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Detecting the dynamical instability of complex time series via partitioned entropy
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A method is proposed to detect the dynamical instability of complex time series. We focus on how the
partitioned entropy of an initially localized region of the attractor evolves in time and show that its growth rate
corresponds to the first Lyapunov exponent. To avoid spurious detection of the dynamical instability, a criterion
is further introduced to distinguish chaos from limit cycles or tori. Numerical experiments using prototypical
models of chaotic systems demonstrate that the growth rate of the partitioned entropy indeed provides a good
estimate of the first Lyapunov exponent. The method is also shown to be robust against observational noise and
dynamical noise. Analysis of experimental data measured from a physical model of the vocal folds highlights
the practical applicability of the present method to real-world data. Advantages of the present method over
conventional methods are also discussed.
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I. INTRODUCTION

Time series analysis is essential for modeling, prediction,
and controlling of unknown systems in many scientific and
engineering fields [1]. Typically, such systems are nonlinear
and the observed time series is complex, which cannot be
treated with linear methods alone. To deal with such com-
plex time series, numerous methods have been developed
such as machine learning [2–5], complex networks [6–9], and
entropy-based techniques [10–14]. In this paper, we focus on
the entropy-based techniques, which have been widely applied
to quantify the complexity of experimental time series.

As the measure of complexity, various quantities such
as the fractal dimension, the Lyapunov exponent, and the
Kolmogorov-Sinai (KS) entropy can be computed [15–20].
The fractal dimension characterizes a self-similar geometry of
the underlying attractor [15], whereas the Lyapunov exponent
measures a divergence rate of nearby trajectories [16–18].
The KS entropy quantifies a growth rate of the entropy
required to characterize trajectories and is smaller than or
equal to the sum of the positive Lyapunov exponents [20].
Numerous methods have been proposed to estimate the cor-
relation dimension [15], the Lyapunov exponent [16–18], and
the KS entropy [19]. These methods work well under an
idealistic situation in that the time series is generated from
low-dimensional chaos. As soon as the data are contaminated
with noise, however, these methods break down and the esti-
mated results become unreliable.

As another approach to estimate the KS entropy, return
times of a dynamical system can be also used [21–23]. The
return times represent a series of time intervals between two
consecutive events, and have been used to characterize the
behavior of complex systems [24,25]. Although this approach
is quite effective for systems in which the events can be well
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defined, it is not straightforward to formulate events for un-
known systems. In general, real-world systems are governed
by unknown equations and the data generated from them are
noisy, short, and even nonstationary.

To overcome these difficulties, alternative approaches us-
ing the idea of symbolic dynamics have been proposed [26].
The symbolic dynamics approach is based on a coarse-
graining of the measured time series. The time series is
converted into a symbolic sequence and, as a measure of
the complexity, the information entropy [27] is estimated from
the probability distribution of the symbols. The advantages of
the symbolic dynamics include the computational efficiency
and the robustness against noise. Because of these practical-
ities, the symbolic dynamics methods have been widely used
to analyze experimental time series. Kurths et al. applied the
symbolic dynamics for the analysis of heart rate variability
data and found that electrocardiograms of patients with high
cardiac risks exhibit a higher level of complexity compared to
those of healthy subjects [28]. Costa et al. proposed a method
to compute multiscale entropy, which takes into account the
multiple time scales of a time series, and applied it success-
fully to complex physiological data [29,30]. Bandt and Pompe
proposed a method to compute permutation entropy, which
encodes times series of a given length into a ranked order
sequence, and showed that their quantity is highly correlated
with the Lyapunov exponent [31,32]. Miyano and Gotoda pro-
posed a variation of the permutation entropy and applied it to a
time series of flame front location [33]. Despite the usefulness
of these complexity measures, it is not straightforward to in-
terpret the obtained results, because the relationship between
the complexity measures and the dynamical quantities such as
the Lyapunov exponents and the KS entropy is unclear.

