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A long-standing expectation is that two repulsively coupled oscillators tend to oscillate in opposite directions.
It has been difficult to achieve complete synchrony in coupled identical oscillators with purely repulsive coupling.
Here, we introduce a general coupling condition based on the linear matrix of dynamical systems for the
emergence of the complete synchronization in pure repulsively coupled oscillators. The proposed coupling
profiles (coupling matrices) define a bidirectional cross-coupling link that plays the role of indicator for the
onset of complete synchrony between identical oscillators. We illustrate the proposed coupling scheme on several
paradigmatic two-coupled chaotic oscillators and validate its effectiveness through the linear stability analysis
of the synchronous solution based on the master stability function approach. We further demonstrate that the
proposed general condition for the selection of coupling profiles to achieve synchronization even works perfectly
for a large ensemble of oscillators.
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I. INTRODUCTION

Dynamical networks have attracted much attention due to
their exciting behaviors [1–4]. One of the most important
behaviors of dynamical networks is complete synchroniza-
tion, which occurs when all coupled oscillators have the
same temporal evolution [5–7]. Synchronization in com-
plex dynamical systems has become a hot topic in various
fields [8–11]. Synchronization plays an essential role in many
natural phenomena or artificial applications [12–15]. Heart-
beat rhythm [16], modern economic networks [17], neural
networks [18], and food web analysis [19] are some ex-
amples of the applications of synchronization in networks.
Since the development of the master stability function (MSF)
scheme [20], which makes it possible to analyze synchro-
nization in large oscillator networks with efficiency [21], the
field of network synchronization has experienced explosive
growth.

It is important to note that the coupling between interacting
oscillators has mostly been assumed to be positive (attrac-
tive) [22–24], which drives the oscillators to advance in the
same direction and induces in-phase alignment. However, the
repulsive (inhibitory) coupling is very common in biologi-
cal systems such as ensembles of inhibitory neurons [25].
Kim et al. [26] studied a two-dimensional array of oscilla-
tors with phase-shifted coupling, which acts as a repulsive
coupling in the network. In this regard, most of the studies
on synchronization have considered the coupling between
oscillators to be either solely attractive [8,13,20,22–24,27,28]
or mixed, where both positive and negative coupling coexist
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simultaneously [29–35]. Yang et al. [36] investigated the influ-
ences of both positive and negative connections in the power
networks and revealed some counterintuitive results. Leyva
et al. [37] showed that synchronizing nonidentical attractively
coupled oscillators in a small-world network could be en-
hanced by considering a small fraction of phase-repulsive
couplings. Kovalenko et al. [38] have investigated that syn-
chronization can be achieved between repulsively coupled
oscillators through the introduction of many-body interac-
tions along with pairwise interactions. Nevertheless, the study
of network synchronization with purely pairwise repulsive
coupling, specifically the investigation of complete synchro-
nization, has been overlooked as inhibitory coupling generally
forces the oscillators to move apart and causes out-of-phase
alignment [26,39]. Therefore, a natural question arises: When
do coupled oscillators with purely pairwise repulsive coupling
scheme achieve complete synchrony? To give a plausible
answer to this question, here we introduce a general con-
dition for the selection of an appropriate coupling scheme
that yields complete synchrony in repulsively coupled oscilla-
tors. The proposed coupling condition defines a bidirectional
cross-coupling link based on the off-diagonal elements of
the linear matrix of the corresponding dynamical oscillators.
The cross coupling is defined here as the linear diffusive
coupling involving two similar variables of the dynamical sys-
tems and added to the dynamics of a different state variable.
An appropriate selection of this cross-coupling link yields
complete synchrony in ensembles of dynamical oscillators
with purely inhibitory coupling. The key characteristics of
the coupling profile selection, particularly the insertion of
specific cross-coupling connections, are demonstrated with
the examples of two-coupled chaotic systems, namely, the
Hindmarsh-Rose (HR) neuron model, Chen system, Rössler
oscillator, Sprott system, and NE3 system, as dynamics of

