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The “Brownian bees” model describes an ensemble of N = const independent branching Brownian particles.
The conservation of N is provided by a modified branching process. When a particle branches into two particles,
the particle which is farthest from the origin is eliminated simultaneously. The spatial density of the particles
is governed by the solution of a free boundary problem for a reaction-diffusion equation in the limit of N � 1.
At long times, the particle density approaches a spherically symmetric steady-state solution with a compact
support of radius �̄0. However, at finite N , the radius of this support, L, fluctuates. The variance of these
fluctuations appears to exhibit a logarithmic anomaly [Siboni et al., Phys. Rev. E 104, 054131 (2021)]. It is
proportional to N−1 ln N at N → ∞. We investigate here the tails of the probability density function (PDF),
P(L), of the swarm radius, when the absolute value of the radius fluctuation �L = L − �̄0 is sufficiently
larger than the typical fluctuations’ scale determined by the variance. For negative deviations the PDF can be
obtained in the framework of the optimal fluctuation method. This part of the PDF displays the scaling behavior
ln P ∝ −N�L2 ln−1(�L−2), demonstrating a logarithmic anomaly at small negative �L. For the opposite sign
of the fluctuation, �L > 0, the PDF can be obtained with an approximation of a single particle, running away.
We find that ln P ∝ −N1/2�L. We consider in this paper only the case when |�L| is much less than the typical
radius of the swarm at N � 1.

DOI: 10.1103/PhysRevE.107.014140

I. INTRODUCTION

We continue in this paper investigations of a model of
nonequilibrium statistical physics, which is known under the
name “Brownian bees” [1–4]. This model combines two
important fields of statistical physics: branching Brownian
motion (BBM) and nonequilibrium steady states (NESSs).
BBM includes two processes: Brownian motion together with
a branching process. Growing ensembles described by this
model have been investigated for a long time. See, for ex-
ample, Refs. [5,6] and more recent Refs. [7–10]. In its turn,
ensembles of reacting and diffusing particles, representing
NESSs, are important for description of many natural systems.
Their investigations occupy a very distinguishable area in
nonequilibrium statistical mechanics [11–15].

The “Brownian bees” model represents a system whose
dynamics are irreversible in time, based on the branching
Brownian dynamics of N particles (bees). Conservation of
their total number is provided by removing the bee that is
farthest from the origin at the moment of any branching.
The removing causes nonlocal interaction between bees and
destroys time reversibility of the system even in its steady
state. Choosing proper units for time and distance we may set
that the diffusion coefficient for the Brownian motion and rate
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of branching of each bee are equal to 1. Most of this paper is
devoted to the one-dimensional (1D) case at N → ∞.

It has been shown [1] that at any finite time t a coarse-
grained density distribution u(x, t ) of the bees, normalized by
N , obeys the following mean field theory at N → ∞:

∂t u(x, t ) = ∂2
x u(x, t ) + u(x, t ), |x| � �̄(t ), (1)

u(x, t ) = 0, |x| > �̄(t ), (2)

∫ �̄(t )

−�̄(t )
u(x, t ) dx = 1. (3)

As one can see, the compact support of u(x, t ), at all finite t >

0, is centered at the origin. Effectively, there are two absorbing
walls, at x = ±�̄(t ), which move in synchrony so as to keep
the number of particles constant at all times. In Ref. [1] it is
shown that fluctuations of the coarse-grained density around
u(x, t ) tend to 0 at N → ∞.

It has been proved also [2] that the solution u(x, t ) of the
system (1)–(3) tends at t → ∞ to the following steady state:

U (x) =
{

1
2 cos x, |x| � �̄0,

0, |x| > �̄0,
(4)

where �̄0 = π/2 and �̄(t ) → �̄0 at t → ∞.
We consider in this paper small relative fluctuations of the

swarm radius L = maxi∈{1,...,N} xi, where x1, . . . , xN are the
positions of the particles, in the steady state described by
Eq. (4). Consideration of this problem started in Refs. [3,4].
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Monte Carlo simulations of the original microscopic model
and analytic investigation of a Langevin equation that de-
scribes typical fluctuations in this model gave the following
expression [4] for the variance of L at the steady state at
N → ∞:

var L � 2

π

ln N

N
. (5)

This result was obtained in Ref. [4] by linearization of the
Langevin equation; and the logarithmic anomaly results from
a truncation of a formally divergent analytic expression for
var L. This anomaly originates from the fact that fluctuations
of the particle density at all spatial scales give contributions
that are of the same order of magnitude to the fluctuations
of L.

The “Brownian bees” model belongs to a broader class
of N-particle branching Brownian models with selection
(NBBM). It was introduced initially in Refs. [16,17]. A lot of
works investigating this class of models are cited in Ref. [4].
It is interesting that many NBBM systems expose logarithmic
anomalies in the statistical behavior of the edge particles. This
is an additional motivation for studies of the Brownian bees
model.

In this paper we present results of our investigation of
the tails of the probability density function (PDF) of instan-
taneous values of L at the steady state, P(L). We consider
moderately large fluctuations, �L = L − �0, which on the
one hand are much larger than the typical fluctuations’ scale,
|�L| � σ (L) = √

var L, but, on the other hand, are relatively
small fluctuations in the sense that |�L| 	 1.

Let us briefly summarize our main findings, while de-
scribing the structure of the rest of the paper. For negative
�L, the fluctuations involve many particles. So they can be
considered in the framework of the optimal fluctuation method
(OFM). The latter, known also under other names (the in-
stanton method, the weak noise theory, and the macroscopic
fluctuation theory), considers a single “trajectory” of coarse-
grained density history, giving maximal contribution to the
probability [11,12,18–23]. It is briefly recalled in Sec. II.
Applying the OFM to the present problem in Sec. III, we
obtain at N → ∞:

− ln P(L) = π

4
N

�L2

| ln �L2| + · · · . (6)

This result is obtained by combining analytical and numeri-
cal methods. The nonanalytic structure of this expression at
−�L → 0 provides a smooth matching of this result with the
Gaussian distribution that describes typical fluctuations with
mean �̄0 and variance (5). However, the presence of the log-
arithm in this asymptotic expression means that it can hardly
be obtained by regular perturbation methods at −�L 	 1.

Atypically large positive fluctuations of L turn out to be
dominated by the dynamical behavior of the single farthest
particle. Analogous situations are encountered in many other
problems of extreme value statistics [24]. This approach, ap-
plied in Sec. IV for the present problem, gives at N � 1:

− ln P(L) =
√

N �L + · · · . (7)

The result in this regime does not match smoothly with the
typical fluctuations, Gaussian regime. We expect there to be a

FIG. 1. A schematic plot of the distribution of the swarm ra-
dius, P(L). The peak of the distribution is at x = π/2 which is
the edge of the mean-field swarm density U (x). Typical fluctuations
are Gaussian with variance (5) [4], while the two, very asymmetric
large deviation tails of P(L) are described by Eqs. (6) and (7). The
dotted line corresponds to a conjectured crossover regime between
the typical fluctuations and the atypical positive fluctuations regime.

crossover between the two regimes which we do not attempt
to analyze in the present work. Our main results for the dis-
tribution P(L) are plotted schematically in Fig. 1. Finally,
Sec. V is devoted to conclusions and discussions, including
generalizations of our results to higher dimensions.

II. OPTIMAL FLUCTUATION METHOD:
GOVERNING EQUATIONS

The OFM employs an idea that probability of transition
between two states of a stochastic system is dominated by
the probability of an “optimal” (most likely) trajectory. In
our case this trajectory is given by q(x, t ): A coarse-grained
normalized density history of the fluctuating swarm of Brow-
nian bees. The designation u(x, t ) we reserve for particular
trajectories, obeying the mean field system of equations (1)–
(3) (without fluctuations). The most probable trajectory is
defined by minimization of a functional of q(x, t ). Hence, this
problem corresponds to the investigation of some classical
field theory that can be recast as a Hamiltonian field theory.
It involves, in addition to a generalized “coordinate” q(x, t )
a generalized “momentum” field p(x, t ). Before introducing
the classical field theory corresponding to our present system,
we may say that in a many-particle system, typically the
OFM gives a correct evaluation of the probability for atypical
fluctuations when they involve many particles.