Towards developing a complexity measure, which has a
clear link to the theory of nonlinear dynamics, Amigó et al.
found that the growth rate of the permutation entropy is equal
to the KS entropy [34]. The growth rate, however, is affected
by strong finite-size corrections and thus the KS entropy
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estimated from the permutation entropy was found unreli-
able [35]. To fix this problem, Politi introduced a correction
term that modified the permutation entropy and demonstrated
that the modified permutation entropy improves the estima-
tion of the KS entropy [35]. The method, however, is rather
weak against noise, since the modified permutation entropy
should be computed for at least two settings of the embedding
dimensions d and d + 1. The additional dimension amplifies
the noise effect by increasing an inaccurate symbol in the
sequence. Because of this reason, an improved method that
is capable of computing the complexity measure with a fixed
embedding dimension is desirable. Along this line, Shiozawa
and Miyano proposed a method that focuses on the time
evolution of the permutation entropy with a fixed embedding
dimension [36]. They numerically showed that the estimated
complexity has a linear correlation with the first Lyapunov
exponent. Their method, however, cannot distinguish chaos
from periodic data, since high complexity values are estimated
even from periodic data. Moreover, the relationship between
their complexity measure and the nonlinear dynamic quanti-
ties remains unclear.

In this paper, we extend the method of Shiozawa and
Miyano to achieve the following properties:

(1) The complexity measure can be computed with a fixed
embedding dimension.

(2) The estimated complexity has a clear relationship
with the nonlinear dynamic quantity, i.e., the first Lyapunov
exponent.

(3) The method is robust against noise and can distinguish
complex time series from limit cycles or tori.

To verify the validity of our proposed method, we apply it
to various time series data simulated from prototypical mod-
els of chaotic systems as well as to experimental data from
physical model of the vocal folds. The effect of noise is also
examined.

II. THEORETICAL BACKGROUND

This section illustrates how the information entropy of an
attractor relates to the dynamical quantity of the underlying
system. More specifically, we focus on the entropy of a subset
of an attractor, which is initially localized in a same region,
and follow its time evolution.

Let us consider an attractor in a d-dimensional phase space
and partition it into M cells of size ε. We extract a set of
points located inside of the ith cell and consider them as initial
conditions, from which the system evolves. As time grows, the
set of initial conditions evolves into an ellipsoid-like structure.
The longest diameter of the ellipsoid can be approximated as
li(t )≈εeλi

1t , where λi
1 is the local first Lyapunov exponent that

corresponds to the most rapidly expanding direction near the
ith cell (Fig. 1 illustrates the expanded diameter in the case of
d = 2). The minimum number of cells required to cover the
stretched ellipsoid at time t is approximated as

mi(t )≈ li(t )

li(0)
≈ eλi

1t . (1)

For simplicity, we assume that the ellipsoid is equally dis-
tributed in the mi(t ) cells so that the probability that the system
state, initially located in the ith cell, is found in the jth cell at

FIG. 1. Illustration of an evolution of partitioned attractor. In
two-dimensional space (d = 2), an attractor exhibits a donut-like
structure, which is partitioned into four cells (M = 4, i = 1, 2, 3, 4).
At time t = 0, a set of initial conditions is covered by the first cell
(shaded area on the left panel). As time t passes, the set of initial
states evolves into an ellipsoid (shaded area on the right panel), the
diameter of which is expanded to li(t )≈εeλi

1t . The number of cells
required to cover the stretched ellipsoid can be approximated as
mi(t ) ≈ eλi

1t .

time t is given by

pi j (t ) = 1

mi(t )
, (2)

where j = 1, . . . , mi(t ). The information entropy hi(t ) of the
ellipsoid at time t is thus given as

hi(t ) = −
mi∑
j=1

pi j (t ) ln pi j (t )

= −
mi∑
j=1

1

mi
ln

1

mi
≈ λi

1t . (3)

Since the first Lyapunov exponent λ1 of the attractor is given
by a spatial averaging of the local first Lyapunov exponents
{λi

1}, averaging of the information entropy hi(t ) over all
cells, which cover all regions of the initial conditions, may
yield

h(t ) =
M∑

i=1

ρihi(t )≈λ1t, (4)

where ρi is the probability that the system state falls within the
ith cell (i.e., coarse-grained invariant measure of the attractor).
We call h(t ) “partitioned entropy” because it focuses on the
entropy of the states, which are initially partitioned into a
same cell. Equation (4) implies that the partitioned entropy
h(t ) grows linearly in time and its time derivative gives the
first Lyapunov exponent λ1. Note that Eq. (4) holds only for
t � λ−1

1 , since the diameter of the ellipsoid grows rapidly and
becomes comparable to the size of the whole attractor at time
t ∼ λ−1

1 .

