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Residual entropy and magnetocaloric effect in a diluted sawtooth spin model
of hole-doped CuO chains
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Ground-state and magnetocaloric properties of a site-diluted sawtooth magnetic chain in the presence of
an external magnetic field are exactly investigated by using the transfer-matrix method. The model captures
the main magnetic interactions along CuO chains present in some hole-doped cuprates. The ground-state
diagram is exhibited and analytical expressions for the residual entropy within each ground state and along the
transition lines are derived. We explicitly discuss the role of the underlying pairing correlations and the entropy
maximization principle. The isothermal entropy change is determined as a function of interaction parameters,
doping concentration, and magnetic-field amplitude. Normal and inverse magnetocaloric effects are reported.
Adiabatic demagnetization curves are discussed in connection with configurational and spin contributions to the
residual entropy.
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I. INTRODUCTION

Low-dimensional spin systems present intriguing elec-
tronic and magnetic properties that are not observed in
analogous higher-dimensional systems [1]. Furthermore, due
to their impressive structural variety, these materials have
shown great potential in applications such as sensors and mag-
netic storage devices [2–4], spintronics [5,6], computation and
quantum entanglement [7–11], in addition to applications in
cooling processes [12–15]. In these systems, the competition
between external fields and exchange interactions can induce
a rich variety of phase transitions [16]. In fact the interplay
between geometric frustration and quantum fluctuations in
low-dimensional quantum magnets favors the generation of
states with unconventional spin order, such as the spin liquid
phase [17,18], different forms of nematic and multipolar order
[19–21], the Haldane phase [22], as well as the existence of
several disordered states.

Among the one-dimensional frustrated spin systems, spe-
cial attention has been given to spin chains with interactions
between first and second neighbors, also known as J1 − J2

models [19,23]. One of the most investigated topologies is
the zigzag double chain, which can be understood as two
chains connected by alternating ferro and antiferromagnetic
couplings [24–26]. For zigzag S = 1/2 quantum spin chains
with antiferromagnetic interactions between first and second
neighbors (J1, J2 < 0), it is well established that the ground
state can undergo a transition from a gapless critical phase
to a gaped phase at (J2/J1)c � 0.241 in the absence of a
magnetic field, [19,27–29]. Furthermore, this system can ex-
hibit plateaus on the magnetization curve and a chiral vector
order in the presence of a magnetic field and anisotropic
exchange interactions [30–33]. On the other hand, frustrated

ferromagnetic zigzag spin chains, with J1 > 0 and J2 < 0, re-
ceived little attention until the discovery of superconductivity
in organic conductors, especially in copper oxides [23,34,35].

Another largely investigated topology of J1 − J2 spin sys-
tems are the sawtooth chains. These systems have a rich
variety of ground states [36,37]. Recently, theoretical and
experimental studies showed that these systems can present
a reentrance phenomenon of magnetic phases that can also
be seen as an order-disorder effect [22,38,39]. Some con-
jectures have been made to understand this phenomenon,
but frustration is taken as an essential ingredient [40]. In
particular, such models are used to describe the magnetic
properties of various cuprate superconducting ceramics, such
as SrCuO2, La2CuO4, LiCuVO4, Sr2Cu2Mo3O12, and many
others [19,34,35,41]. A large quantity of experimental evi-
dence shows that the presence of oxygen hole-doping in CuO2

planes, as well as CuO chains and ladders, plays an essential
role in the phenomenon of superconductivity of these mate-
rials [42–46]. Cuprates also present other interesting aspects,
such as metal-insulator transition, quantum critical points, and
quantum antiferromagnetism in low dimensions [47,48]. On
the other hand, the doping of electrons or holes in cuprates
can be easily controlled. Therefore, it is possible to study the
evolution of physical properties of these materials upon dop-
ing [49,50]. Indeed, impurities or small structural variations
incorporated in the spin chains can significantly influence
the ground state and, consequently, the physical properties of
low-dimensional magnets [50–56].

