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Onset of collective excitations in the transverse dynamics of simple fluids
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A thorough analysis of the transverse current autocorrelation function obtained by molecular dynamics
simulations of a dense Lennard-Jones fluid reveals that even such a simple system is characterized by a varied
dynamical behavior with changing length scale. By using the exponential expansion theory, we provide a full
account of the time correlation at wavevectors Q between the upper boundary of the hydrodynamic region and
Qp/2, with Qp being the position of the main peak of the static structure factor. In the Q range studied, we
identify and accurately locate the wavevector at which shear wave propagation starts to take place, and show
clearly how this phenomenon may be represented by a damped harmonic oscillator changing, in a continuous
way, from an overdamped to an underdamped condition. The decomposition into exponential modes allows one
to convincingly establish not only the crossover related to the onset of transverse waves but, surprisingly, also
the existence of a second pair of modes equivalent to another oscillator that undergoes, at higher Q values, a
similarly smooth over to underdamped transition.
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I. INTRODUCTION

In the field of the microscopic dynamics of fluids, increas-
ing attention has been paid in the last two decades to the study
of shear waves. The propagation of both longitudinal and
transverse acoustic waves depends not only on the thermody-
namic state of the fluid but also on the length scale (i.e., on the
inverse of the wavevector modulus Q = |Q|) at which these
processes are probed. However, contrary to what happens for
ordinary sound, where propagating longitudinal waves also
exist in the Q → 0 limit, even in very dilute gases, these
dependencies have a peculiar character in the transverse case
because the propagation of shear waves in fluids takes place
only when both the density and Q exceed certain threshold
values [1].

The existence of such a transition between the absence and
presence of propagating transverse excitations has attracted
much interest due to its evident link with the viscoelastic
nature of liquids [1–3], whereby the system responds in a
solidlike way to a perturbation of sufficiently high frequen-
cies and wavevectors, while slower and longer-wavelength
perturbations dissipate through viscous relaxation processes.

*Corresponding author: guarini@fi.infn.it

The connection of the threshold Q value (often referred to in
the literature as Qgap) with the relaxation time that Maxwell
first introduced to account for viscoelasticity has been even
recently discussed [4].

One of the dynamical quantities that are also sensitive to
transverse particle motions (i.e., orthogonal to Q) is the veloc-
ity autocorrelation function [5,6]. Moreover, a widely debated
issue concerns the visibility of transverse excitations in exper-
imental determinations [7–11] and simulations [12–14] of the
spectrum of density fluctuations, i.e., of the dynamic structure
factor S(Q, ω), in liquid metals. However, the quantities that
directly capture the essence of the transverse dynamics are
the transverse current time autocorrelation function CT(Q, t )
and its frequency spectrum C̃T(Q, ω) [15]. Therefore, investi-
gating the conditions that allow for the propagation of shear
excitations requires the analysis of transverse current data at
various Q values. However, before concentrating on specific
features such as the excitation frequencies and damping rates
and their Q dependence, and on the determination of Qgap,
a valid modeling of CT(Q, t ) or C̃T(Q, ω) should, in first
place, provide an accurate representation of available data in
the entire time or frequency ranges. Here data means simu-
lation results, since C̃T(Q, ω) is currently not accessible by
spectroscopic techniques able to probe the picosecond and
nanometer scales.
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II. SIMULATION AND ANALYSIS

In this paper, we pursue this goal using molecular dy-
namics (MD) simulation data for a dense fluid of particles
interacting with the Lennard-Jones 12–6 (LJ) potential

u(r) = 4ε[(σ/r)12 − (σ/r)6], (1)

where ε and σ are the welldepth of the pair potential and
the particle diameter, respectively. The thermodynamic state
is defined by temperature T = 1.35 and number density
n = 0.8. Here, T and n are dimensionless variables defined
via the standard reduction through the LJ parameters ε and
σ and the particle mass m. In terms of the corresponding
absolute quantites, reduced temperature and density are given
by kBT/ε and nσ 3, respectively, while wavevector and angular
frequency are expressed by Qσ and ω

√
mσ 2/ε. Unless differ-

ently stated, throughout this paper we will always use reduced
variables, but for ease of notation we will omit to mark them
with the usual asterisk. In the (n, T ) plane the chosen thermo-
dynamic point is just above the critical temperature and at a
density slightly lower than the triple point density.