III. METHOD

In the previous section, we described the idea of the par-
titioned entropy of an attractor and showed that its growth
rate corresponds to the first Lyapunov exponent. This sec-
tion presents an efficient and robust method to calculate the
partitioned entropy from an observed time series and shows
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FIG. 2. Time evolution of system states on the reconstructed
attractor in a two-dimensional space. The reconstructed attractor is
partitioned into four cells (00, 01, 10, 11) by the threshold (dashed
lines). The system states (solid circles) located within the cell 00
evolve in time, where the number of cells required to cover the
spreading system states increases as time passes.

that its growth rate indeed provides a good estimate for the
first Lyapunov exponent.

First, the time series is transformed into a symbolic se-
quence. Our scheme is based on the attractor reconstruction
using the time-delay coordinates [37,38] and binary encod-
ing of the delay coordinate vectors. Consider a time series
{xn} = {x(nT �t )}N−1

n=0 composed of N data points with a time
interval of T �t (T is an integer to skip the sampling data
points and to adjust the time-delay length). We reconstruct
the attractor into d-dimensional delay coordinate space as
vn = (xn, xn+1, . . . , xn+d−1). The nth system state vn in the
embedding space is transformed into a sequence of d-bit
binary numbers bnbn+1 · · · bn+d−1. For instance, when the em-
bedding dimension is two (i.e., d = 2), the nth system state is
transformed into two-bit binary numbers as

bnbn+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

00 if xn < xthres and xn+1 < xthres

01 if xn < xthres and xn+1 � xthres

10 if xn � xthres and xn+1 < xthres

11 if xn � xthres and xn+1 � xthres,

(5)

where xthres represents a threshold, for which the median of
{xn} is used so that the binary numbers 0 and 1 appear with an
equal probability.

By tracing the time evolution of the system state, the recon-
structed attractor {vn} is transformed into a sequence of d-bit
binary numbers S = {b0b1· · ·bd−1, . . . , bN−d bN−d+1· · ·bN−1}.
This procedure can be viewed as partitioning the recon-
structed attractor into 2d cells. Figure 2 illustrates the case of
d = 2, in which the attractor is partitioned into 22 = 4 cells
by the threshold xthres (dashed lines) and four symbols 00, 01,
10, and 11 are assigned to the individual cells.

Next, we denote each of the 2d binary number sequences
by a symbol ai (i = 1, . . . , 2d ) and rewrite the reconstructed
attractor as a symbolic sequence S = {an}. By tracing the
symbolic sequence of initial conditions in the same cell, the
partitioned entropy can be computed at each time step as fol-
lows. Suppose, for example, we have the following symbolic
sequence:

S = {a1, a2, a4, . . . , a1, a2, a3, . . . , a1, a4, a2}. (6)

We pick up all a1’s from the whole sequence S and collect
them as a set of initial symbols at time step τ = 0 as

S1(0) = {a1, . . . , a1, . . . , a1}. (7)

In other words, the set S1(0) corresponds to the set of system
states located in the cell, to which the symbol a1 is assigned. In
the next time step τ = 1, the set of the same symbols evolves
into

S1(1) = {a2, . . . , a2, . . . , a4}, (8)

where S1(1) consists of symbols next to a1 in S. In a similar
manner, the set of symbols that evolves from S1(1) is collected
as

S1(2) = {a4, . . . , a3, . . . , a2}. (9)

This procedure is illustrated in Fig. 2, where the states (solid
circles on the left panel), initially located in the cell 00, evolve
into nearby cells (solid circles on the right panel) in the next
step. By repeating this procedure, the time evolution of the set
of symbols, which start from a1, can be created as S1(τ ) for
τ � 0. The partitioned entropy for S1(τ ) is computed as

h1(τ ) = −
2d∑
j=1

p1 j (τ ) ln p1 j (τ ), (10)

where p1 j (τ ) represents the probability that the symbol a1

evolves into a j after τ steps. Note that h1(0) = 0, since S1(0)
consists only of a1. Another note is that the dimension of time
t is recovered as h1(t ) = h1(τT �t ).

