
PHYSICAL REVIEW E 107, 014203 (2023)

Covariant influences for finite discrete dynamical systems
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We develop a rigorous theory of external influences on finite discrete dynamical systems, going beyond the
perturbation paradigm, in that the external influence need not be a small contribution. Indeed, the covariance
condition can be stated as follows: If we evolve the dynamical system for n time steps and then disturb it, then
it is the same as first disturbing the system with the same influence and then letting the system evolve for n
time steps. Applying the powerful machinery of resource theories, we develop a theory of covariant influences
both when there is a purely deterministic evolution and when randomness is involved. Subsequently, we provide
necessary and sufficient conditions for the transition between states under deterministic covariant influences and
necessary conditions in the presence of stochastic covariant influences, predicting which transitions between
states are forbidden. Our approach, for the first time, employs the framework of resource theories, borrowed
from quantum information theory, to the study of finite discrete dynamical systems. The laws we articulate unify
the behavior of different types of finite discrete dynamical systems, and their mathematical flavor makes them
rigorous and checkable.
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I. INTRODUCTION

Dynamical systems describe the evolution of several inter-
esting situations. There are essentially two flavors: continuous
dynamical systems, which are more often studied, and dis-
crete dynamical systems, which are the subject here. In many
cases, especially for continuous dynamical systems, when
the evolution is particularly complex to deal with, one splits
the evolution into two parts: the uninfluenced part and the
perturbation. The latter is interpreted as a small correction to
the uninfluenced evolution. In this article, we go beyond the
perturbation paradigm by introducing the notion of covariant
influence, which need not be a small contribution. Such a
splitting can be done on the basis of timescale: we can think
of the covariant influence as acting on a significantly longer
timescale than the uninfluenced evolution. A small influence
is a perturbation, so to get a more interesting behavior we
must also go beyond small influences. The covariance con-
dition guarantees that, despite not being small, it preserves
the underlying structure representing the evolution of states.
In this way, the evolution of a discrete dynamical system
can be written as the composition of two evolutions: one is
understood as the basic evolution of the system, and the other
is the covariant influence. The covariance requirement ensures
that the order in which these two parts are applied does not
matter.

In this article, for the first time, we develop a general
theory of covariant influences in discrete dynamical systems
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with a finite number of states. Such a theory comes in two
flavors. The first is a deterministic one, where randomness is
completely forbidden both in the initial state and in the action
of the covariant influence. In the second, instead, we allow the
presence of randomness both in the initial state and in the co-
variant influence. We show that deterministic influences allow
hopping between attractors whose length becomes smaller
and smaller. Instead, in the presence of randomness all jumps
between attractors become possible. In particular, we achieve
a full characterization of transitions between states in the de-
terministic setting, and in the random case, we predict which
transitions between states are forbidden.

Our approach, for the first time, employs the framework
of resource theories, borrowed from quantum information
theory, to the study of discrete dynamical systems. This also
constitutes the first application of resource theories outside
the physics domain, to a field with countless applications
to diverse areas of science, including genetic regulatory net-
works. The advantage of the resource-theoretic approach is
the separation of the evolution of a discrete dynamical system
into an “uninfluenced” contribution and an influence, as is
standard practice when studying perturbations. However, the
influence need not be a perturbative (i.e., small) contribution
[1,2].

Our results for discrete dynamical systems are obtained
from first principles that are of a mathematical flavor, as
they are grounded in category theory. This ensures that our
analysis is rigorous, logical, and checkable. In particular, the
use of resource theories allows us to get a unified picture of
discrete dynamical systems under influences, regardless of the
specifics of their evolutions, unlike most standard approaches
to discrete dynamical systems. In this way, our results, in
the form of simple mathematical laws, can be phrased in
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general terms, so they are applicable to a broad class of dis-
crete dynamical systems. The key concept in our analysis is
covariance, which can be thought of as a symmetry in time
evolution, and can be expressed by a simple commutativity
condition. The general laws we find are predictive for discrete
dynamical systems where covariance is in force, and motivate
novel experimental work.

The article is organized as follows: in Sec. II we present
the background of this work, starting with a presentation of
discrete dynamical systems, and ending with a presentation
of resource theories. In Sec. III, we introduce the covari-
ance condition, showing that it gives rise to a well-behaved
resource theory. In Sec. IV, we present our results both for
deterministic dynamical systems and dynamical systems with
randomness. A summary of the results is presented in Sec. VI,
and conclusions are drawn in Sec. VII.

II. BACKGROUND

In this section we provide key background elements that
underpin our contributions and advances in subsequent sec-
tions. We begin in Sec. II A with an overview of a discrete
dynamical system, which is a set of elements that evolve dis-
cretely in time. Then we present random Boolean networks as
a special case of discrete dynamical systems in Sec. II B. The
subsequent subsection Sec. II C provides essential elements of
resource theories.

A. Dynamical systems

In this subsection we elaborate on essential background
concerning discrete dynamical systems. We begin with ex-
plaining general notions of discrete dynamical systems
including the set of states and the mapping from states to states
corresponding to discrete evolution. Then we discuss features
of discrete dynamical systems such as attractors and basins
of attraction, which arise in studies of dynamics. A discrete
dynamical system can be deterministic or stochastic, with
stochasticity in this case pertaining to states as the dynamics
is always deterministic.

1. Introduction

Now we introduce the basics of discrete dynamical sys-
tems. Specifically, we define dynamical systems formally.
Then we present a graphical representation of the dynamical
system in the form of a graph.

A dynamical system is a pair (S, φt ) comprising a set S of
elements, with each element called a state s of the dynamical
system, and a family of functions {φt }, which maps S to
itself, and describe the evolution at time t . If the label t is
in N or Z, the dynamical system is called discrete; if t is
in R, then the dynamical system is called continuous. The
standard requirements for such a family of functions {φt } are
the following:

(i) φ0 = 1, where 1 denotes the identity on S;
(ii) φt+s = φt ◦ φs = φs ◦ φt ;
(iii) φ−t = φ−1

t .
In this article, we focus on discrete dynamical systems,

where time runs in N, and the number of states is finite.
Therefore, in this work, whenever we talk about discrete

dynamical systems, we always mean finite discrete dynamical
systems. For discrete dynamical systems, we have discrete
time steps, and we define φ to be the function on s describing
the evolution of s to itself in a single time step. With this in
mind, we have

φn := φn, (1)

where φn is the composition of φ with itself n ∈ N times and
refers to the evolution of the system over n time steps: the evo-
lution of a state s after n time-steps is given by φn(s). For this
reason we say that φ is the generator of the dynamics, and in
this case we denote the dynamical system simply by (S, φ). By
convention, φ0 = 1. From the second of the conditions above,
note that evolving the system for n time steps, and then for
other m time steps, is the same as evolving it for n + m time
steps. Therefore, the set {φn}n∈N of the powers of φ (1) has the
algebraic structure of a commutative monoid, but, in general,
not of a group because monoids are more general structures
that include groups, which allow noninvertible evolution.

In many dynamical systems there are external influences
that can change the evolution of the system. Think, e.g., of
perturbation theory, where we view the perturbation as a small
correction to the evolution of the system [1–3]. If we remove
the requirement of the perturbation to be small, then we have
an influence. In mathematical terms, an influence is simply a
mapping,

f : S → S. (2)

Influences form a monoid under function composition (the
identity is trivially an influence), but it is different from the
dynamical monoid because it is not generated by a single
influence, and as such it is not commutative. Note that we
take f to be in a monoid and not a group because we want to
allow general behavior. A dynamical graph is a representation
of a dynamical system. A directed graph G comprises an
ordered set of M vertices S (also “nodes”), and directed edges
E , which are ordered pairs (s, s′) ∈ S × S. The dynamical
graph represents the dynamics corresponding to the evolution
φ: there is a directed edge from a vertex s to a vertex s′ if
s′ = φ(s). As the dynamics are deterministic, there is only
one outgoing edge for each vertex of the dynamical graph.
An example of a dynamical graph is depicted in Fig. 1.

2. Features

We now describe features including cycles, attractors,
transient states and basins of attractions, which are the fun-
damental features of a dynamical system. First we formally
define each of these three features. Then we explain how
these features are represented in the dynamical graph, which
represents the dynamical system.

As the dynamics is deterministic on a finite number of
states, at some point the dynamics must repeat itself. There-
fore, there is at least one cycle. More formally, a cycle C is
a set of states {s} such that there exists a positive integer �

such that, for each s ∈ C, we have φ�(s) = s. The minimum
integer � is called the period or length of the cycle. Note that
the length of the cycle is also the number of states in the cycle.
In general, in a dynamical system there are a number of cycles
of different periods. Those cycles of period 1 are called fixed
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FIG. 1. Dynamical graph: vertices are states of the dynamical
system. There is an arrow from a state s to a state s′ if s′ = φ(s).
Notice the presence of a cycle of length 2 on the left and a cycle of
order 4 on the right. The two connected components of the dynamical
graph correspond to the two basins of attraction. The red basin is the
set of all states that end up in the cycle of length 2, and the blue basin
is the set of all states that end up in the cycle of length 4. Notice that
the two basins of attraction are disjoint.

points. In this case,

φ(s) = s. (3)

Cycles are loops in the dynamical graph such that the loop is
oriented by directed edges pointing in one way.

An attractor is a set of states that is forward-invariant under
the evolution φ. In other words, it is a set of states where
evolution “repeats itself”. As we are working with a finite
dynamical system, attractors are actually cycles. Thus, all
states end up in some cycle. Some states do not belong to any
cycles; they are called transient because it is not possible to
come back to them, not even after enough time steps.

In the dynamical graph, transient states are the vertices of
the noncyclic parts of the graph, i.e., everything that is not in
a loop. Given an attractor, its basin of attraction is the set
of all states that end up in that attractor after enough time
steps. Notice that, since the dynamics is deterministic, basins
of attractions relative to different attractors are disjoint, i.e.,
there can be no state belonging to more than one basin of
attraction. In other words, the set of states s is partitioned into
basins of attraction. The dynamical graph is made of several
connected components: each of them represents a basin of
attraction. With a little abuse of terminology, we often say that
a state, even a transient one, has length � if � is the length of
the attractor in its basin of attraction with the notion of basins
made clear in Fig. 1.

3. Introducing randomness

Now we explain how randomness is introduced into the
dynamical system. In some situations, the influence is best
described as a stochastic process that activates jumps between
the states of a dynamical system according to a certain prob-
ability distribution. In such a stochastic setting, we are no
longer sure about the state of the dynamical system, which
demands the introduction of randomness in the sense of a
probability distribution over the states of the dynamical sys-
tem. Despite randomness, evolution is still represented as a

deterministic linear map over the set of state probability dis-
tributions.

We now represent randomness on states s ∈ S by construct-
ing the σ -algebra of the power set℘(S). In this case, we first fix
an ordering on the elements of s. To represent probability mea-
sures, it is enough to consider probability vectors p ∈ PM (R),
whose entries represent the probability assigned to each of the
M singleton subsets of S, each corresponding to one of the
states. Specifically, each canonical-basis vector ei represents
the dynamical state si (namely, the ith state in the ordering)
because ei as a probability vector represents the certainty of
being in the state si.

Each probability vector p can be visualized in the dynami-
cal graph as follows: each entry of p represents the probability
of the corresponding vertex of the dynamical graph. In other
words, we are labeling the vertices of the dynamical graph
with the entries of p, i.e., vertex si is labeled pi, which we
imagine as a continuous grayscale coloring of vertices in the
graph.

The functions {φn}n∈N describing evolution in time can be
extended by linearity

φn : PM (R) → PM (R) : ei �→ e j, (4)

such that φn(si) = s j , where si is the state associated with the
vector ei, for every n ∈ N. With a little abuse of notation, we
also write the mapping in Eq. (4) as ei �→ eφ(i). As the genera-
tor of the dynamics φ is a linear map, it can be represented by a
matrix �, called dynamical matrix, once we fix the canonical
basis in the domain and the codomain of φ: its columns are
given by the action of φ on the canonical basis. Note that �

can be viewed as a column-stochastic matrix: every entry is
nonnegative and columns sum to 1 (there is only one 1 per
column). In this spirit, �i j is the probability for state s j to
transition to state si. According to graph theory, the matrix
� is nothing but the transpose of the adjacency matrix of the
dynamical graph.

B. Random Boolean networks

Random Boolean networks, introduced in 1969 by Kauff-
man [4,5], were the first successful theoretical model to
explain genetic regulation in cells. They have been the priv-
ileged model to understand the expression of genes for fifty
years [6], attracting the attention of biologists and physicists
working on complex systems as well [7,8]. A random Boolean
network can be described as a discrete dynamical system; as
such, it can be represented as a dynamical graph.

1. Introduction

We now discuss underlying concepts of random Boolean
networks. First we explain how the network represents which
genes are expressed and which are not expressed at a given
time. Then we elaborate on how Boolean functions describe
evolution from one configuration of gene expression to an-
other. Finally, we explain what is random per se in a random
Boolean network.

Random Boolean networks are directed graphs, whose N
vertices represent genes, and directed edges represent the mu-
tual influence of genes on the expression of other genes.
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FIG. 2. This random Boolean network contains 4 genes (rep-
resented by the vertices of the graph). White vertices represent
unexpressed genes; black vertices represent expressed ones. Directed
edges represent which genes influence one another: the gene at the
tip of an edge is influenced by the gene at the tail of the edge.