The MD simulations were performed with the leapfrog
algorithm in the isokinetic ensemble, using a cubic simu-
lation volume, linked-list cells, a force cutoff rc = 6.5, and
a timestep δt = 0.002 [16]. The correlation functions were
obtained as averages over ten independent subruns of 107

timesteps each, where averages over the subruns were used to
estimate the error bars on the net correlation. The number of
particles N = 24805 was chosen such that, with the required
density, the minimum wavenumber compatible with the sim-
ulation cell has the value Qmin = 0.2, and only wavevectors
parallel to the three Cartesian axes were considered.

The computed CT(Q, t ) was analyzed in the Q range be-
tween 0.2 and 3.4 in steps of 0.2. This range covers the first
half of the region delimited by the position Qp of the main
peak of the static structure factor S(Q), located in this system
at Qp = 6.76.

For the analysis of the MD data, we apply the exponential
expansion theory (EET) [17–19], which allows for excellent
descriptions of various correlation functions and spectra of
interest for the self [5,6] and collective dynamics [11,20]. EET
states that any autocorrelation function can be expressed as a
series of exponential terms (called modes). Thus, for t � 0,
we write, at each Q value

CT(Q, t ) = CT(Q, 0)
∞∑
j=1

I j exp(z jt ), (2)

where both I j and z j can either be real or complex, with
Re z j < 0. A real mode describes the exponential decay of a
relaxation process, while a pair of complex conjugate modes
accounts for a propagating excitation with damping coeffi-
cient −Re z j and frequency |Im z j |. In both cases, we shall
refer to −Re z j as the “damping” of the mode. In Eq. (2),
I j and z j are dependent on Q, although this will not be
explicitly indicated in the following. We refer the reader to
Refs. [5,6,11] for details on the application of EET, where
a fitting procedure is applied to determine the parameters z j

and I j of a small number p of modes to which the sum in
Eq. (2) effectively reduces. Here we only note that p − 1

FIG. 1. Q dependence of the normalized second frequency mo-
ment as obtained from the fit parameters (blue circles) and from the
theoretical prescription in Eq. (1.151) of Ref. [2] (red curve).

constraints have been imposed to the amplitudes I j in order to
enforce the correct short time behavior of the fitted CT(Q, t )
[11]. The constraints are expressed as

∑p
j=1 I j = 1, which

follows directly from Eq. (2) at t = 0, and
∑p

j=1 I jz j = 0.
In addition, as described below,

∑p
j=1 I jz3

j = 0 was also ap-
plied beyond a certain Q value. However, we did not impose
the constraint that −∑p

j=1 I jz2
j should equal the theoretically

known second frequency moment of the normalized spectrum
(see Eq. (1.151) of Ref. [2]). Therefore, the comparison of
the second moment of the fitted spectrum with its theoretical
value is a stringent test of the correctness of the fit results.
Figure 1 shows that a very good agreement is found at all
investigated Q values.

When performing fits in the time domain, it has to
be remembered [16,21] that the use of periodic bound-
ary conditions in MD may produce spurious effects in the
calculated correlations beyond the so-called recurrence time
tR = (N/n)1/3/cs, i.e., the time required by a density wave to

FIG. 2. Damping coefficients |za|, |zb|, and |zc| of the three
modes fitted to CT(Q, t ) in range I. The dashed curve displays the
(η/n)Q2 hydrodynamic behavior. The orange dot at Q = 0 indicates
the value of 1/τM.
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FIG. 3. Damping and frequency parameters from the fits to
CT(Q, t ) in ranges I and II. (a) The dampings of real modes c and d in
range II are shown as blue circles and blue stars, respectively. �T (red
squares), 	T (red asterisks), and the propagation frequency ωT (green
dots) are shown. The orange dot at Q = 0 is the same as in Fig. 2.
(b) Zoom of the low frequency region of frame (a), also showing
|za| and |zb| from Fig. 2. The red lines are spline interpolations of
�T(Q) and 	T(Q) across the transition from the overdamped to the
underdamped regime. The green dashed line marks the value of Qgap.
The dotted blue lines show the behavior of |za| and |zb| in range I near
the transition point. The dotted green line shows the beginning of the
dispersion curve ωT(Q).

propagate over the box length at the adiabatic sound speed cs.
In our case, with cs = 6.22 [22], one has tR = 5, which defines
the maximum time value to be used for the fits. However,
apart from the lowest Q’s, CT(Q, t ) substantially decays to
zero in a time shorter than tR and the time range for the fit
is accordingly further reduced to avoid inclusion of noisy
and meaningless data displaying only statistical fluctuations
around zero.