2470-0045/2023/107(1)/014201(8) 014201-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3846-2601
https://orcid.org/0000-0002-0237-313X
https://orcid.org/0000-0002-6845-7539
https://orcid.org/0000-0003-4832-5210
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.014201&domain=pdf&date_stamp=2023-01-03
https://doi.org/10.1103/PhysRevE.107.014201


SIMIN MIRZAEI et al. PHYSICAL REVIEW E 107, 014201 (2023)

individual systems. The effectiveness of these coupling profile
selections to predict the achievement of complete synchrony
in repulsively coupled oscillators is validated using the linear
stability analysis of the synchronous solution based on the
MSF formalism. The choice of appropriate coupling profile
also works perfectly to predict the achievement of complete
synchrony in large ensembles (N > 2) of repulsively coupled
oscillators.

The remainder of this article is organized as follows. We
first review the conventional MSF approach in Sec. II, which
plays an important role to guarantee the linear stability of
the synchronous solution. Followed by this, in Sec. III, we
demonstrate the main results. We start with an example of
two-coupled Hindmarsh-Rose neurons in Sec. III A to explain
the mechanism of adding the appropriate coupling profile for
the emergence of complete synchronization. This leads to
the proposition of general condition for the selection of ap-
propriate coupling profiles in many other coupled dynamical
systems, detailed in Sec. III B. We successfully extend the
results to network motifs of three and four nodes in Sec. III C.
Furthermore, examples of larger networks, including 20-node
ring and random network of HR neurons, are illustrated. Fi-
nally, in Sec. IV, we draw a conclusion by summarizing the
results.

II. SYNCHRONIZATION ANALYSIS BASED ON MSF

The MSF is a common approach for finding the necessary
conditions for stable synchronization in a dynamical network
consisting of identical coupled oscillators. The MSF calcu-
lation is entirely independent of the network topology. This
method is briefly reviewed in the following. We consider a
network consisting of N coupled identical oscillators with
xi being the m-dimensional vector of the ith oscillator. The
dynamical behavior of each oscillator can be described by
ẋi = F (xi ), where F (xi ) is the velocity field. The dynamical
equation of the network of N coupled oscillators can be de-
fined as

ẋi = F (xi ) − ε

N∑
j=1

Gi jh(x j ), (1)

where ε is the coupling strength, G is the Laplacian of the
network connectivity matrix, and h(x j ) is the coupling func-
tion between oscillators. The coupling function h(x j ) can be
written as h(x j ) = Hx j for linear coupling functions, where
H is the coupling matrix that shows which state variables are
involved in the coupling. The synchronization manifold of the
network can be expressed as x1 = x2 = · · · = xN = s, where
the synchronized solution s(t ) satisfies ṡ = F (s). To evaluate
the stability of the synchronization manifold, a perturba-
tion can be considered as yi(t ) = xi(t ) − s(t ). Tending the
perturbations to zero guarantees the stability of the synchro-
nization manifold (s), and then all the oscillators approach
the synchronization manifold. The dynamical equation of the
perturbations can be written as

ẏi =
⎡
⎣DF (s) − ε

N∑
j=1

Gi jDh(s)

⎤
⎦yi, (2)
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FIG. 1. Left panel: Schematic representation of bidirectional
1 → 3 coupling profile. The coupling function, including the x1,2

variable, is added to the dynamics of the z2,1. Right panel: MSF of
two-coupled Hindmarsh-Rose neuronal system in Eqs. (4) versus the
normalized coupling parameter K = 2ε for 1 → 3 coupling config-
uration that shows the occurrence of complete synchronous solution
in the negative coupling regime.

where DF (s) and Dh(s) are the Jacobian matrices of functions
F and h evaluated at s(t ). Using the eigenvalues of the matrix
G, the variational equation of the network can be converted
to decoupled systems. By applying the transform η = Q−1y,
where matrix Q is constructed from the eigenvectors of the
matrix G, the decoupled form of Eq. (2) can be obtained as

η̇i = [DF (s) − ελiDh(s)]ηi, (3)

where ηi defines the variations of the ith oscillator, and
λi (i = 1, 2, · · · , N ) are the eigenvalues of matrix G. The first
eigenvalue for a connected network is zero (i.e., λ1 = 0) and
the corresponding variational equation is along the synchro-
nization manifold. Other eigenvalues λi > 0, i = 2, 3, · · · , N
determine the stability of the variational equation and the syn-
chronization manifold. Letting K be the normalized coupling
parameter defined as K = σλ, the largest Lyapunov exponent
of Eq. (3) [�(K )] is the MSF. The negative MSF demonstrates
that the synchronous manifold is stable.

