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Reflectionless potentials and resonant scattering of flat-top and thin-top solitons
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We identify a class of potentials for which the scattering of flat-top solitons and thin-top solitons of the
nonlinear Schrödinger equation with dual nonlinearity can be reflectionless. The scattering is characterized by
sharp resonances between regimes of full transmission and full quantum reflection. Perturbative expansion in
terms of the magnitude of radiation losses leads to the general form of reflectionless potentials. Simulating the
scattering of flat-top solitons and thin-top solitons confirms the reflectionless feature of these potentials.
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I. INTRODUCTION

The unique features of solitons are exhibited most clearly
upon their scattering by external potentials. The so-called
reflectionless scattering is one such striking example. Scatter-
ing of solitons by specific types of potentials is characterized
by the complete absence of radiation and by preserving the
integrity of solitons after scattering [1]. Moreover, the interest-
ing phenomena of quantum reflection and resonant scattering
are usually studied with reflectionless potentials [2,3]. A
well-known and well-studied example is the scattering of
bright solitons of the nonlinear Schrödinger equation (NLSE)
by the reflectionless Pöschl-Teller potential well [1,2].

On the fundamental level, resonant scattering by reflection-
less potentials reveals the spectrum of the potential’s bound
states [4]. Reflectionless scattering is also important for appli-
cations in optical data processing where optical devices may
be designed to simulate certain functions such as switching,
routing, unidirectional flow, and logic gating [5–8].

Stimulated by the recent experimental realization of the
flat-top soliton [9,10], which is a solution of the NLSE with
dual nonlinearity, interest in such kinds of solitonic excitations
has been growing [10–18]. However, and to the best of our
knowledge, the scattering properties of flat-top solitons are
scarcely studied in the literature [19–21]. The present paper
attempts to answer three related fundamental questions: (1)
Can quantum reflection occur for flat-top solitons? (2) Do
reflectionless potentials exist for flat-top solitons? (3) Do flat-
top solitons exhibit resonant scattering, as in bright solitons
of NLSE? The rationale behind posing these questions is that
flat-top solitons can be very wide, and thus it is not obvious
that such a wide object may scatter off potentials without
splitting or forming radiation. Nonetheless, the answer we
found to all of these questions is “yes.”

We consider the NLSE with dual nonlinearity and then
show that it supports a class of solutions that comprises a
spectrum of flat-top solitons, bright solitons, kink solitons,
and another type which we denote as “thin-top” solitons. The
spectrum of flat-top solitons is bounded by bright solitons,
with a vanishing width of its top, and kink solitons, with
a diverging width of its top. We construct another type of
reflectionless potential using the flat-top soliton and then

study its scattering properties. The form of the reflectionless
potential is derived using an ansatz for the scattered wave in
the form of a localized soliton part and a small extended radi-
ation part. A perturbative expansion in the small magnitude of
the radiation part leads to the general form of the reflectionless
potential. From the spectrum of this class of solutions, a cor-
responding spectrum of reflectionless potentials is obtained.
Simulating the scattering of flat-top and thin-top solitons by
these reflectionless potentials, the reflectionless feature of the
potentials will then be revealed. In addition, our simulations
show that flat-top and thin-top solitons do indeed exhibit
quantum reflection and resonant scattering. It should be noted
that simulating flat-top solitons turns out to be numerically
demanding when the soliton is very wide. Our numerical code,
based on a power series expansion [22], is shown to efficiently
simulate the widest flat-top soliton possible by the machine
precision.

The rest of the paper is organized as follows. In Sec. II, we
present the exact solution of the NLSE with dual nonlinearity
and discuss its properties. In Sec. III, we derive the reflection-
less potential. In Sec. IV, we perform numerical simulations
that confirm the reflectionless property of the potentials. In
Sec. V, we end with our main conclusions.