III. RESULTS

The hydrodynamic theory predicts that in the Q → 0 limit
C̃T(Q, ω) has a Lorentzian shape with a half width at half
maximum (HWHM) given by (η/n)Q2 [23], where η is the

FIG. 4. Damping and frequency parameters from the fits to
CT(Q, t ) in ranges II and III. Besides the curves already displayed
in Fig. 3, here we show �x (black squares), 	x (black asterisks),
and the propagation frequency ωx of the second excitation (magenta
full circles). The black lines are spline interpolations of �x(Q) and
	x(Q) across the transition from the overdamping to the underdamp-
ing regime of the second excitation. The purple dashed line marks
the Q at which the transition takes place. The dotted black lines
show the behavior of |zc| and |zd | in range II near the transition
point. The dotted magenta line shows the initial part of the second
dispersion curve. The cyan hexagons indicate the position ωm(Q) of
the maximum in each C̃T(Q, ω) spectrum.

shear viscosity [2]. Such a Lorentzian spectrum obviously cor-
responds to retaining only one term in Eq. (2), when CT(Q, t )
decays through a purely diffusive process. The hydrodynamic
behavior should be obtained as the long wavelength limit of
the more complex dynamics observed at higher Q.

The range of wavevectors included in this study is divided
in three parts, labeled as I, II, and III in the following, where
different sets of exponential modes are required to accurately
fit the time dependence of CT(Q, t ). Specifically, we find
that in a rather narrow Q interval a variety of dynamical
behaviors occurs, smoothly transitioning from one Q regime
into the other. The best-fitting parameters z j are reported as
functions of Q in Figs. 2–4, and their respective amplitudes
I j are displayed in Fig. 5. The MD data for CT(Q, t ), the
fitted exponential-mode curve, and its various components
are shown in Figs. 6–8, one for each of the three Q regions.
Each figure also shows the corresponding spectrum and its
components.

In range I (0.2 � Q � 1.0), very good fits to CT(Q, t ) are
obtained when three real exponential terms are included in
Eq. (2). The three modes, identified by subscripts a, b, and
c, decay to zero with respective damping constants |za|, |zb|,
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FIG. 5. Q dependence of the amplitudes of the fitted modes. Blue
symbols refer to the real mode amplitudes: Ia (diamonds) and Ib

(dots) in range I, Ic (circles) in ranges I and II, Id (stars) in range
II. The amplitudes IT of the transverse oscillator and Ix of the second
oscillator are also shown as red squares and black dots, respectively.

and |zc|, shown in Fig. 2, which are the HWHMs of the three
Lorentzian lines composing the spectrum. Mode a, with the
smallest damping, is the dominant one (Ia � 1 in Fig. 5),
while Ib and Ic are negative and vanish for Q → 0 but increase
slowly, in absolute value, with growing Q. We find that |za|
grows initially as Q2 with a prefactor in full agreement with
the quantity (η/n)Q2 mentioned above (the LJ viscosity at
our thermodynamic state is η = 1.971 [22]). We also remark
that, while |zb| starts from zero, too, the width |zc| of the third
Lorentzian line is only weakly dependent on Q and does not
vanish for Q → 0, where it approaches a value close to the
reciprocal of the Maxwell time τM = η/G∞, where G∞ is the
infinite-frequency shear modulus [24,25]. Overall, the low-Q
dynamics complies with the hydrodynamic limit, but the de-
tailed analysis in terms of three exponential modes elucidates
a slight, yet clearly progressive, deviation from the limiting
behavior.

In range II (1.2 � Q � 2.2), the above three-mode model
becomes insufficient for an accurate description of the data,
and four modes are now required, two of which are complex
and two real. One of the latter is labeled c because both its
damping |zc| and amplitude Ic evolve very smoothly from
the corresponding parameters of the c mode of range I, in-
dicating that the same relaxation process is present in both
Q ranges [see Figs. 3(a) and 5]. The other, labeled as d , has
a very large damping |zd | and despite its almost negligible
amplitude, is necessary to reach a high fit quality. In fact,
the last two panels of Fig. 7 show that a simpler fit model
excluding the low-intensity mode d fails in accounting for
the tails of the spectra and, at Q = 1.4 and 2.2, gives a re-
duced χ2 respectively 5 and 200 times larger than that of the
four-mode fits.