Each vertex can be labeled black or white, representing
an expressed or an unexpressed gene, respectively. We can
represent the state of all genes, i.e., of the whole network, as
a Boolean string

g = g0g1g2 · · · gN−1 ∈ {0, 1}N (5)

(once we fix a total ordering of the vertices), such that gi rep-
resents expression or not of the ith gene, whether suppressed
(gi = 0) or expressed (gi = 1). An example of such a network
is presented in Fig. 2.

The state of each gene gi evolves to the next time step ac-
cording to the states of the Ki parent genes in the previous time
step, i.e., graphically, those genes from which a directed edge
points to the ith gene. Mathematically, this random Boolean
network describes evolution of the state g of the whole net-
work according to N Boolean functions

fi : {0, 1}Ki → {0, 1} (6)

on the ith vertex with the output determining the black-or-
white label for whether gene gi is expressed or not (black
or white, respectively) at the next time step. All Boolean
functions { fi} stay the same at every time step. In this setting,
the expression of a gene at each time step depends on which
genes are expressed at the previous step.

The vertices of the directed graph, representing genes, are
fixed. Instead, randomness is only initial, and comes in three
ways:

(i) randomness in which vertices are labeled black or
white at the initial step;

(ii) randomness in the choice of directed edges between
the vertices;

(iii) randomness in the choice of Boolean function associ-
ated with each vertex.

Once these features are chosen, they stay the same for all
time steps. In practice, the evolution can still be regarded as
deterministic. For each of these three forms of randomness,
various prior probability distributions have been proposed [8].
To represent the randomness in the choice of the initial state
g of the whole network, we resort to probability vectors, as
discussed above. Here we have M = 2N states {g} of the

whole network. Therefore, randomness in the initial state is
described by a probability vector p ∈ P2N

(R). As the evolu-
tion can still be regarded as deterministic, for the scope of this
article, we do not need a precise mathematical treatment of
the other two types of randomness.

2. Random Boolean networks as discrete dynamical systems

Now we explain how random Boolean networks can be
viewed as discrete dynamical systems. First, we show how
to represent time evolution, and then how to construct the
associated dynamical graph.

The evolution of a random Boolean network arising from
the edges of the graph, and the choice of Boolean functions
can be represented in a more high-level fashion. Take the set
of Boolean strings {g}, which, as we saw above, represent the
states of the network. The action on the Boolean functions of
the network makes a bit string

g = g0g1g2 . . . gN−1 (7)

evolve to a new bit string

g′ = g′
0g′

1g′
2 . . . g′

N−1, (8)

where g′
i denotes the evolution of gi at the next time step under

the action of fi. We can represent the evolution of g into g′ in
a single time step as a function φ : {g} → {g} on the set of
bit strings of N elements. Then the pair ({g}, φn) is a discrete
dynamical system.

Given that a random Boolean network can be described as a
dynamical system, one can construct the associated dynamical
graph, which is also known as the “state space” in the litera-
ture on random Boolean networks [7,8]. The rules to construct
it are the same as presented for generic discrete dynamical
systems: vertices are states of the network, and we use φ to
draw directed edges.

3. Network of genes and mutual interactions

Now we present the biological significance of random
Boolean networks, explaining how they have been studied in
the literature. Specifically, different phases have been identi-
fied as far as the dynamics in the “thermodynamic limit” are
concerned. In this setting, different attractors of the associated
dynamical system are linked to different types of cells. Ran-
domness arises because of the complexity in describing the
noisy environment in which cells live.

Features of the discrete dynamical system associated with
random Boolean network have a biological counterpart. For
instance, it is argued that each attractor represents a different
cell type [4–6]. This has also been verified experimentally [9].

Most of the analysis has been carried out in the so-called
“thermodynamic limit,” where one considers an “infinite”
network, mimicking the very large number of genes in the
human DNA, and studying the dynamics arising on it. In
this scenario, a phase transition has been observed, separating
an “ordered phase,” where the dynamics are described by
short and simple cycles, from a “chaotic phase,” where the
dynamics are described by complex and long cycles.

From the point of view of the adaptation of a cell to the en-
vironment, the ordered phase is too static and rigid, and does
not provide any adaptive power to cells. However, the chaotic
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phase is too unstable to guarantee a successful adaptation to
the environment. Therefore, Kauffman identified the “golden
phase” to explain the origin of the various cell types in the
critical regime, separating the ordered phase from the chaotic
one [4,5]. According to the model of genetic regulation de-
scribed by random Boolean networks, the number of attractors
in the critical regime follows a power law: N0.63, where N is
the number of genes [6,10]. Empirical data show instead a
power scaling given by N0.88 [6,11]. This discrepancy in the
predictions has led some to question the actual value of ran-
dom Boolean networks as a model for genetic regulation [8];
nevertheless they still remain a strong and powerful model,
and in any case, are interesting from the point of view of the
physics of complex systems.

In the study of random Boolean networks, there is the
implicit presence of an external environment, defined as ev-
erything that is outside the cell under consideration. We
assume that the environment is computationally hard to
describe; therefore, it is conveniently represented by the in-
troduction of randomness in the form of probability vectors,
as described above [7,8,12].

C. The framework of resource theories

In this subsection we introduce resource theories, which
are a powerful mathematical framework for dealing with the
notion of “resources” in a rigorous fashion, developed in
quantum information [13–18] and beyond [19–26]. We start
by explaining their relevance to quantum theory, and then we
continue by formulating them in a theory-independent way,
using process theories. This allows us to extend their scope to
discrete dynamical systems in the rest of this article.

1. Motivation

Resources theories have been remarkably successful in
quantum information. providing new insights into the manip-
ulation of quantum resources, such as quantum entanglement.
The notion of a resource theory is based on the fact that, in
several cases, we cannot implement all possible operations
because of some constraints. The processes that respect the
constraints are called “free” because they do not require any
resources to occur.

Resource theories were developed to manage resources of
quantum information optimally, in particular quantum entan-
glement [27,28]. However, they have been extended to several
other quantum information areas, such as quantum thermo-
dynamics [29,30], the study of quantum coherence [31] and
quantum reference frames [32–36], and quantum computing
[37,38]. In these areas they have produced many important
results, making a huge contribution to the development of new
research areas.

In many cases, constraints restrict what processes can oc-
cur, in the sense that breaking such constraints is possible,
but requires additional resources. For instance, in a thermody-
namic setting a system is often immersed in an environment
at a certain temperature. In this situation, the system reaches
thermal equilibrium spontaneously, according to the “minus
first law” of thermodynamics [39]. This law restricts what
thermodynamic processes can occur: they can only bring a
state closer and closer to the thermal equilibrium with the

environment. This can be argued to be the origin of the time-
asymmetry in thermodynamics [39]. All the processes that go
against the minus first law are a resource because they allow us
to restore part of the time symmetry, and indeed they require
some external work to be implemented. For this reason, when-
ever there is a restriction, the allowed processes are called
“free operations,” and those that enable us to overcome the
restriction are called “nonfree.” Among processes, a particular
type of them are those corresponding to the preparation or
initialization of a system, which are identified with the states
of the system itself. Again, free states correspond to prepa-
rations that can be done in the presence of the restriction,
whereas nonfree states require some resource to be imple-
mented.

The goal of a resource theory is to describe which tran-
sitions between the states of the theory are possible in the
presence of the restriction, namely, under free operations. This
is known as the “conversion problem.”

2. Process theories

Now we introduce process theories [40–42], which are a
mathematical framework where the notion of process plays
center stage. In these theories, one can describe systems as
well as their evolution and interaction through processes.
Their abstract formalization is based on the notion of strict
symmetric monoidal category [43,44]. Process theories pro-
vide the necessary background to formulate resource theories
outside the quantum setting.

In a process theory, systems are treated as labels to iden-
tify different inputs and outputs. Systems can be composed
to yield a composite system. At this stage, it is useful to
introduce a particular type I , called the trivial system, which
represents the lack of a system. Clearly composing any system
a with I yields A itself. Example of systems are chemical
species, in chemistry, or Hilbert spaces arising in quantum
physics.

As the name suggests, the core of a process theory are pro-
cesses. Intuitively, a process is anything that happens between
systems that has zero or more inputs and zero or more outputs
[42]. The canonical example is a function, which has one or
more inputs, and has an output. However, we can find more
physical examples, such as chemical reactions, physical trans-
formations. Therefore, we represent a process as f : A → B,
where a is the input type, and B is the output type. When they
share a type, two processes f : A → B and g : B → C, like
functions, can be composed sequentially to obtain a new pro-
cess g ◦ f . This means feeding the output of f into the input of
g. It is natural to require such a composition to be associative,
and to have an identity—the identity process—which corre-
sponds to “doing nothing.” This construction makes a process
theory a category [44], with systems as objects and processes
as morphisms. When we have a composite type, AB we can
consider processes that run “independently” or in parallel on
a and B, i.e., two processes f : A → C and g : B → D that
occur “at the same time” taking a and B as input, respectively.
Clearly, these two processes occurring together must yield a
valid process on the composite system AB. This new process,
called the parallel composition of f and g, is denoted by

f ⊗ g : AB → CD. (9)
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It is natural to assume some properties of the parallel com-
position that make it interact nicely with the sequential
composition [42].

So far, we have not touched on the issue of the order
of composition of systems, namely, whether AB = BA. In-
tuitively, we do not expect these two composite systems to
be very different. However, there in some cases, there is a
conceptual difference. For example, consider a flask divided
into two parts, containing two different gases A and B, one in
each part. AB can stand for “gas A is in part 1 and gas B is in
part 2”; therefore, BA stands for “gas B is in part 1 and gas A
is in part 2.” Although these two settings are equivalent from
the point of view of the chemical species involved, we cannot
say they are exactly the same setting. Therefore, we can say
that they are “equivalent.” To make this notion of equivalence
mathematically precise, we introduce the notion of swap. A
swap allows us to swap the order of two systems in parallel
composition.

The properties just seen make a process theory a strict
symmetric monoidal category [44]. In this setting, we can
view states as a particular kind of a process: a process with
no input, corresponding to the preparation of a system. Math-
ematically, they are processes with the trivial system as input;
e.g., s : I → A will be a state of A. Therefore, in general, to
understand what the states of a process theory are, we need to
identify what the trivial system is, i.e., the identity of system
composition.

3. Resource theories

From a formal point of view, a resource theory arises from
a process theory when there is a restriction on the processes. In
this setting, the conversion problem becomes relevant, which
means determining whether, given two states, we can convert
one into the other. The answer can be given with the aid of
particular functions of the two states, called conversion wit-
nesses. Finally, we present the example of the resource theory
of asymmetry, which provides the mathematical inspiration
for the approach in this article.

A resource theory is a process theory augmented by par-
titioning processes into “free” and “nonfree” processes such
that composing free processes and swapping systems are free
as well as the identity process. These requirements make a
resource theory equivalent to specifying a strict symmetric
monoidal subcategory of the process theory. The morphisms
in the subcategory are exactly the free operations of the re-
source theory. In particular, the states in this subcategory are
the free states of the resource theory.

We can set up a hierarchy among the states of a theory,
whereby a state is more valuable than another if, from the
former, it is possible to reach a larger set of states using only
free processes [15,19]. More formally, we can set up a partial
preorder, known as the resource preorder, defined as s′ � s,
if there exists a free process f such that s′ = f s, where the
product denotes sequential composition of the processes f
and s. In this setting, we want to map the set of states with
its partial preorder into a better known or simpler partially
ordered set (X,�) [21]. To this end, we need to introduce a
function M from the set of states to a partially ordered set
X such that M(s′) � M(s) whenever s′ � s. Such a function

is called a monotone. Normally, the condition M(s′) � M(s)
is only a necessary condition for the conversion of s into s′.
However, in some special cases, combining possibly more
than one monotone (even involving different partially ordered
sets, as we show in Sec. IV B even involving the divisibility
partial order, denoted by |, can give us necessary and sufficient
conditions for the convertibility under free operations. In this
case, we can solve the conversion problem completely, and
such a set of monotones is called a complete set.

A particularly successful example of a resource theory in
quantum information is the resource theory of of asymmetry
[33–35]. A symmetry of a system corresponds to it being
unchanged under certain actions, such as time reversal, spacial
reflections. A quantum system is associated with a Hilbert
space, and its symmetries are represented by unitary or anti-
unitary operators on it. In the resource theory of asymmetry,
for every quantum system, there is a group representing its
symmetry, whose action is given by unitary operators up to
a global phase. Quantum states are described by trace-class
positive semi-definite operators with unit trace. Quantum pro-
cesses are completely positive and trace nonincreasing linear
maps on the set of self-adjoint operators on a Hilbert space. As
seen above, free operations arise from some restriction. In this
case it is a covariance condition: E is free if Ug ◦ E = E ◦ Ug,
for every unitary operation Ug associated with the symmetry
(in the context of group representation theory, such maps are
known as equivariant maps). Thus, acting with the symmetry
before and after the action of E is the same. This fact can be
illustrated with a commutative diagram.

(10)

The resource theory of asymmetry was used to give an infor-
mational reconstruction of Noether’s theorem [36].