II. FAMILY OF SOLUTIONS

The dynamics of the so-called flat-top soliton is described
by the following NLSE with dual nonlinearity,

i
∂

∂t
ψ (x, t ) = −g1

∂2

∂x2
ψ (x, t ) − g2|ψ (x, t )|nψ (x, t )

− g3|ψ (x, t )|2nψ (x, t ) + V (x)ψ (x, t ), (1)

where ψ (x, t ) is generally a complex field, V (x) is an external
potential, g1 characterizes the strength of dispersion, g2 and
g3 characterize the strengths of the two nonlinearities, and n
is an integer. For n = 2, which we will assume for the rest
of this paper, a typical NLSE with cubic and quintic nonlin-
earities will be retrieved, where the cubic term corresponds
to the Kerr nonlinearity in the context of optical solitons
and a Hartree-Fock interatomic interaction in the case of
Bose-Einstein condensates [23]. The flat-top soliton solution
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FIG. 1. Schematic diagram showing the spectrum of solutions
in terms of γ . The four solutions, bright soliton (BS), kink soli-
ton (KS), flat-top soliton (FT), and thin-top soliton (TT), are given
by (3), (6), (7), and (8), respectively.

belongs to a more general class of stationary solutions which
can be written in the form [14,24]

ψ (x, t ) =
√

2u0

g2
√

1 + γ

× 1√
1−√

1+γ

2
√

1+γ
+ cosh2

[√ u0
g1

(x − x0 − v0t )
]eiφ(x,t ),

(2)

where u0, x0, and v0 are arbitrary parameters corresponding
to the amplitude, peak position, and speed of the soli-

FIG. 2. Family of exact solutions to Eq. (1). (a) Profiles of the
four solutions (3), (6), (7), and (8). (b) Curvatures of the four
solutions at x = t = 0 with u0 = g1 = 1. Parameters used in (a):
u0 = 2.2, v0 = 0.0, g1 = 3.0, g2 = 1.0, g3 = γ g30, g30 = 3g2

2/16u0,
and x0 is given by (5).

FIG. 3. (a) Flat-top solitons, given by (7), with
γ = {−0.99, −0.9999, −0.999 999}, such that the last value
corresponds to the widest soliton, and (b) thin-top solitons, given
by (8), for γ = {9, 99, 999}, such that the last value corresponds
to the thinnest soliton. Thick (red) curves correspond to the bright
soliton solution for γ = 0. Parameters used in both (a) and (b):
u0 = 2.2, v0 = 0.0, g1 = 3.0, g2 = 1.0, g3 = γ g30, g30 = 3g2

2/16u0.

FIG. 4. Potential profiles of (24) with different values of γp.
Parameters used: u0p = 1, g1p = 0.2, V0 = 1.

014202-2



REFLECTIONLESS POTENTIALS AND RESONANT … PHYSICAL REVIEW E 107, 014202 (2023)

(a) (b) (c)

FIG. 5. Resonant scattering of a bright soliton (3) by a wide reflectionless potential well, given by (24), with a varying potential well
depth (a) V0 = 2.394 17, (b) V0 = 2.394 18, and (c) V0 = 2.394 19. The number of nodes in the formed trapped mode is 24 nodes. (d) Solution
and potential profiles. The arrow shows the direction of motion for the incident soliton. Other parameters: u0 = 0.04, u0p = 0.2, γ = 0,
γp = −0.999 999 999 999 999 8, v0 = 0.05, g1 = 0.5, g2 = 1.0, g1p = 0.5, g2p = 1.0.

ton, respectively, γ = g3/g30, where g30 = 3g2
2/16u0, and

φ(x, t ) = u0 t + v0[2(x − x0) − v0 t]/4g1. It should be noted
that, although we denote this solution as stationary, we still
allow for the center-of-mass motion in order to study its
scattering with potentials below. The profile is thus truly sta-
tionary only in a frame of reference moving with the soliton.
For stationary solutions, the profile should be real which re-
quires γ � −1. This general expression defines a spectrum
of solutions containing four different nontrivial solutions,
namely: a bright soliton (BS), kink soliton (KS), flat-top
soliton (FT), and thin-top soliton (TT). We termed the last
solution as such since it turned out that its peak width is
thinner than that of the bright soliton, which is the opposite
case of flat-top solitons. The whole spectrum of solutions can
be scanned in terms of γ values, as shown schematically in
Fig. 1.