The derivation of the OFM for the Brownian bees models
was considered in detail together with references of previous
publications in Ref. [3]. The process providing the conserva-
tion of total number of bees, N , in the swarm is introduced in
the OFM system as a constraint and as boundary conditions
at |x| = L(t ), whereas the fields p(x, t ) and q(x, t ) are defined
only at x ∈ [−L(t ), L(t )]. The density of the unconstrained
Hamiltonian is defined as

H0(q, p) = (ep − 1)q − (∂xq)(∂x p) + q(∂x p)2, (8)
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whereas the unconstrained Hamiltonian is equal to

H0[q(x), p(x)] =
∫ L(t )

−L(t )
H0(q, p) dx. (9)

The constraint coming from conservation of the total number
of bees ∫ L(t )

−L(t )
q(x, t ) dx = 1 for any t (10)

is introduced by means of a Lagrangian multiplier λ(t ), so that
constrained Hamiltonian becomes

H[q(x), p(x), λ(t )] = H0[q(x), p(x)] + λ(t )
∫ L(t )

−L(t )
q(x, t ) dx.

(11)

It depends, in general, explicitly on time t . The density of the
constrained Hamiltonian is

H(q, p) = H0(q, p) + λ(t )q. (12)

The fields q(x, t ) and p(x, t ) have support at |x| < L(t ),
whereas the boundary conditions at the absorbing wall, |x| =
L(t ), are

q(|x| = L(t ), t ) = p(|x| = L(t ), t ) = 0. (13)

We assume that the system is allowed to evolve for a very long
time prior to the time t = 0 at which the radius is measured.
This leads to the following initial conditions:

q(x, t → −∞) = U (x) , p(x, t → −∞) = 0, (14)

and hence L(t → −∞) = �̄0. Trajectories of this Hamilton
system, determined by the Hamilton equations

∂t q = δH

δp
= qep + ∇ · (∇q − 2q∇p), (15)

∂t p = −δH

δq
= −(ep − 1) − ∇2 p − (∇p)2 − λ(t ), (16)

maximize locally the probability density, P[q(x, t )], at the tra-
jectory q(x, t ) which is determined in the OFM framework by
the action S[q(x, t )] of an unconstrained mechanical system:

−N−1 lnP[q(x, t )] = S[q(x, t )], (17)

where the action functional S[q(x, t )] on an arbitrary trajec-
tory q(x, t ) per particle is defined as

S[q(x, t )] =
∫ 0

−∞
dt

∫ L(t )

−L(t )
[p∂t q − H0] dx. (18)

Here the momentum field p should obey Eq. (15) as usual and
the boundary condition (13). Minimization of the action with
respect to small variations δq(x, t ) of the trajectory q(x, t ) at
t < 0 gives the second Hamilton equation (16). This mini-
mization is necessary because the OFM implies the following
evaluation of the probability that L < � for � < �̄0:

−N−1 lnP rob (L < �) � min
L(0)=�

S[q(x, t )], (19)

where the minimization is over histories of the density q(x, t )
and of the radius L(t ), conditioned on L(0) = �. It corre-
sponds to Eq. (17) and to the following expression for the

PDF, P(L) [25]:

−N−1 ln P(L) � min
L(0)=�

S[q(x, t )], (20)

where the minimization is over all possible trajectories q(x, t )
obeying the constraints.

The minimization, entering Eq. (20), means in particular
minimization over the final density q(x, 0) of the particles
inside the interval |x| < L at t = 0. Requiring the varia-
tion of S[q(x, t )] over q(x, 0) to vanish, conditioned on∫

q(x, 0) dx = 1, that is equivalent to
∫

δq(x, 0) dx = 0, gives
a boundary condition at t = 0. We may follow Ref. [26] to get
analogously this boundary condition for the present problem.
Consider two solutions of Eqs. (15) and (16) that are close to
each other, q(x, t ) and q(x, t ) + δq(x, t ), obeying the bound-
ary conditions (14) at t = −∞. Then we may write for the
variation δS:

δS =
∫ 0

−∞
dt

∫ L(t )

−L(t )

[
δp∂t q + p∂tδq − ∂H0

∂q
δq − ∂H0

∂ p
δp

]
dx.

Using Eqs. (15) and (16), we obtain

δS =
∫ 0

−∞
dt

∫ L(t )

−L(t )
[∂t (pδq) + λ(t )δq] dx.

Applying the boundary condition (14) and the condition (10),
we obtain

δS =
∫ L(0)

−L(0)
p(x, 0)δq(x, 0) dx.

For the optimal q(x, t ) the variation δS should vanish. Com-
bining this requirement with the previous equation and with
Eq. (10), we obtain that ∂x p(x, 0) = 0 and hence

p(x, 0) = 	 = const for |x| < L(0). (21)

This relationship gives the last boundary condition in
time t for our problem. For convenience, the formulation of
the OFM problem is briefly summarized in Appendix A.

The OFM problem contains one constant 	 and two yet un-
known functions λ(t ) and L(t ). The latter one defines also the
constant L(0). When the function λ(t ) is known and tends to 0
sufficiently fast at t → −∞, then the condition of solvability
of the OFM problem determines 	 and L(t ) [and hence L(0)].
As a result, the solution of the OFM problem demonstrates a
functional degree of freedom that is determined by the choice
of λ(t ). Thus our action S is actually a functional of λ(t ):
S = S[λ(t )]. An equation that follows from the condition of
vanishing of variational derivative δS[λ(t )]/δλ = 0 under the
constraint that L(0) = � looks very cumbersome and almost
useless. We will try in Sec. III to find an approximation to an
optimal λ(t ) at �L = L(0) − �̄0 → 0 with another approach,
that will give a leading order of the optimal action S in this
limit. Note that we may not distinguish L and L0 = L(0) in
the frame of the OFM. For the locally optimal at t < 0 tra-
jectories, the general expression (18) for the action becomes
simpler:

S =
∫ 0

−∞
dt

∫ L(t )

−L(t )
dx [q(pep − ep + 1) + q(∂x p)2]. (22)

Integrating the first term in Eq. (18) by parts, and us-
ing Eq. (16), we obtain even simpler expression for the
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action:

S = 	 +
∫ 0

−∞
λ(t ) dt . (23)

However, the latter expression is not so suitable for computer
simulations at �L → 0, because as we will see, each term in
Eq. (23) behaves as O(1) in this limit, whereas S → 0, as it
can be seen from Eq. (6). Both terms in Eq. (22) are positive-
definite. This property is much more suitable for numerical
applications.

The OFM described briefly above may give relevant esti-
mation for the PDF P(L), when the rare enough fluctuation
touches many particles of the system. This situation takes
place for negative �L, when its absolute value is significantly
larger than

√
var L. More exact criteria will be considered in

Sec. III, when we will obtain our asymptotic expression for
S(L).

For sufficiently large positive �L the situation is quite
different, and our evaluation of the PDF P(L) for this case
cannot be obtained in the frame of the OFM, because of a
completely different scaling with N .

III. NEGATIVE ATYPICAL FLUCTUATIONS OF L

We try in this section to obtain a solution of the math-
ematical problem we set in previous Sec. II for sufficiently

small negative �L, |�L| 	 1. Our main obstacle to do this is
how to determine λ(t ) that minimizes the action functional
S[λ(t )]. However, we are able to obtain a solution to the
problem within a quite reasonable class of functions λ(t ) that
may give negative �L tending to 0. We obtain such solutions
numerically as well as analytically. The latter one concerns
only a leading order of the solution at �L → 0. Such an
approach would appear to give only an upper boundary for
S(L). However, our final results show that S(L)/�L2 → 0 at
�L → 0−. Such behavior is possible only for quite specific
forms of λ(t ), so that an optimal λ(t ) is determined almost
uniquely at (−t ) 	 1 as well as a leading term of S(L) asymp-
totics at �L → 0−.

We introduce in Sec. III A a one parametric set of particular
λ(t ) and investigate analytically and numerically such OFM
solutions including calculation of the action at �L → 0−.
Then we explain in Sec. III B that the upper bound for the
action obtained in this way at �L → 0− has the same leading
order of the true action S(L), calculated along optimal trajec-
tories at �L → 0−.