III. APPROACH

In this section, we discuss how we develop a mathemat-
ical theory of evolutionarity, which is based on the model
of discrete dynamical systems as such systems represent all
systems evolving in discrete systems. We begin by showing
that discrete dynamical systems are special cases of process
theories. Then we show how the covariance condition, dis-
cussed in Sec. II C 3, is applied to discrete dynamical systems,
and it gives rise to a full-fledged resource theory. Finally, we
explain how we treat influences, usually called perturbations,
on evolving systems.

A. Formulating discrete dynamical systems

Now we present two new labels to introduce on states of
a discrete dynamical systems (or, equivalently, on vertices of
the dynamical graph) that are useful for stating our results. We
also provide a formulation of a discrete dynamical system as
a process theory both in the absence and in the presence of
randomness.
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1. New labels

Here we introduce two new labels for states of a dynamical
system. The first, called transient progeny, looks at their evo-
lution in the future, specifying how fast they reach an attractor,
viz. dynamics that occurs in the long run. The second, called
ancestry, looks at their evolution from the past, identifying
how many steps were necessary to evolve to that state.

It is possible to quantify how transient a state s is by
considering its transient progeny, (or progeny for short) the
minimum natural number d such that φd (s) is in a cycle. This
also quantifies the number of successors of s that are still
transient, including s itself. The bigger the progeny, the more
transient the state is. This is the length of the shortest path
from the vertex associated with that state to a vertex in a cycle
in the dynamical graph. From this point of view, the states of
a cycle can be viewed as transient states of progeny 0 because
0 time steps are necessary to evolve them to a state in a cycle.

We can also consider a “backwards distance” of a state
from its farthest predecessor in the dynamical graph. More
formally, we define the ancestry a of a vertex as the maxi-
mum length of a path leading to that vertex. Equivalently, the
ancestry of a state s, denoted as a(s), is the maximum natural
number for which there exist a state t such that φa(s)(t ) = s.
For states s in an attractor of length �, since we have φn�(s) =
s for all n ∈ N, the ancestry is formally infinite, so we set
a(s) = +∞. Instead for transient states, their ancestry will be
a finite natural number.

2. Nonrandom case

In Sec. II A, we explained that, in a discrete dynamical
system (S, φ) with no randomness present at any step of its
evolution, evolution is described by powers of φ. It is natural
to describe this situation with a process theory based on sets
and functions [42].

As we are dealing with discrete dynamical systems, we
construct a process theory where systems are in fact dynami-
cal systems, i.e., pairs (S, φ), where S is a set and φ : S → S
is the generator of the dynamics on s. Processes between dy-
namical systems (S1, φ1) and (S2, φ2) are arbitrary functions
between S1 and S2. In particular, when S1 = S2, we have what
we called influences.

The composition of dynamical systems is by Cartesian
product: if (S1, φ1) and (S2, φ2) are two dynamical systems,
their composition is (S1 × S2, φ1 × φ2), where

φ1 × φ2 : S1 × S2 → S1 × S2 : (s1, s2) �→ (φ1(s1), φ2(s2))
(11)

for every s1 ∈ S1, and every s2 ∈ S2. The sequential compo-
sition of processes is simply the composition of functions.
Instead, the parallel composition of processes

f : S1 → S2, f ′ : S′
1 → S′

2 (12)

is the function

f × f ′ : S1 × S′
1 → S2 × S′

2 (13)

such that

(s1, s′
1) �→ ( f (s1), f ′(s′

1)) (14)

for every s1 ∈ S1 and s′
1 ∈ S′

1.

In this setting, it is clear that the trivial dynamical system
(I, φ), which does not affect other systems when composed
with them, is obtained by taking I to be a singleton and φ to be
the identity 1. With this in mind, the process-theoretic states
of (S, φ), viz. processes from I to S can be identified with the
elements of S [41,44], i.e., with what we defined as the states
of the dynamical system in Sec. II A. In the following, these
states are called “deterministic states” to differentiate them
from the states permitting randomness.

3. Random case

In Sec. II A 3, we explained that in a discrete dynamical
system (S, φ) in the presence of randomness, we represent
randomness with probability vectors and evolution is de-
scribed by powers of a linearization of φ. This conceptually
distinct situation, can be described naturally based on the
process theory of stochastic maps [42].

The potential presence of randomness in a discrete dynam-
ical system (S, φ) at any time step forces us to use a different
process theory from the case of deterministic initial condi-
tions. Now, if S has M elements, systems are pairs (S, φ),
where S is the simplex of probability vectors in RM , namely,
probability distributions over S. Processes between systems
(S1, φ1) and (S2, φ2) are stochastic maps between S1 and
S2.

Definition 1. We call stochastic influence any stochastic
map f : S → S.

Now a stochastic map

f : S1 → S2 (15)

can be represented with a stochastic matrix once we fix the
canonical bases in the domain S1 and the codomain S2 of f :

F =

⎛
⎜⎝ p(1|1) · · · p(1|M1)

...
. . .

...

p(M2|1) · · · p(M2|M1)

⎞
⎟⎠. (16)

The (i, j) entry is the probability p(i| j) of jumping to the
state of underlying set S2 labeled by i from the state of the
underlying set S1 labeled by j. This probability is 1 if and only
if there is a deterministic transition. The jth column of F is
the evolution of the deterministic state labeled by j under the
covariant stochastic map f . If the influence is deterministic,
as defined in Sec. II A, then we refer this influence now as
“deterministic influence.” Note that a deterministic influence
only has zeros and ones as entries in its representation as a
stochastic matrix.

The composition of a system (S1, φ1) with a system
(S2, φ2) is the system (S1 ⊗ S2, φ1 ⊗ φ2), where S1 ⊗ S2

is the simplex of probability vectors in the tensor product of
the real vector spaces associated with S1 and S2. The sequen-
tial composition of processes is simply their composition as
linear functions. Instead, the parallel composition of processes

f : S1 → S2, f ′ : S′
1 → S′

2 (17)

is the tensor-product function

f ⊗ f ′ : S1 ⊗ S′
1 → S2 ⊗ S′

2. (18)

In every process theory, there is a trivial system corresponding
to the system that does not affect other in composition.
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In the presence of randomness, this system is (S0,1),
where S0 is the simplex of probability vectors in R,
i.e., the set containing only the number 1. With this in
mind, the process-theoretic states of a generic dynamical sys-
tem in the presence of randomness (S, φ) can be identified
with the elements of the simplex S itself, i.e., with probability
vectors. In the following, these states are called “stochastic
states.”

B. Imposing covariance

In this subsection we introduce the mathematical tools
to describe the influence of the external environment on a
discrete dynamical system. We focus on covariant influences,
which are external influences that somehow respect the evo-
lution of a dynamical system. We also show that restricting
to covariant influences gives rise to a well-defined resource
theory.

1. Introducing covariance

Now we give the formal definition of covariant maps in
the process theory of discrete dynamical systems, both in the
presence of deterministic and random initial conditions. We
also present their foremost mathematical properties.

The definition of covariant maps can be given in a unified
way in both process theories we defined above, namely, for
deterministic and random initial conditions. Recall that, in
the case of no randomness allowed, systems are pairs (S, φ),
where S is a set, and φ is the generator of the dynamics.
However, in the case of allowed randomness, systems are pairs
(S, φ), where S is the set of probability vectors, and now φ

is the linear version of the generator of the dynamics, as de-
scribed in Sec. II A 3. We cover both situations by representing
systems as (A, φ), where A is either S or S.

Definition 2. Let (A1, φ1) and (A2, φ2) be dynamical sys-
tems. A map f : A1 → A2 is called covariant if f ◦ φ1 =
φ2 ◦ f .

A covariant map in the absence of randomness is a function
between sets, and, in the presence of randomness, is a stochas-
tic map. In particular, in the case of a stochastic influence f ,
the associated matrix F is square and the covariance condition
takes a simple matrix form, namely, [F,�] = 0 for stochastic
matrix � associated with φ, the generator of dynamics.

As � describes a deterministic dynamic, there will be only
one nonzero entry per column, and such an entry will be
equal to 1. The commutation condition [F,�] = 0, signaling
a covariant influence, will add further constraints to the entries
of F . Such constraints in general depend on �.

Note that, in particular, all powers of φ, namely,

φn : A → A, n ∈ N, (19)

are covariant, as

φn ◦ φ = φ ◦ φn = φn+1. (20)

Proposition 1. Let (A1, φ1) and (A2, φ2) be dynamical sys-
tems. A map f : A1 → A2 is covariant if and only if (iff)

f ◦ φn
1 = φn

2 ◦ f , n ∈ N. (21)

Proof. Sufficiency is straightforward: It is enough to take
n = 1 to have the thesis.

To prove necessity, we proceed by induction. If n = 0 or
n = 1, then the property is obviously true. Let us assume it is
true for a generic n, and let us prove is holds also for n + 1.
We have

f ◦ φn+1
1 = f ◦ φ1 ◦ φn

1 = φ2 ◦ f ◦ φn
1

= φ2 ◦ φn
2 ◦ f = φn+1

2 ◦ f , (22)

where, in the second equality, we used the covariance of f ,
and in the third equality the induction hypothesis. This proves
the proposition. �

2. Covariance yields a resource theory

Now we show that restricting ourselves to covariant maps
yields strict symmetric monoidal subcategories of the process
theories we introduced in to describe discrete dynamical sys-
tems. Thus, we think of covariant maps as free operations of a
new resource theory.

Proposition 2. Covariant maps form a strict symmetric
monoidal subcategory.

Proof. The identity, being part of the dynamics, is obvi-
ously covariant. The sequential composition of two covariant
maps is still covariant. Indeed, if (A1, φ1), (A2, φ2), and
(A3, φ3) are dynamical systems, and if

f : A1 → A2, g : A2 → A3 (23)

are both covariant, then

g ◦ f : A1 → A3 (24)

satisfies

g ◦ f ◦ φ1 = g ◦ φ2 ◦ f = φ3 ◦ g ◦ f , (25)

where we use the covariance of f in the first equality and the
covariance of g in the second equality. Similarly, the parallel
composition of covariant maps is still a covariant map. This
is because the generator of dynamics on the composition of
two discrete dynamical systems is given by the parallel com-
position of the generators of the respective dynamics. Hence,
if (A1, φ1), (A2, φ2), (A3, φ3), and (A4, φ4) are dynamical sys-
tems, and if

f : A1 → A2, g : A3 → A4, (26)

then

( f ⊗ g) ◦ (φ1 ⊗ φ3) = ( f ◦ φ1) ⊗ (g ◦ φ3)

= (φ2 ◦ f ) ⊗ (φ4 ◦ g)

= (φ2 ⊗ φ4) ◦ ( f ⊗ g). (27)

The swap between two discrete dynamical systems (A1, φ1),
(A2, φ2) is a covariant operation:

SWAP ◦ (φ1 ⊗ φ2) = (φ2 ⊗ φ1) ◦ SWAP, (28)

as it immediately follows from the property of the SWAP
itself. �

This proposition shows that the definition of covariant
operations is well posed, and it gives rise to a full-fledged
resource theory. Therefore, we can rightfully consider them
as free operations.
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3. Covariant influence

Now we explain the notion of influence on a dynamical
system, introduced in Sec. II A and Definition 1, as the effec-
tive representation of the action of something external to the
dynamical system itself. External influence happens in several
situations, given the fact that truly isolated systems do not
really exist. We also motivate the introduction of covariant
influence, which arises due to the dynamical timescale of
evolution being shorter than the timescale for changes due to
influences external to the dynamical system.

Discrete dynamical systems are often studied as isolated
systems, where one is interested in how the system evolves
subject to its own dynamics. However, in nature truly isolated
systems do not exist, and there is always something surround-
ing a dynamical system—an environment—that influences
it. For this reason, despite the fact that a dynamical system
and its environment can be jointly treated as a larger, iso-
lated, dynamical system, it is still interesting to focus purely
on the dynamical system and describe the presence of the
environment through some effective action that disrupts the
evolution of the dynamical system. This action is a function
that maps states of the dynamical system, whether determin-
istic or stochastic, to other states. As such, we model this
action by incorporating influence, whether deterministic or
stochastic.

Among all possible influences, we focus on covariant ones,
namely, those obeying Definition 2. These influences, despite
changing the evolution of the system, work in such a way
that it is compatible with the dynamics. Indeed, the covariance
condition can be stated as follows: if we evolve the dynamical
system for n time steps and then we disturb it, it is the same
as first disturbing the system with the same influence and then
letting the system evolve for n time steps. The idea behind
this is that a system has time to adapt to the external influ-
ence, perhaps because such an influence occurs on a longer
timescale. In particular, as we show in Sec. IV, a covariant
influence cannot undo the evolution of state of a dynamical
system under its dynamic.

IV. RESULTS

In this section we present the results of this article. First
we identify free states in the resource theory of covariant
influences, which allows to identify two different types of
resources into play whether randomness is forbidden or not.
In the former case, we have the resource theory of evolu-
tionarity, and in the latter case, the resource theory is of
nonattractorness. Finally, we turn to the conversion problem,
i.e., determining when one state can be converted into another
by means of a covariant influence.

A. Free states

In this subsection we partition the states of a dynamical
system into free and nonfree ones according to the resource
theory of covariant influences. Free states are very different
whether randomness is forbidden or not. For this reason, we
treat these two situations separately.