In the last decades, research on semiconductors and diluted
magnetic oxides has become an important branch of materials
science [57]. This is due to successful demonstrations of the
functionality of these materials in controlling magnetism
through electric fields and electric currents [58,59],
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magnetoresistance [60], and refrigeration applications
[61–64]. In particular, systems where the frustration is
induced by geometric factors and impurities have shown
a pronounced magnetocaloric effect in the vicinity of
transitions at finite fields, especially first-order transitions
[65–67]. The magnetocaloric effect (MCE) consists of
heating or cooling a magnetic material when subjected to
a magnetic field [68,69]. Using the technique of adiabatic
demagnetization, it is possible to build highly efficient
ecological cooling devices over a wide temperature range
[70]. Within this context, several theoretical and experimental
studies have been carried out in the search for caloric
materials with high performance [61,71,72]. Recently, a
giant room-temperature magnetocaloric effect has been
reported in transition-metal-based alloys on which the doping
concentration plays a relevant role [73]. The description
of this effect crucially relates to the dependence of the
material’s magnetic entropy on the temperature and applied
magnetic field [65,74–76]. In conventional MCE, the
magnetic entropy decreases when the external magnetic field
increases isothermally. However, an inverse magnetocaloric
effect has been observed in some frustrated ferrimagnetic
systems in which the magnetic material cools when a
magnetic field is applied in an adiabatic process with the
magnetic entropy increasing under such conditions [77–80].
A significant inverse magnetocaloric effect can be achieved
in the vicinity of quantum critical points due to enhanced
quantum fluctuations [81]. Frustrated ferrimagnetic materials
can also exhibit the phenomenon of magnetic compensation,
where the total magnetization of the system is zero, but two
or more sublattices can have nonzero magnetization at certain
temperatures [82–84].

In the present work, we investigate the influence of doping
on the magnetocaloric characteristics in a S = 1/2 antifer-
romagnetic spin chain. We consider that doping introduces
a fraction of competing ferromagnetic decorated bonds. The
model captures some aspects of the magnetic interactions
in CuO chains present in some superconducting cuprate ce-
ramics. Magnetic frustration and dilution can be sources of
changes in the residual entropy and, therefore, directly impact
the magnetocaloric properties. Using exact calculations, we
report the ground-state diagram as a function of the external
field and the exchange couplings ratio that acts as a relevant
frustration parameter [25]. We also investigate the relationship
between the ground-state residual entropy and the model’s
degree of doping. Finally, we compute the dependence of
the entropy change on the magnetic field and temperature
during the isothermal demagnetization process and discuss on
the main physical ingredients affecting the adiabatic magne-
tocaloric cooling rate. We emphasize that the joint action of
doping and magnetic frustration represents an efficient route
to reach enhanced magnetocaloric refrigeration rates.

II. THE MODEL AND METHOD

We consider a spin chain model mimicking the main mag-
netic interactions found in alternating CuO chains present in
several cuprate superconducting ceramics. In the absence of
hole doping, the oxygen sites have no net spin and the copper
sites have S = 1/2 spins that interact via a first-neighbor an-

FIG. 1. (top panel) Diagrammatic representation of the randomly
decorated spin model of a hole-doped CuO chain. The sites with
Ising spins Si (blue cubes) are all occupied by magnetic atoms and
interact through an antiferromagnetic exchange coupling J2. The
oxygen sites (orange circles) are randomly occupied with a fraction p
of Ising spins and interact with the nearest-neighbor S spins through
a ferromagnetic coupling J1. (bottom panel) The equivalent diluted
sawtooth spin chain.

tiferromagnetic exchange coupling. Upon doping, a fraction
p of the oxygen sites acquires a spin 1/2 due to unpaired
electrons that interact ferromagnetically with the neighboring
copper spins. For simplicity, we will take these exchange
couplings as Ising-like. The model can be seen as an anti-
ferromagnetic S = 1/2 spin chain on which a fraction p of
the bonds are randomly decorated by Ising spins interacting
ferromagnetically with the nodal S spins. The above-described
model is equivalent to a diluted sawtooth spin chain (see
Fig. 1). The randomly decorated spin 1/2 chain is described
by the following cell Hamiltonian:

Hi = −J2

N∑
i=1

SiSi+1 − J1

N∑
i=1

σi(Si + Si+1)