A. A particular choice for λ(t )

We consider in this section the following choice of one
parametric set for λ(t ):

λ(−∞ < t < 0) = −
√

tλ
4

×
{

64 × 3−3/2 × e3/2+8(t−tλ ) for t < −3/16 + tλ,

(tλ − t )−3/2 for − 3/16 + tλ < t < 0.
(24)

This set of λ(t ) has the single positive parameter tλ: 0 < tλ 	
1. The solution of the OFM problem (which, to remind the
reader, is summarized in Appendix A) with such λ(t ) gives
in particular the value of L(0) that depends on tλ. We will
see that L(0) depends monotonically on tλ at small tλ, and
L(0) → �̄−

0 at tλ tending to 0. We will see also that leading
order of the action (22) along the trajectories defined by such
λ(t ) is determined by times tλ 	 (−t ) 	 1 and corresponds
to the expression

S(L(0)) = π

4

�L2

| ln �L2| + · · · , (25)

whereas the parts of the trajectories on the time intervals
0 < (−t ) � tλ and 1 � (−t ) < ∞ contribute only to the sub-
leading term in Eq. (25) at �L → 0−. We will see also in
Sec. III B that introducing of a constant multiplier in Eq. (24)
of the order of O(1) at �L → 0− does not change the leading
order in Eq. (25) and influences only the subleading order.

The most important part of the trial function λ(t ) cor-
responds to the second line in Eq. (24). Its possible form
for optimization of the action will be considered in detail in
Sec. III B. In this section we treat it as a trial function. The
form of the first line in (24) is chosen more or less arbitrarily.
We demand only a smooth matching to the second line and
exponential decay of λ at t → −∞. The coefficient k in the
exponent ekt is chosen so that it is equal to the first decaying
mode of the linearized Eq. (16) at t → −∞.

The OFM problem is completely symmetric against the
mirror mapping x ↔ −x. Hence, it is quite natural to investi-
gate only symmetric solutions. Only such a kind of solution
will be considered below. We may note additionally that
Eq. (16) for p, considered in the backward direction in time
t , with the “initial” condition (16) does not depend at all
on q at given L(t ). We believe that the latter problem has
only a symmetric solution, obeying (14). We may recall that
requirements of obeying Eq. (14) demands a specific choice
for 	.

1. Analytic self-similar solutions

We consider in this subsection an approximate analytic
solution of the problem with λ(t ) defined in Eq. (24) under
condition that

tλ 	 (−t ) 	 1. (26)

In this case we may write instead of Eq. (24)

λ(t ) = −1

4

√
tλ

(tλ − t )3/2
, (27)

and we may hope to find an analytic solution of our problem,
at least at times (26). In the regime (26), we could neglect
tλ in the denominator Eq. (27) and below in comparison to
(−t ). However, we leave it in this and analogous positions for
clarity.
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FIG. 2. Shown is p̃(ξ ) defined in Eq. (34) vs ξ .

We will see that the solutions are composed of two parts.
At L(t ) − x � √−t , the solution is simple and very smooth.
Such interval of the x space we denote as �̄. At 0 < L(t ) −
x �

√−t , there is a somewhat nontrivial boundary layer. We
will construct this part of the solution at the interval �,
corresponding to the condition: 0 < L(t ) − x 	 1. We ap-
proximate the solution at � by a self-similar solution, which
will be described below. It is important that the domains �̄

and � are overlapping with each other at the interval
√−t �

L(t ) − x 	 1.
We will see below that

t L̇(t ) 	 √−t (28)

for the solution defined by Eq. (27) under the condition (26).
We assume this strong inequality for now, and justify it a
posteriori. The inequality (28) means in particular that the
edge displacement �̄0 − L(t ) is much less than the width of
the boundary layer, where �̄0 − x ∼ √−t .

Equation (16) can be rewritten in the domain �̄ as

∂t p = −λ(t ). (29)

Hence we have the following solution for p(x, t ) in this do-
main:

p(x, t ) = p(0, t ) = −
∫ t

−∞
λ(t ) dt = 1

2

√
tλ

tλ − t
. (30)

Thus,

	 � 1

2
. (31)

Taking in mind the strong inequality (28), Eq. (16) together
with the boundary condition at the swarm edge can be rewrit-
ten in the domain � as

∂t p = −∂2
x p − λ(t ), p(L(t ), t ) = 0. (32)

Hence

p(x, t ) � 1

2

√
tλ

tλ − t

[
1 − exp

(
− (x − L(t ))2

4(tλ − t )

)]
(33)

for x ∈ �. The function

p̃(ξ ) = 2

√
tλ − t

tλ
p(ξ

√
tλ − t + L(t ), t ) = 1 − e−ξ 2/4 (34)

is shown in Fig. 2. We see that the approximate solution
inside the domain � has a self-similar form. The function p̃(ξ )
represents this self-similarity.

Introducing q̃0(x, t ) in the domain �̄ by the following
definition:

q(x, t ) = U (x) + q̃0(x, t ), (35)

we obtain the following equation for q̃0(x, t ) inside the do-
main �̄ from Eq. (15):

∂t q̃0 = pU (x) = 1

2

√
tλ

tλ − t
U (x). (36)

This equation may give only that q̃0(x, t ) ∼ √
tλU (x) and it is

determined by the time (−t ) ∼ 1 that is outside the accuracy
of the approximate solution considered in this section. In any
case q̃0(x, t )/U (x) ∼ √

tλ 	 1 in the domain �̄ at tλ 	 1.
Inside the domain � we may use the following ansatz for q:

q(x, t ) � L(t ) − x

2
+ q̃

(
x − L(t )√

tλ − t

)√
tλ, (37)

where

L̇(t ) = −
√

tλ
tλ − t

f ( f = const ∼ 1). (38)

The boundary condition (13) and the conservation law (10)
give the following boundary conditions for q̃:

q̃(0) = 0, (39)

−2

(
∂ q̃

∂x

)
x=L(t )

= −2

√
tλ

tλ − t
q̃′(0)

=
∫ L(t )

−L(t )
q(x, t )p(x, t ) dx

� p(0, t ) = 1

2

√
tλ

tλ − t
. (40)

Hence,

q̃′(0) = − 1
4 . (41)

Substituting the ansatz (37)–(38) into Eq. (15), we obtain the
following approximate equation for q̃:

L̇(t )

2
+ ∂t q̃ = ∂2

x q̃ − ∂x[(L(t ) − x) ∂x p]. (42)

This equation should be considered as linear relative to all
perturbations of the equilibrium state. Using the expression
(33) for p inside the domain �, we obtain that the function
q̃(ξ ) obeys the following ODE:

− f

2
+ ξ

2
q̃′ = q̃′′ + 1

4
(ξ 2e−ξ 2/4)′. (43)

Its unique solution obeying the condition (39) as well as a
reasonable condition at ξ → −∞ can be presented as

q̃(ξ ) = − f

4

[
ξ 2

2F2

(
{1, 1},

{
3

2
, 2

}
,
ξ 2

4

)
+ 2πerfi

(
ξ

2

)]

+ξ

4
e−ξ 2/4. (44)
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FIG. 3. Shown is q̃(ξ ) defined in Eq. (46) vs ξ .

Here mFn(· · · ) and erfi(·) are the generalized hypergeometric
function and the imaginary error function, respectively [27].
We have

q̃(ξ → 0) = − f
√

π

2
ξ + 1

4
ξ . (45)

This equation together with the boundary condition (41), com-
ing from conservation of total number of bees, give

f = 1√
π

.

Plugging this into Eq. (44), we obtain

q̃(ξ ) = − 1

4
√

π

[
ξ 2

2F2

(
{1, 1},

{
3

2
, 2

}
,
ξ 2

4

)
+ 2πerfi

(
ξ

2

)]

+ξ

4
e−ξ 2/4 (46)

and

L̇(t ) = −
√

tλ/π

tλ − t
. (47)

The function q̃(ξ ) is shown in Fig. 3. At ξ → −∞, it
behaves as

q̃(ξ ) → 1

2
√

π
(ln ξ 2 + γE ) (ξ → −∞), (48)

where γE = 0.577 . . . is the Euler constant.
Thus, Eqs. (30), (33), (35)–(37), (46), and (47) give a

complete description of our solution at tλ → 0 and under the
condition (26). It obeys also the condition (28) that was used
implicitly several times during this derivation.