1. Deterministic case

Now we examine the situation in which randomness is
completely forbidden, both in the initial conditions (i.e., the
deterministic state) and in the changes induced by a covariant
influence. This corresponds to a dynamical system whose
complexity is low enough to allow us to use a fully determin-
istic description.

In the context of resource theories, free deterministic states
of a system s are covariant maps f : I → S, where I is a sin-
gleton. We show that deterministic free states can be identified
with fixed points of a discrete dynamical system (3).

Proposition 3. There is a bijection between free determin-
istic states of a discrete dynamical system (S, φ) and its fixed
points.

Proof. Consider a free deterministic state f : I → S; this
sends the only element of I , which we call 1 by convention, to
a state s of S. The dynamic on the trivial dynamical system I
is given by the identity; therefore, the condition for covariance
becomes f = φ ◦ f . Applying f to 1, and recalling f (1) = s,
we have s = φ(s). This means that s is a fixed point.

Conversely, given a fixed point s of the evolution of (S, φ),
i.e., φ(s) = s, we can construct the unique covariant function
f : I → S such that f (1) = s. The covariance of f is guaran-
teed by the fact that s is a fixed point. �

Not all discrete dynamical systems have fixed points; this
depends on the dynamics. By Proposition 3, those systems
with no fixed points, in the lack of randomness, have no free
states.

2. Stochastic case

Now we analyze the situation of a dynamical system where
randomness is permitted. Thus, we can have stochastic states
at any time step and also the influence can be stochastic. This
situation models dynamical systems where their behavior is
too complicated to be described feasibly in purely determin-
istic terms, due to the presence of an influence that acts on
the dynamical system as a stochastic process. We see that,
for stochastic dynamical systems, the landscape of free states
becomes richer.

As seen in Sec. II A, states of a stochastic dynamical sys-
tem can be represented as probability vectors p. In this setting,
free stochastic states are defined as maps

f : S0 → S, (29)

obeying the covariance condition of Def. 2, where now f (1) =
p is still equivalent to φ(p) = p. By a similar argument to
that for deterministic free states, the covariance condition on
stochastic maps entails the probability vector must be invari-
ant under the generator of the dynamics.

Below we prove equivalence between the existence of a
bijection between free stochastic states and probability distri-
butions over the attractors of the discrete dynamical system
with the requirements that every deterministic state in an
attractor sharing equal probability with all other states in the
same attractor. Before formalizing this proposition, we intro-
duce pertinent notation, building on the ability to partition
deterministic states into basins of attraction. For bi referring
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to block corresponding to the ith basin of attraction, we write

p = b1 ⊕ · · · ⊕ bk, (30)

with k basins of attraction and p the probability vector.
Let us focus on the first block as, for other blocks, the

analysis is completely analogous. Note that, for transient de-
terministic states s, by taking large enough m, we can always
ensure that φm(s) is in an attractor. For example, it is enough to
take M as the maximum of the transient progenies of transient
states. In b1 there are �1 states corresponding to the determin-
istic states in the attractor (of length �1) and other m1 transient
deterministic states, i.e., states that are not in the attractor, but
eventually goes into it.

Definition 3. A stochastic state is called uniform if two
conditions hold:

(i) all probabilities associated with transient deterministic
states are 0;

(ii) deterministic states in the same attractor have the same
probability.

In simpler terms, every attractor has a uniform distribution
over its deterministic states (with uniform probabilities 1/�, �

being the length of the attractor), weighted by a probability
distribution over the different attractors.

Below and henceforth we consider integers modulo some
number, say m. This means picking a convenient representa-
tive for each remainder class modulo M so that expressions are
well defined. Here we consider two representatives for each
remainder class. The one we pick depends on the concrete
setting where we consider integers modulo 1: In some cases
it may mean picking a representative from 1 to m, in others
from 0 to m − 1.

Proposition 4. There is a bijection between free stochastic
states of a discrete dynamical system and uniform probability
vectors.

Proof. We start by proving that if a probability vector p,
representing a stochastic state, is free, that is, invariant under
φ, then it must be uniform. Following Eq. (30), we arrange
the deterministic states si corresponding to the first block b1

so that the first �1 entries of b1 are the deterministic states of
its attractor, in such a way that φ(si ) = si+1, where i + 1 is
intended to be modulo �1: thus, we pick a representative in
the remainder classes modulo �1 between 1 and �1. By Propo-
sition 1, the request φ(p) = p is equivalent to φn(p) = p for
every n ∈ N. In particular, we require covariance for n = m,
where M is the minimum exponent for which φm(s) is in the
attractor, for every deterministic state s in the first basin of
attraction. We obtain

b1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p1
...

p�1

p�1+1
...

p�1+m1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p′
1−m
...

p′
�1−m
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= φm(b1), (31)

where p′
i is either pi or pi plus a probability contribution

coming from the transient states, and the subscripts of the
entries of the vector in right-hand side are intended to be
modulo �1, in the same way as discussed above. Equation (31)
immediately tells us that the probabilities associated with tran-

sient states must all vanish. Now, if we require the invariance
under φ of such a b1 with 0 probabilities for transient states,
then we obtain

b1 =

⎛
⎜⎜⎜⎜⎜⎝

p1
...

p�1

0
...

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p�1

p1
...

p�1−1

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= φ(b1). (32)

This yields the condition p1 = · · · = p�1 .
To conclude the proof, we repeat the same argument for

each of the k blocks. Therefore, the probabilities associated
with the deterministic states of an attractor must be equal
for the states in that attractor (but possibly different between
different attractors). �

Conversely, by a similar argument as above, one can easily
check that uniform states are invariant under φ.

The situation of a discrete dynamical system differs a lot
whether randomness is allowed or not. Indeed, when random-
ness is forbidden, free states are only fixed points, whereas
when randomness is permitted, free states are associated with
attractors of any length. In particular, it means that free
stochastic states always exist because any discrete dynamical
system has attractors.

B. The conversion problem: Evolutionarity

Now we analyze the conversion problem for discrete dy-
namical systems where randomness is forbidden. In this case,
we call the resource “evolutionarity” as all valuable states
(i.e., nonfree) evolve in time because they are not fixed points.
We are able to give a necessary and sufficient condition for
convertibility under covariant operations, and we show that
covariant influences shorten the length of attractors.

Denoting the length of a deterministic state s by �, its
transient progeny by d , and its ancestry by a(s), we have
the complete characterization of the state transitions within
a single dynamical system that can occur due to deterministic
influences, presented in the following theorem.

Theorem 5. Let s and s′ be two deterministic states of a
discrete dynamical system (S, φ). Then there exists a covari-
ant influence converting s into s′ iff

d ′ � d, (33)

�′ | �, (34)

a(φn(s′)) � a(φn(s)) (35)

for n = 0, . . . , d ′ − 1.
In the following, we provide the proof of this result, divid-

ing it into different pieces.
Theorem 5 gives necessary and sufficient conditions for

the conversion of deterministic states of a discrete dynamical
system under covariant influences. We can phrase these con-
ditions in the language of monotones (see Sec. II C). Indeed,
we can view the transient progeny d of a deterministic state
as a function from the set of deterministic states to the set N
of natural numbers, seen as the (totally) ordered set (N,�).
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The length, instead, can be obtained from a function from
the set of deterministic states and N, this time seen as the
partially ordered set (N, |), where | denotes the divisibility
partial order. Finally, the ancestry, is a function from the
set of states to N ∪ {+∞}, totally ordered by the � order.
According to Theorem 5, these functions are monotones in our
resource theory. However, not only can they be used to formu-
late necessary conditions for the conversion of states, but also
sufficient [Eqs. (33)–(35)]. Thus, they form a complete set of
monotones.

1. Necessary conditions

As a first step to solve the conversion problem, we examine
necessary conditions for the conversion of one deterministic
state into another. These conditions involve labels of deter-
ministic states: the lengths, the transient progenies, and the
ancestries of the states involved.

We saw that, when randomness is forbidden, there is a
bijection between free states and fixed points of the dis-
crete dynamical system. Thus, all nonfree states, i.e., valuable
states, are states that evolve in time. This makes us identify
the relevant resource as “evolutionarity,” which is the property
that a deterministic state evolves.

Let us consider two deterministic states s and s′ of the
same discrete dynamical system (S, φ) (the case of states of
two distinct dynamical systems is treated in Appendix A). We
want to determine when covariant influences can transform
s into s′. Here we formulate necessary conditions. The first
involves the transient progeny and the length � of a state.

Lemma 6. In a discrete dynamical system without random-
ness, states of transient progeny d and of length � are mapped
to states of transient progeny d ′ � d and of length �′, such that
�′ | �.

Proof. Let s be a deterministic state of transient progeny d
and of length � in a discrete dynamical system (S, φ). Then

φ�+d (s) = φ�(φd (s)) = φd (s). (36)

Let f : S → S be covariant; then

φd ( f (s)) = f (φd (s)) = f (φ�+d (s))

= φ�+d ( f (s)). (37)

This means that, after � iterations, we come back to φd ( f (s)),
which implies that φd ( f (s)) lies in an attractor of length �′ that
divides �. This also means that f (s) will be a state of transient
progeny d ′ � d . �

Thus, transient states become “less transient” (in particular,
they become attractor states if d ′ = 0).

Remark 1. If d = 0, then the state s is an attractor state,
and Lemma 6 tells us how any state evolves, including at-
tractor states, under covariant operations. Specifically, the
constraint 0 � d ′ � d = 0, implies d ′ = 0. If s is an attractor
state, then s′ must be an attractor state too, whose length
divides the length of the original attractor. In other words,
attractor states are sent to attractor states.

We can also say something about the ancestry of states:
it increases under free operations. Clearly, this statement is
meaningful when at least one of the states is transient.

Lemma 7. For every state s of a deterministic dynamical
system (S, φ), the ancestry of the successors of s does not

decrease under free operations. Formally, if f : S → S is co-
variant, then

a(φn(s)) � a(φn ◦ f (s)), (38)

for every n ∈ N.
Proof. If s is an attractor state, then all its succes-

sors are attractor states too. This means, that for every
n ∈ N, a(φn(s)) = +∞. By Lemma 6, f (s) is an attractor
state, so, again its successors are attractor states. Therefore,
a(φn ◦ f (s)) = +∞ for every n ∈ N, satisfying the condition
a(φn(s)) � a(φn ◦ f (s)) for every natural number n ∈ N.

Suppose now s is a transient state, and let d > 0 be its tran-
sient progeny. This means that, after d steps, the successors
of s become attractor states. By Lemma 6, f (s) is a state with
transient progeny d ′ � d , which means that, after d ′ � d steps
the successors of f (s) become attractor states. Therefore, for
n � d ′, we have a(φn ◦ f (s)) = +∞, which clearly satisfies
inequality (38). Instead, for every n = 0, . . . , d ′ − 1, there
exists a state s∗

n such that φn(s) = φa(φn(s))(s∗
n ). By covariance

of f ,

φn ◦ f (s) = f (φn(s)) = f (φa(φn(s))(s∗
n ))

= φa(φn(s))( f (s∗
n )). (39)

This shows that f (s∗
n ) is a predecessor of φn ◦ f (s), and

that there are a(φn(s)) steps from f (s∗
n ) to φn ◦ f (s). Thus,

Eq. (38) holds even for n = 0, . . . , d ′ − 1. In conclusion, we
proved that, for any state s, Eq. (38) holds for every n ∈ N.�

In words, a (transient) state becomes farther and farther
from its farthest predecessor.

In particular, in the two lemmas above we can take f to be
the generator φ of the dynamics. When f = φ, d ′ � d , � = �′,
and the ancestry never decreases for all the successors of a
state. Transitions from one state to another due to dynamics
occur only inside a given basin of attraction. However, the
statements of the two lemmas suggest that, when f is not the
dynamic, it may be possible to jump between different basins
of attraction, provided the constraints are met, e.g., from an
attractor of length 4 to an attractor of length 2. However, at
the moment we do not know if this is the case because the
two lemmas are only necessary conditions, but a priori not
sufficient.

2. Sufficient conditions

The conditions expressed in Lemmas 6 and 7 are neces-
sary, and they tell us how deterministic states change under
covariant operations. Now we prove that these conditions are
sufficient too: if they are satisfied, then we can conclude that
a covariant map exists that sends a deterministic state s to s′.

Lemma 8. Let s and s′ be two deterministic states of dis-
crete dynamical system (S, φ), with s′ an attractor state, and
�, �′ their respective lengths. If �′ | �, then there exists a co-
variant operation converting s into s′.

Proof. To prove sufficiency, we must construct a covariant
function mapping s into s′. To this end, we need to specify
its action on all deterministic states of (S, φ). Now, for the
states {x} not in the basin of attraction of s, construct f (x) :=
x. Such an f is covariant on these states by construction. Now
we need to map the basin of attraction of s to the basin of
attraction of s′ in a covariant way. The starting point is to fix
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FIG. 3. How a covariant influence maps an attractor {s, s1, s2, s3}
of length 4 into an attractor {s′, s′

1} of length 2. Black arrows rep-
resent the action of φ, and red arrows represent the action of the
covariant influence f . Here we have f (s) = s′. Then, f (s1) = φ ◦
f (s) = φ(s′) = s′

1. Similarly, f (s2) = φ ◦ f (s1) = φ(s′
1) = s′ and

f (s3) = φ ◦ f (s2) = φ(s′) = s′
1.

f (s) = s′, and then we reconstruct the action of f on the other
states of the basin of attraction of s.

