the existence of laminar chaos in delay
systems with random delay. Preliminary investigations of such
delay systems show that indeed laminar chaos can exist, but
the statistics of the durations of the laminar phases has still
to be explored. Another hint for the existence of distributed
durations comes from studies of delay systems with a delay
intermediate between periodic and random, namely, systems
with a quasiperiodic delay variation. There we found [62] that
laminar chaos is indeed possible and that it becomes more
frequent if the quasiperiodic variation approaches a random
variation. The differences between generalized pseudolaminar
chaos and laminar chaos from delay systems with random
delay are expected to be similar to those in periodic systems
as found in this work: again the infinitely many negative
Lyapunov exponents of the delay systems have a strongly
stabilizing effect against noise, which is missing in systems
with only a few degrees of freedom.

Lastly, although we considered a simple model that re-
duces to a finite-dimensional Lorenz-like ODE [Eqs. (1)]
for a walking-droplet inspired 1D wave-particle entity with
a sinusoidal wave field, a more refined model, as originally
proposed by Oza et al. [48], which more accurately captures
the experimentally observed wave field in the form of a Bessel
function results in an integro-differential equation of motion
for the wave-particle entity. An integro-differential equa-
tion of motion also arises if one considers the wave-particle
entity in two dimensions. The integro-differential equation is
a result of the path memory in the hydrodynamic system since
the motion of the droplet is not only influenced by its most
recently generated wave but also by the waves generated in
the distant past. Hence, one may wonder whether true laminar
chaos might be observed in such walking-droplet inspired
path-memory induced integro-differential equations or more
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generally in delay systems with state-dependent delay where
infinite degrees of freedom are also present.

VI. SUMMARY

We investigated diffusive time series of a finite-
dimensional, chaotic, parametrically driven Lorenz-like dy-
namical system, which can be motivated, for instance, by a
hydrodynamical wave-particle system. While these time se-
ries share their appearance with that of recently discovered
laminar chaotic diffusion [21], they fail the test for laminar
chaos proposed in Ref. [18]. It turned out that such pseu-
dolaminar chaos is generated by a mechanism completely
different from that of laminar chaos. Laminar chaos is found
for systems with nonlinear feedback loops with a time-varying
delay, which are infinite dimensional systems described by
singularly perturbed delay differential equations. The inter-
play between the map defined by the nonlinearity of the
feedback and the map defined by the time-varying delay leads
to the development of nearly constant laminar phases with
periodic durations, where the intensity levels of the laminar
phases vary chaotically from phase to phase and follow the
dynamics of the chaotic one-dimensional map defined by the
nonlinearity of the feedback. In strong contrast, pseudolami-
nar chaos is generated by integrated periodically driven on-off
intermittency. While the latter is also characterized by nearly
constant laminar phases with chaotically varying intensity and
periodic durations, the intensity levels do not follow a one-
dimensional iterated map. Moreover, if the correlation time of
the intermittent signal is much smaller than the durations of
the chaotic bursts between the laminar phases, the intensity
levels rather follow a random walk, since their increments,
which are the integral over the bursts between subsequent
laminar phases, are nearly uncorrelated. As a consequence
of the different mechanisms and the drastically different di-
mensionality of the involved systems, we found fundamental
differences in the reaction to adding white noise in the equa-
tions of motion. As shown in Refs. [15,18], true laminar chaos
is robust to noise in the sense that its characteristic features
such as the nonlinear correlations between the laminar phases
can be detected even for larger noise strength, where the
laminar phases are hardly visible. In contrast, features of pseu-
dolaminar phases such as nonlinear correlations of increments
of the laminar phases can be destroyed even by small noise
strengths, where the influence of the noise is hardly visible.
Since the concept of pseudolaminar chaos is based on the
general phenomenon of on-off intermittency and is not limited
to a periodic driving, our results are not restricted to a specific
system and therefore they are relevant for a large variety of
problems, where the time derivative of an observable is an
on-off intermittent signal.
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FIG. 6. Time series of pseudolaminar chaos in the switched sys-
tem. (a) Pseudolaminar chaos generated from Eq. (1), where the
parameters were chosen as in Fig. 1(a). The sinusoidal variation of
parameter r = r(t ) was replaced by a piecewise constant function,
which equals Ar if the equilibrium (X,Y, Z ) = (0, 0, 0) of the system
in Fig. 1 is unstable (no dashed black line) and −Ar if it is stable
(black dashed line visible). (b) The corresponding derivative of the
time series. For a sufficient relaxation of the transient dynamics, we
begin plotting of the time series after 100 periods of the time-varying
parameter r(t ).