− H

[(
Si + Si+1

2

)
+ σi

]
− μσ 2

i , (1)

where J1 > 0 represents the ferromagnetic exchange coupling
between decorating and nodal spins while J2 < 0 is the anti-
ferromagnetic exchange coupling between nodal spins. Si =
±1 accounts for the nodal Ising spins. σi = ±1, 0 represents
the state of the decoration site (σi = ±1 describes the possi-
ble states of the decorating Ising spin and σi = 0 represents
the absence of a decorating spin). The competition between
these ferro and antiferromagnetic coupling gives rise to spin
frustration. The random decoration is described by means of
the parameter 〈σ 2

i 〉, which is the concentration of magnetic
decorating spins per unit cell, namely, the decoration fraction
p. μ is a chemical potential and H is an external magnetic field
(units of gμB = 1 are used). Here, μB is the Bohr magnetic
moment. All magnetic ions are assumed to have the same
gyromagnetic factor g. The full Hamiltonian of this model can
be written as a sum of the cell Hamiltonians, Htotal = ∑

i Hi.
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The thermodynamic properties of the above randomly
diluted sawtooth chain model can be obtained by the stan-
dard transfer-matrix technique. The grand-canonical partition
function of the model under investigation can be written as
follows:

�N =
∑
{S}

∑
{σ }

exp {−βH}

=
∑
{S}

N∏
i=1

Trie
−βHi = TrW N = λN

+ + λN
−, (2)

where β = 1/(kBT ), kB is the Boltzmann constant, T is the
absolute temperature, and the summation

∑
{S} is carried out

over all possible Si spin configurations. Here, Tri refers to the
trace over the all degrees of freedom of spins and W is the
transfer matrix,

W =
(

ω(1, 1) ω(1,−1)
ω(−1, 1) ω(−1,−1)

)
, (3)

where the individual matrix elements are given by

ω(1, 1) = eK2+h[1 + 2ν cosh (2K1 + h)], (4)

ω(−1,−1) = eK2−h[1 + 2ν cosh (2K1 − h)], (5)

ω(1,−1) = ω(−1, 1) = e−K2 [1 + 2ν cosh (h)]. (6)

Here, K1 = βJ1, K2 = βJ2, h = βH , and ν = eβμ. In the ther-
modynamic limit N → ∞, only the largest eigenvalue λ+
effectively contributes to the partition function and all thermo-
dynamic averages can be calculated from the eigenvalues and
eigenvectors of the transfer matrix (3). In the present problem,
it is more convenient to use the decoration fraction as a control
parameter instead of the chemical potential. Thus, the fraction
of decorated bonds is given by

p = 〈
σ 2

i

〉 = ν

λ+

∂λ+
∂ν

. (7)

All other thermodynamic quantities can be directly computed
using standard statistical mechanics relations. In particular,
the Helmholtz free energy per unit cell can be written as F =
−T ln λ+ + T p ln ν. The residual entropy per cell at T = 0
depends only on the fraction of occupied σ sites and can be
exactly calculated as S = 1

N kB ln 	, where 	 is the number of
the accessible states of the spin chain in the ground state. For
the analysis of the magnetocaloric effect it is crucial to know
the dependence of the magnetic entropy on the temperature
and magnetic field. In fact, the MCE can be characterized
by the entropy change 
ST = S(T, H ) − S(T, H = 0) in the
process of isothermal demagnetization. In present convention,
the negative values of the 
ST < 0 corresponds to normal
MCE while positive values of the 
ST > 0 denotes inverse
MCE [85].

III. RESULTS AND DISCUSSION

A. Ground-state diagram

The Hamiltonian model (1) can be exactly solved and the
ground-state energies obtained as a function of the external

TABLE I. Energies per unit cell of all available ground states of
the diluted sawtooth model: the saturated ferromagnetic state F-F,
the antiferro-ferromagnetic state AFM-F, and the antiferromagnetic
frustrated state AFM-Fr.

E

F-F p(−2J1 − J2 − 2H − μ) + (1 − p)(−J2 − H )
AFM-F p(−2J1 − J2 − 2H − μ) + (1 − p)J2

AFM-Fr p(J2 − H − μ) + (1 − p)J2

field h and exchange coupling constants J1 and J2. We iden-
tified that there are three possible ground states depending
on the set of model parameters: A saturated ferromagnetic
ground state (F-F) with all spins aligned in the external field
direction; an antiferro-ferromagnetic phase (AFM-F) in which
the spins Si are aligned antiparallel to each other in the ab-
sence of a decorating magnetic ion. However, the spins Si are
aligned parallel to the field when a decorating spin is present.
The third possible ground state is an antiferromagnetic frus-
trated state (AFM-Fr) with the spins Si aligned antiparallel to
each other in both the absence and presence of a decorating
spin. In this last phase, the spins in the decorating sites are
aligned to the field direction but assume random orientations
in the absence of an external field.