Observe that s has d + � successors sn := φn(s) (including
itself s0 = s), for n = 0, . . . , d + � − 1, where d is the tran-
sient progeny of s. For these states {sn}, construct f (sn) :=
φn(s′), which yields in particular f (s) = s′. Now, for n =
0, . . . , d + � − 2, one has

φ ◦ f (sn) = φ ◦ φn(s′) = φn+1(s′)

= f (sn+1) = f (φn+1(s)) = f ◦ φ(sn), (40)

and, for n = d + � − 1,

φ ◦ f (sd+�−1) = φ ◦ φd+�−1(s′) = φd+�(s′) = φd (s′), (41)

because s′ is in an attractor of length �′ | �. However,

f ◦ φ(sd+�−1) = f ◦ φ ◦ φd+�−1(s)

= f ◦ φd+�(s)

= f ◦ φd (s)

= f (sd )

= φd (s′), (42)

where we have used the fact that s is a state of transient
progeny d and length �. We conclude that φ ◦ f (sd+�−1) =
f ◦ φ(sd+�−1). In conclusion, f is covariant on every succes-
sor of s.

Now we need to define f on all the other states in the same
basin of attraction as s. Note that every state in the same basin
of attraction as s is a predecessor of sd := φd (s) because sd is
in the attractor of length �. Let S be the set of successors of s
(cf. also Fig. 4).

S = {sn := φn(s); n = 0, . . . , d + � − 1}. (43)

For the states t in the complement of S , if it is nonempty,
define δ(t ; sd ) to be the minimum number of steps to reach
sd from t . Note that these states are all transient because
all the attractor states are among the successors of s. On
the states in the (nonempty) complement of S , set f to be
f (t ) := φd−δ(t ;sd )(s′), where the exponent is regarded to be

FIG. 4. A state s in a dynamical graph, with d = 2 and � = 2.
The set S of the 2 + 2 = 4 successors of s is represented in blue.
The set P0 of the predecessors of s is the purple set, along with s
itself. The set P̃1 is depicted in red, and represents a side chain that
ends up in the main blue chain. The set P1, the set of predecessors
of s1, is made up of the purple states, of the red states and s and s1.
By considering all sets P̃n for n = 1, . . . , d + � − 1, in the proof of
Lemma 9 we take care of all collateral chains ending up in S.

modulo �′, where this time we pick a representative in the
remainder classes modulo �′ that is between 0 and �′ − 1.

Let us check that this definition makes f covariant. We
have φ ◦ f (t ) = φδ(t ;sd )+1(s′). Instead, to assess f ◦ φ(t ), we
must distinguish two cases. If φ(t ) /∈ S , then we have

f ◦ φ(t ) = φd−δ(φ(t );sd )(s′)

= φd−δ(t ;sd )+1(s′), (44)

where we have used the fact that δ(φ(t ); sd ) = δ(t ; sd ) − 1 for
transient states t . Indeed, if φk (t ) = sd , then φk−1(φ(t )) = s
(and for transient states k > 0). Instead, if φ(t ) ∈ S , then
φ(t ) = φn(s), for some n ∈ {0, . . . , d + � − 1}. Therefore, by
the above definition of f , f ◦ φ(t ) = φn(s′). Now, if n � d ,
we have δ(φ(t ); sd ) = d − n, whence δ(t ; sd ) = d − n + 1. In
this case,

f ◦ φ(t ) = φn(s′) = φd−δ(t ;sd )+1(s′). (45)

Since s′ is in an attractor of period �′, the exponent must
be regarded as modulo �′, as discussed above. However, if
n ∈ {d + 1, . . . , d + � − 1}, then we have δ(φ(t ); sd ) = d −
n (modulo �, where for every remainder class modulo � we
pick a representative between 0 and �), whence δ(t ; sd ) =
d − n + 1 (modulo �, as before). Again,

f ◦ φ(t ) = φn(s′) = φd−δ(t ;sd )+1(s′), (46)

where the expression at exponent is modulo �, as above. How-
ever, since s′ is in a cycle of length �′, the exponent is actually
modulo �′, in the sense above, because of the length �′ of the
cycle. Given that �′ | �, whether we take the exponent modulo
� or �′, the state φd−δ(t ;sd )+1(s′) is the same. In conclusion, f is
covariant on all states in the complement of S too. This proves
that there is a covariant influence f mapping s to s′. �

With reference to Lemma 8, if d and d ′ denote the transient
progeny of s and s′ respectively, we have d ′ = 0 because s′
is an attractor state, and a(φn(s′)) = +∞ for every n ∈ N,
because all successors of s′ are attractor states too. Hence, note
that this situation can be viewed as a special case of the more
general conditions d ′ � d and a(φn(s′)) � a(φn(s)) for n =
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0, . . . , d ′ − 1, which are examined for the case of transient
states in the following lemma.

Example 1. The example of how to construct a free opera-
tion mapping an attractor of length 4 into an attractor of length
2 is shown in Fig. 3. �

Lemma 9. Let s and s′ be two deterministic states of a
deterministic dynamical systems (S, φ), with s′ transient. If
d ′ � d , �′ | � and a(φn(s′)) � a(φn(s)) for n = 0, . . . , d ′ − 1,
then there exists a covariant influence converting s into s′.

Proof. Again, we have to construct a covariant function
mapping s into s′, specifying its action on all deterministic
states of (S, φ). As in the proof of Lemma 8, for the states x not
in the basin of attraction of s, define f (x) := x. To construct
the action of f on the states in the same basin of attraction as
s, we proceed as in the proof of Lemma 8.

The conditions d ′ � d and a(φn(s′)) � a(φn(s)) for n =
0, . . . , d ′ − 1 imply that s is transient too. The situation is now
more complicated than in the proof of Lemma 8, due to the
presence of states in the basin of attraction of s that are neither
successors nor predecessors of s.

Consider the set S of the d + � successors of s as in
Eq. (43). As done in the proof of Lemma 8, construct f (sn) :=
φn(s′), which yields f (s) = s′. Now, for n = 0, . . . , d + � −
2, one immediately proves the covariance of f , as seen in the
proof of Lemma 8. Instead, for n = d + � − 1, one has

φ ◦ f (sd+�−1) = φ ◦ φd+�−1(s′)

= φ�(φd (s′)) = φd (s′), (47)

because s′ has transient progeny d ′ � d and length �′ | �, so
we know that φd (s′) is in the attractor in the same basin of
attraction as s′. Now, using the fact that s is a transient state
of transient progeny d and length �, as above, we have f ◦
φ(sd+�−1) = φd (s′), because φ(sd+�−1) = sd In conclusion, f
is covariant on every successor of s.

Now consider the set of predecessors of s, namely,

P0 = {t : φk (t ) = s, for some k ∈ N}, (48)

which contains s itself (obtained for k = 0), as represented in
Fig. 4.

To respect the dynamics, these states must be mapped to
predecessors of s′. We are only interested in the states in P0

that are different from s (provided they exist). If they do not
exist, then we move to the next step, i.e., the predecessors of
the successors of s. Instead, if P0\{s} is nonempty, for the
states t ∈ P0\{s}, then let δ(t ; s) be the number of steps to go
from t to s. We know that the maximum value δ(t ; s) is exactly
a(s). Now, by hypothesis a(s′) � a(s), so it is possible to find
a predecessor s′∗ of s′ such that

δ(s′∗; s) = a(s). (49)

Now, for t ∈ P0\{s}, construct

f (t ) := φa(s)−δ(t ;s)(s′∗). (50)

Note that the exponent is always nonnegative because
δ(t ; s) � a(s).

Let us show that Definition (50) makes f covariant on
P0\{s} when such a set is nonempty. We have

φ ◦ f (t ) = φa(s)−δ(t ;s)+1(s′∗). (51)

However, to calculate f ◦ φ(t ), we have to distinguish two
cases. The first case is when φ(t ) = s, which means δ(t ; s) =
1. In this case, we have f ◦ φ(t ) = s′. Now, Eq. (51) reads

φ ◦ f (t ) = φa(s)−δ(t ;s)+1(s′∗) = φa(s)−1+1(s′∗)

= φa(s)(s′∗) = s′. (52)

The second case is when φ(t ) �= s. Observe that φ(t ) can-
not be a state sn for n > 0, i.e., a successor of s. Indeed,
if this were the case, then we would have φ(t ) = φn(s), for
some n � 1. Since t is in P0\{s}, we have φk (t ) = s, for some
k � 1. Combining these two statements we obtain

s = φk−1 ◦ φ(t ) = φk−1 ◦ φn(s) = φk−1+n(s). (53)

Since s is transient, this is possible iff k − 1 + n = 0. Since
n > 0 and k � 1, this condition can never be satisfied. Addi-
tionally, φ(t ) can neither be one of the (possible) states w in
the same basin of attraction as s that are neither successors
nor predecessors of s. Indeed, if φ(t ) were such a w, then we
would have

s = φk−1 ◦ φ(t ) = φk−1(w), (54)

which would mean that w is a predecessor of s, which is
against the hypothesis. Therefore, if φ(t ) �= s, then the only
possibility is that φ(t ) is a predecessor of s. In this case,

f ◦ φ(t ) = φa(s)−δ(φ(t );s)(s′∗)

= φa(s)−δ(t ;s)+1(s′∗). (55)

All of this proves that the constructed f is covariant on P0\{s}.
In the same basin of attraction as s there can be some

states w that are neither successors nor predecessors of s. In
any case, they are predecessors of some of the successors of
s. Then, for every successor sn, with n = 1, . . . , d + � − 1,
consider the set of its predecessors

Pn = {t : φk (t ) = sn, for some k ∈ N}. (56)

Note that, for every n = 1, . . . , d + � − 1, Pm ⊆ Pn for m <

n. Indeed, consider a state t ∈ Pm, with m < n. Then φk (t ) =
φm(s), for some k ∈ N. However, as m < n, we can consider

φn−m+k (t ) = φn−m ◦ φk (t ) = φn−m ◦ φm(s)

= φn(s). (57)

Therefore, t ∈ Pn, showing the inclusion Pm ⊆ Pn. To avoid
defining f redundantly on the sets Pn, for n = 1, . . . , d + � −
1, we have to prune the sets Pn, getting rid of the successors
of s in S (43), of the states in P0 (for which f has already
been defined), and taking care of the inclusions Pm ⊆ Pn for
m < n. To this end, we define the sets

P̃n := Pn\(Pn−1 ∪ S ), (58)

for n = 1, . . . , d + � − 1. Now, we need to consider only the
P̃n’s that are nonempty (see Fig. 4).

Note that the maximum n for which P̃n can be nonempty
is n = d . Indeed, since, for n � d , sn is in the attractor, Pn

contains all the states of the basin, and so does Pn−1 if n > d ,
so P̃n = ∅ for every n > d . We distinguish two cases: when
1 � n < d ′, and when d ′ � n � d .

In the first case, if 1 � n < d ′, for the states w ∈ P̃n, then
we know that δ(w; sn) � a(φn(s)). By hypothesis, we know
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that a(φn(s′)) � a(φn(s)), so it is possible to find a predeces-
sor s′∗

n of φn(s′) such that

δ(s′∗
n ; φn(s′)) = a(sn). (59)

Therefore, if w ∈ P̃n (with n < d ′), then we construct f as

f (w) := φa(sn )−δ(w;sn )(s′∗
n ). (60)

Again, this function is well-defined because δ(w; sn) � a(sn).
Let us show that it is covariant. To this end, we have

φ ◦ f (w) = φa(sn )−δ(w;sn )+1(s′∗
n ). (61)

To assess f ◦ φ(w), we need to distinguish two cases. The first
is when φ(w) ∈ P̃n. In this case,

f ◦ φ(w) = φa(sn )−δ(φ(w);sn )(s′∗
n )

= φa(sn )−δ(w;sn )+1(s′∗
n ). (62)

The other case is when φ(w) /∈ P̃n. We claim that the only
possibility is φ(w) = sn. Indeed, by a similar argument as
above, φ(w) cannot be a state sm for m > n. To see why,
suppose by contradiction that φ(w) = φm(s) for some m > n.
Since w ∈ P̃n, there exists k � 1 such that φk (w) = φn(s).
Then, combining these two properties,

φn(s) = φk−1 ◦ φ(w) = φk−1 ◦ φm(s)

= φk−1+m(s). (63)

Here we assume n < d ′ � d; therefore, φn(s) is still a tran-
sient state. Then Eq. (63) is satisfied iff n = k − 1 + m. This
is equivalent to solving (k − 1) + (m − n) = 0. Since m > n
and k � 1, this expression can never vanish, so Eq. (63) can-
not be satisfied. Additionally, φ(w) cannot be in Pn−1, for
otherwise there would exist k′ � 0 such that φk′+1(w) = sn−1,
contradicting the assumption that w /∈ Pn−1. Finally, φ(w)
cannot be a (possible) state w′ that is neither a predecessor nor
a successor of sn. Indeed, if this were the case, then we would
have φ(w) = w′,which combined with φk (w) = sn, for some
k � 1, yields

sn = φk−1 ◦ φ(w) = φk−1(w′), (64)

which is against the hypothesis that w′ is not a predecessor of
φn(s). Therefore, we are only left with the possibility φ(w) =
sn.