So far, we focused only on the time evolution of the set
of symbols starting from a1. The same computation can be
performed to obtain i th partitioned entropy hi(t ) for Si(τ ) that
starts from ai (i = 1, . . . , 2d ). Finally, the partitioned entropy
h(t ) for the whole attractor is obtained by taking the weighted
average of {hi(t )}2d

i=1 as

h(t ) =
2d∑

i=1

ρihi(t ). (11)

As before, the weights {ρi} correspond to the coarse-grained
density of the attractor. According to Eq. (4), the time deriva-
tive of the partitioned entropy h(t ) should yield the first
Lyapunov exponent λ1.

Figure 3(a) shows a typical behavior of the partitioned
entropy computed from a time series generated from the
Rössler equations in a chaotic regime (details described in
the next section). The partitioned entropy increases linearly
in time and saturates around t = 18, where the system states,
initially localized within a single cell, spread over the whole
attractor. To estimate the slope, which provides an approxi-
mate value of the first Lyapunov exponent, we fit the function
ĥ(t ) = min(αt, β ) to the entropy curve using the least-squares
method. Among the fitted parameters α and β, α determines
the slope of the linear region, which approximates the first
Lyapunov exponent.

Figure 3(b), on the other hand, shows the case that the
partitioned entropy was calculated from a time series in a limit
cycle regime. Although the first Lyapunov exponent should
be zero for the limit cycle, the partitioned entropy increases
rapidly in the initial phase, giving rise to a positive slope
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FIG. 3. Time evolution of the partitioned entropy h(t ) in the case
of (a) chaos and (b) limit cycle. The partitioned entropy is calculated
from the y variable of the Rössler equations (14) with a = 0.55,
b = 2, and c = 4 for chaos and a = 0.505, b = 2, and c = 4 for limit
cycle. The time series consist of N = 3 × 105 data points and the
embedding dimension is set to d = 7. The solid line represents a
fitting function ĥ = min(αt, β ), whereas the dashed line represents
the entropy of the whole attractor, hmax.

α. This behavior is due to a coarse-graining effect. As time
grows, the set of system states started from a localized region
of the limit cycle remains localized in the state space but can
occupy multiple cells when crossing the partitions. Such a
temporal spreading of the localized states into multiple cells
may increase the entropy and forms a positive slope. To avoid
such a spurious detection of the positive Lyapunov exponent,
we distinguish chaos from limit cycles in the following man-
ner. In the case of chaos, the set of initially localized states
may eventually spread over the attractor and its distribution
converges to the probability density of the whole attractor,
i.e., {ρi}. This implies that, as time grows, the partitioned
entropy h(t ) converges to the entropy of the whole attractor,
i.e., hmax = −∑2d

i=1 ρi ln ρi. On the other hand, in the case of
limit cycles, the states remain localized and do not spread.
Thus, the partitioned entropy h(t ) may not converge to hmax.

As a quantity to distinguish chaos from limit cycles, the
mean partitioned entropy is introduced as

hmean = lim
t→∞

1

t

∫ t

0
h(t ′)dt ′. (12)

In the case of chaos, the ratio between the mean entropy
and the attractor’s entropy should be close to one (i.e.,
hmean/hmax ≈ 1). In the case of limit cycles, this ratio should
be much smaller than one (i.e., hmean/hmax < 1). Note that,
since Eq. (12) converges slowly, it is convenient to calculate
the average of h(t ) over a time interval of t1 � t � t2, where
t1 and t2 are set to be large enough. By introducing a threshold
r, the time series can be considered chaotic if hmean/hmax � r

and periodic otherwise. Finally, the first Lyapunov exponent
is estimated as

γ =
{

α if hmean/hmax � r

0 if hmean/hmax < r.
(13)

IV. NUMERICAL EXPERIMENTS

In this section, we examine the performance of our method
through numerical experiments. As the target systems, the
Rössler system [39] and the Langford system [40] were uti-
lized. The Rössler system is described by

ẋ = −y − z, ẏ = x + ay, ż = b + z(x − c). (14)