The remaining two modes fitted to CT(Q, t ) in range II
form a pair of complex conjugate terms in Eq. (2). It is well
known [26,27] that such a pair describes the dynamics of a

damped harmonic oscillator1 characterized by an undamped
frequency �T, a damping 	T, and, when �T > 	T, an actual

oscillation frequency ωT =
√

�2
T − 	2

T. For the two modes,
again denoted as a and b for the reasons explained below,
one has za,b = −	T ± iωT. Therefore, the two complex modes
contribute to the total CT(Q, t ) with an oscillatory under-
damped component corresponding to a propagating collective
excitation.

However, if the above condition were reversed, with �T <

	T, overdamping would occur and no oscillation would ap-
pear. The two modes would become real, with damping con-

stants given by za,b = −	T ±
√

	2
T − �2

T. In both damping

conditions it is seen that �2
T = zazb and 	T = −(za + zb)/2.

It is then natural to check whether modes a and b de-
termined in range I can be interpreted as representing an
overdamped oscillator which evolves smoothly into the un-
derdamped one defined in range II by �T and 	T. Therefore,
also in range I, we define �2

T = zazb and 	T = −(za +
zb)/2 and observe that both �T(Q) and 	T(Q), reported
in Fig. 3, have a smooth Q dependence in the whole
range 0.2 � Q � 2.2. Remarkably, the sum of the ampli-
tudes of the two modes IT = Ia + Ib also displays a very
smooth crossing of the boundary between range I and II
(see Fig. 5).

We can thus confidently recognize modes a and b as
present in both ranges I and II. Since mode a was seen to
account for the transverse dynamics in the hydrodynamic
limit, we conclude that the onset of the propagating trans-
verse excitation is properly described as the transition of
an oscillator from a low-Q overdamping condition (�T <

	T) to an oscillating one (�T > 	T). This justifies the use
of a single suffix “T” to label the transverse modes. As
shown in Fig. 3(b), the point where the spline interpo-
lations of �T(Q) and 	T(Q) cross each other, which by
definition is Qgap, is determined with great accuracy to
be Qgap = 1.14, and the dispersion curve of the transverse
excitation

ωT(Q) =
√

�2
T(Q) − 	2

T(Q) (3)

is found, where we explicitly indicated the Q dependence of
both quantities under the square root. From the interpolated
values of �T and 	T in range I the behavior of the real-mode
damping coefficients |za| and |zb| is obtained in the vicinity
of the transition point, where they approach each other and
eventually merge into 	T.

1When such an oscillator is employed to model a collective ex-
citation, it is usually referred to by its acronym DHO. However,
when the global dynamics is described by more than two modes,
the constraints to the mode amplitudes must be applied to the whole
set of modes, and not simply to the two modes representing the
oscillator. This fact modifies the expression of the amplitudes with
respect to that of the “pure” DHO model [26,27]. Therefore, although
the oscillators referred to here are indeed harmonic and damped,
in order to prevent ambiguities and possible misunderstandings we
avoid using the acronym DHO.
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FIG. 6. (a) CT(Q, t ) at a Q representative of region I (black circles). The fit result and its components are specified in the legend according
to the labeling of the real modes described in the main text. (b) Corresponding spectrum and fit components.

Figure 7 displays the spectra at Q = 1.4 and 2.2 in order
to show how a double peak develops in the spectrum only
above a certain Q value, while at lower Q, despite the clear
oscillatory component found by the fit procedure in range
II, the spectrum does not (apparently) display any inelastic
feature.