Now, if φ(w) = sn, then we have f ◦ φ(w) = φn(s′). How-
ever, as φ(w) = sn, we have δ(w; sn) = 1. Thus, substituting
into Eq. (61) yields

φ ◦ f (w) = φa(sn )−1+1(s′∗
n ) = φn(s′). (65)

Here we have used Eq. (59), which states that a(sn) is the
number of steps from s′∗

n to φn(s′). This shows covariance of
f on P̃n, for n = 1, . . . , d ′ − 1.

To conclude the proof, consider the case for which some
P̃n’s are nonempty for n = d ′, . . . , d . For w ∈ P̃n, construct

f (w) := φn−δ(w;sn )(s′), (66)

where the exponent is modulo �′, and we pick a represen-
tative of the remainder classes modulo �′ from 0 to �′ − 1.
Now we show that this definition makes f covariant on P̃n.

Clearly,

φ ◦ f (w) = φn−δ(w;sn )+1(s′). (67)

To assess f ◦ φ(w), as done above, we need to distinguish two
cases. The first case is φ(w) ∈ P̃n, in which case

f ◦ φ(w) = φn−δ(φ(w);sn )(s′)

= φn−δ(w;sn )+1(s′). (68)

This case shows that f is covariant when φ(w) ∈ P̃n, with
n = d ′, . . . , d now we proceed to examine the second case,
which is when φ(w) /∈ P̃n.

To address the second case, i.e., φ(w) /∈ P̃n, for
n = d ′, . . . , d , we further distinguish two cases. If n =
d ′, . . . , d − 1, sn = φn(s) (i.e., we exclude n = d), then sn =
φn(s)) is a transient state; thus, as seen above, if φ(w) /∈
P̃n, then the only possibility is φ(w) = sn. In this case, f ◦
φ(w) = φn(s′). The fact φ(w) = sn implies that δ(w; sn) = 1.
Then f ◦ φ(w) [cf. Eq. (68)] takes the form

f ◦ φ(w) = φn−δ(w;sn )+1(s′)

= φn−1+1(s′)

= φn(s′). (69)

This concludes the proof of covariance when φ(w) /∈ P̃n and
n = d ′, . . . , d − 1.

Now we tackle the final case, namely, φ(w) /∈ P̃n and n =
d . In this case, for n = d , sd is in the attractor, so φ(w) this
time can be any of the states in the attractor. Indeed, Eq. (63)
for n = d is equivalent to d ≡ k − 1 + m mod �, which has
solutions even for m > d and k � 1 (it is enough to take
an m > d such that m ≡ d − k + 1 mod �). Therefore, we
conclude that φ(w) = sm, for some m ∈ {d, . . . , d + � − 1},
which is any of the states in the attractor. In this case f ◦
φ(w) = φm(s′). Now, δ(φ(w); sd ) = d − m (modulo �, where
for every remainder class modulo � we pick a representative
between 0 and �), which means δ(w; sd ) = d − m + 1 (mod-
ulo � as before). Therefore,

f ◦ φ(w) = φm(s′) = φd−δ(w;sd )+1(s′), (70)

where the expression in the exponent is modulo �, as above.
However, since s′ is in a cycle of length �′, the exponent is
actually modulo �′, in the sense above, because of the length
�′ of the cycle. Given that �′ | �, whether we take the exponent
modulo � or �′, the state φd−δ(t ;sd )+1(s′) is the same. �

With Lemmas 8 and 9 we finally obtain Theorem 5.

C. The conversion problem: Nonattractorness

Now we analyze the conversion problem for discrete dy-
namical systems where randomness is allowed. In this case,
we call the resource “nonattractorness” as all valuable states
(i.e., nonfree) are nonuniform probability vectors; i.e., they
are are not associated with uniform probability distribu-
tions supported on attractor deterministic states. We show
that randomness acts as an activator of transitions between
deterministic states: with stochastic covariant influences it
is possible to jump from one deterministic state to an-
other even if their length do not satisfy the constraints of
Theorem 5.

014203-14



COVARIANT INFLUENCES FOR FINITE DISCRETE … PHYSICAL REVIEW E 107, 014203 (2023)

Given a stochastic dynamical system (S, φ) and two
stochastic states p and p′, we want to establish whether there
exists a stochastic matrix F commuting with the matrix �

associated with φ, such that p′ = F p. From a computational
point of view, the solution to this problem can be achieved
with a set of constrained linear equations. The fact that all
constraints are expressed by linear equations makes the prob-
lem tractable. In fact, we can show that this is a linear decision
problem (see Appendix B).

We can still try to see if we can reduce the complexity of
determining the solution to the conversion problem by reduc-
ing the number of linear conditions to impose. To achieve this,
we can study if some constraints on the entries of the matrix
F to be determined follow directly from general properties
of commutation of F with some �, even without specifying
what � is actually like. For this reason, now we study how the
covariance condition affects the entries of the most general
square stochastic matrix F , which, according to Eq. (16), are
the jumping probabilities between deterministic states. For
example, we can determine which entries of F are forced to
be equal or to vanish by the covariance condition.

In the stochastic case we are mainly interested in the con-
version problem between probability vectors. However, the
structure of matrices of covariant influences can also pro-
vide a new angle on transitions between deterministic states.
Indeed, the entries of such matrices are transition probabili-
ties between deterministic states. In deterministic dynamical
systems, influences map a deterministic state s into one deter-
ministic state s′. In stochastic dynamical systems, in general
influences will allow multiple transitions from a state s, each
of which is weighted by a certain probability. In particular, we
say that a transition from a deterministic s to a deterministic
state s′ is allowed if the corresponding transition probability
p(s′|s) is nonzero. Therefore, in light of Theorem 5, we are
interested in seeing if the presence of randomness activates
some types of transitions between deterministic states that
would otherwise be forbidden by the conditions of Theorem
5. To answer this question, we need once more to understand
which transition probabilities p(i| j) are compatible with the
covariance condition expressed in its most general form.

Example 2. Consider a discrete dynamical system (S, φ)
that features two cycles: one of length 2 and one of length
1 (i.e., a fixed point). Let us determine the constraints on a
generic stochastic matrix acting on the probability vectors of
that discrete dynamical system, arising from the commutation
condition with the dynamical matrix �. We call s1 and s2 the
two deterministic states in the cycle of length 2, and s3 the
fixed point. With this convention, p(i| j) (i, j ∈ {1, 2, 3}) is
the transition probability from the deterministic state s j to the
deterministic state si. The dynamical matrix is

� =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠, (71)

where the first column tells us that s1 gets mapped to s2, the
second column that s2 gets mapped to s1 (in agreement with
the fact that we have a cycle of length 2), and the third column
tells us that s3 remains s3 because it is a fixed point. Imposing
the covariance condition [F,�] = 0 with a generic stochastic

matrix F yields new constraints on the entries of F :⎛
⎝p(1|1) p(1|2) p(1|3)

p(2|1) p(2|2) p(2|3)
p(3|1) p(3|2) p(3|3)

⎞
⎠

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠

=
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠

⎛
⎝p(1|1) p(1|2) p(1|3)

p(2|1) p(2|2) p(2|3)
p(3|1) p(3|2) p(3|3)

⎞
⎠. (72)

This equality gives some indications on the relations between
transition probabilities p(i| j). For transitions within determin-
istic states in the attractor of length 2, we have:

(i) p(1|1) = p(2|2),
(ii) p(2|1) = p(1|2).
There is no constraint on the transition probability p(3|3).

Instead if we want to jump from the attractor of length 2 to the
fixed point with a covariant influence, we can do so in such a
way that p(3|1) = p(3|2). Conversely, if we want to transition
from the fixed point to the attractor of length 2 with a covariant
influence, then we can do so provided p(1|3) = p(2|3). Notice
that a transition from a short attractor to a longer one is clearly
was forbidden in the purely deterministic scenario described
in Theorem 5, so we can say that the presence of randomness
activates some transitions and allows us to go against some of
the rules prescribed for a dynamical system under a determin-
istic covariant influence. �

Motivated by Example 2, we want to see how the presence
of stochastic covariant influences affects the statement Theo-
rem 5. To this end, we focus on the columns of a stochastic
matrix F associated with a stochastic covariant influence f ,
where each column represents the evolution of a deterministic
state (which can be transient or in an attractor) of the discrete
dynamical system under f . This is stated in the following
lemmas.

Lemma 10. Let s and s′ be two deterministic states of a
discrete dynamical system (S, φ). If a transition occurs from s
to s′ under a stochastic covariant influence, then d ′ � d .

Proof. We prove the statement by contradiction: we will
assume d ′ > d , and we show that a stochastic transition from
s to s′ is not possible, i.e., p(s′|s) = 0. Let ei be the vector of
the canonical basis associated with the state s. Then, if F is the
matrix of a covariant influence, then the vector p := Fei is the
ith column of F , whose entries are the transition probabilities
p(t |s), where t is a deterministic state. Among them we find
p(s′|s). Now,

��+d ei = �d ei, (73)

where � is the length of s, and � is the matrix associated with
the generator of the dynamics φ.

Similar to Lemma 6, let us consider ��+d Fei:

�d Fei = F�d ei = F��+d ei = ��+d Fei,

where we have exploited the covariance of F . Then we have

��+d p = ���d p = �d p. (74)

It is useful to define q := �d p. With this in mind, Eq. (74)
reads ��q = q. Now we use a similar technique to the one
used in the proof of Proposition 4: we partition the entries of
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p and q into blocks corresponding to the basins of attraction:

p = b1 ⊕ . . . ⊕ bk,

q = c1 ⊕ . . . ⊕ ck .

Let us focus on the basin of attraction of the state s′, which,
without loss of generality, we can assume to be b1 and c1,
respectively.

As done in Proposition 4, we divide b1 and c1 into the
attractor part and the transient part. Recall that q is obtained
by evolving p through d time steps; as a result, the entries
of c1 can be obtained by suitably moving the entries of b1

[including p(s′|s)] by d steps toward the attractor part. Note
that, since d ′ > d , the term p(s′|s) will be in the transient part
of c1:

c1 =
(

attractor
transient

)
=

⎛
⎜⎜⎜⎝

attractor
...

p(s′|s) + · · ·
...

⎞
⎟⎟⎟⎠.

Now, we know that ��q = q. This implies, in particular, that
�m�q = q, for any m ∈ N. By taking m large enough, we can
make the transient part of c1 vanish (cf. Proposition 4):

�m�c1 =

⎛
⎜⎝attractor

0
...

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

attractor
...

p(s′|s) + · · ·
...

⎞
⎟⎟⎟⎠ = c1.

As all the terms in c1 are nonnegative, this equality implies
that p(s′|s) = 0, which contradicts the hypothesis. �

This lemma tells us that randomness in the covariant influ-
ence does not allow us to overcome the rule d ′ � d we derived
for the fully deterministic case.

Lemma 11. Let s and s′ be two deterministic states of a
discrete dynamical system (S, φ). If a transition occurs from s
to s′ under a stochastic covariant influence, then

a(φn(s′)) � a(φn(s)),

for every n ∈ N.
Proof. Again, we prove the lemma by contradiction: we

will assume there exists an n ∈ N for which a(φn(s′)) <

a(φn(s)) and we show that a stochastic transition from s to
s′ is not possible, i.e., p(s′|s) = 0. Note that this inequality
implies that φn(s′) is a transient state, which also means that
s′ is transient. If s is an attractor state, then a transition from
s to s′ cannot occur due to Lemma 10, because the transient
progeny of s′ is strictly greater than the transient progeny of s.

We are left with the case when s and s′ are both tran-
sient. Let ei be the vector of the canonical basis associated
with the state s. Then consider the vector F�nei, where F
is the matrix of a covariant influence. The entries of F�nei

are the transition probabilities from φn(s), among which
we find p(φn(s′)|φn(s)). As a first step, we will show that
p(φn(s′)|φn(s)) = 0. Now, recall we can always find a deter-
ministic state s∗

n such that φn(s) = φa(φn(s))(s∗
n ). If ei∗n is the

vector of the canonical basis associated with the state s∗
n, then

we can write �nei = �a(φn(s))ei∗n . Then,

F�nei = F�a(φn(s))ei∗n = �a(φn(s))Fei∗n ,

where we have used the covariance of F . Now, as done in the
proof of Lemma 10, we partition F�nei and Fei∗n into basins
of attraction:

F�nei = b1 ⊕ . . . ⊕ bk,

Fei∗n = c1 ⊕ . . . ⊕ ck .

Let us focus on the basin of attraction of the state s′, which,
without loss of generality, we can assume to be b1 and c1,
respectively. Specifically, let s′∗

n be the state such that φn(s′) =
φa(φn(s′ ))(s′∗

n ), which is in the same basin of attraction as φn(s′)
and s′. Let us list the entries of b1 and c1 starting from s′∗

n ,
then moving to φ(s′∗

n ), and so on to the other successors of s′∗,
until we come to φn(s′) after a(φn(s′)) steps. This means that
the entry relative to φn(s′) is located a(φn(s′)) below the first
row:

b1 =

⎛
⎜⎜⎜⎝

p(s′∗
n |φn(s))

...

p(φn(s′)|φn(s))
...

⎞
⎟⎟⎟⎠ c1 =

⎛
⎜⎜⎜⎝

p(s′∗
n |s∗

n )
...

p(φn(s′)|s∗
n )

...