2. Calculation of the action for the analytic solution

Equation (22) gives the following expression for the action
rate Ṡ at tλ 	 (−t ) 	 1:

Ṡ = 1

2

∫ L(t )

−L(t )
qp2 dx +

∫ L(t )

−L(t )
q(∂x p)2 dx, (49)

because of the condition p 	 1 during this period. The main
contribution to the first integral comes from the domain �̄.

Thus, it can be calculated as

Ṡ1 = 1

2

∫
�̄

qp2 dx � p2(0, t )

2

∫ �̄0

−�̄0

U (x) dx = 1

8

tλ
tλ − t

.

(50)

The main contribution to the second integral comes from the
domain �:

Ṡ2 =
∫

�

qp2
x dx

� 2
∫ L(t )

0

L(t ) − x

2

tλ
4(tλ − t )

[x − L(t )]2

4(tλ − t )2

× exp

(
− [x − L(t )]2

2(tλ − t )

)
dx. (51)

Making here the substitution [L(t ) − x]/
√

tλ − t = u, we ob-
tain

Ṡ2 � tλ
16(tλ − t )

∫ ∞

0
u3 e−u2/2 du = tλ

8(tλ − t )
. (52)

Combining both contributions to the action rate we obtain

Ṡ = Ṡ1 + Ṡ2 = tλ
4(tλ − t )

. (53)

Thus we have expressions for L̇ and Ṡ for our solution
at 1 	 −t 	 tλ; see Eqs. (47) and (53). We see that the
total edge displacement �L as well the action S diverge at
tλ − t → 0 and → ∞ if we extend the expressions (47) and
(53) outside their domain of applicability, 1 	 −t 	 tλ. It is
a key point of the OFM theory for this system at �L → 0−.
This property allows us to make integration over time interval
t ∈ (−1 + tλ, 0) to get approximate evaluation of the whole
action S and the whole edge displacement �L. The times
−t � 1 and −t � tλ give some contributions to these values
that can be estimated as ∼√

tλ and ∼tλ, respectively. They
can be neglected in the leading order for �L and S due to
the “divergences” mentioned above. This assumption will be
confirmed in Sec. III A 3 by a direct simulation of our whole
problem. As a result, we have at tλ → 0

�L =
√

tλ
π

[
ln tλ + O(1)

]
(54)

and

S = tλ
4

[
ln

1

tλ
+ O(1)

]
. (55)

These two equations give the following relationship:

S
| ln �L2|

�L2
= π

4

[
1 − 2

ln ln 1
tλ

ln 1
tλ

+ O

(
1

ln 1
tλ

)]
. (56)

For tλ → 0 (and hence, �L → 0−) we obtain from the latter
equation

S = π

4

�L2

| ln �L2| + · · · (�L → 0−). (57)

This is our main result for λ(t ) given by Eq. (27) at times
1 � −t � tλ.
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FIG. 4. Numerical solution of the OFM problem with tλ = 10−5 at t = −15.7 tλ. The solution in the bulk, in the domain �̄ is shown here.
The left panel shows ps(x, t ). Compare it with Eq. (30), which gives p(x ∈ �̄, t ) � 0.122 at this time. The right panel shows qs(x, t ) by the
solid (blue) line and U (x) by the red (dashed) line; see Eq. (35). The difference between the latter two lines is almost invisible, excluding the
region near x = �̄0 (the domain �)

3. Numerical solution for the chosen λ(t )

We numerically solve the OFM problem (summarized in
Appendix A) at known λ(t ), given by Eq. (24). We replace
the boundary condition (14) at infinite past on the boundary
condition at finite time t = −T :

q(x,−T ) = U (x) , p(x,−T ) = 0, (58)

where T > 0 is sufficiently large to exclude influence of finite-
ness of T on our solutions. Rigorously speaking, we cannot
demand p(x,−T ) = 0 for finite T . Actually, we replace the
second condition in (58) by demanding that

p(0,−T ) = 0. (59)

This condition can be fulfilled at a specific value of 	 as
can be seen from the set of equations (16), (21), and (58).
The latter value is actually an eigenvalue of the problem, that
depends on λ(t ). To be sure that our choice of T is large
enough to approximate well the solution of the original prob-
lem (with T → ∞), we calculate for this specific value of 	

the integral
∫ �̄0

−�̄0
p2(x,−T ) dx. We checked that this integral

would be sufficiently small for our choice of T .
We solve this boundary value problem with the iteration

procedure, originating from [28]. The parameter 	 plays a
role of an eigenvalue. Each step of the iteration consists of
two substeps: (1) forward and (2) backward. Equation (15)
for q is solved forward in time with the boundary condition
(58) treated as an initial condition. We use at this substep the
function p, obtained during the previous iteration step. Then
Eq. (16) is solved backward in time for p using the boundary
condition (21) as an initial condition. Our present problem
has an unusual feature. It is a free boundary problem with
unknown in advance L(t ). We calculate L(t ) in the forward
substep of the iteration procedure using the condition (10)
simultaneously with solving Eq. (15). Details of this proce-
dure are given in Appendix B. During the backward substep
of the iteration we used L(t ) obtained at the previous forward
substep.

This method allows us to find the solution with given
λ(t ) and 	. It does not satisfy yet the condition (59) for p.
Using the method described in the previous paragraph, we

apply a shooting procedure to find such value of 	, which
corresponds to a solution obeying Eq. (59).

Important details providing the numerical solution of the
OFM problem at known λ(t ) are given in Appendix B. We
applied this method for the one-parametric set (24) of func-
tions λ(t ) with tλ = 0.1, 0.02, 10−2, 10−3, 10−4, 10−5, and
10−6.

First of all, we compare the simulated qs(x, t ) and ps(x, t )
with the self-similar solution considered in Sec. III A 1 at
small tλ. We designate the simulated q and p by the sub-
script “s.” Figures 4 and 5 show the numerical solution with
tλ = 10−5 at t = −15.7 tλ = 1.57 × 10−4. Figure 4 shows the
numerical solution in the bulk, in the domain �̄.

To compare the self-similar-like solution (in the domain �)
to the simulations we may use the following expressions:

q̃s(ξ, t ) = 1√
tλ

qs[L(t ) + ξ
√

tλ − t, t] + ξ

√
tλ − t

4tλ
(60)

and

p̃s(ξ, t ) =
√

4(tλ − t )

tλ
ps[L(t ) + ξ

√
tλ − t, t]. (61)

Compare these expressions with Eq. (37) and Eqs. (33) and
(34), respectively. These expressions should coincide with the
self-similar analytic solutions q̃(ξ ) and p̃(ξ ) of Sec. III A 1,
respectively, at 1 	 (−t ) 	 tλ and tλ → 0.

Comparison of p̃s(ξ, t ) with theoretical p̃(ξ ) is presented
in Fig. 5(a). The curve p̃s(ξ, t ), presented there, is obtained
from the simulation with tλ = 10−5 and t = −15.7 tλ. We
use the expression (61) to calculate p̃s(ξ, t ). Analogously,
Fig. 5(b) shows comparison of q̃s(ξ, t ) with the theoretical
curve q̃(ξ ). The same simulated data but for qs(x, t ) are used
to calculate q̃s(ξ, t ) in accordance with Eq. (60). We see
that the correspondence between simulated and self-similar
solutions is quite acceptable. We checked that the same state-
ment is valid for all times from the interval 0.03 � (−t ) � tλ
for sufficiently small tλ (not shown). This means that indeed
the self-similar solutions, considered in Sec. III A 1, correctly
describe the intermediate asymptotic behavior of the full OFM
solutions corresponding to the set of λ(t ), defined in Eq. (24),
at tλ → 0.
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(a) (b)

FIG. 5. Shown is a comparison of the (theoretical) self-similar and numerical solutions. The left panel shows the momentum in the domain
�. The right panel shows the normalized bees’ density q. The solid (blue) curves are obtained from numerical results for tλ = 10−5 and
t = −15.7 tλ in accordance to Eqs. (61) and (60), respectively. The dashed (red) lines are the self-similar solutions (33) and (46), respectively.