III. RESULTS

In this section, we first consider a particular example on
two-coupled HR neuronal models and show that complete
synchronization emerges using repulsive coupling. We verify
our result using MSF and basin stability analysis. Then we
propose a general coupling scheme for other systems based on
linear matrix of the isolated dynamical systems for complete
synchronization using purely repulsive coupling, and, finally,
we extend the study for network motifs.

A. Coupled Hindmarsh-Rose neurons

We start by considering two identical HR neurons coupled
with each other through a bidirectional cross-coupling con-
figuration 1 → 3, i.e., the coupling is on the first variable and
added to the dynamics of the third variable (The coupling con-
figuration is demonstrated schematically in the left panel of
Fig. 1). Then the equation of motion governing the dynamics
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of the coupled system is given by

ẋ1,2 = y1,2 + 3x2
1,2 − x3

1,2 − z1,2 + I,

ẏ1,2 = 1 − 5x2
1,2 − y1,2,

ż1,2 = −rz1,2 + rs(x1,2 + 1.6) + ε(x2,1 − x1,2), (4)

where the subscripts (1,2) indicate the oscillators and I = 3.2,
r = 0.006, s = 4 are system parameters that yield chaotic
behavior of uncoupled HR neurons. ε (>, or < 0) is the
real-valued constant that represents the strength of attraction
or repulsion between the coupled neurons. Since our main
objective is to find the region of synchronization when the
neurons are repulsively coupled, we vary the coupling strength
ε from a negative to positive regime and investigate the lo-
cally stable synchronization state based on the MSF approach.
Figure 1 (right panel) shows the MSF of the coupled HR-
neuron system in Eqs. (4) versus the normalized coupling
parameter K (= 2ε). One can notice that the synchronization
is achievable for K < −1.8, but no synchrony emerges in
the positive regime of the coupling strength. Therefore, with
the considered cross-coupling configuration 1 → 3, two HR
neurons can achieve a stable synchronized state when they
repel each other with sufficient strength.

Further, we carried out the basin stability measure [40,41],
which quantifies the volume of the basin leading to the syn-
chronized state, to see if the attained synchronous solution in
the negative coupling regime is only stable for modest per-
turbation from the synchronization manifold. So, we choose
Q0 = 104 different initial states distributed randomly over the
phase space volume of an uncoupled HR neuron to quantify
the fraction of states leading to the synchronized state. If Q
number of states finally arrive at the synchronization state,
then the basin stability of the synchronous state is measured
as BS = Q

Q0
. The range of BS is [0,1], where BS = 0 de-

notes that the synchronous state is unstable under any initial
states, and BS = 1 denotes that it is globally stable under any
nonlocal perturbation. If 0 < BS < 1, the value of BS is the
likelihood of restoring the synchronized state from perturba-
tion for a typical initial state. Figure 2 depicts the BS for the
complete synchronous state, under the variation of normalized
coupling strength K (= 2ε). As observed, for K < −1.91, the
value of BS is unity, which reflects that the complete syn-
chronization solution is globally stable. Therefore, with the
prescribed cross-coupling configuration, two HR neurons can
achieve a globally stable synchronous state in the negative
coupling regime.