The energies per unit cell for these possible states are given
in Table I. Notice that, in the limit where there are only cells
with interstitial sites occupied by magnetic ions (p → 1), the
phases F-F and AFM-F are equivalent. The transition line is
given by the condition ẼF-F = ẼAFM-F. On the other hand, the
AFM-F and AFM-Fr states are equivalent when all decorat-
ing sites are empty (p → 0). In Fig. 2, we show the typical
ground-state diagram in J2/J1-H/J1 parameter space. The dia-
gram exhibits three possible ground states. For large magnetic
fields, the saturated ferromagnetic state (F-F) predominates
whenever H/|J1| > −2J2/|J1|. Otherwise, the AFM-F state
sets up. At very low fields, the AFM-Fr ground state takes
place in the regime of large values of the ratio between
the exchange couplings. The transition line corresponds to
EAFM-F = EAFM-Fr. At zero field, the AFM-Fr state emerges

FIG. 2. Ground-state diagram in the external field H/J1 versus
ratio between exchange couplings −J2/J1 plane. The transitions lines
can be obtained by comparing the energies per unit cell of each
phase. We sketch the unit-cell configuration for the three possible
ground states. gμB = 1 units were used.
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TABLE II. Entropy per unit cell S/kB for all states and transition lines appearing in the ground-state diagram Fig. 2. Here, p
is the fraction of occupied σ sites, q = [5 − 4p − (5 − 4p2)1/2]/10 and ε = ( p−ε

2 )
√

(1 + ε)/(1 − ε). From the latter, one can write

p = ε[2
√

(1 − ε)/(1 + ε) + 1].

Ground state Entropy (S/kB)

F-F; (AFM-F)H=0; (AFM-Fr)H �=0 −p ln p − (1 − p) ln(1 − p)
(AFM-Fr)H=0 −p ln p − (1 − p) ln(1 − p) + p ln 2
(AFM-F)H �=0 −p ln p + ( 1+p

2 ) ln( 1+p
2 ) − ( 1−p

2 ) ln( 1−p
2 )

Transition lines Entropy (S/kB)

F-F → AFM-F −p ln(p) + ( 1+p
2 ) ln(1 − q) − ( 1−p

2 ) ln(q)
(AFM-F → AF-Fr)H �=0 ( 1+ε

2 ) ln(1 + ε) + ( 1−ε

2 ) ln(1 − ε) − ε ln(2ε) − (1 − p) ln(1 − p) − (p − ε) ln(p − ε)
(AFM-F → AF-Fr)H=0 −p ln(p) − (1 − p) ln(1 − p) + p ln(3)

for −J2/J1 > 1. At zero field, the average cell magnetization
vanishes for all ground states. For finite magnetic fields with
a fraction p of decorated cells and (1 − p) of nondecorated
cells, the average cell magnetization m = 〈Si + σi〉 of the
nondegenerate ground states is given by

mF-F = 1 + p,

mAFM-F = 2p,

mAFM-Fr = p. (8)

B. Residual entropy

Associated with the annealed random character of the dop-
ing, the ground states sustain residual entropies. These can be
extracted as the zero-temperature limits of the entropy calcu-
lated directly from the free energy. The main features of the
finite-temperature entropy derived from the free energy will
be detailed in the next section to explore the magnetocaloric
effect. In this section, we provide an alternative calculation of
the zero-temperature entropies based in the direct combinato-
rial calculation of the residual number of states to explicitly
discriminate the contributions coming from the bond con-
figurational degrees of freedom associated with the random
dilution and the spin degrees of freedom resulting from the
competing magnetic interaction [86]. In the F-F, (AF-F)H=0,
and (AF-Fr)H �=0 states, the residual entropy can be directly
computed by considering that the unit cells with and without
a decorating spin are randomly and independently distributed.
In this scenario the number of possible configuration is just

	 = N!

(pN )![(1 − p)N]!
, (9)

from which the residual entropy per unit cell S = 1
N kB ln 	

follows. In the absence of an external field, the (AF-Fr)H=0

depicts an additional contribution due to the random orienta-
tion of the decorating spin.