⎞
⎟⎟⎟⎠.

Now, in the equality b1 = �a(φn(s))c1, the first a(φn(s′)) + 1
entries of the vector at the right-hand side are zero:

b1 =

⎛
⎜⎜⎜⎝

p(s′∗
n |φn(s))

...

p(φn(s′)|φn(s))
...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0
...

0
nonzero

⎞
⎟⎟⎠ = �a(φn(s))c1.

The reason for the presence of a(φn(s′)) + 1 zeros is that
s′∗

n is a farthest predecessor of φn(s′), so at each step (i.e.,
at each power of �) we progressively remove the transition
probabilities associated with the successors of s′∗

n . Therefore,
� removes the probability associated with s′∗

n , �2 removes
the probability associated with φ(s′∗

n ), and so on, until we
come to �a(φn(s′ ))+1, which removes the probability asso-
ciated with φa(φn(s′ ))(s′∗

n ) = φn(s′). The fact that a(φn(s)) >

a(φn(s′)) guarantees that we are always able to remove the
probability associated with φn(s′). Therefore, we conclude
that p(φn(s′)|φn(s)) = 0.

Now we will show that p(φn(s′)|φn(s)) = 0 implies
p(s′|s) = 0. Now, p(φn(s′)|φn(s)) is an entry of the vector
F�nei. By covariance, F�nei = �nFei. Let us partition Fei

into basins of attraction:

Fei = d1 ⊕ . . . ⊕ dk,

where we assume that d1 is the basin of attraction of s′. This
time, we list the entries of b1 and d1 starting from s′∗, where
s′∗ is a deterministic state such that s′ = φa(s′ )(s′∗), similar to
what we have done above. Then we have b1 = �nd1. In this
way, due to the presence of �n, the term arising from p(s′|s)
will be in the n + a(s′) + 1 entry of �nd1. However, the n +
a(s′) + 1 entry of b1 is

p(φn+a(s′ )(s′∗)|φn(s)) = p(φn ◦ φa(s′ )(s′∗)|φn(s))

= p(φn(s′)|φn(s))

= 0.

Then the n + a(s′) + 1 entry of d1 must vanish; because it is a
sum of nonnegative terms (including p(s′|s)), each term must
vanish, from which we finally obtain that p(s′|s) = 0. �
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We summarize the previous lemmas with the following
theorem.

Theorem 12. Let s and s′ be two deterministic states of a
discrete dynamical system (S, φ). Then a transition from s to
s′ is allowed under stochastic covariant influences only if

d ′ � d, (75)

a(φn(s′)) � a(φn(s)), (76)

for n ∈ N.
Notice that the divisibility constraint (33) is no longer

present in the statement of Theorem 12. Indeed, Example 2
showed a concrete case where stochastic covariant influences
overcome the divisibility constraint coming from determinis-
tic covariant influences.

V. APPLICATION TO DISCRETE LOGISTIC MAP

We now investigate how our results translate into a popular
case of discrete dynamical system, specifically, the discrete
logistic map (DLM) [45], even though it does not have a
finite number of states, in contrast with the discrete dynam-
ical systems we have studied so far. The DLM originated
in the context of studying biological systems not reaching
a steady state, and the logistic map shows, within a simple
mathematical model, not only is a steady state not achieved for
some parameters but also that chaos emerges, that a geometric
convergence to chaos via period doubling occurs, and period-
three cycles [45,46].

A. Mathematical model

We employ the standard mathematical description for the
DLM [45]. We can think of the DLM as representing the
evolution of a certain population. To achieve a compact treat-
ment of the DLM, it is convenient to phrase it by introducing
a variable x representing a fraction of the population with
respect to the saturation level, i.e., the maximum population
for the system. The DLM equation is

x ← rx(1 − x), r ∈ [0, 4], x ∈ [0, 1] (77)

for ← referring to the recursive replacement of x by its new
value at each successive generation. Here r can be interpreted
as a fertility rate. For sufficiently low r, i.e., r � 1, this recur-
sive map yields the asymptotic value x∞ = 0, which denotes
the steady-state solution and extinction. However, larger r de-
livers more complicated solutions in the asymptotic long-time
limit.

For r > 1, the DLM (77) exhibits the phenomenon of
period doubling until the onset of chaos at rch ≈ 3.56995. In-
creasing r leads to bifurcating the steady state, first into period
2, then period 4, and so on (powers of two). The spacing be-
tween doubling, with respect to r, asymptotically approaches
a geometric progression with this progression quantified by
Feigenbaum’s number 4.66920.

The onset of chaos starts at rch and is characterized by
exponentially sensitive dependence on initial conditions. Al-
though chaos dominates for r � rch, these chaotic regions are
punctuated by islands of stability including a period-three

cycle, whose existence actually guarantees the presence of
chaos [47].

We introduce an influence by modifying the recursion re-
lation (77) to the form

x ← rx(1 − x) + f (x), (78)

where f (x) is any real function of x. Introducing our notation,
as φ evolves the discrete dynamical system for one time step,
in the case of the DLM (77), we have that φ(x) = rx(1 − x).
Instead, the influence f is given by the additive term added to
the DLM. Imposing covariance amounts to imposing f ◦ φ =
φ ◦ f . We note that, if f is a covariant influence, then f n is
also a covariant influence, where by f n we mean f ◦ · · · ◦ f︸ ︷︷ ︸

n times

.

This can be easily proven by induction. To find examples of
covariant influences from which to take powers and generate
other covariant influences, we start by examining the case of
a quadratic influence, i.e., when f (x) is of the form

f (x) = ax2 + bx + c, (79)

where a, b, c ∈ R.

B. Covariant influence for the DLM

Now we explain how to impose covariance on the DLM,
and we describe the situations that arise in this setting. Specif-
ically, we will see that an influence of the form f (x) = ax2 +
bx + c is covariant only for a very restricted set of values for
its parameters. Moreover, we see that covariant polynomial
influences of higher degrees can be obtained by taking iterates
of the quadratic covariant term.

To impose covariance, we need to calculate f ◦ φ and
φ ◦ f separately and then impose equality between these two
expressions. Specifically,

f ◦ φ = a(rx(1 − x))2 + brx(1 − x) + c

and

φ ◦ f = r(ax2 + bx + c)(1 − ax2 − bx − c).

Imposing f ◦ φ = φ ◦ f we get that a, b, c can only take the
following values. We find that c must always be zero, meaning
that the covariant influence is forbidden from applying a con-
stant shift. Given that c ≡ 0, two solutions arise: either a = 0
and b = 1, in which case the influence is strictly linear in x,
or a = −r and b = r, in which case the influence is strictly
quadratic.

Given that the only covariant influence of polynomial de-
gree one is x ← x, which is an identity map, and the case
of polynomial degree two yields a rescaled logistic map, we
investigate a higher polynomial degree. In this case, a natural
choice of covariant influence is obtained by considering the
nth iterate of the logistic map, i.e., f = φn.

C. Discussion of “influenced” logistic map

The linear case is not a DLM, as the recursive relation is

x ← rx(1 − x) + x, (80)

which is not of the form in Eq. (77). Imposing the constraint
that x ∈ [0, 1] at all generations, as it should be, given that
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x represents a population fraction, we find that the new re-
cursive relation is well-posed if and only if r ∈ [0, 1]. In this
regime, the uninfluenced DLM yields population extinction
for r ∈ [0, 1]. The linear term can be interpreted as propor-
tional immigration term that is proportional to the population
fraction. An easy analysis of the convergence of the new re-
cursive relation yields that the presence of the linear migration
terms always leads to population saturation (unless, of course,
if the initial population is zero). With this interpretation, we
can understand why the DLM with the covariant linear term
is well posed only for r ∈ [0, 1]: the population decay, as
prescribed by the uninfluenced DLM, balances the propor-
tional immigration kick, making x not exceed the maximum
population.

After straightforward calculations, in the case of a
quadratic covariant influence, the conditions

a = −r, b = r, c = 0 (81)

make Eq. (78) into the form

x ← 2rx(1 − x), (82)

which just yields a rescaling of the original DLM by a factor 2.
This leads to a redefinition of r ∈ [0, 2] to keep x ∈ [0, 1]. In
this case, the uninfluenced part φ and the influence f coincide,
so φ and f actually describe the same evolution. We can
interpret this situation as a splitting of the original population
obeying the DLM into two halves. As x is still constrained
to be in [0, 1] and r can be interpreted as the fertility rate of
the population [45], splitting the population into two means
that both x and r must be renormalized against the reduced
size of the population. In particular, after the splitting into two
halves, r becomes r′ := r/2. Therefore, when considering the
evolution of the whole population, it is natural that the fertility
rate will be twice the renormalized fertility rate of each half;
in symbols r = 2r′.

In the case of higher-degree polynomial influences the
recursive relation is of the form

x ← rx(1 − x) + ©nrx(1 − x), (83)

with ©n the nth-order composition of Eq. (77) with itself
n times. We can interpret this expression as the presence of
immigration that evolves exactly as the original system but
n times as fast. Notice that this general case subsumes the
two previous cases, for n = 0 and n = 1, respectively. In this
approach, we need to take care that x ∈ [0, 1], being x a pop-
ulation fraction. If r is small, then the uninfluenced evolution
will lead to a decay in fertility rate, and the immigration term,
which evolves n times as fast, will produce an even smaller
contribution, thus ensuring that x is always in the interval
[0, 1].

Suppose an initial population of x = 1/2, which means half
the saturation value. If r = 3/4, then the sequence of popu-
lation fractions is 1/2 → 3/16. With proportional immigration
(80), we instead obtain 1/2 → 11/16, which highlights the role
of immigration in reaching a higher population fraction. In
this case, the population fraction will reach a steady state of
1 due to the contribution from immigration. In the quadratic

case, assuming again r = 3/4, the sequence of population frac-
tions is 1/2 → 3/8, which can be immediately seen as twice
as fast the uninfluenced logistic evolution, approaching the 0
steady state. As an instance of higher-degree covariant influ-
ence, we consider the case n = 2. In this case, the immigration
term produces a contribution that decays faster than the de-
cay induced by the uninfluenced logistic map. Specifically,
starting from 1/2 we reach 309/1024 in the next iteration. If
we continue the iterations, then we see that the population
fraction approaches the steady state of 0.1975, which corre-
sponds to the intersection between x ← x and the function
on the right-hand side of ← in Eq. (83) for n = 2. Thus,
our numerical illustration shows that the evolution leads to a
steady-state population for r = 3/4 in each of the n ∈ {0, 1, 2}
instances, and this steady-state population agrees with the
theory expounded above.

VI. DISCUSSION

We study discrete dynamical systems over finite sets,
which arise in several situations in different disciplines. In
discrete dynamical systems states evolve in discrete steps
according to a deterministic rule. Since we assume that the
set of states is finite, after a finite time, the states must repeat
themselves, ending up in a cycle. Discrete dynamical systems
come in two flavors. The first is purely deterministic, where
we know the initial state perfectly, and we are able to predict
the evolution of each state with certainty. The second incor-
porates some randomness, as we do not know the initial state
precisely, but only a probability distribution over possible ini-
tial states. Despite the randomness in the states, the evolution
remains deterministic: if we know the initial state perfectly,
we will still be able to predict its evolution with certainty.

Randomness in the initial state arises to model our igno-
rance about the exact initial state. This happens because the
precision with which we probe a system is normally limited,
and an exact description of the initial state is thus not achiev-
able or highly impractical. In such situations, we can still
describe the system by shifting from the evolution of states
to the evolution of probability distributions over states.

As no systems are truly isolated, we incorporate the en-
vironment in the description of a discrete dynamical system,
where the environment is intended as everything that is out-
side the dynamical system. In particular, the environment
disrupts the normal evolution of the discrete dynamical sys-
tem, and it can do so in two ways: either deterministically,
or randomly. In some cases, the external influence occurs
over a longer timescale than the timescale of evolution of a
dynamical system. In such situations, the dynamical system
has time to adapt to the external influence, so that the influence
itself does not become too disruptive, but it interplays nicely
with the dynamic of the system. Such an influence is called
covariant, and it is the subject of our analysis.

We examine the effect of a covariant influence on a discrete
dynamical system with multiple attractors and an environment
enacting a deterministic covariant influence. Without the co-
variant influence, any state will eventually reach an attractor.
Turning on the covariant influence allows hopping between
different attractors, where we show that hopping from one
attractor to another one is possible if and only if the length
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of the final attractor divides the length of the initial one.
Thus, covariant influences shorten the length of attractors,
so that the system spontaneously reaches a state of “min-
imal evolution.” From the perspective of resource theories,
a resource is something that goes against the spontaneous
evolution induced by covariant influences. For this reason, the
resource into play in this setting is called “evolutionarity.”
From a biological point of view, this means that a system
could be too rigid to adapt to the changes coming from the
environment.

However, if the environment acts on a dynamical system in
a complex way, then its covariant influence must be described
by a stochastic function. The effect of such an influence is
always to allow hopping between different attractors, but un-
like its deterministic version, now every deterministic state of
the system can jump probabilistically to another deterministic
state, where each transition is weighted by a certain probabil-
ity, in contrast to what happened for deterministic influences.
As usual, in the long run, the effect of the stochastic co-
variant influence is to send a deterministic state to a state in
an attractor, where all states in the attractor have the same
probability to be reached. Here, again, a resource is something
that goes against the spontaneous evolution induced by co-
variant influences. Hence, “nonattractorness” is the resource
that steers the probability distribution away from either being
only supported on attractors or not being uniform on the
states of an attractor. Such a resource makes deterministic
states abandon their attractor and jump either temporarily to
a transient state, or to a state of another attractor; viz. they
behave against what covariant influences enforce. This time,
there are no constraints on the length of the target attractor,
which means that covariant influences can also increase the
length of attractor. From a biological point of view, this means
that a system now can be adaptable to diverse changes induced
by the environment.