Now, this specific choice of coupling profile for the HR-
neuronal system can be made in a structured manner to
achieve stable synchronization under repulsive coupling from
the constant matrix that represents the linear part of the sys-
tem and, consequently, we can construct generic coupling
conditions for the appropriate choice of coupling profiles
to accomplish complete synchrony in many pure repulsively
coupled dynamical systems. In this context, the evolution of
any dynamical system can be represented as

ẋ = F (x) = Lx + g(x) + P, (5)

where x ∈ Rd , (d = 3 for our considered systems) is the state
vector, L is the d × d constant matrix attributing to the linear
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FIG. 2. Basin stability (BS) of two-coupled Hindmarsh-Rose
neuronal system in Eqs. (4) as a function of the normalized coupling
parameter K = 2ε for 1 → 3 coupling configuration. BS = 0 indi-
cates unstable synchronization state and BS = 1 represents globally
stable synchronization state.

part of the system, g : Rd → Rd accounts for the nonlinear
part of the system, and P is a d × 1 constant matrix. For the
HR-neuronal system:

L =
⎛
⎝

0 1 −1
0 −1 0
rs 0 −r

⎞
⎠, g(X ) =

⎛
⎝

3x2 − x3

−5x2

0

⎞
⎠,

P =
⎛
⎝

I
1

1.6rs

⎞
⎠. (6)

From the linear matrix L of the HR-neuron model, we can
observe that two nonzero elements—one positive and negative
element (L12 and L13)—exist in the upper triangle of the linear
matrix L which are connected to the dynamics of the first
variable ẋ1,2, and one positive element (L31) exists in the lower
triangle connected to the dynamics of the third variable ż1,2.
Moreover, the off-diagonal conjugate elements L13 and L31 are
of opposite signs. This suggests the inclusion of bidirectional
cross coupling between two neurons defined by a coupling
function involving x1,2 variables to the dynamics of z1,2 as de-
scribed in the Eqs. (4) since the positive element is connected
to x1,2 variable in ż1,2 and the negative element is connected
to z1,2 variable in ẋ1,2.

B. General coupling condition for two-coupled systems

The above observation with the HR-neuronal model al-
lows us to introduce a general condition for the selection
of an appropriate coupling profile between two repulsively
coupled dynamical systems from their corresponding linear
matrix L. For a three-dimensional system (d = 3), there are
nine linear coupling configurations which can be defined as
1 → 1, 1 → 2, 1 → 3, 2 → 1, 2 → 2, 2 → 3, 3 → 1, 3 →
2, and 3 → 3, where the notation i → j describes that the
coupling is on the ith state variables and added to the jth
state variables. Now the question is which coupling config-
uration is appropriate to achieve a complete synchronization
state when the systems are repulsively coupled? To answer
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this question, we introduce a generic procedure that the
nonzero off-diagonal conjugate elements determine the choice
of a suitable coupling profile. Our observation shows that
mostly the bidirectional cross coupling between two nega-
tively coupled identical dynamical systems is responsible for
the emergence of complete synchrony. Therefore, we suggest
the following coupling criteria:

(i) Suppose a nonzero element appears in the upper tri-
angle of the linear matrix L, i.e., Li j �= 0 (i < j), where
i, j = 1, 2, 3 and its corresponding conjugate element Lji in
the lower triangle is also nonzero and of opposite sign. Then
depending on the sign of Li j and Lji, a bidirectional cross
coupling is introduced between the systems. If the element in
the upper triangle is negative and its conjugate element in the
lower triangle is positive [i.e., Li j < 0 (i < j) and Lji > 0],
then a bidirectional cross-coupling link i → j is essential.
Opposite coupling configuration ( j → i) is made when Li j >

0 (i < j) and Lji < 0.
The statement above adequately validates our choice of

bidirectional cross-coupling between two-coupled HR neu-
rons, as shown in the previous section. We provide four more
examples in support of our statement with paradigmatic Chen
system [42], Sprott-I system [43], Rössler oscillators [44],
and NE3 systems [45]. Further examples are demonstrated in
Appendix A. The parameters for all these dynamical systems
are taken in such a manner that yields chaotic behavior for
the uncoupled systems. The linear matrices for the aforemen-
tioned four systems are now arranged below, from left to right,
respectively,

L =
⎛
⎝

−α α 0
c − α c 0

0 0 −β

⎞
⎠;

⎛
⎝

0 −0.2 0
1 0 1
1 0 −1

⎞
⎠;

⎛
⎝

0 −1 −1
1 a 0
0 0 −c

⎞
⎠;

⎛
⎝

0 1 0
0 0 1
0 −1 0

⎞
⎠. (7)