Special attention has to be driven to compute the resid-
ual entropy in the (AF-F)H �=0 ground state. In this case, the
unit cells without the decorating spin combine in pairs due
to their antiferromagnetic ordering. Therefore, the system is
effectively composed of (1 − p)N/2 pairs of cells without
a decorating spin and pN cells with a decorating spin. The
total number of elements to be randomly and uncorrelated dis-

tributed is Ne = [p + (1 − p)/2]N = (1 + p)N/2. Therefore,
the total number of possible configurations is

	 = Ne!

(pN )![(1 − p)N/2]!
. (10)

The resulting expressions for the residual entropies in the
above ground states are summarized in Table II. Along
the transition lines, there are additional contributions to the
residual entropies due to degeneracy. In the F-F to AFM-F
transition line, the (1 − p)N unit cells without a decorating
spin can be either with the spins aligned parallel or antipar-
allel to each other. The system is therefore composed of a
random distribution of three distinct elements: pN cells with
decorating spins ferromagnetically aligned, κN nondecorated
cells with ferromagnetically aligned spins, and qN pairs of
nondecorated cells with antiferromagnetically aligned spins.
Here, (1 − p)N = κN + 2qN . The total number of elements
to be distributed is Ne = pN + κN + qN = (1 − q)N , with
the number of possible configurations being given by

	 = Ne!

(pN )!(κN )!(qN )!
. (11)

To determine the fraction of paired cells, we explore the
maximum entropy principle which provides the optimal value
of q as an explicit nonlinear function of p (see Table II).
Accordingly, the average cell magnetization along this tran-
sition line acquires a nonlinear dependence on p, being given
by mF-F to AFM-F = 1 + p − 2q.

Along the AFM-F to AFM-Fr transition line, the cells can
also be found in three distinct configurations. Among the pN
decorated cells, a number (p − ε)N have nodal spins antifer-
romagnetically aligned while the remaining εN cells are in
the ferromagnetic configuration. All (1 − p)N nondecorated
cells are in the antiferromagnetic state. The antiferromag-
netic cells combine in pairs in the presence of an external
magnetic field. The total number of pairs is (1 − ε)N/2 and
the total number of elements including unpaired and paired
cells is Ne = (1 + ε)N/2. Furthermore, there are several ways
to form pairs using either decorated or nondecorated cells.
Accordingly, the total number of possible configurations of
the system is given by

	 = Ne!

[εN]![(1 − ε)N/2]!

[(1 − ε)N]!

[(1 − p)N]![(p − ε)N]!
, (12)
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0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.5

1.0

1.5

2.0

m

F-F

AFM-F

AFM-Fr

F-F to AFM-F
AFM-F to AFM-Fr

FIG. 3. Cell magnetization m = 〈Si + σi〉 at finite magnetic
fields as a function of the fraction p of decorated cells for all three
possible ground states F-F, AFM-F, and AFM-Fr and along the two
transition lines. Notice the nonlinear dependence at the transitions on
which q(p) = (mF-F − mF-F to AFM-F)/2 and ε(p) = mAFM-F to AFM-Fr −
mAFM-Fr.

where the first fraction corresponds to the total number of
possible permutations of unpaired and paired cells and the
second fraction accounts for the total number of distinct ways
to form paired cells. Here, we also need the consider the
principle of maximum entropy to determine the optimal dis-
tribution of decorated cells in the ferro and antiferromagnetic
configurations. The optimal value of α is found to depend
on p according to the self-consistence expression given in
Table II. An explicit ε(p) can be obtained as a solution of
the resulting third-order polynomial. However, the resulting
algebraic expression (not shown) is quite cumbersome and
does not bring any new insight. Alternatively, an explicit form
p(ε) can be extracted which is useful to analyze limiting cases.
Along this transition line mAFM-F to AFM-Fr = p + ε. The cell
magnetization curves in function of the decoration fraction p
for all three ground states and along the two transition lines
are shown in Fig. 3.

In the zero-field transition point between the AFM-F and
AFM-Fr ground states, there is no pair correlations among
the antiferromagnetic cells. Furthermore, the decorating spin
in the antiferromagnetic configuration can be equally found
in either one of the two possible states. Therefore, the total
number of possible configurations is

	 = N!

(αN )![(p − α)N]![(1 − p)N]!
2αN , (13)

with α = 2p/3 corresponding to the maximum entropy con-
dition. The resulting entropy in this zero-field transition point
is also included in Table II.