The parameter values were fixed as b = 2 and c = 4, whereas
the bifurcation parameter a was varied as 0.45 � a � 0.55
with an increment of �a = 10−4. As the time series, the y
variable was observed. The Langford system, on the other
hand, is described by

ẋ = (z − β )x − ωy, ẏ = ωx + (z − β )y,

ż = λ + αz − z3

3
− (x2 − y2)(1 + ρz) + εzx3, (15)

where the bifurcation parameter ε was varied as 0 � ε � 0.25
with an increment of �ε = 5 × 10−3 and the other param-
eters were fixed as α = 1, β = 0.7, λ = 0.6, ω = 3.5, and
ρ = 0.25. As the time series, the z variable was observed. The
two systems were numerically integrated using the fourth-
order Runge-Kutta algorithm with a time step of �t = 0.01.
All time series data were generated with N = 3 × 105 data
points after a transient period was removed. The skipping time
T was chosen in such a way that the time delay T �t gives the
first minimum of the mutual information [41]. The embedding
dimension, the time interval to compute the mean partitioned
entropy, and the threshold value were set to d = 7, t1 = 200,
t2 = 300, and r = 0.8, respectively.

Figure 4 shows the results obtained for the Rössler
system. The first Lyapunov exponent γ estimated by the
present method in Fig. 4(a) is compared with the true
exponent λ1 computed by the Shimada-Nagashima algo-
rithm [42]. To clarify the relationship between γ and λ1,
a linear regression, γ = c0 + c1λ1 + ε (ε represents the re-
gression error), was introduced. The intercept c0, the slope
c1, the correlation coefficient R, and the coefficient of
determination, R2, are summarized in Table I. The high
correlation between the two values (correlation coefficient
R = 0.96) implies that the growth rate of the partitioned
entropy, defined by Eq. (4), provides a good estimate of
the first Lyapunov exponent. Our method also successfully
detected the existence domains of limit cycles (i.e., peri-
odic windows), including the ones around a ≈ 0.459, 0.505.
As shown in Fig. 4(b), the ratio between the mean en-
tropy and the attractor’s entropy, hmean/hmax, became smaller
than the threshold r = 0.8 (dashed line) in these periodic
windows.

As shown in Fig. 5, comparable results were obtained for
the Langford system. The first Lyapunov exponent γ esti-
mated by the present method was in a good agreement with
the true value λ1 [Fig. 5(a)]. The correlation coefficient be-
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TABLE I. Relationship between γ and λ1 quantified by correlation coefficient R, linear regression (γ = c0 + c1λ1 + ε), and coefficient of
determination, R2.

System Intercept, c0 Slope, c1 Correlation coefficient, R Coefficient of determination, R2

Rössler 0.0016 1.28 0.96 0.92
Langford −0.0052 0.89 0.94 0.88

tween the two values was R = 0.94. The periodic windows
were precisely detected in Fig. 5(b). Moreover, the Langford
system generated quasiperiodic oscillations for ε � 0.025,
which have been correctly identified with the zero Lyapunov
exponent γ = 0. Thus, our method is also capable of distin-
guishing chaos from tori.

Next, we study the effect of observational noise. As the
original time series, the y variable was collected from the
Rössler system. To generate chaotic time series, the param-
eters were set to a = 0.55, b = 2, and c = 4, whereas they
were set to a = 0.2, b = 0.2, and c = 2 to generate periodic
time series. Then, the observational noise was added as y + ξ ,
where ξ is a zero-mean Gaussian white noise N (0, σ 2

obs). The
noise strength was set to 0 � σobs � 0.256 for the chaotic
time series and 0 � σobs � 0.224 for the periodic time series,
where the maximum noise strength was set to 10% of the
standard deviation of the noise-free time series. As shown
in Fig. 6, our method was quite robust against observational
noise added to the chaotic time series. As the noise inten-
sity was increased, the estimated first Lyapunov exponent γ

FIG. 4. Rössler system with a varying bifurcation parameter a ∈
[0.45, 0.55]. (a) True value of the first Lyapunov exponent λ1 cal-
culated by the Shimada-Nagashima algorithm and estimate of the
first Lyapunov exponent γ obtained by the present method. (b) Ratio
between the mean entropy and the attractor’s entropy, hmean/hmax.
The dashed line indicates the threshold r = 0.8, above which the
system is considered chaotic.