We list here the four different solutions. While some of
these solutions are known, we include them for completeness.

(1) Bright soliton, γ = 0:

ψ (x, t ) =
√

2u0

g2
sech

[√
u0

g1
(x − x0 − v0t )

]
eiφ(x,t ). (3)

(2) Kink soliton, γ = −1: Taking the limit γ → −1 in
Eq. (2), the solution takes the form of the following constant
wave (CW),

ψ (x, t ) = 2
√

u0

g2
eiφ(x,t ). (4)

Since x0 is an arbitrary parameter, we set x0 as

x0 =
√

g1

16u0
ln

[
g1

g2
2(1 + γ )

]
, (5)

which corresponds to shifting the origin such that the left-hand
side of the flat-top solution is always at x = 0 for all values of
γ . In this case the limit γ → −1 leads to the following kink
solution,

ψ (x, t ) = 2
√

u0

g2

1√
1 +

√
g1

4g2
2

exp
(−2

√
u0
g1

x
)eiφ(x,t ). (6)

(3) Flat-top soliton, −1 < γ < 0: For this range of γ ,
it will be convenient to express the solution using the
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(a) (b) (c)

FIG. 6. Resonant scattering of a flat-top soliton (7) by a Pöschl-Teller potential well (22) with a varying potential well depth (a) V0 =
0.895 586, (b) V0 = 0.895 586 001 537 7, and (c) V0 = 0.895 587. (d) The solution and potential profiles. A single-node trapped mode is formed.
The arrow shows the direction of motion for the incident soliton. Other parameters: u0 = 0.04, u0p = 2.447 79, γ = −0.999 999 999 999 999,
γp = 0, v0 = 0.017, g1 = 0.5, g2 = 1.0, g1p = 0.5, g2p = 1.0.

transformation γ = − cos2(θ ), where 0 < θ < π/2,

ψ (x, t )

= 2
√

u0

g2

1√
1 + sin(θ ) cosh

[√ 4u0
g1

(x − x0 − v0t )
]eiφ(x,t ).

(7)

(4) Thin-top soliton, γ > 0: In this case, the solution is ex-
pressed using the transformation γ = sinh2(θ ), where θ �= 0,

ψ (x, t )

= 2
√

u0

g2

1√
1 + cosh(θ ) cosh

[√ 4u0
g1

(x − x0 − v0t )
]eiφ(x,t ).

(8)

In Fig. 2(a), we plot these four solutions for the same set of
parameters. They differ only by the value of γ and hence
their norm. The central curvature of the flat-top soliton is
smaller than that of a bright soliton. In contrast, the central
curvature of the thin-top soliton is larger than that of a bright
soliton. In Fig. 2(b), we plot (1/|ψ |)d2|ψ |/dx2 at x = 0. The
figure shows that the curvature of flat-top solitons is always

smaller than that of the bright soliton, and the curvature of
thin-top solitons is always larger than the curvature of the
bright soliton. The fundamental difference between a flat-top
soliton and thin-top soliton can be also clearly seen upon
comparing them when they have the same norm. Normalizing
the general solution as

n0 =
∫ ∞

−∞
|ψ (x, t )|2dx = 8g1

g2

√
u0

g1 γ
tan−1

(√
1 + γ − 1√

γ

)
,

(9)

and then solving for u0,

u0 = g2
2n2

0γ

64g1
[

tan−1
(√

1+γ−1√
γ

)]2 , (10)

the general solution (2), and hence the special solu-
tions (3), (4), (6), (7), and (8), will be normalized to n0. In
Fig. 3, we plot the normalized flat-top and thin-top solitons
together with the bright soliton for the purpose of comparison.
The figure shows that flat-top solitons are indeed always wider
than the bright soliton and they become wider for values of γ

approaching −1, and thin-top solitons are always thinner than
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(a) (b) (c)