For the Chen system, the element L12 in the upper triangle
of the linear matrix L is positive in sign, and its conjugate
element L21 in the lower triangle is negative for the choice of
system parameter. Hence a bidirectional cross-coupling link
involving y1,2 is to be added to the dynamics of first variables
x1,2. From the linear matrix L of the Sprott-I system, we can
observe that the element L12 is negative in sign and L21 is of
positive sign. Therefore, according to the proposition, a bidi-
rectional cross coupling involving x1,2 variables is to be added
to the dynamics of y1,2 for the achievement of synchrony. For
the Rössler oscillator, the L12 element of the linear matrix L
is −1 and the corresponding cross diagonal element L21 is 1,
which are of opposite sign. So, a bidirectional cross-coupling
link containing x1,2 is to be appended to the evolution of the
variables y1,2. In a similar manner, from the linear matrix L
of the NE3 system, one can find that L23 = 1 and L32 = −1,
which are clearly of opposite signs. Therefore, a bidirectional
link including z1,2, added to the dynamics of second variables
y1,2, yields a complete synchrony state in two repulsively
coupled NE3 systems.

As a result, we can obtain coupling matrix H to construct
repulsively coupled Chen system, Sprott-I system, Rössler
oscillator, and NE3 system that can achieve complete synchro-
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FIG. 3. Variation of MSF as a function of normalized coupling
strength K = 2ε for four different two-coupled systems. (a) Chen
system: Coupling configuration 2 → 1; parameter values α = 35,
β = 8

3 , c = 28. (b) Sprott-I system: Coupling configuration 1 →
2. (c) Rössler oscillator: Coupling configuration 1 → 2; parameter
values a = 0.2, b = 0.2, c = 5.7. (d) NE3 system: Coupling config-
uration 3 → 2.

nization. The coupling matrices for all these four systems are
represented below, from left to right respectively,

H =
⎛
⎝

0 1 0
0 0 0
0 0 0

⎞
⎠;

⎛
⎝

0 0 0
1 0 0
0 0 0

⎞
⎠;

⎛
⎝

0 0 0
1 0 0
0 0 0

⎞
⎠;

⎛
⎝

0 0 0
0 0 1
0 0 0

⎞
⎠. (8)

The elements of these coupling matrices in Eqs. (8) are se-
lected correspondingly:

(1) Chen system: The coupling matrix contains only one
nonzero element, H12 = 1. This corresponds to the bidirec-
tional cross-coupling configuration 2 → 1.

(2) Sprott-I system: The coupling matrix contains only
one nonzero element, H21 = 1, which accounts for the bidi-
rectional cross-coupling configuration 1 → 2.

(3) Rössler oscillator: The coupling matrix contains only
one nonzero element, H21 = 1. This corresponds to the bidi-
rectional cross-coupling configuration 1 → 2.

(4) NE3 system: The coupling matrix contains only one
nonzero element, H23 = 1, attributed to the bidirectional
cross-coupling configuration 3 → 2.

Remark At this stage, it is important to note that we have
proposed a general condition for the choice of one possi-
ble coupling profile that yields complete synchrony between
coupled oscillators with pure repulsive coupling. There may
be other suitable coupling schemes for the emergence of
complete synchronization in repulsively coupled dynamical
systems. Furthermore, our proposition is not able to pre-
dict the circumstances under which perfect synchrony is not
achievable with pure repulsive coupling.