remained closely located to the true value λ1 [Fig. 6(a)]. As
shown in Fig. 6(b), the ratio between the mean entropy and
the attractor’s entropy, hmean/hmax, was consistently above the
threshold r = 0.8 (dashed line), indicating that the system
is chaotic. Similar results were obtained also for the peri-
odic time series [Fig. 6(c)]. Even if the noise intensity was
increased, the first Lyapunov exponent γ was constantly es-
timated to be zero and the ratio between the mean entropy
and the attractor’s entropy, hmean/hmax, was below the thresh-
old r = 0.8. Compared to the noise-free condition, this ratio
dropped [Fig. 6(d)] because the noise broadened the distri-
bution of the limit cycle in the state space and increased its
entropy hmax. Despite this effect, our method worked reason-
ably well for both chaotic and limit cycle data in the presence
of the observational noise.

We also considered the effect of dynamical noise. Since
chaotic attractors could easily lose their stability even by
a small amount of dynamical noise, we considered only
the case of a limit cycle. A dynamical noise term was
added to the Rössler system as ẋ = −y − z + η, ẏ = x + ay,

FIG. 5. Langford system with a varying bifurcation parameter
ε ∈ [0, 0.25]. (a) True value of the first Lyapunov exponent λ1 cal-
culated by the Shimada-Nagashima algorithm and estimate of the
first Lyapunov exponent γ obtained by the present method. (b) Ratio
between the mean entropy and the attractor’s entropy, hmean/hmax.
The dashed line indicates the threshold r = 0.8, above which the
system is considered chaotic.
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FIG. 6. Effects of noise added to the Rössler system. Observa-
tional noise is added to both [(a), (b)] chaotic and [(c), (d)] periodic
time series, whereas [(e), (f)] dynamical noise is added to a periodic
time series. In (a), (c), and (e), dependence of the estimated Lya-
punov exponent γ (solid line) and the true value λ1 (dotted line) on
the noise intensity is shown. In (b), (e), and (f), the ratio between the
mean entropy and the attractor’s entropy, hmean/hmax, is drawn as a
function of the noise intensity.

ż = b + z(x − c), where η represents a Gaussian white noise
(i.e., 〈η(t )〉 = 0, 〈η(t )η(s)〉 = σ 2

dynδ(t − s)). The parameter
values were set to a = 0.2, b = 0.2, and c = 2, and the
noise intensity was varied as 0 � σdyn � 0.002. The stochas-
tic differential equations were numerically integrated by the
Euler-Maruyama method [43] with a time step of �t = 0.01.
As the time series, the y variable was observed. As shown
in Fig. 6(e), our method was robust also against dynamical
noise. As the noise intensity was increased, the ratio between
the mean entropy and the attractor’s entropy, hmean/hmax, in-
creased gradually [Fig. 6(f)], because the initially localized
limit cycle attractor spread into other regions by the dynamical
noise. Although this effect makes it a more delicate procedure
to distinguish noisy limit cycles from chaos, our method cor-
rectly identified periodic structure in the time series.

V. APPLICATION TO EXPERIMENTAL DATA

To examine the practical applicability of the present
method to real-world data, experimental data were measured
from a physical model of the vocal folds. The physical model,
called the “magnetic resonance imaging (MRI) model,” has

FIG. 7. Application to experimental data from silicone model of
the vocal folds. [(a), (c), (e)] Reconstructed attractors and [(b), (d),
(f)] the time evolution of the partitioned entropy for #3P-a-2-1, #3P-
a-3-2, and #3P-c-3-2, respectively.