Now we proceed to analysis of the integral parameters
of the numerical solutions, total action, S, and total edge
displacement, �L. They depend now on tλ only. Figures 6
and 7 show comparison of dependencies of normalized total
displacements �L/

√
tλ and normalized total actions S/tλ on

tλ with fits based on Eqs. (54) and (55). To get self-similar
theoretical results (54) and (55) we integrated the expressions
(47) and (53) over t formally from t = −1 + tλ to t = 0.
Keeping in mind an analytically uncertain contributions to
these integrals from the regions (−t ) � 1 and 0 < (−t ) � tλ,
we may suppose the existence of analytically uncertain con-
stant multipliers of the order of 1 under the logarithms. We
add such multipliers to fit the simulated data. The blue lines in
Figs. 6 and 7 correspond to a specific choice of these factors.
Actually the blue line in Fig. 6 corresponds to the relationship

�L =
√

tλ
π

ln 3.65tλ. (62)

Comparing it with Eq. (54), we may conclude that the nu-
merical solutions confirm existence of the logarithm and
even the coefficient 1/

√
π in Eq. (47), when tλ 	 1. At

tλ ∼ 10−6–10−5 the contribution of the multiplier 3.65 to the
leading order becomes really small. Analogously, the blue line

FIG. 6. Simulated relationship between the edge displacement
�L and tλ. The markers represent results of the simulations. The
(blue) line shows the fit (62). See also Eq. (54).

in Fig. 7 corresponds to the relationship

S = tλ
4

ln
0.061

tλ
. (63)

It can be compared with Eq. (55). Although the subleading
term determined by the factor 0.061 is relatively higher than
the analogous correction in Eq. (63), nevertheless the leading
order term dominates at tλ ∼ 10−6–10−5. Thus, the numerical
solutions confirm the existence of the logarithm multiplier in
the asymptotics (55) as well as the overall coefficient 1/4 in
it.

The dependence S(�L) defined parametrically by
Eqs. (62) and (63) is plotted in Fig. 8. It shows also
points obtained from results of the simulations. We see
that subleading terms, caused by the approximate exclusion
of tλ from Eqs. (62) and (63) [or from Eqs. (54) and (55)],
are well seen at our �L (or tλ). To reveal this fact analytically
we may consider Eq. (56). The third term in the right-hand
side of this equation is of the same order of what would
give subleading order terms in Eqs. (54) and (55). We see
their relative contributions decay only logarithmically at
tλ → 0. Nevertheless, the second term in the right-hand side
of Eq. (56) is decaying even slower. We see that to reach the
region where the subleading term would be about 10% of
the leading term in this equation we should set tλ � 10−19.

FIG. 7. Simulated relationship between the action S and tλ. The
markers represent results of the simulations. The (blue) line shows
the fit (63). See also Eq. (55).
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FIG. 8. The solid (blue) line is a curve defined parametrically
by Eqs. (62) and (63). The markers are obtained from results of
the numerical solutions. The dashed (black) line corresponds to S =
(π/4)�L2/| ln(0.011�L2)|. Existence of subleading terms, consid-
ered in the text, is seen apparently.

Such values seems to us to be unreachable for our present
numerical methods. Nevertheless, we may say that the
simulations confirm surely the asymptotic behaviors (54) and
(55) at tλ → 0 for the set (24) of the functions λ(t ).

Combining together all results of Secs. III A 1–III A 3, we
may draw the following conclusions about the OFM solutions
with λ(t ), defined by Eq. (24) and parameterized by tλ, tending
to 0:

(i) The main contributions to the displacement of the edge
and to the action come from the time interval tλ 	 (−t ) 	 1.

(ii) The OFM solutions at tλ 	 (−t ) 	 1 can be well
described by the self-similar solutions investigated in
Secs. III A 1 and III A 2.

(iii) As a result, the action, S, on this set of solutions can
be described by Eq. (57) at �L → 0−.

(iv) Non-self-similar contributions to the displacement,
�L, and to the action, S, influence only subleading terms in
Eq. (57).

B. General remarks about the OFM solution

We explain in Sec. III A that the one parametric set of the
functions λ(t ), determined by Eq. (24), gives the asymptotic
relationship between the action, S, and the edge displacement,
�L, presented by Eq. (57). Since this relationship corresponds
to a particular choice of the set of the functions λ(t ), we
may conclude that Eq. (57) gives only an upper bound for
S(L) at �L → 0−. Nevertheless, we present in this section ar-
guments in favor of the claim that the specific behavior of
the functions λ(t ) from this set at tλ 	 (−t ) 	 1, when tλ
tends to 0, provides the valid asymptotic leading term in this
expression as a solution of the OFM problem, described in
Sec. II. The particular form of λ(t ) outside the time interval
tλ 	 (−t ) 	 1 determines only subleading terms in Eq. (57),
but not the leading term. The subleading terms are neglected
by us in Eq. (6). A key point for such conclusion is that
S(L)/�L2 tends to 0 at �L → 0−. This property could be
valid only for a quite specific choice of the set of the functions
λ(t ), and our choice of λ(t ) in Sec. III A ensures such specific
properties.

x0 l
0

L
0

⁄− 2

~

~

q

FIG. 9. Shown is a sketch for q(x, 0) in the case of single time
scale λ(t ), when p(0, 0) and the timescale t0 	 1. It corresponds to
the solid line. The region �̄0 − x 	 1 is shown only. The dashed line
presents U (x). The area between the dashed and solid lines can be
estimated as ∼(�̄0 − L0 )

√
t0.

We start our way to the set (24) of the functions λ(t ) from
several examples of trial functions that show us how to obtain

S(L)

�L2
→ 0 at �L → 0−. (64)

1. The case of single timescale

Let us first consider functions λ(t ) that have only a single
timescale, t0. We focus on the behavior of p(0, t ) and do
not specify exactly λ(t ) in Eq. (16) providing such p(0, t ).
For 0 < (−t ) < t0 we set some p(0, t ) ∼ p0 > 0 and set that
p(0, t ) [as well as p(x, t )] tends quickly to 0 for larger (−t ).
We consider below several combinations of t0 and p0 deter-
mined by strong inequalities.

The case of t0 � 1: In this case we may use results of
Ref. [3], devoted to persistent fluctuations in the Brownian
bees model. We obtain that

S(L) ∼ �L2 t0

for such trial functions. We may conclude that we should set t0
as small as possible, while t0 � 1, and that even for smallest
possible t0 ∼ 1, we have S ∼ �L2. The latter estimation is
much higher than in Eq. (57) and does not obey the condition
(64).

Considering the case of t0 	 1, we separate it into two
limiting subcases: (1) p0 	 1 and (2) p0 � 1.

The case of t0 	 1 and p0 	 1: We begin from case (1),
when p0 	 1. We will see that in this case absolute value of
the edge displacement �L = L0 − �̄0 is much less than the
width of the diffusion boundary layer, which can be estimated
as

√
t0. This boundary layer corresponds actually to the do-

main � introduced above. In this case the density distribution
in � is similar to a quasiequilibrium distribution, which is
adjusted to a new position of the swarm edge; see Fig. 9. The
fields p and q outside this boundary layer (that corresponds
actually to the domain �̄ introduced above) are not affected by
the diffusion process during the time, when (−t ) ∼ t0, besides
a small increasing of q in this domain due to positive p. As a
result, p(x, t ) is constant in space in the domain �̄. The total
normalized number of particles will be almost the same as
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in the equilibrium with a small excess �Q = ∫
�̄

(q − U ) dx,
which can be estimated as �Q ∼ p0t0. This excess in the
bulk (in the domain �̄) should be compensated by a lack of
particles in the domain �. See for clarification Fig 9. The
lack �Qe can be estimated as an area between the dashed
and solid lines in Fig. 9. The former one represents initial
equilibrium, U (x) close to the edge, whereas the latter one
represents perturbed q(x, 0) close to the edge. This area can
be estimated as |�L|√t0. Hence, �Qe ∼ |�L|√t0. Owing to
conservation of total number of particles, we should demand
at least �Q ∼ �Qe, and, hence �L

√
t0 ∼ −p0t0. As a result,

we have the following estimation of �L in this case:

�L ∼ −p0
√

t0. (65)

This estimations confirms our preliminary assumption that
|�L| 	 √

t0 in this case.
Let us estimate now the action for the case p0 	 1 and

t0 	 1. Both contributions to the action in Eq. (22) are deter-
mined by the time interval (−t ) ∼ t0. The first contribution is
determined by the domain �̄, whereas the second one by the
contribution from the diffusion boundary layer. It appears that
the both contributions can be estimated as p2

0t0. Hence,

S ∼ p2
0t0. (66)

Combining Eqs. (65) and (66), we obtain the following
estimation for the action S:

S ∼ �L2. (67)

First of all, we note that this action at �L → 0 does not obey
the condition (64). We may note also that the action do not
depend on t0 or p0 but only on their combination appearing in
Eq. (65). This fact will be important below.