Finally, in range III (2.4 � Q � 3.4), best fits are also
obtained with a four-exponential model for CT(Q, t ), but now
all modes are complex, two of which provide an impressively
smooth continuation to larger Q of the propagating transverse
excitation described by �T(Q), 	T(Q), and IT(Q) (see Figs. 4
and 5). The other complex pair of modes is seen to arise from
the modes denoted as c and d in range II, with exactly the
same kind of transition process from over to underdamping
discussed before for the transverse excitation. Thus, the data
display the onset of a second collective excitation charac-
terized by the undamped frequency �x(Q) and the damping
	x(Q), which in range II are obtained as �2

x = zczd and
	x = −(zc + zd )/2 and in range III are determined directly
as fit parameters. Therefore, at the transition point, located at
Q = 2.4 as the crossing point of spline interpolations of �x

and 	x, a second dispersion curve ωx(Q) = √
�2

x(Q) − 	2
x (Q)

emerges, with a larger slope than that of ωT.
The transverse dispersion curve ωT(Q) cannot be deter-

mined unless it is obtained from the frequencies of the
oscillatory components of CT(Q, t ) at each Q value. This
requires the exponential-mode description, either in the form
used here or in the so-called generalized collective modes
approach [28]; however, in the latter case, the modes are not
fitted to the data. By contrast, the dispersion curve is usually
obtained as the frequency position ωm(Q) of the maxima of
the individual C̃T(Q, ω) spectra. The result of such a pro-
cedure is also shown in Fig. 4 (cyan hexagons). Since in
the present case the spectra show a double-peaked top for
Q � 2.0 only, this method gives for Qgap a value between
1.8 and 2.0, quite larger than the already found Qgap = 1.14.
The values of ωm(Q) not only fail to reproduce the correct
frequencies ωT, but also do not allow to detect the second
excitation ωx in range III. In fact, for Q � 2.0 the shape of
C̃T(Q, ω) does not show any visible difference in passing

from the one-excitation to the two-excitation dynamics
(see Figs. 7 and 8).

As far as the second excitation is concerned, a double
structure in C̃T(Q, ω) has been found in ab initio simula-
tions of some liquid metals [29], though in some cases only
at very high pressures [30,31]. Interestingly, in Ref. [6] it
has also been shown that the transverse current spectra of
liquid gold display a clear shoulder at frequencies rather
close to the maximum frequency of the sound dispersion
curve. Moreover, a mixing of longitudinal and transverse
excitations of CT(Q, ω) was observed in water [32] and
methanol [33]. Here, it is useful to note that, at our highest
Q, the dispersion curve ωx(Q) attains values that already
exceed the transverse frequency ωT by a factor ≈2. There-
fore, although we cannot make any ultimate statement or
claim on the nature of the second excitation, we suggest
that it may be related to the coupling between the longi-
tudinal and transverse dynamics even in this much simpler
fluid.

IV. CONCLUSIONS

We have shown that an EET analysis of CT(Q, t ) allows
for a very accurate representation of the simulated data at all
the investigated wavevectors. The fitting of exponential modes
reveals a rich dynamical behavior and enables a consistent in-
terpretation through the simple concept of damped harmonic
oscillators, discussed in detail in Refs. [26,27], whose intu-
itive meaning is that relaxation and propagation phenomena
are driven by the competition between “elastic” forces and
viscous dissipation, represented by the undamped frequen-
cies (�T or �x) and the damping coefficients (	T or 	x),
respectively. In this way, detailed properties of the transverse
collective dynamics are revealed, including the appearance of
a second excitation so far undetected in simple nonmetallic
fluids, besides the expected emergence of the transverse mode
propagation. Moreover, a very accurate determination of the
threshold Q values is made possible. This work shows that in
the Q evolution of CT(Q, t ), the whole intensity, initially as-
sociated with a single hydrodynamic decay channel, smoothly
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FIG. 7. (a)–(d) CT(Q, t ) and its spectrum at two Q values in region II. Data are shown as black circles. The propagating transverse wave
(T component) is shown as a dashed green curve. The real modes c and d are displayed as a dotted blue and a dot dashed orange curve,
respectively. (e) and (f) Comparison of the fits shown in panels (c) and (d) (red curve) with fits performed by excluding mode d (green curve).

redistributes among four modes which give rise, in pairs, to
the onset of two propagating excitations. An essential require-
ment for such an analysis is the accurate description of the
entire time dependence of CT(Q, t ) in terms of exponential

modes, where the choice of the number and nature of the
modes to be fitted must be made at each Q by duly comparing
the fit quality of different models, while avoiding unjustified
overparametrizations.

014139-6



ONSET OF COLLECTIVE EXCITATIONS IN THE … PHYSICAL REVIEW E 107, 014139 (2023)

FIG. 8. Same as Fig. 6, but for region III. The propagating waves are shown as a dashed green and a dot dashed magenta curves for the
T and X components, respectively.
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