been constructed based on a geometry scanned from a mag-
netic resonance image of a human larynx. It has been widely
utilized to understand the mechanism of vocal fold oscilla-
tions in human voice production [44]. In this setup, a vocal
fold polyp was attached to one side of the vocal fold to
produce asymmetry in their oscillations. Such asymmetry is
known to cause chaos and tori in vocal fold oscillations [45].
The experimental setup to realize flow-induced oscillations of
the vocal fold model is detailed in [46]. As the time series,
subglottal pressure (i.e., pressure of the airflow below the
glottis) was measured by a pressure transducer and recorded
with a sampling time interval of �t = 8 × 10−5 s. Three sets
of time series (#3P-a-2-1, #3P-a-3-2, and #3P-c-3-2), each of
which consists of N = 1.2 × 105 data points, were collected.
To reduce nonstationary effect and high-frequency noise, a
bandpass filter with a passband from 70 to 500 Hz was ap-
plied. The skipping time T was chosen in such a way that the
time delay T �t gave the first minimum of the mutual infor-
mation [41]. The embedding dimension, the time interval to
compute the mean entropy, and the threshold value were set to
d = 7, t1 = 0.5 s, t2 = 1 s, and r = 0.8, respectively. Figure 7
shows the reconstructed attractors and the time evolution of
the partitioned entropy calculated from the time series. As
shown in Fig. 7(a), the first data set (#3P-a-2-1) draws a limit-
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TABLE II. The estimated Lyapunov exponents γ and the ratio
between the mean entropy and the attractor’s entropy, hmean/hmax,
obtained from the analysis of experimental data (#3P-a-2-1, #3P-a-
3-2, #3P-c-3-2).

Data γ (s−1) hmean/hmax

#3P-a-2-1 0 0.50
#3P-a-3-2 25.1 0.95
#3P-c-3-2 183.9 0.95

cycle-like attractor. The corresponding partitioned entropy
exhibited an oscillatory behavior and did not reach hmax, im-
plying that the time series is periodic [Fig. 7(b)]. The second
data set (#3P-a-3-2), on the other hand, displayed an attractor
resembling a chaotic torus [Fig. 7(c)]. The power spectrum
of the time series gave rise to two peaks at 80 and 130 Hz,
which dominated the chaotic behavior. The corresponding
partitioned entropy increased as time grows and converged to
hmax, implying that the time series is chaotic [Fig. 7(d)]. The
third data set (#3P-c-3-2) showed a more complex attractor
than the second data set [Fig. 7(e)]. The corresponding parti-
tioned entropy increased more rapidly and saturated quickly,
implying that the time series is again chaotic [Fig. 7(f)].

Note that, in Figs. 7(d) and 7(f), the partitioned entropy
h(t ) saturated but did not reach the attractor’s entropy hmax.
This might come from the fact that only a part of the whole
data points (i.e., Ni out of N) is used to compute the individual
partitioned entropy hi(t ). The reduced data points may give
rise to a lower complexity compared to the one computed from
the whole data set.

In Table II, the estimated values of the Lyapunov exponent
γ and the ratios between the mean entropy and the attractor’s
entropy, hmean/hmax, are summarized for the three data sets.
The ratio was below the threshold value (r = 0.8) for the
first data set (#3P-a-2-1), whereas it was above the threshold
for the second and third data sets (#3P-a-3-2 and #3P-c-3-2).
This confirms that the first data set represents a limit cycle
dynamics, whereas the second and third data sets are chaotic.
The Lyapunov exponent γ estimated for the third data set was
much larger than that for the second data set. This is also
consistent with our view that the attractors reconstructed from
the second and third data sets represent a weakly chaotic torus
and a fully developed chaos, respectively.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have proposed a method to quantify the
complexity of a time series. We focused on how the parti-
tioned entropy of an initially localized region of the attractor
evolves in time and showed that its growth rate corresponds
to the first Lyapunov exponent. Numerical experiments using
the prototypical models of chaos (i.e., Rössler and Langford
systems) demonstrated that the growth rate of the partitioned
entropy indeed provided a good estimate of the Lyapunov
exponent. In the case that the system has only a single pos-
itive Lyapunov exponent, this provides an estimate for the
KS entropy. Our numerical experiments also showed that the
method is robust against observational noise and dynamical
noise. Analysis of experimental data measured from a physi-

cal model of the vocal folds further demonstrated the practical
applicability of the present method to real-world data.