APPENDIX A: PSEUDOLAMINAR CHAOS
IN SWITCHED SYSTEMS

In this section we consider Eq. (1), where the sinusoidal
variation r = r(t ) = Ar sin( 2π

T t ) is replaced by the piecewise
constant function

r(t ) =
{

+Ar, if Ar sin
(

2π
T t

)
> 1

−Ar, else.
(A1)

Equation (A1) preserves the durations of the pseudolaminar
phases and of the chaotic bursts observed for the sinu-
soidal parameter variation since the equilibrium (X,Y, Z ) =
(0, 0, 0) of Eq. (1) is stable for r < 1 and unstable for r > 1.
Choosing the same parameter values as in Figs. 1(a) and 1(b),
we obtain qualitatively similar time series as shown in Fig. 6.
Comparing the return maps of the system with sinusoidal pa-
rameter variation shown in Figs. 2(a) and 2(b) with the return
maps of the switched system shown in Fig. 7 leads to the
conclusion that the basic mechanisms of pseudolaminar chaos
can already be understood in a simpler periodically switched
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FIG. 7. Return maps of the levels xn of the pseudolaminar phases
and of the increments δn = xn+1 − xn. The parameters were chosen
as in Fig. 6.
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system, where well-defined chaotic and attractive fixed point
dynamics alternate.

Switched systems were extensively studied in Refs. [86,87]
and appear, for instance, in the implementation of chaotic
logical circuits, where a nonlinear system is driven by a piece-
wise constant input signal, which carries the binary data to
be processed. Results on logical circuits implemented by a
thresholded chaotic Chua system can be found in Ref. [88].
If the NOR gate considered there is fed with two identical
periodic bit sequences, the output voltage of the threshold
control unit shows periodically driven on-off intermittency
and thus its integral shows pseudolaminar chaos if the off state
is normalized to zero.

APPENDIX B: QUANTIFYING NONLINEAR
CORRELATIONS FOR THE DETECTION

OF LAMINAR CHAOTIC DIFFUSION

In order to distinguish laminar chaotic diffusion from pseu-
dolaminar chaos as done in Sec. III, one has to check whether
the dynamics of the levels xn of the nearly constant phases is
governed by a one-dimensional map,

xn+p = f (xn) = xn + g(xn). (B1)

While this is clearly fulfilled for true laminar chaos as shown
in Figs. 2(e) and 5(e), for pseudolaminar chaos, for all p >

0, the points (xn, xn+p) are randomly distributed around the
bisectrix as shown in Figs. 2(a), 2(c), 5(a), and 5(c). Interpret-
ing xn+p and xn as random variables, the distinction between
these cases leads to the problem of detecting and quantifying
nonlinear correlations or stochastic dependence, which is a
nontrivial problem [89]. In the following, we introduce a
simple method for such a quantification and apply it to our
numerical data for pseudolaminar and true laminar chaos. The
results are compared to the maximal information coefficient
(MIC) introduced in Ref. [90]. We find a qualitative agree-
ment, which indicates that both methods are suitable for the
distinction between pseudolaminar and true laminar chaos.

Since the intensity levels xn show diffusive dynamics, there
is always a strong linear correlation between subsequent levels
xn and xn+p which overlays the relevant nonlinear correla-
tions induced by g in Eq. (B1) and leads to wrong results
if the algorithms used here are applied directly to the return
map generated by (xn, xn+p). Instead, we consider the points
(xn, xn+p − xn) = (xn, δn), which resemble the graph of the
function g in Eq. (B1) for true laminar chaos, whereas for
pseudolaminar chaos the δn fluctuate around zero without
correlations with xn. To obtain comparable results for the
quantification of the correlations, we require that the used
quantity converges, for an increasing number of samples, to
0 if and only if the two considered variables are stochastically
independent, and that it converges to 1 if there is an exact
functional relationship, such as Eq. (B1), between these vari-
ables, provided that this function is not constant. Our approach
follows from the same idea as the CANOVA method, which
can be found in Ref. [91]: Assuming that the function g is
continuous, |g(x) − g(x′)| is small for small |x − x′|, i.e., if the
arguments x and x′ are close. If the points (xn, δn) resemble the
graph of the function g, it follows that |δn′ − δn| is small if xn