Now, to validate these coupling profiles for the emergence
of complete synchrony, we perform the linear stability of the
synchronization state based on the MSF scheme. Figure 3 de-
picts the MSF of a two-coupled Chen system, Sprott-I system,
Rössler oscillator, and NE3 system, respectively, by varying
the normalized coupling strength K (= 2ε) from a negative to
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positive regime. In Fig. 3(a), for the Chen system, the synchro-
nization is achievable for K < −19.25 with 2 → 1 coupling
configuration, which clearly validates our prediction based on
the linear matrices about the emergence of synchronization
state in the negative coupling regime. Similarly, for all the
other three systems, synchrony is achievable in the negative
coupling region for our predicted coupling profiles based on
the elements of linear matrices L. This is certainly validated by
their respective MSF plots represented in Figs. 3(b)–3(d). Fur-
thermore, Fig. 3 suggests that the MSFs for these systems with
considered coupling configurations exhibit different types of
functional behavior. For instance, the MSF 	(K ) for the Chen
system and NE3 system is a monotone decreasing function
that intercepts the abscissa once at some critical coupling
Kc < 0, resulting in an unbounded region of synchronization.
Additionally, for the Sprott-I system and Rössler oscillator,
	(K ) is not monotonic but intercepts the abscissa for two or
more instances that yield bounded regions of synchronization.
In case of the Sprott-I system, the MSF admits negative value
in some range (K2, K1), where K2 < K1 < 0 and for Rössler
oscillator 	(K ) possesses more than two finite crossing points
across the abscissa. Therefore, analogous to previous studies
with purely attracting coupling schemes [27], for an appropri-
ate choice of repulsive coupling configurations, two-coupled
dynamical systems exhibit an unbounded and bounded region
of stable synchronization states.

C. Network motifs

Now, we concentrate on network motifs, the fundamental
units of many real-world networks, to see if the proposed
condition for the choice of coupling configurations is effective
in promoting complete synchrony in the negative coupling
regime. In a network of N oscillators, the dynamics of a node
i under bidirectional coupling configuration can be given as

ẋi = F (xi ) + ε

N∑
j=1

Ci jH (x j − xi ), i = 1, 2, · · · , N. (9)

Here, F (xi ) represents the isolated node dynamics with xi

being the d = 3-dimensional state vector, ε is the strength
of bidirectional coupling between any two nodes. The N × N
symmetric matrix C denotes the connection topology of the
network; Ci j = 1 if any two nodes i and j are connected
through a bidirectional link and zero otherwise. As usual,
H(d×d ) corresponds to the coupling matrix that defines through
which variables a pair of nodes are connected with each
other. Complete synchronization in network (9) occurs when
each node advances with the rest of the nodes in unison.
The corresponding synchronization manifold is defined by
S = {x1(t ) = x2(t ) = · · · = xN (t ) = s(t )} and the dynamics
of the synchronization solution (x(t ), y(t ), z(t )) = s(t ) is de-
termined by the associated uncoupled oscillator.

By using the Linear matrix L of each node, we appropri-
ately choose the coupling matrix H between any two nodes in
the network. We now demonstrate the broad applicability of
our proposed coupling condition through a series of examples
on a few network motifs that achieve complete synchrony in
negative coupling regime.
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FIG. 4. Left column: Schematic representation of a N = 3 nodes
global network. Right column: MSF of coupled Chen system in
Eqs. (11) as a function of the normalized coupling parameter K = Nε

for 2 → 1 coupling configuration.

1. Three-node Chen systems

As a starter, we consider a global network of three nodes
whose individual node dynamics is given by chaotic Chen
system. The network connectivity matrix C and the corre-
sponding coupling matrix H are

C =
⎛
⎝

0 1 1
1 0 1
1 1 0

⎞
⎠; H =

⎛
⎝

0 1 0
0 0 0
0 0 0

⎞
⎠. (10)

The equation of motion governing the dynamics of node i can
then be written as follows:

ẋi = α(yi − xi ) + ε

N∑
j=1

Ci j (y j − yi ),

ẏi = (c − α − zi )xi + cyi, żi = xiyi − βzi, (11)

where i = 1, 2, 3 and α = 35, c = 28, β = 8
3 are standard pa-

rameters that yield chaotic behavior in isolated Chen system.
Now, to validate the effectiveness of our proposed coupling
profile based on the linear matrix L of the uncoupled system,
we perform the local stability of the synchronized solution
based on the MSF approach. Figure 4 displays the MSF as
a function of normalized coupling strength K = 3ε. The ac-
quired MSF 	(K ) is a monotone decreasing function that
crosses the abscissa once after a critical coupling strength
K = −19.25. Beyond K < −19.25, the MSF remains always
negative and results in an unbounded synchronization region.