In Fig. 4 we plot the entropy per unit cell as function of
the decorating fraction p for all possible ground-state con-
figurations. In Fig. 4(a) we show the zero-field case. Within
the AFM-F phase (J2/J1 = −0.5) the entropy is just due to
the uncorrelated distribution of decorated and nondecorated

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.3

0.6

0.9

1.2

1.5

S/
k B

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

S/
k B

- 1.0
- 2.0

J2/J1 = - 0.5

(a)

(b)

J2/J1 = - 1.00

- 0.50

- 0.25/-2.00

- 1.50

H/J1 = 0.0

H/J1 = 1.0

FIG. 4. Entropy per unit cell as a function of the degree of dilu-
tion for two representative values of the magnetic field and different
values of the ratio between exchange couplings J2/J1. (a) H/J1 = 0
and (b) H/J1 = 1.0.

cells. It vanishes in both p = 0 and p = 1 limits, with a
maximum S/kB = ln 2 at p = 1/2. Within the AFM-Fr ground
state (J2/J1 = −2.0), there is an additional contribution com-
ing from the degenerate orientation of the decorating spins.
The entropy develops an asymmetric dependence on p with
S/kB = ln 2 at p = 1 and a maximum entropy S/kB = ln 3
at p = 2/3. In the transition point (J2/J1 = −1), another
contribution to the entropy comes from the two possible ferro
and antiferromagnetic configurations of the decorated cells.
This results in a maximum entropy S/kB = ln 4 at p = 3/4 as
well as S/kB = ln 3 at p = 1.

In Fig. 4(b) we show the entropy curves at finite magnetic
fields. Within the F-F and AFM-Fr ground states, J2/J1 =
−0.25 and −2.0, respectively, and the residual entropy is
just due to the random distribution of decorated and non-
decorated cells. Within the AFM-F ground state the pairing
correlations of the nondecorated cell reduces the entropy. The
curve becomes asymmetric with maximum entropy S/kB =
ln [(

√
5 + 1)/2] � 0.4812kB at p = √

5/5 (dashed-dot-dotted
line). At the transition lines, the competition between the
pairing correlation and the cell configuration degeneracy
results in an overall increase of the residual entropy. At
the F-F to AFM-F transition and p = 0, the fraction of
paired nondecorated antiferromagnetically aligned cells is
q = (5 − √

5)/10, giving up to a residual entropy S/kB =
ln [(

√
5 + 1)/2] � 0.4812. An equivalent residual entropy

persists in the AFM-F to AFM-Fr transition point at p = 1
with a fraction (ε − √

5)/5 of antiferromagnetically aligned
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0.0 1.0 2.0 3.0 4.0
H/J1

0.0

0.2

0.4

0.6

0.8

1.0

S/
k B

p = 0.0
p = 0.5
p = 1.0

J2/J1 = -1.5
kBT/J1 = 0.05

FIG. 5. Field dependence of the entropy per unit cell for three
representative values of the degree of dilution p. Here we use J2/J1 =
−1.5 for which the zero-temperature ground state is antiferromag-
netic frustrated state AFM-Fr.

decorated cells. Maximum residual entropy at the transition
lines is developed at intermediate decoration fractions.

IV. MAGNETOCALORIC ENTROPY CHANGE
AND ISOENTROPIC CURVES

In this section we report the main behavior of the entropy at
finite temperatures. It can be also exactly computed from the
largest eigenvalue λ+ of the transfer matrix given in Sec. II.
In brief, one starts by using Eq. (7) to obtain the chemical
potential for a given set of thermodynamic variables (T, H, p)
in order to consider conditions of fixed temperature, magnetic
field, and fraction of decorated bonds. The finite-temperature
entropy per bond is just extracted from the thermodynamic
relation S = −∂F/∂T |H,p where the chemical potential is
eliminated from the Helmholtz free-energy expression in fa-
vor of the decorating fraction.