and xn′ are close. A normalized quantity Q that reflects this

TABLE I. Comparison of 1 − Q and the MIC for the return maps
of the levels xn and of the increments δn = xn+1 − xn shown in Figs. 2
and 5, for the systems without and with noise, respectively. Values
that are significantly larger than zero (bold) indicate that there are
(nonlinear) correlations between subsequent levels or increments.
The sensitivity to noise of possible correlations in pseudolaminar
chaos is seen in the change of the coefficients from 1.00 for the
increments in Fig. 2(c) to a near-zero value after adding dynamical
noise, Fig. 5(c).

1 − Q MIC

Parameters Levels Increments Levels Increments

Fig. 2(a) −0.00135 −0.00142 0.062 0.063
Fig. 2(c) 0.00079 1.00 0.062 1.00
Fig. 2(e) 1.00 0.52 1.00 0.66
Fig. 5(a) 0.00232 0.0115 0.060 0.059
Fig. 5(c) −0.0083 0.0051 0.060 0.062
Fig. 5(e) 0.99 0.48 0.86 0.62

property is obtained by relating the variance of δn − δn′ for
close xn and xn′ to the overall variance of the δn. To compute
the quantity Q, we first sort the sequence of points (xn, δn)
with respect to the first component xn and obtain a sequence of
points (vm,wm), with vm = xπ−1(m) and wm = δπ−1(m), where
the indices m are given by a permutation m = π (n) of the
indices n such that we have vm < vm+1 for all m. The quantity
Q is defined by

Q = Var(wm+1 − wm)

2 Var(wm)
, (B2)

where Var(wm) is the sample variance of all values wm. If
the xn fulfill Eq. (B1), which implies wm = g(vm), we have
wm+1 − wm = g(vm+1) − g(vm). Assuming that the xn densely
fill an interval (or a union of intervals), we have, in the limit of
an infinite number of samples, vm+1 − vm → 0 for (almost) all
m. It follows that the numerator converges to zero in this limit
and we have Q → 0, provided that g(x) is not constant, which
would lead to a vanishing denominator. If wm = δn is discrete
white noise, we have Var(wm+1 − wm) → 2 Var(wm) in the
limit of an infinite number of samples, so that we have Q = 1
in this case. Considering 1 − Q instead of Q gives values close
to 1 or 0 for true laminar or pseudolaminar chaos, respectively.
An implementation of the algorithm can be found in Listing
1. In Table I, the quantity 1 − Q is shown for the return maps
of the levels xn and the increments δn of the levels of the
(pseudo)laminar phases visualized in Figs. 2 and 5, where the
algorithm was applied to 104 points (xn, δn) and (δn, δn+1),
respectively.

LISTING 1. Mathematica implementation of the algorithm
for the computation of Q. For computing Q of the return map
of the levels xn or the increments δn, the variable data must
contain the list of all points (xn, δn) or (δn, δn+p), respectively.

w = SortBy[data, First][[All, 2]];

Q =Variance [w[[2 ;; -1]] - w[[1 ;; -2]]]/

(2*Variance[w]);
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The results are compared to the maximal information co-
efficient (MIC) introduced in Ref. [90], which converges, as
the quantity 1 − Q, to 0 for stochastically independent vari-
ables, and it converges to 1 if the variables are connected by
a nonconstant function. The authors there also demonstrate
that different functions lead to similar values of the MIC if
noise with the same noise strength is added. So it should be
an appropriate quantity for detecting nonlinear correlations
during the test for laminar chaos. To analyze correlations in

the return maps of the levels xn or the increments δn, the
algorithm is applied to sets of points (xn, δn) or (δn, δn+p),
respectively. The MIC values were computed from 104 data
points with p = 1 using MINEPY [92].

For the considered parameters, both methods are able to
distinguish pseudolaminar chaos from true laminar chaos even
in the case shown in Fig. 2(c), where the return map of the
levels of the pseudolaminar phases basically consists of two
lines.
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