2. Four-node HR neuron models

A globally coupled network of four HR neurons is consid-
ered as a second example. The network connectivity matrix C
and the coupling matrix H obtained from the proposed criteria
based on the linear matrix L of isolated HR-neuronal model
are given by

C =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠; H =

⎛
⎝

0 0 0
0 0 0
1 0 0

⎞
⎠. (12)
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FIG. 5. Left column: Pictorial representation of a global network
with N = 4 nodes. Right column: MSF of coupled Hindmarsh-Rose
neuronal system in Eq. (13) versus the normalized coupling parame-
ter K = Nε for 1 → 3 coupling configuration.

The equation of motion governing the dynamics of node i can
then be written as follows:

ẋi = yi + 3x2
i − x3

i − zi + I, ẏi = 1 − 5x2
i − yi,

żi = −rzi + rs(xi + 1.6) + ε

N∑
j=1

Ci j (x j − xi ), (13)

where i = 1, 2, 3 and I = 3.2, r = 0.006, s = 4 are standard
parameters that yield chaotic behavior in isolated HR-neuron
model. Now, to validate the efficacy of our proposed coupling
profile based on the linear matrix of the uncoupled system, we
execute the local stability of the synchronous solution based
on the MSF approach. Figure 5 displays the MSF as a func-
tion of normalized coupling strength K = 4ε. The acquired
MSF 	(K ) is a monotone decreasing function that crosses the
abscissa once after a critical coupling strength K = −1.85.
Beyond K < −1.85, the MSF remains always negative and
results in an unbounded synchronization region.

3. Ring of HR neurons

Next, we consider a ring of N = 20 nodes where the dy-
namics of each node are governed by a chaotic HR neuronal
model (a pictorial representation of network connectivity is
given in the left panel of Fig. 6). Following our proposi-
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FIG. 6. Left panel: Schematic representation of a ring of N =
20 nodes. Right panel: Variation of maximum transverse Lyapunov
exponent �max as a function of coupling strength ε in the negative
regime with 1 → 3 coupling configuration is displayed in solid blue
line. For each individual HR neuron, the system parameters are r =
0.006, s = 4, and I = 3.2.
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FIG. 7. Left panel: Schematic diagram of N = 20 nodes random
network with edge joining probability p = 0.2. Right panel: Varia-
tion of maximum transverse Lyapunov exponent �max as a function
of coupling strength ε in the negative regime with 1 → 3 coupling
scheme is shown by solid blue line. For each individual HR neuron,
the system parameters are r = 0.006, s = 4, and I = 3.2.

tion based on the linear matrix L of the HR model, in this
scenario also we consider the coupling scheme between any
pair of nodes to be 1 → 3, i.e., a bidirectional cross-coupling
link including the x variables is added to the dynamics of
z-variables. To validate our proposition, we perform the lin-
ear stability analysis of the synchronization solution s(t ) and
calculate the maximum transverse Lyapunov exponent �max

as a function of coupling strength ε. The necessary condition
for the emergence of stable synchronous solution is that �max

must be negative for varying coupling strengths. Figure 6
delineates that the largest transverse Lyapunov exponent �max

crosses the abscissa at a critical coupling strength εc ≈ −18.5.
Beyond ε < εc, �max remains always negative and results in
an unbounded domain of synchronization.

4. Random network of HR neurons

Lastly, we consider a complex network topology to see
if our proposed coupling scheme based on the linear matrix
L is effective enough for the emergence of complete syn-
chrony in the negative coupling regime with arbitrary network
connectivity topology. Specifically, we consider a N = 20
nodes Erdős-Rényi random network [46] in which any two
nodes are connected to each other with a probability p =
0.2. The schematic representation of this random network
is schematized in the left panel of Fig. 7. The chaotic HR
neuronal model is considered as individual node dynamics of
the network and as previously based on the sign of elements
of linear matrix L, the 1 → 3 coupling scheme is chosen
between any pair of nodes. Figure 7 depicts the curve of
maximum transverse Lyapunov exponent �max for varying
coupling strength ε in negative regime. It is observable that
the curve of �max crosses the abscissa at a critical coupling
strength εc = −2.42 and remains negative thereafter. This re-
flects that our proposed coupling condition for the emergence
of complete synchrony is effective even when the individuals
are connected randomly with purely repulsive links.