The results of this article are derived using the general
and powerful framework of resource theories, which has been
used extensively in quantum information and foundations.
For the first time, we exported resource theories outside the
domain of physics. Besides the conceptual clarity resource
theories brought to the study of discrete dynamical systems
and their influences, resource theories also inspired our ques-
tions and informed our approach to finding an answer to
those questions. For example, the question of how covariant
influences affect the evolution of a discrete dynamical sys-
tems can be phrased as the conversion problem in resource
theories, which in turn can be solved using resource mono-
tones. Such monotones give rise precisely to the constraints
we found for the behavior of covariant influences discussed
above.

VII. CONCLUSIONS

We introduced the notion of covariant influence, which is
the backbone of our analysis. The notion of covariant influ-
ence is expressed in terms of the commutation of the influence
f with the influenced dynamics φ. The uninfluenced dynamics
is in general not reversible.

We developed the theory of discrete dynamical sys-
tems under covariant influences, giving a mathematical

characterization of which transitions can take place in a dis-
crete dynamical system due to the presence of a covariant
influence. Specifically, we analyzed two situations: one where
there is no randomness, and the other where the covariant
influence is stochastic. These two situations are qualitatively
and quantitatively different. For the case of the lack of ran-
domness, we derived necessary and sufficient conditions for
the evolution of states under covariant influences (Theorem 5).
In this case, the covariant influence allows jumping between
attractors whose final length divides the initial length. On the
other hand, we showed that randomness permits transitions
that violate this divisibility rule, and we were able to give
some constraints on the entries of a generic stochastic matrix
representing a covariant influence. However, understanding
if a stochastic state can be converted into another with a
covariant influence is in general a rather complicated problem,
which can be formulated as a linear decision problem.

The underpinning of our results is the framework of
resource theories, which is a powerful tool developed in quan-
tum information. In this work, for the first time, we exported
it to another area of science, and we showed how it can
be applied to the study of dynamical systems, which are
widespread in science. The application of resource theories
is the mathematical foundation that allowed us to split the
evolution of a discrete dynamical system into an influence and
an uninfluenced part, in the same spirit one does perturbation
theory, but without the restriction that the influence be a small
contribution.

Resource theories guarantee the solidity of our results, as
they are expressed with a logical and rigorous mathematical
framework that can be formalized using category theory. This
ensures the validity of our findings for all discrete dynamical
systems, as long as the covariance condition holds. The level
of generality we obtained is particularly valuable, in that it
allows one to understand the behavior of any discrete dy-
namical system under a covariant influence, without needing
to know the exact details of the evolution of that dynamical
system. Our results are in the form of laws that can be tested
in concrete dynamical systems, paving the way for further
analysis, even from an experimental perspective.

There are open questions left for future work. One direction
involves formulating a generalized version of the covariant
condition, perhaps involving powers of φ, and analyzing its
consequences. Another direction further explores the action
of stochastic covariant influences. For example, knowing the
dynamical graph of a discrete dynamical system, we would
like to be able to write the form of a stochastic covariant
matrix immediately, just by looking at the dynamical graph.
In particular, it is interesting to characterise the transition
probabilities between states in attractors of different lengths.
Indeed, we saw in the deterministic case that transitions under
a covariant influence are permitted only if the length of the
final attractor divides the length of the initial one. In the
stochastic case, however, such transitions are allowed, but
we may still observe some special behavior in the transition
probabilities when the final state is in an attractor whose
length divides the length of attractor in which the initial state
is. A third direction involves studying applications of our
framework based on covariant influences to concrete settings,
such as genetic regulatory networks.
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APPENDIX A: CONVERSION PROBLEM:
EVOLUTIONARITY BETWEEN DIFFERENT

DYNAMICAL SYSTEMS

In Sec. IV B we presented necessary and sufficient condi-
tions for the conversion of a state s into of a state s′ of the same
dynamical system (S, φ). Now we generalize this situation by
considering the conversion of a state s of (S, φ) into a state s′
of (S′, φ′) under any covariant map f : S → S′.

As to necessary conditions, notice that the proofs of Lem-
mas 6 and 7 can be easily extended to the case when s ∈ S and
s′ ∈ S′: it is enough to insert a prime where needed; therefore
Lemmas 6 and 7 still hold when there are two dynamical
systems involved. In fact, in some cases, we can use Lemma
6 to show that no free operations exist between (S, φ) and
(S′, φ′), as shown in the following example.

Example 3. Suppose (S, φ) is a discrete dynamical system
with only one attractor of length 3, and (S′, φ′) is a discrete
dynamical system with only one attractor of length 2. If there
were free operations f : S → S′, then we would map states
in the only attractor of (S, φ) to states in the only attractor
of (S′, φ′), but the length of the attractor of (S′, φ′) does
not divide the length of the attractor of (S, φ). Therefore, no
covariant operations from S to S′ exist, in agreement with
Lemma 6. For the same reason, neither do free operations
from S′ to S exist.

Note that the possible presence of transient states associ-
ated with the attractors does not affect this result at all. This
shows how strong the condition on divisibility of Lemma 6
is. �

Now, let us turn to sufficient conditions when (S, φ) is not
necessarily equal to (S′, φ′). In this case, given two states s ∈
S and s′ ∈ S′, the two conditions d ′ � d and �′ | � in Theorem
5 no longer suffice as shown in the following example.

Example 4. Let (S, φ) be a discrete dynamical system with
one attractor of length 3 and one of length 4. Let (S′, φ′) be
a discrete dynamical system with only one attractor of length
2. Let s be a state in the attractor of length 4 of (S, φ), and
let s′ be a state in the attractor of length 2 of (S′, φ′). s and
s′ respect the conditions d ′ � d and �′ | �, but a transition
is not possible between them because covariant maps do not
exist between (S, φ) and (S′, φ′) because of incommensurate
attractor lengths. Indeed, if they did exist, then we must map
the attractor of length 3 in (S, φ) to an attractor with a length
that divides 3, but such an attractor does not exist in (S′, φ′).

Example 4 shows that, when (S, φ) �= (S′, φ′), the conver-
sion problem between s and s′ does not depend only on s and
s′, but involves the other deterministic states. The reason is
the lack of covariant maps from one dynamical system to the

other. Here we provide a necessary and sufficient condition for
the existence of covariant maps between two different discrete
dynamical systems. �

Proposition 13. Given two discrete dynamical systems,
(S, φ) and (S′, φ′), there exist covariant maps f : S → S′ iff,
for every attractor of (S, φ) of length �, there exists an attractor
of (S′, φ′) of length �′ | �.

Proof. Necessity follows from Lemma 6. To prove suffi-
ciency, we need to show that, under the hypotheses of the
theorem, it is possible to construct a covariant f : S → S′. To
this end, for every attractor of length � in (S, φ), let us pick an
attractor state s, and a state s′ in an attractor of (S′, φ′) whose
length �′ divides �. Then map all the states in the basin of
attraction of s to states in the basin of attraction of s′, following
the procedure outlined in the proof of Lemma 8 (in this case
d = 0). This yields a covariant map on all the states in the
basin of attraction of s. Repeating this procedure for all the
attractors of (S, φ), we can construct a covariant map f on all
states of (S, φ). �

Now we can provide necessary and sufficient conditions
for the conversion of a deterministic state in (S, φ) into a state
of (S′, φ′) with covariant maps.

Theorem 14. Let s be a deterministic state of a discrete
dynamical system (S, φ) and s′ be a deterministic state of a
discrete dynamical system (S′, φ′). Then there exists a covari-
ant map f : S → S′ converting s into s′ iff

(i) there exist covariant maps from (S, φ) to (S′, φ′);
(ii) �′ | �;
(iii) d ′ � d;
(iv) a(φ′n(s′)) � a(φn(s)) for n = 0, . . . , d ′ − 1.
Proof. Again, necessity was proved in Lemmas 6

and 7. Sufficiency follows from combining the proofs
of Theorem 5 and Proposition 13. Indeed, under the
hypotheses of the theorem, following the proof of
Theorem 5 we can map the basin of attraction of s to
the basin of attraction of s′ in a covariant way. Regarding
the other basins of attraction in (S, φ), following the proof
of Propostion 13, we can covariantly map every basin of
attraction of (S, φ) to a basin of attraction of (S′, φ′). �

Notice that in Theorem 14 we have one additional con-
dition than in Theorem 5: the existence of covariant maps
from from (S, φ) to (S′, φ′). This condition is not present in
Theorem 5. Indeed, if (S, φ) = (S′, φ′), then the existence of
covariant maps is always guaranteed. To understand why, note
that, if (S, φ) = (S′, φ′), then, for every attractor of length �,
we can always find an attractor of length �′ | �: it is enough
to take the same attractor. By Proposition 13, this is enough
to guarantee the existence of covariant maps. This is why
Theorem 5 does not mention this check at all.

APPENDIX B: LINEAR PROGRAMMING

In this Appendix, we show that, in the presence of random-
ness and stochastic influences, we can recast the conversion
problem defined in Sec. IV C. Here, a square matrix �, rep-
resenting the dynamics, is given by the specification of the
dynamical system, and we want to know if, for a pair of
probability vectors p and q, there exists a stochastic matrix
F such that F p = q and [F,�] = 0.
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Let � be the dynamical matrix of a dynamical system S
with M states (see Sec. II A). As such, � can be expressed in
terms of the generator of the dynamics φ : S → S as

� = (eφ(1) eφ(2) · · · eφ(M ) ). (B1)

Let

F =
M∑

i=1

M∑
j=1

fi jeieT
j (B2)

be an M × M column-stochastic matrix, and T denote the
transpose. Observe that the jth column of F� is given
by Feφ( j). However, the jth column of �F is given by∑M

k=1 fk jeφ(k). Note that the ith component of
∑n

k=1 fk jeφ(k)

is given by
∑

k∈φ−1(i) fk j , where φ−1(i) denotes the preimage
of si.

Hence, the condition F� = �F is equivalent to

fiφ( j) =
∑

k∈φ−1(i)

fk j, (B3)

for every j, k ∈ {1, . . . , M}. This condition in turn can be
expressed in terms of Hilbert-Schmidt inner products

tr
[
FGT

i j

] = 0 (B4)

for every i, j ∈ {1, . . . , M}, where

Gi j = eieT
φ( j) −

∑
k∈φ−1(i)

ekeT
j . (B5)

The condition that the columns of F sums to one can be
expressed as

Fu = u, u :=

⎛
⎜⎝1

...

1

⎞
⎟⎠. (B6)

Define

U1 :=

⎛
⎜⎝1 · · · 1

0 · · · 0
...

. . .
...

⎞
⎟⎠; (B7)

the idea is to reshape the vector u into a matrix. For each i > 1,
define the matrix

Ui :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1
0 · · · 0
...

. . .
...

−1 · · · −1
0 · · · 0
...

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B8)

where the first row is uT , the ith row is −uT , and the rest of
the rows are zeros. Then, we can express the condition (B6)
as

tr
[
FU T

i

] = δi1 (B9)

for all i ∈ {1, . . . , M}.
Let p, q ∈ PM (R) be M-dimensional probability vectors

of which we want to study the conversion under covariant
influences. For each i ∈ {1, . . . , M}, define the matrix

Hi :=

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0
...

. . .
...

p1 − qi · · · pM − qi
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠, (B10)

whose ith row is pT − qiuT and the rest of the rows are zeros.
Then, we can express F p = q as

tr
[
FHT

i

] = 0 (B11)

for all i ∈ {1, . . . , M}.
We therefore arrive at the following SDP decision problem.

Determine if there exists F � 0 (entry-wise) such that for all
i, j ∈ {1, . . . , M}

(i) tr
[
FU T

i

] = δi1;

(ii) tr
[
FGT

i j

] = 0;

(iii) tr
[
FHT

i

] = 0.
Note that, if we remove the first condition tr[FU T

i ] = 1,
we just need to assume in addition that F is a nonzero matrix
whose entries are nonnegative. Therefore, there exists such an
F in the orthogonal complement W⊥ to the subspace

W = spanR{U2, ...,UM , G11, ..., GMM , H1, ...., HM}, (B12)

with respect to the Hilbert-Schmidt inner product.
Alternatively, let f ∈ RM2

be the vector obtained by re-
shaping F . Similarly, let gi j , ui, and h j be the vectors obtained
by reshaping Gi j , Ui, and Hi, respectively. With these no-
tations, the inner products above take the form of the dot
products

(i) f · ui = δi1;
(ii) f · gi j = 0;
(iii) f · hi = 0.
Hence, the above conditions are equivalent to the existence

of a nontrivial and nonnegative solution to the homogeneous
linear system of equations

A f = 0, (B13)

where

A = (u2, ..., uM, g11, ..., gMM , h1, ..., hM )T (B14)

is an (M2 + 2M − 1) × M2 matrix.
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