The case of t0 	 1 and p0 � 1: This case differs from the
previous one in two points. The additional to the equilibrium
normalized number of particles begotten during the period
(−t ) ∼ t0 can be estimated now as �Q ∼ ep0t0, whereas the
additional lack of particles near the edge can be estimated
now as �Qe ∼ �L2. The latter estimation comes from a
reasonable assumption that the perturbation of the slope of
q(x, 0) in the boundary layer is of the order of the slope in the
equilibrium. Thus, due to conservation law (�Q ∼ �Qe), we
have

�L2 ∼ ep0t0. (68)

Only the first term in Eq. (22) gives considerable contribution
to the action. As a result we have

S ∼ p0ep0t0. (69)

Combining these two equations we obtain for the present case

S ∼ p0�L2 (p0 � 1). (70)

We see that the lowest possible action for p0 � 1 takes place
at p0 ∼ 1. Again even in the latter case (p0 ∼ 1) this action
at �L → 0 is much higher than the action (57) for particular
solutions, considered in Sec. III A.

We may draw the following general conclusion for the
cases of a single timescale trial functions λ(t ). Such trial
functions give that S ∼ �L2 or higher. In any case the action
becomes much higher than the action (57) at �L → 0− for
particular solutions, considered in Sec. III A.

2. Multiscale in time trial functions

Before turning to power-law form of trial functions λ(t ),
which could be a candidate for the multiscale in time trial
functions, we consider in more details a degeneracy revealed
when we considered the case t0 and p0 	 1 in Sec. III B 1. We
saw there that any time interval (−t ) ∼ t0 of length t0 give the
same contributions to �L and S, if

p0 ∝ 1√
t0

or λ ∝ − 1

t3/2
0

. (71)

As a result, we may assume that if

λ(t ) = − pλt1/2
λ

(tλ − t )3/2
or p(0, t ) ∼ pλ

√
tλ

tλ − t
(72)

at the interval

tλ 	 (−t ) 	 1 (73)

when pλ � 1 and tλ 	 1, then each octave in (−t ) give the
same contribution to �L and S. This contribution can be esti-
mated in accordance to Eqs. (65) and (66) as δ �L ∼ −pλ

√
tλ

and δS ∼ p2
λtλ, respectively, regardless of t belonging the in-

terval (73). The number of such octaves can be estimated as
ln t−1

λ . Hence the total edge displacement and the total action
can be estimated as �L ∼ −pλ

√
tλ ln t−1

λ and S ∼ p2
λtλ ln t−1

λ ,
respectively. Such relationships lead to S ∼ �L2/| ln �L2|.
This action is much less than for the trial functions considered
in Sec. III B 1 and obeys the condition (64). Such rough a
estimation cannot give the correct overall numerical factor on
the order of one in the latter expression. However, this con-
sideration gives some insight into the origin of much smaller
actions for multiscale time trial functions. We may see that
power laws in Eq. (72) are actually quite similar with what we
set in Eqs. (24) and (27).

A power-law trial function for λ(t ): We see that power-
law functions for λ(t ) could lead to the condition (64). We
consider here the following general power-law trial functions
for λ(t ):

λ(t ) = − pλtα−1
λ

(tλ − t )α
. (74)

We consider such solutions of the OFM equations at the time
interval (73), assuming tλ 	 1 and pλ � 1. We assume that
λ(t ) tends quickly to 0 for (−t ) � 1, and λ(t ) ∼ −pλ/

√
tλ.

Then the solution for p(x, t ) in the domain �̄ becomes in
accordance to Eq. (16) as follows:

p(x, t )|�̄ ∼ pλtα−1
λ

(tλ − t )α−1
. (75)

The solution for q(x, t ) inside the domain � can be treated as
previously in the case of p(0, 0) 	 1; see Fig. 9. However, we
should make obvious redesignations: L0 − �̄0 → t L̇(t ), and
t0 → (−t ). Then we obtain analogously to Eq. (65)

t L̇(t ) ∼ p(0, t )
√−t (76)

or

L̇(t ) ∼ − p(0, t )√−t
∼ − pλtα−1

λ

(tλ − t )α−1/2
. (77)
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The calculation of Ṡ is quite similar to obtaining of Eq. (66)
before multiplying Ṡ in Eq. (66) on t0. Thus, we have

Ṡ(t ) ∼ p(0, t )2 ∼ p2
λt2α−2

λ

(tλ − t )2α−2
. (78)

To get the total edge displacement, �L and the total action, S,
determined by the time interval t ∈ (−1 + tλ, 0), we should
integrate the expressions in Eqs. (77) and (78), respectively,
over dt on this interval. These contributions to �L and S can
be written as

�L ∼ − pλt1/2
λ

|2α − 3|
∣∣tα−3/2

λ − 1
∣∣, (79)

S ∼ p2
λtλ

|2α − 3|
∣∣t2α−3

λ − 1
∣∣, (80)

when α �= 3/2. For sufficiently small |α − 3/2| and tλ contri-
butions to �L and S from this interval become considerably
higher than contributions from the regions, when (−t ) � 1
and � tλ. Eliminating pλ, we obtain from these equations

S ∼ |2α − 3| �L2

∣∣t2α−3
λ − 1

∣∣(
tα−3/2
λ − 1

)2 . (81)

Tending tλ → 0 we have �L → 0; and S can be expressed in
this limit as

S ∼ |2α − 3| �L2 (82)

for sufficiently small |2α − 3|.
We may conclude that the lowest action will take place at

α → 3/2. For any finite |α − 3/2| and sufficiently small tλ we
may make S lower at �L → 0− by choosing lower |α − 3/2|.
It means that α = 3/2 corresponds to the optimal λ(t ) in the
form of Eq. (74), if we consider the leading-order behavior
of S at �L → 0−. Namely, this set of λ(t ) was considered
analytically and numerically in Sec. III A.

Power-law trial function with slowly varying amplitude: It
is interesting to introduce in Eq. (74) a very slowly variable
factor at α = 3/2, trying to diminish the leading order in the
expressions (57) for the action. We assume that the change of
the factor is relatively small if we multiply or divide the time
t by 2. As a result, we present λ(t ) in the form

λ(t ) = − t1/2
λ

(tλ − t )3/2
F

(
ln

1

|t | , ln
1

tλ

)
. (83)

We assume again that this expression is valid for tλ 	 (−t ) 	
1. Contributions to action outside this interval again deter-
mines only subleading orders at �L → 0−. When absolute
value of partial derivative of the function F with respect to
the first argument is much less than 1, then dependence of
F on t can be treated adiabatically. Then repeating previous
estimations we can write

�L ∼ −√
tλ

∫ 1

tλ

F

(
ln

1

|t | , ln
1

tλ

)
d|t |
|t | (84)

and

S ∼ tλ

∫ 1

tλ

F 2

(
ln

1

|t | , ln
1

tλ

)
d|t |
|t | . (85)

Hence

S ∼ �L2

∫ 1
tλ

F 2
(

ln 1
|t | , ln 1

��2

)
d|t |
|t |[∫ 1

tλ
F

(
ln 1

|t | , ln 1
��2

)
d|t |
|t |

]2 . (86)

Minimizing this expression at given �L, we obtain that opti-
mal F has not to depend on ln |t |:

F = const = pλ. (87)

As a result we may conclude that optimal λ(t ) has to have
a form of Eq. (72) at �L → 0−. The only question that should
be solved is the question about the amplitude pλ in Eq. (72).