FIG. 7. Resonant scattering of a flat-top soliton (7) by a wide reflectionless potential well with a varying potential well depth (a) V0 = 4.0,
(b) V0 = 4.000 027 62, and (c) V0 = 4.000 029. (d) The solution and potential profiles. The number of nodes in the formed trapped mode is
10 nodes. The arrow shows the direction of motion for the incident soliton. Other parameters: u0 = 0.093 748, u0p = 0.2, γ = γp = −0.998,
v0 = 0.1, g1 = 0.5, g2 = 1.0, g1p = 0.5, g2p = 1.0.

the bright soliton and they become thinner as γ approaches
∞.

Finally, a statement about the stability of these solitons is
in order. According to the Vakhitov-Kolokolov (VK) stability
criterion [25], the soliton with profile ψ (x, t ) = φ(x)e−iω t ,
will be stable if the condition ∂n0/∂ω < 0 is satisfied. Ap-
plying this criterion on solution (2), where ω = −u0, we
get

∂

∂ω
n0 = − 4

g2

√
−g1

ω

tan−1
(√

1+γ−1√
γ

)
√

γ
. (11)

For g1, g2 > 0 and ω < 0, this expression is negative for γ �
−1, which indicates that all types of solitons mentioned above
are stable according to the VK criterion.

In the next section, we derive the reflectionless potentials
corresponding to the above solutions.

III. REFLECTIONLESS POTENTIALS

Reflectionless scattering is defined by the absence of ra-
diation. The scattering outcome is then assumed to be in the

form of a localized solitonic part that is immersed in a weak
oscillatory part, which accounts for radiation. A perturbative
approach will then lead to the specific form of the potential
for which radiation is vanishingly small. The ansatz for the
scattering outcome is written as

ψout(x, t ) = [ψ0(x) + ψ1(x, t )]eiλt , (12)

where ψ0(x)eiλt is the stationary solitonic part and ψ1(x, t ) is
the small radiation part, such that |ψ1| � |ψ0|. The solitonic
part corresponds to either a reflected or transmitted soliton
long after the scattering event such that the effect of the finite-
range potential is absent. Substituting this ansatz in (1), the
zeroth order vanishes assuming that ψ0(x) is a solution of the
time-independent version of (1), namely

g1 ψ ′′
0 (x) + g2 ψ3

0 (x) + g3 ψ5
0 (x) − [V (x) + λ]ψ0(x) = 0.

(13)

Since we consider a situation where the soliton after scattering
is far from the potential V (x), the soliton solution ψ0(x) may
be taken as the solution of the fundamental version of (1), i.e.,
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(a) (b) (c)

FIG. 8. Resonant scattering of a thin-top soliton (8) by a Pöschl-Teller potential well with a varying potential well depth (a) V0 = 0.62,
(b) V0 = 0.621 357 995, and (c) V0 = 0.635. (d) The solution and potential profiles. A double-node trapped mode is formed. The arrow shows
the direction of motion for the incident soliton. Other parameters: u0 = 0.04, u0p = 0.2, γ = 1.0, γp = 0, v0 = 0.055, g1 = 0.5, g2 = 1.0,
g1p = 0.5, g2p = 1.0.

Eq. (13) with V (x) = 0. The linear order gives

i
∂

∂t
ψ1(x, t ) + g1

∂2

∂x2
ψ1(x, t ) + [

g2 ψ2
0 (x) + g3 ψ4

0 (x)

− [V (x) + λ]
]
ψ1(x, t ) + (

2g3 ψ4
0 + g2 ψ2

0

)
ψ1

∗(x, t ) = 0.