IV. CONCLUSION

Summing up, we proposed a general coupling scheme that
yields complete synchronization in coupled oscillators with

014201-6
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TABLE I. Occurrence of complete synchrony in different two-coupled systems with purely repulsive coupling.

System Linear matrix (L) Cross-coupling link Critical coupling (K = 2ε)

Sprott-K:
ẋ = xy − z,
ẏ = x − y,
ż = x + 0.3z.

⎛
⎝

0 0 −1
1 −1 0
1 0 0.3

⎞
⎠ 1 → 3 −1.4 < K < −0.725

Sprott-M:
ẋ = −z,
ẏ = −x2 − y,
ż = 1.7 + 1.7x + y.

⎛
⎝

0 0 −1
0 −1 0

1.7 1 0

⎞
⎠ 1 → 3 K < −1.3625

Sprott-O:
ẋ = y,
ẏ = x − z,
ż = x + xz + 2.7y.

⎛
⎝

0 1 0
1 0 −1
1 2.7 0

⎞
⎠ 2 → 3 K < −0.2

Sprott-P:
ẋ = 2.7y + z,
ẏ = −x + y2,

ż = x + y.

⎛
⎝

0 2.7 1
−1 0 0
1 1 0

⎞
⎠ 2 → 1 K < −0.95

Sprott-S:
ẋ = −x − 4y,
ẏ = x + z2,

ż = 1 + x.

⎛
⎝

−1 −4 0
1 0 0
1 0 0

⎞
⎠ 1 → 2 K < −0.5

pure repulsively coupling links. The selection of an appropri-
ate coupling profile is done based on the nonzero off-diagonal
elements of the linear matrix of the dynamical oscillators.
As a result, one bidirectional cross-coupling link is intro-
duced between any pair of oscillators, which plays the role
of indicator for the achievement of complete synchrony with
purely repulsive coupling. We illustrate the functioning of
the proposed coupling scheme with examples of two-coupled
systems using the HR neuron model, Rössler oscillator, Chen
system, Sprott system, and NE system as dynamical nodes.
We validate the effectiveness of our result by performing
linear stability analysis of the synchronous solution based on
the traditional MSF scheme. We further demonstrate that our
proposed coupling profiles work perfectly in network mo-
tifs of three-node, four-node, and even more to predict the
emergence of complete synchronization in these networks.
An example of an Erdős-Rényi random network using the
Hindmarsh-Rose neuron model as dynamical nodes is also
exemplified that validates the effectiveness of our prescribed
coupling schemes in complex networks.

Do the results obtained here for the achievement of com-
plete synchrony in repulsively coupled dynamical oscillators
carry over to all dynamical systems whose linear matrices

satisfy the proposed coupling condition? There may be some
instances (e.g., Sprott-H system [43]) for which the linear
matrix of the system satisfies the prescribed coupling condi-
tion, but the corresponding coupled system does not show any
stable complete synchronous solution. This sort of situation
occurs maybe because the corresponding maximum Lyapunov
exponent shows type-I [47] behavior, i.e., the curve of the
maximum Lyapunov exponent does not cross the zero line for
any coupling strengths. Despite this fact, our result provides
a general scheme for the achievement of complete synchrony
with purely repulsive coupling in a large class of interacting
dynamical systems. We expect our result will pave a way to
understand various collective phenomena in pure repulsively
coupled systems beyond canonical oscillators, for example, in
living systems or social systems [48].

APPENDIX: EXAMPLES OF TWO-COUPLED SYSTEMS

Here we provide few more examples of two-coupled
systems that show complete synchronization with purely re-
pulsive coupling scheme. Table I illustrates the corresponding
results along with the appropriate coupling scheme obtained
from our prescribed condition based on the linear matrices.
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lator: ẋ = −y − z, ẏ = x + ay, ż = b + z(x − c), parameters:
a = b = 0.2, c = 5.7.

[45] S. Jafari, J. Sprott, and S. M. R. H. Golpayegani, Phys. Lett. A
377, 699 (2013). NE3 sysytem: ẋ = y, ẏ = z, ż = −y + 0.1x2 +
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