We have shown that our method provides a good esti-
mate for the first Lyapunov exponent. It should be noted,
however, that there is a gap between the estimated and true
values. Namely, our method overestimated the first Lyapunov
exponent of the Rössler system in Fig. 4. We consider that
this might be due to a coarse-graining effect. As time t
evolves, the data points, which were initially localized within
a same cell, may split into more cells than expected when they
were crossing the cellular borders. This would overall increase
the partitioned entropy and consequently overestimate the
complexity of the attractor. The coarse-graining effect should
depend upon the system dynamics as well as the attractor
geometry, since such overestimation was not observed in the
Langford system in Fig. 5.

To discuss the dependence of our approach on the partition-
ing scheme, the present study employed the binary partition to
extract the symbolic dynamics. There could be various ways
to partition the data such as the Bandt-Pompe partition [31].
Although the Bandt-Pompe partition is defined based on a
ranking order of the consecutive time points, it divides the
embedding space into static nonoverlapping regions in a simi-
lar manner as the present binary partition [36,47]. It should be
noted, however, that the binary partition is more suitable for
our method, because we can set a relatively large embedding
dimension d compared to the Bandt-Pompe partition. While
the number of the cells is 2d for the binary partition, it is d! for
the Bandt-Pompe partition. Such a rapid increase in the num-
ber of cells with an increasing embedding dimension makes
it computationally more challenging, to estimate the attractor
entropy. Another note on the binary partition is that it does
not satisfy the conditions of the generating Markov partition,
which exactly preserves invariant properties of the dynam-
ical system [48]. Although such a mathematically rigorous
approach has clear advantages (e.g., the symbolic sequence
contains all essential information of the underlying dynamics
and can be treated as independent random sources), finding
such a Markov partition is nontrivial for general dynamical
systems, especially for experimental data, whose dynamics
is unknown. For the sake of practicality, the present study
utilized the binary partition, which has been shown effective
for measuring the complexity of dynamical systems including
experimental data [33,49].

Compared to the preceding methods that simply utilized
the information entropy of a symbolic dynamics to quantify
the complexity of time series [28–33], the present approach
has an advantage that the partitioned entropy is clearly related
to dynamical quantity (i.e., the first Lyapunov exponent and
the KS entropy) of the underlying system, which enables
straightforward interpretation of the obtained results. Some
studies such as the method of Politi [35] clarified that the
growth rate of his modified permutation entropy corresponds
to the KS entropy. His method, however, is rather weak against
noise, because the modified permutation entropy should be
calculated for multiple settings of the embedding dimension,
e.g., d and d + 1. Such an additional embedding dimen-
sion increases the risk that incorrect symbols are assigned to
the symbolic sequence due to noise, which is inevitable in
real-world systems. In contrast, our method works only with a
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single embedding dimension, which enables robust estimation
of the first Lyapunov exponent even in the presence of noise.
Moreover, Politi’s method requires a priori knowledge on the
fractal dimension of the attractor, whereas our method does
not require such knowledge.

As a means to estimate the Lyapunov exponent, the present
approach also has several advantages. Unlike conventional
methods, which typically trace nearby trajectories of the re-
constructed attractor and detect an exponential increase in
their distances [16–18], our method converts the time series
into a symbolic sequence and traces its time evolution. Such
a coarse-grained approach is robust against noise and greatly
reduces the computational cost.

Our coarse-grained approach is related to the methods of
estimating the KS entropy based on the return times [21–23].
The return times measure how much time it takes for a data
point to make two consecutive returns to a given region and
their distribution can be used to estimate the KS entropy.
Our method, on the other hand, utilizes a spatial distribution
of the data points to compute the KS entropy. Although the
distributions of the two quantities may not be exactly the
same, they can be closely related to each other, since both
of them contain enough information on the KS entropy of the

underlying dynamics. The relationship between our method
and the return times should be addressed in a future study.
We also note that our approach can be related to the hitting
times [50] as well as the recurrence plots [51], since these two
notions are intimately linked to the return times [52,53].

Finally, an interesting question is to ask how our approach
is extended to hyperchaotic systems. In the present study, we
have shown that, in the case that the system has only one
positive Lyapunov exponent, the growth rate of the partitioned
entropy is determined by the first Lyapunov exponent, which
is equivalent to the KS entropy. For hyperchaotic systems
which have multiple positive Lyapunov exponents, it is un-
clear whether the growth rate is still governed by the KS
entropy. Such an issue will be addressed in our future study.
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