A choice of the constant pλ in Eq. (72): As a consequence
of the arguments above, pλ for the optimal λ(t ) cannot be
much larger than 1. Thus we set straightly that pλ � 1 in
the optimum. For such pλ we are able to make substitution
p2

λtλ instead of tλ in the amplitude of λ(t ) in the definition
(27) of Sec. III A 1, where we considered analytic solution of
the OFM equations with λ(t ) defined in Eq. (27). Analogous
substitutions in all further expressions in that section lead
to the following slightly more general final results than in
Sec. III A 1 [Eqs. (54) and (55)]:

�L = pλ

√
tλ
π

[
ln tλ + O(1)

]
, (88)

S = p2
λtλ
4

[
ln

1

tλ
+ O(1)

]
. (89)

It is worth to remind once again that the residual terms, O in
these equations are of the order of 1, and they are determined
by by unknown behavior of λ(t ) at (−t ) � 1 and ∼tλ in the
optimum. These equations give

S(L) = π

4

�L2

ln (pλ/�L)2 + · · · (�L → 0−). (90)

If pλ ∼ 1, then it can be skipped at all or transferred to the
residual term. However, when pλ 	 1, it leads to an increase
of the trial action. This means that the optimal pλ ∼ 1 and its
exact value do not influence on the asymptotic behavior of S
in the leading order. Our choice pλ = 1/4 in Sec. III A follows
this conclusion, and its concrete numerical value was chosen
only for numerical convenience.

Final OFM result: Combining now the OFM results (88)
and (89), we obtain similarly to obtaining of Eq. (56):

S(L) = π

4

�L2

| ln �L2|
[

1 − 2
ln | ln �L2|
| ln �L2|

+ O

(
1

| ln �L2|
)]

(�L → 0−). (91)

Our main statement is that this is the valid OFM result
at �L → 0−. The nonoptimized value of the overall factor
∼O(1) in our trial function λ(t ), as well as its nonoptimized
behavior at (−t ) � 1 and at (−t ) ∼ tλ may change only the
∼O(1) coefficient before ln−1(�L)−2 in the residual term
O(ln−1(�L)−2) that is of the order of 1. The order of this
residual term is confirmed by the numerical simulations in
Sec. III A 3.

The result [4] concerning variance of L for typical fluctu-
ations means that P(L) can be presented for such fluctuations
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FIG. 10. Atypical positive fluctuations of �L are dominated by
the “runaway particle” scenario, in which a single particle quickly
travels from the edge support of U (x), at x = π/2, to the position
x = L, while the rest of the particles do not display any unusual be-
havior. During the creation of this fluctuation, the branching process
is entirely suppressed.

as

−N−1 ln P(L) � π

4

�L2

ln N
. (92)

Our main result (6) followed from Eq. (91) coincides with
Eq. (92) with the relative accuracy ε → 0, when �L belongs
for example the interval L = (−1/

√
N1−ε,−1/

√
N ). For any

small ε and sufficiently high N , |�L| varies on this interval L
in many times. It means that the result (92) for typical fluc-
tuations and our result (6) have a wide region near the point
�L = √

var (L), where they coincide with a high accuracy.
This fact strengths the reliability of both results.

IV. POSITIVE ATYPICAL FLUCTUATIONS OF L:
SINGLE-PARTICLE APPROXIMATION

Fluctuations with an unusually large swarm radius, L > �̄0,
turn out to behave entirely differently from the case L < �̄0

that we considered in the previous section. As we find be-
low, the system trajectories that dominate the probability for
observing some value L > �̄0 are those for which a single, run-
away particle travels relatively quickly from x = �̄0 to x = L,
whereas the other particles simply diffuse, and meanwhile the
branching process is completely suppressed. This scenario is
schematically depicted in Fig. 10.

The runaway particle scenario is similar in spirit to similar
approaches in extreme-value statistics [24]. In particular, it is
rather reminiscent of the “evaporation” scenario that describes
the right tail of the statistics of the largest eigenvalue in many
random matrix ensembles [29–33]. In fact, this approach was
also recently employed to describe fluctuations of the size of
a model that is not so different to the Brownian bees model,
in which the branching and particle removal processes are
replaced by stochastic resetting of the particles’ positions to
the origin [34].

Assuming this scenario of a single, runaway particle, the
problem simplifies considerably. One can write down a very
simple equation for the dynamics of the PDF P1(x, t ) of
the particle that is farthest from the origin, by neglecting
the possibility that it will be overtaken by one of the other

particles:

∂t P1(x, t ) = ∂2
x P1(x, t ) − NP1(x, t ) (x − �̄0 > 0). (93)

The two terms on the right-hand side of Eq. (93) describe
diffusion of the furthest particle from the origin, and an ef-
fective “mortality” term that corresponds to branching of one
of the other N − 1 particles (we neglect here the difference
between N and N − 1 at N � 1). This equation is expected to
be valid at x − �̄0 that is much larger than the scale of typical
fluctuations, where it becomes very unlikely for the positions
of the two furthest particles from the origin to cross each other.
The steady-state solution of this equation is quite obvious
P1(x) ∝ e−x

√
N . As a result we find that positive fluctuations

of L are described by

P(L) = P1(L) ∼ exp(−
√

N�L) (�L > 0). (94)

A prefactor in this equation is determined by a crossover
region, where one expects the PDF (92) for typical fluctu-
ations to match somehow with Eq. (94). A full calculation
of the prefactor is beyond the quantitative theory presented
here. However, one may assume that this crossover takes
place at �L for which the two formulas (92) and (94) pre-
dict probabilities that are of the same order. This happens at
�L ∼ √

ln(N ) var (L). In any case, Eq. (94) gives Eq. (7) from
the Introduction.

Some insight is obtained by contrasting the results of this
section with those of the previous one, which describe the
two (very different) tails of the distribution P(L). The scaling
− ln P(L) ∼ √

N predicted by the runaway particle scenario
of the present section, obviously predicts much larger proba-
bilities than the scaling − ln P(L) ∼ N predicted by the OFM
of the previous section; see, e.g., (17). This confirms our
assumption that, for �L > 0, the runaway particle scenario
dominates, whereas scenarios involving a large number of
particles should not be taken into account as their contribution
to P(L) is negligible.

However, in analogy with the previous section, it would
be nice to gain further information regarding the atypical
�L > 0 fluctuations, by characterizing the histories of the
system that lead to a given L > �̄0. It turns out that this can
be done quite simply, as follows. Let us consider a dynamical
scenario in which, at time t = −τ (where τ � 1/N will be
determined below) the system is in a state that is described by
the density U (x). Then, during the time interval −τ < t < 0,
(1) no branching events occur and (2) the rightmost particle
travels from the edge of the support of U (x), x = �̄0, arriving
at x = L at time t = 0. This scenario is shown schematically
in Fig. 10.

What is the probability of this dynamical scenario? The
probability for no branching events is (exactly) given by e−Nτ .
Conditioned on no branching events, the PDF of the position a
particle initially at time t = 0 given that at time t = −τ it was
at x = �̄0 is e−(x−�̄0 )2/4τ /

√
4πτ . Therefore, the probability for

this scenario, including arrival at x = L at time t = 0, is

∼e−Nτ−(�L)2/4τ , (95)
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up to a pre-exponential factor. It will be useful to rewrite this
as

∼e−√
NF (τ̃ ), F (τ̃ ) = τ̃ + (�L)2

4τ̃
, τ̃ =

√
N τ. (96)

The next step towards calculating the �L > 0 tail of P(L) is
to integrate the probability (96) over τ̃ . Clearly, at N � 1 this
integral is dominated by the saddle point, i.e., we obtain

P(L) ∼ e−√
NF (τ̃∗ ), (97)

where τ̃∗ is the minimizer of F (τ̃ ). This minimization is triv-
ial; it yields τ̃ = �L/2 so F (τ̃ ) = �L, which, after plugging
into (97), we obtain P(L) ∼ e−√

N�L in perfect agreement with
our earlier result (94).