Before analyzing the main characteristics associated with
the magnetocaloric entropy changes, we emphasize the low-
temperature behavior of the entropy as a function of the
external magnetic field and decorating fraction, as shown in
Fig. 5 for the illustrative case of J2/J1 = −1.5. In the limit
p = 0, i.e., in the absence of decorating spins, the ground state
is nondegenerate except at the transition field H/J1 = 3.0 at
which the nondecorated cells have two degenerate config-
urations. Therefore, the low-temperature entropy is roughly
null, developing a narrow peak at the transition field. All
cells are decorated in the opposite limit of p = 1. Therefore,
only the transition occurring at H/J1 = 1.0 is signaled by a
narrow peak in the entropy representing the degenerate con-
figurations of the decorated cells. Notice that a second narrow
peak is present at H = 0 due to the additional degeneracy
of the decorating spin in the absence of a magnetic field.
All the above described peaks are signaled at intermediate
dilution fractions. Besides these entropy contributions due to
degenerate cell configurations, there are additional entropy

FIG. 6. Isothermal entropy change −
S/kB = −[S(T, H ) −
S(T, 0)]/kB as a function of the magnetic field for representative
values of the temperature. The arrow indicates the increase in the
degree of dilution p. Here we use J2/J1 = −1.5.

contributions associated with the random nature of the distri-
bution of decorated and nondecorated cells. These appear as
entropy plateaus. The entropy plateaus at the F-F and AFM-Fr
ground states are equivalent. The lower plateau in the AFM-F
ground state results from the underlying pairing correlations.

In Fig. 6 we show the magnetocaloric entropy change −
S
as a function of the magnetic field for distinct temperatures
and decorating fractions. Notice that normal MCE (−
S > 0)
predominates at high temperatures, with larger entropy
changes for larger values of p for which the high-temperature
entropy has the additional contribution of the decorating spins.
The magnetocaloric entropy change exhibits new features at
low temperatures. At first, one notices that an inverse MCE
(−
S<0) appears in the vicinity of the upper critical field
H/J1 = 3.0, especially at low decorating fractions. The in-
verse MCE is more pronounced at low temperatures, although
becoming restrictive to a narrower range of magnetic fields.
On the other hand, normal MCE depicts plateaus at low
temperatures, being strongly suppressed in the vicinity of
the lower critical field H/J1 = 1.0. The above features of
the magnetocaloric entropy change can also be identified in
Fig. 7 where we plot its temperature dependence for some
characteristic magnetic fields. It evinces that normal MCE
predominates, except in the low-temperature regime for small
decorating fractions and in the vicinity of the upper critical
field. The inverse MCE results from the strong degeneracy at
the upper critical field, in contrast with the ordered zero-field
ground state.

The complete temperature and magnetic-field dependence
of the entropy is shown in Fig. 8 for two representative values
of J2/J1. Figure 8(a) corresponds to J2/J1 = −0.5 for which
one has the AFM-F zero-field ground state and just the field-
induced transition to the F-F ground state takes place. The
AFM-F zero-field ground state has a configurational resid-
ual entropy due to the random distribution of decorated and
nondecorated cells. Therefore, large isoentropic refrigeration
rates ∂T/∂H |S are obtained in the regime of low-temperatures
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FIG. 7. Isothermal entropy change −
S/kB as a function of
temperature for fixed external magnetic-field amplitude. The arrow
indicates increasing degree of dilution p. Here we use J2/J1 = −1.5.

both in the vicinity of the critical field as well in the low-
field regime. Adiabatic magnetic refrigeration down to T = 0
can be obtained for any initial condition below the dashed
line corresponding to S(T = 0, H = 0). Figure 8(b) shows
the case of a larger antiferromagnetic coupling J2/J1 = −1.5.
In this case, the zero-field ground state is AFM-Fr that has
residual entropy coming from both configurational and spin
contributions. Here, large isoentropic refrigeration rates are
achieved in the vicinity of the two critical fields as well as
near zero field. It is important to stress that the isoentropic
curves that reaches T = 0 at low fields span a wider range of
temperatures when compared with the previous case.

V. SUMMARY AND CONCLUSIONS

In summary, we exactly solved a spin chain model having
a fraction p of decorated unit cells with ferromagnetic Ising
coupling between decorating and nodal spins and a fraction
(1 − p) of direct antiferromagnetic Ising coupling between
nodal spins. The model mimics the main magnetic interac-
tions along CuO spin chains present in a class of doped
copper-oxide superconducting ceramics.