(14)

In terms of the real and imaginary parts of ψ1(x, t ), defined by
ψ1(x, t ) = ψ1r (x, t ) + i ψ1i(x, t ), the real and imaginary parts
of the last equation give

g1
∂2

∂x2
ψ1r − ∂

∂t
ψ1i + [

5g3 ψ4
0 + 3g2 ψ2

0 − [V (x) + λ]
]
ψ1r

= 0, (15)

g1
∂2

∂x2
ψ1i + ∂

∂t
ψ1r + [

g3 ψ4
0 + g2 ψ2

0 − [V (x) + λ]
]
ψ1i = 0.

(16)

We set the oscillatory perturbations in the form

ψ1r (x, t ) = u cos(k x + ωt ), (17)

and

ψ1i(x, t ) = v sin(k x + ωt ), (18)

where u and v are arbitrary amplitudes. Substituting back in
Eqs. (15) and (16), a nontrivial solution requires

V (x) = −[
g1 k2 + λ − 2g2 ψ2

0 (x) − 3g3 ψ4
0 (x)

±
√

ω2 + g2
2 ψ4

0 (x) + 4g2 g3 ψ6
0 (x) + 4g2

3 ψ8
0 (x)

]
.

(19)

In the long-wavelength limit, k, ω → 0, the last equation re-
duces to

V (x) = g2 ψ2
0 (x) + g3 ψ4

0 (x), (20)

or

V (x) = 3g2 ψ2
0 (x) + 5g3 ψ4

0 (x), (21)

where we have also set λ = 0 since it corresponds to a con-
stant shift in energy. In the absence of the quintic nonlinearity,
the above result should lead to the well-known case of the
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(a) (b) (c)

FIG. 9. Resonant scattering of a thin-top soliton (8) by a thin reflectionless potential well with a varying potential well depth (a) V0 = 0.38,
(b) V0 = 0.384 198 7, and (c) V0 = 0.395. (d) The solution and potential profiles. A double-node trapped mode is formed. The arrow shows the
direction of motion for the incident soliton. Other parameters: u0 = 0.04, u0p = 0.1, γ = γp = 1.5, v0 = 0.055, g1 = 0.5, g2 = 1.0, g1p = 0.5,
g2p = 1.0.

Pöschl-Teller reflectionless potential, namely

V (x) = −2 u0 sech2(
√

u0/g1x). (22)

Using the bright soliton solution ψ0(x) =√
2 u0/g2 sech(

√
u0/g1x) in Eqs. (20) and (21) gives V (x) =

2 u0 sech2(
√

u0/g1x), and V (x) = 6 u0 sech2(
√

u0/g1x),
respectively. We conjecture that what matters for the
reflectionless feature is the structure of the potential such that
a prefactor will not affect this property. This is based on our
numerical simulations. Our perturbative calculation, in this
case, accounts for the structure of the reflectionless potential
but does not explain the freedom in the parameters. With this
interpretation, the Pöschl-Teller potential is obtained from our
results by multiplying the potential expressions we obtained
by an arbitrary overall parameter that can be adjusted to
get the right sign and magnitude. Indeed, our simulations
show that the reflectionless property is not restricted to the
parameters of the model we are solving, namely Eq. (1). The
potential can thus be constructed by another solution that
has the same shape but with different parameters, namely
ψ0p(x) = √

2u0p/g2p sech(
√

u0p/g1px), where g1p, g2p, and

u0p are arbitrary parameters that may be different than g1, g2,
and u0.