V. SUMMARY AND DISCUSSION

We see that the PDF for the size L of the swarm in
the frame of the “branching bees” model with N � 1 is
quite asymmetric around its mean value �̄0, if we exclude at
least the region of typical fluctuations of L determined by its
variance (5) [4]. In particular, we find that unusually large
positive fluctuations of L are far more likely than negative
ones, as is evident from the very different scalings of the two
distribution tails with N at N � 1. The atypically large nega-
tive fluctuations of L can be described by the OFM approach
(6); and this PDF demonstrates the logarithmic anomaly that
also appears in the variance (5) [4]. The OFM result matches
smoothly with the Gaussian PDF determined by the variance.
For atypically large positive fluctuations of L, their PDF (7)
can be obtained with a single runaway particle approach. The
region of crossover of the PDF between the latter one behavior
and the Gaussian part of the PDF for typical fluctuations is an
interesting goal for further investigations.

We saw that for |�L| 	 1 the fluctuations involve mainly
a narrow layer of bees close to �̄0. As a result, we may assume
that the principal results of this paper concerning P(L) at
|�L| 	 1 do not depend on dimension d of the space [up to
a proper shift of the distribution P(L), because �̄0 depends
on d]. The Monte Carlo simulations in Ref. [4] for typical
fluctuations and conclusions from them drawn there support
this argument.

A model, which is similar to but slightly simpler than the
Brownian bees model, was recently considered in Ref. [34].
In their “model B,” the position of the particle farthest from
the origin is stochastically reset to the origin (instead of being
reset to the position of one of the other particles as in the
Brownian bees model studied here). We believe that our main
results, Eqs. (6) and (7), remain valid for the “model B”
also (up to a proper shift, again because �̄0 is different). We
draw such conclusion for negative �L from the fact that we
were able to neglect the branching process for the self-similar
solution in the domain �; see Eq. (36). For the positive �L
this conclusion is even more obvious and derived actually in
Ref. [34]. Moreover, we may assume that the entire PDF of L
at |δL| 	 1 and N → ∞ for these two models are the same
(up to the shift). Meanwhile, this statement is proven for the
variance, var(L), in Ref. [34].

Several extensions of the model that we studied here could
be investigated too. For example, one could consider higher

spatial dimensions or the addition of external forces acting
on the particles. Other modifications of the model are also
possible, leading to nontrivial behavior; see e.g., [35,36].
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APPENDIX A: FULL SET OF THE OFM EQUATIONS

The OFM equations of motion [see Eqs. (15) and (16)] for
the 1D case are as follows:

∂t q = qep + ∂x (∂xq − 2q∂x p), (A1)

∂t p = −(ep − 1) − ∂2
x p − (∂x p)2 − λ(t ). (A2)

The full set of boundary conditions are as follows:∫ L(t )

−L(t )
q(x, t ) dx ≡ 1, (A3)

q(|x| = L(t ), t ) = p(|x| = L(t ), t ) = 0, (A4)

q(x, t → −∞) = U (x), p(x, t → −∞) = 0, (A5)

p(x, 0) = 	 = const for |x| < L(0). (A6)

They are equivalent to Eqs. (10), (13), (14), and (21), respec-
tively. The functions q(x, t ) and p(x, t ) are assumed to be
defined in the domain −∞ < t � 0, −L(t ) � x � L(t ). The
function U (x) is defined by Eq. (4) that means in particular
that L(−∞) = �̄0, defined below Eq. (4).

For any reasonable negative λ(t ), tending sufficiently fast
to 0 at t → −∞, the above problem presumably has a unique
solution, determining also 	 and L(t ). The solution deter-
mines also the action on the found trajectory:

S =
∫ 0

−∞
dt

∫ L(t )

−L(t )
dx [q(pep − ep + 1) + q(∂x p)2]. (A7)

It determines the distribution of L as it is considered in Sec. II.

APPENDIX B: NUMERICAL METHOD

We describe here some details of the numerical anal-
ysis of the OFM problem in one dimension (summarized
in Appendix A), where the constant 	 and functions
L(t ), q(x, t ), p(x, t ) should be found, and λ(t ) is a given
function; see Eq. (24). We introduce a spatial variable y =
x/L(t ) (|y| � 1) to work with a stationary spatial grid. This
change of variables causes Eqs. (15) and (16) to become

∂t q = y
L̇(t )

L(t )
∂yq + ∂2

y q − ∂y(∂yq − 2q∂y p) + qep, (B1)

∂t p = y
L̇(t )

L(t )
∂y p − ∂2

y p − (∂y p)2 − (ep − 1) − λ(t ), (B2)

respectively, while the initial and boundary conditions become

q(|y| = 1, t ) = p(|y| = 1, t ) = 0, (B3)
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q(y, t → −∞) = 1

2
cos

(π

2
y
)
,

p(y, t → −∞) = 0, (B4)

p(y, 0) = 	 = const, for |y| < 1. (B5)

In our numerical solutions, we replace time ∞ by finite
time T = 10. The conservation condition (10) is

L(t )
∫ 1

−1
q(y, t ) dy = 1. (B6)

As described in the main text, we solve Eqs. (B1) and (B2)
using the back-and-forth Chernykh-Stepanov algorithm [28].
Every iteration of the algorithm consists of two steps. In the
first step, we solve Eq. (B2) for p(y, t ) backwards in time
from t = 0, using q(y, t ) and L(t ) from the previous iteration.
In the second step, we solve Eq. (B1) forward in time for
q(y, t ) using p(y, t ) that was found in the first step. During
the forward step, we also compute L(t ) via Eq. (B6). We
employ the implicit finite differences method to approximate
Eqs. (B1) and (B2) and Newton’s method to solve nonlinear
algebraic equations to approximate p. A few iterations of the
algorithm are sufficient for it to achieve convergence to a
solution of Eqs. (B1) and (B2). One must, of course, specify
some initial values in order to perform the first iteration of
the algorithm. The choice usually does not have a strong
effect on the convergence properties. We chose 	 = 	1

∼=
1/2, the mean field functions q(0 < y < 1,−T � t < 0) =
cos[L(t )y]/2 and p(y, t < 0) = 0, p(y, 0) = 	1, and L(t ) =
�̄0.

At the end of the iterations the functions
q(y, t,	1), p(y, t,	1), and L(t,	1), in particular
p(y,−T,	1) are known. The found function p(y,−T,	1)
satisfies to condition p(y,−∞) = 0 in Eq. (B4) for a certain
value of 	 which we are to find. Since in the general case
p(y,−T,	1) is not a constant, we employ a functional
F (	) = ∫ 1

−1 p2(y,−T ) dy. We seek now the value 	m that
minimizes the functional F , which is calculated by the
procedure described above. Notice that F (	m) is very close
to zero for sufficiently small criteria ending the iterations.
Finally L and S are computed on the solution through
L = L(t = 0) and Eq. (22), respectively.

We used nonhomogeneous time and space grids. The
smallest time step τm at t = 0 depends on value of tλ, τm ∝ t2

λ

the value of the steps growth exponentially when t → −T :
τ j = (1 + δτ )τ j+1, t j = t j−1 + τ j . j = 2, 3, . . . , m, t1 = −T
and tm = 0. For example τm = 10−13 and δτ = 0.01 in calcu-
lation of version for tλ = 10−6. The space grid is exponential
too, the minimal spacing is near y = 1: h2 ∝ t1/2

λ , and the
spacing increases with growth of y. For tλ = 10−6, we used
h2 = 5 × 10−5 and the increment δh = 0.01, 1 − yi+1 = (1 +
δh)(1 − yi ), i = 1, 2, 3, . . . , n, y1 = 1, yn = 0.

To illustrate the calculation of 	, we give here the
data when the shooting procedure was stopped for tλ =
10−6: p(0,−T ) � −10−12,

∫ 0
−1 |p(y,−T )| dy � 3 × 10−12,∫ 0

−1 p(y,−T ) cos(y) dy � −3 × 10−12.
It is important also that our numerical model has an steady-

state mean field distribution which differs because of its
discreetness from the continuous distribution U (x), defined
by Eq. (4). This difference really is very small. Nevertheless,
we took it into account in the calculation of numerical �L to
diminish the influence of numerical inaccuracies.
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