We obtained the exact ground-state diagram and provided
analytical expressions for the residual entropy within each
ground state and along the transition lines. We discussed in
detail the role played by pairing correlations among cells
with antiferromagnetically aligned nodal spins. Furthermore,
we showed that the maximum entropy principle needs to be
invoked to properly account for the residual entropy at the
degenerate transition lines. The dependence of the residual
entropy on the doping fraction in each one of the relevant
ground states was reported.

Furthermore, using the grand-canonical ensemble frame-
work, we computed the thermal entropy and explored the
isothermal magnetocaloric entropy change as a function of the
external magnetic field and temperature, evincing the phys-
ical conditions required to reach normal and inverse MCE.
Finally, we showed that large adiabatic magnetic refrigeration

0.0   0.5    1.0    1.5   2.0    2.5    3.0   3.5   4.0  
H/J 1

0.980
0.950

0.830

0.770

0.710

0.650

0.620

0.560

0.500

0.440

0.380
0.0   0.5    1.0    1.5   2.0    2.5    3.0   3.5   4.0  

H/J 1

0.0

0.4

0.6

0.8

1.0

1.2

0.2

k 
 T

/J
B

1
0.639

0.890

1.250

1.120

1.032

0.946

0.859

0.772

0.684

0.598

0.510
0.5004
0.467

0.380

1.206

0.0

0.4

0.6

0.8

1.0

1.2

0.2

k 
 T

/J
B

1

(b)

(a)

S/kB

S/kB

FIG. 8. Entropy density plot evincing curves of isoentropy for
the particular case of decoration degree p = 0.2. (a) J2/J1 = −0.5
for which the zero-field ground state is AFM-F. A single critical field
is observed. Dashed line corresponds to s(T, H )/kB = s(0, 0)/kB =
0.5004 · · · . (b) J2/J1 = −1.5 for which the zero-field ground state
is AFM-Fr. This case presents two critical fields. Dashed line corre-
sponds to s(T, H )/kB = s(0, 0)/kB = 0.639 · · · . Notice that maxima
adiabatic cooling rates take place near H = 0 as well as near the
critical magnetic fields.

rates can be reached in the vicinity of the critical magnetic
fields, particularly in the presence of spin frustration for which
the ground-state entropy has contributions from both con-
figurational cell disorder and spin degeneracy. In this case,
large adiabatic magnetic refrigeration rates are found at low
temperatures and magnetic fields, an ideal scenario for the
development of magnetic cooling cycles. In particular, larger
magnetocaloric rates are achieved when the residual entropy
at zero temperature and magnetic field becomes larger. Our
results evidence the advantage in considering simultaneously
magnetic frustration and dilution. In the frustrated phase, the
residual entropy raises from S = kB ln 2 in the absence of
dilution to S = kB ln 3 at an ideal dilution fraction p = 2/3.
At the critical point delimiting the transition between the
frustrated and nonfrustrated phases, the residual entropy due
just to the spin degeneracy increases to S = kB ln 3. In this
case, dilution can also improve the residual entropy which
reaches a maximum S = kB ln 4 at p = 3/4. Even in the non-
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frustrated phase that has no residual entropy in the absence of
dilution, a maximum of S = kB ln 2 is reached at p = 1/2 [see
discussion of Fig. 4(a)]. Accordingly, dilution can improve
the refrigeration rate irrespective to the ground-state order
of the pure system. An additional advantage of dilution is that
the corresponding fraction can be controlled in the synthesis
of the magnetic compound through the doping fraction, thus
making it reliable to tune the dilution fraction on the desired
optimal values.

It would be interesting to extend the present analysis to
other low-dimensional frustrated spin structures usually found
in doped copper-oxide ceramics such as CuO2 spin chains,
ladders and planes. These would provide a more complete
picture related to the capability of using this class of ceramic
materials to perform magnetic refrigeration processes. The
present study detailed the significant role played by doping to
reach large magnetocaloric rates, a feature consistent with re-
cent experimental findings on transition-metal alloys [62,73].
Future extensions to include the full Heisenberg character

of the magnetic interaction would be in order because the
joint effect of dilution, magnetic frustration, and quantum
fluctuations signals to a class of highly effective systems
for magnetic cryogenic applications [81]. However, advanced
numerical methods such as the density-matrix renormaliza-
tion group and quantum Monte Carlo simulations would be
required to deal with the resulting Hamiltonian system. The
analytical results reported here can be used to probe the ac-
curacy of these numerical methods in the limit of reduced
quantum fluctuations.
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