Similarly, a reflectionless potential for flat-top and
thin-top solitons is obtained by extracting ψ0(x) from (2)
and substituting in (19), which is then simplified
as

V (x) = − 2u0√
1 + γ

3γ

8
√

1+γ
+ 1−√

1+γ

2
√

1+γ
+ cosh2

(√ u0
g1

x
)

[ 1−√
1+γ

2
√

1+γ
+ cosh2

(√ u0
g1

x
)]2

, (23)

and reexpressed with new free parameters u0 p, γp, g1 p, and an
overall arbitrary parameter V0 as

V (x) = −V0
2u0p√
1 + γp

3γp

8
√

1+γp
+ 1−

√
1+γp

2
√

1+γp
+ cosh2

(√ u0p

g1p
x
)

[ 1−
√

1+γp

2
√

1+γp
+ cosh2

(√ u0p

g1p
x
)]2

.

(24)

Here, γp > −1 is an arbitrary parameter and we have added V0

to be able to change the depth of the potential independently
from u0p. In Fig. 4, we plot this potential for a number of
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(a) (b) (c)

FIG. 10. Resonant scattering of a thin-top soliton (8) by a wide reflectionless potential well with a varying potential well depth
(a) V0 = 1.897, (b) V0 = 1.898, and (c) V0 = 1.9. (d) The solution and potential profiles. The number of nodes in the formed trapped mode
is 11 nodes. The arrow shows the direction of motion for the incident soliton. Other parameters: u0 = 0.093 748 0, u0p = 0.5, γ = 1.5,
γp = −0.999 999 999 9, v0 = 0.055, g1 = 0.5, g2 = 1.0, g1p = 0.7, g2p = 1.0.

γp values. Interestingly, for γ values deep in the flat-top
regime, namely close to −1, the potential develops a two-well

structure with minima located at ± 1
2

√
g1

u0
ln[

√
γ (8+17γ+9γ 2 )

2(1+γ ) −
3γ

2
√

1+γ
− 1√

1+γ
]. The depth at the minima equals u0, and the

depth at the central peak is equal to −3u0/3γ . This double-
well potential, as we will see later, leads to reflectionless
macroscopic quantum tunneling.

In conclusion, a spectrum of solutions is obtained in
terms of a single parameter, namely γ . A spectrum of re-
flectionless potentials is also obtained in terms of a single
parameter, γp.

IV. RESONANT REFLECTIONLESS SCATTERING OF
FLAT-TOP AND THIN-TOP SOLITONS

The purpose of this section is to confirm the reflection-
less property of the potential derived in the previous section.
This is performed through scattering of flat-top and thin-top
solitons by the potential. In view of the fact that a spectrum
of solutions and a corresponding spectrum of reflectionless

potentials exist, we consider here possible combinations of
solutions and potentials, as follows:

Bright soliton scattered by a wide reflectionless poten-
tial well, γ = 0, γp = 2 × 10−16 − 1. This case shows an
interesting resonant scattering of a bright soliton by a wide
reflectionless potential where a multinode trapped mode is
formed. The sharp transition between full quantum reflection
and full transmission is evident in Fig. 5. It should be noted
here that a square potential well with a similar width and depth
would generate a considerable amount of radiation, which
indicates the unique reflectionless feature of the potential at
hand.

Flat-top soliton scattered by a Pöschl-Teller potential well,
γ = −0.999 999 999 999 999, γp = 0. It is interesting to see
that such a huge soliton scatters coherently by the reflection-
less potential. Quantum reflection and resonant scattering are
clearly seen in Fig. 6.

It is known that a Pöschl-Teller potential with a large
modified width supports multinode trapped modes, but loses
its reflectionless property. In the present case, we report a
situation where a potential with such a large width still results
in a reflectionless scattering.
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(a)

(b)

(c)

(d)

FIG. 11. Scattering coefficients of (a) reflection R, (b) trapping L,
and (c) transmission T , for a flat-top soliton scattered by a wide re-
flectionless potential well with initial speed v0 = 0.1. (d) A zoom-in
of the three scattering coefficients for the left resonant scatter-
ing. Parameters used: u0 = 0.093 748, u0p = 0.2, γ = −0.998, γp =
−0.999 999 999 999 999 8, g1 = 0.5, g2 = 1.0, g1p = 0.5, g2p = 1.0.

Flat-top soliton scattered by wide reflectionless po-
tential well, macroscopic quantum tunnelling, γ = γp =
−0.998. This is a typical general case where a wide

flat-top soliton is scattered by a wide reflectionless poten-
tial. Figure 7 shows reflectionless scattering together with
multinode trapped mode excitation. It is interesting to see
that with such a double-potential well, macroscopic quantum
tunneling occurs through the barrier between the two wells.
This is similar to the same phenomenon in Bose-Einstein
condensates [26].

Thin-top scattering. In a similar manner as for the flat-top
solitons, we performed a series of simulations of scatter-
ing of thin-top solitons by a Pöschl-Teller potential well,
shown in Fig. 8, a thin reflectionless potential well shown
in Fig. 9, and a wide reflectionless potential well shown
in Fig. 10. Similar results are obtained as for flat-top
solitons.

For further investigation of the resonant modes, we have
studied the scattering of flat-top solitons by a wide re-
flectionless potential with varying depth. In terms of the
potential depth V0, trapped modes with different numbers
of nodes are excited. The associated resonant scattering oc-
curs always when a trapped mode is excited. The number
of nodes changes with the depth of the potential. As V0

is increased, a trapped mode with an increasing number of
nodes is found to occur at discrete values of V0. This be-
havior is due to a resonance between the fixed energy of
the incident soliton and the energy of the trapped modes.
By increasing the magnitude of V0, the energy of trapped
modes increases and will resonate one after the other with the
energy of the incident soliton. In Fig. 11, we plot the trans-
port coefficients, reflectance R = (1/n0)

∫ −l
−∞ |ψ (x, τ )|2dx,

trapping L = (1/n0)
∫ l
−l |ψ (x, τ )|2dx, and transmittance T =

(1/n0)
∫ ∞
−l |ψ (x, τ )|2dx, versus V0. Here, l is the length at

which the potential is negligible and τ is a time long after
the scattering event. The figure shows the multiresonance be-
havior where three resonances are observed. It should be noted
that a similar critical behavior in the transport coefficients may
also be obtained by fixing the potential depth and varying
the initial speed of the incident soliton. However, changing
the potential depth leads to exciting many multinode trapped
modes, which are indicated by the multiresonance behavior
shown in Fig. 11. On the other hand, changing the soliton
speed excites only one trapped mode at a certain critical
speed.

Figure 12 shows the dynamics near resonances.

V. CONCLUSIONS

From a generalized form of an exact solution to the NLSE
with dual nonlinearity, we have shown that a spectrum of solu-
tions exists containing four fundamentally different solutions,
namely bright solitons, kink solitons, flat-top solitons, and
thin-top solitons. We have shown that the four solutions are
connected through one parameter that transfers one solution
to the other.

Using a perturbative expansion with a trial solution cor-
responding to the scattered soliton, a general form of the
reflectionless potential is obtained in terms of one of the
solutions to the NLSE or any of its other integrable versions.
Consequently, a spectrum of potentials is also obtained in
terms of a single parameter.
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FIG. 12. Full reflectance at resonances shown in Fig. 11(a) with a varying potential well depth (a) V0 = 2.046 with a trapped mode of
22 nodes, (b) V0 = 2.236 with a trapped mode of 23 nodes, and (c) V0 = 2.427 with a trapped mode of 24 nodes. Insets show a zoom-in
of the multinode trapped modes. Other parameters: u0 = 0.093 748, u0p = 0.2, γ = γp = −0.998, v0 = 0.1, g1 = 0.5, g2 = 1.0, g1p = 0.5,
g2p = 1.0.

A series of numerical simulations to the scattering
of flat-top and thin-top solitons confirmed the reflection-
less property of the potential. Resonant scattering and

quantum reflection were generated in a similar manner as for
the bright soliton scattering by a reflectionless Pöschl-Teller
potential.
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