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We study the crossover from the macroscopic fluctuation theory (MFT), which describes one-dimensional
stochastic diffusive systems at late times, to the weak noise theory (WNT), which describes the Kardar-Parisi-
Zhang (KPZ) equation at early times. We focus on the example of the diffusion in a time-dependent random field,
observed in an atypical direction which induces an asymmetry. The crossover is described by a nonlinear system
which interpolates between the derivative and the standard nonlinear Schrodinger equations in imaginary time.
We solve this system using the inverse scattering method for mixed-time boundary conditions introduced by us
to solve the WNT. We obtain the rate function which describes the large deviations of the sample-to-sample
fluctuations of the cumulative distribution of the tracer position. It exhibits a crossover as the asymmetry is
varied, recovering both MFT and KPZ limits. We sketch how it is consistent with extracting the asymptotics of a
Fredholm determinant formula, recently derived for sticky Brownian motions. The crossover mechanism studied
here should generalize to a larger class of models described by the MFT. Our results apply to study extremal
diffusion beyond Einstein’s theory.

DOI: 10.1103/PhysRevE.107.014137

I. INTRODUCTION

A. Overview and model

For one-dimensional stochastic systems with a diffusive
scaling at large time, such as the symmetric exclusion process
(SEP), the macroscopic fluctuation theory (MFT) [1] provides
a powerful framework to describe the large deviations of the
density and current [2]. Upon introduction of an asymmetry or
driving, such as in the asymmetric exclusion process (ASEP)
[3], the diffusive scaling breaks down above some scale, and
the large-scale behavior of the model is usually described
by the Kardar-Parisi-Zhang (KPZ) universality class [4]. A
paradigmatic member of this class is the KPZ equation [5],
which can be obtained as the continuum limit of the ASEP
with a weak asymmetry [6]. The large deviations for the
KPZ equation at short time can be described using the so-
called weak noise theory (WNT) [7–9]. It is a close cousin of
the MFT; both reduce the calculation of large-deviation rate
functions to solving saddle-point partial nonlinear differential
equations, not always an easy task. A natural question is to
understand, in presence of a small but relevant asymmetry,
the nature of the crossover from the MFT to the WNT. We
can expect that it should be somewhat subtle since the MFT
describes the large deviations at large time, while the WNT
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describes the large deviations for the KPZ equation at short
time.

Recently, exact solutions of the WNT equations were
obtained by us [10,11]. It required to extend the inverse
scattering method of Refs. [12,13] to mixed-time boundary
conditions on the so-called {P, Q} system, a close cousin of the
nonlinear Schrodinger equation (NLS). In this paper we show
on an example that the crossover from the MFT to the WNT
can be realized as the crossover from the derivative nonlinear
Schrodinger equation (DNLS) [14] to the NLS equation. We
focus on a model for the diffusion of a particle (also called
a tracer) at position y(τ ) convected by a centered Gaussian
random field η(y, τ ) which is white noise in time and short-
range correlated in space, described by a Langevin equation,

dy(τ )

dt
=

√
2η(y(τ ), τ ) + χ (τ ), (1)

where χ is a standard white noise in time. In this paper
we consider the limit where η(y, τ ) is white noise also
in space. Equivalently, the probability density function
(PDF) for the particle position in a given realization of η,
qη(y, τ ) = 〈δ(y(τ ) − y)〉χ , obeys the Fokker-Planck equation

∂τ qη(y, τ ) = ∂2
y qη(y, τ ) − ∂y(

√
2η(y, τ )qη(y, τ )). (2)

This model, and its discrete random walk versions, has
been revisited recently [15–20]. The typical behavior is rather
dull, and is given by the random field average qη(y, τ ) which
yields standard diffusion y ∼ √

τ . However, in the space-
time directions which are atypical for the random walk, e.g.,
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y ∼ v τ , it exhibits interesting sample to sample fluctuations
related to the KPZ class [15]. In fact, in the small v regime
(more precisely for y ∼ τ 3/4), it maps to the KPZ equation it-
self (as predicted in Refs. [16,18] and proved in Ref. [20],
see also Ref. [17]). These predictions found interesting ap-
plications in quantum models with noise, for the study of
observables dominated by atypical trajectories [21]. They
also lead to interesting predictions for extremal diffusions
[15,16,20,22], i.e., for the position of the maximum of N
independent particles, see below. It turns out that Eq. (2) also
arises from a lattice gas model of heat transfer, the Kipnis-
Marchioro-Presutti (KMP) model [23], to which the MFT has
been applied [1,24–36]. Hence, we anticipate a crossover from
the MFT to the WNT when focusing on less and less typical
directions. It is an interesting and open question to understand
how the large-time large deviations of this model match the
short-time large deviations of the KPZ equation.

In this paper we show that this crossover is described by
the so-called interpolating system, see Eq. (11) below. Using
inverse scattering methods we provide the solution for this
system and obtain the large deviation function of a particular
observable. At the end we sketch how the result agrees with
the asymptotic behavior of a Fredholm determinant formula
for this observable obtained in Ref. [19] for a related model of
sticky Brownian motions.

B. Observables of interest

We consider a particle which is at position y = 0 at time
τ = 0 and study the statistics of the probability Z (Y, T )
(quenched w.r.t. η) that at time τ = T it is found to the right
of y = Y ,

Z (Y, T ) = P (y(T ) > Y |y(0) = 0). (3)

We also need to introduce H (Y, T ) the logarithm of this
probability, our observable of interest here. It also equals

Z (Y, T ) = eH (Y,T ) =
∫ +∞

Y
dy qη(y, T ), (4)

with qη(y, 0) = δ(y). Note that H (Y, T ) ∈ [−∞, 0] since Z =
Z (Y, T ) ∈ [0, 1]. Z (Y, T ) is itself a random variable that fluc-
tuates depending on the realization of η(y, τ ), which from now
on is a standard white noise in space and time. We consider the
diffusive scaling so that Y, T are large, with Y = ξ

√
T , where

ξ = O(1) is fixed and plays the role of the asymmetry param-
eter. We are interested in the tails of the PDF of Z = Z (Y, T ),
equivalently of H = H (Y, T ), which take the large deviation
forms for T � 1,

P (Z ) ∼ e−√
T �̂(Z ), P (H ) ∼ e−√

T �(H ), (5)

where �(H ) = �̂(Z = eH ) is the rate function which we want
to compute, together with its (implicit) dependence in ξ .

We perform a change of variable y = x
√

T , τ = tT , and√
T qη(y, τ ) = Qη̃(x, t ) so that Eq. (2) becomes

∂t Qη̃ = ∂2
x Qη̃(x, t ) − T −1/4∂x(

√
2η̃(x, t )Qη̃(x, t )), (6)

where η̃ is a standard white noise and Z (Y, T ) =∫ +∞
ξ

dx Qη̃(x, 1). To obtain �(H ) in Eq. (5) we will first cal-
culate the rate function 	(z) which is the cumulant generating

function with Laplace parameter z,

exp(−z
√

T Z (Y, T )) ∼ exp(−
√

T 	(z)). (7)

Since Z is a random variable taking values in [0,1], 	(z)
is defined for any real value of the Laplace parameter z,
with 	 ′(z) ∈ [0, 1]; see Appendix D. Using Eq. (5) one can
compute the expectation value in the left-hand side (l.h.s.) of
Eq. (7) for T � 1 via a saddle-point method and obtain the
relation

	(z) = min
H�0

[�(H ) + zeH ] = min
Z∈[0,1]

[�̂(Z ) + zZ], (8)

which shows that 	(z) and �(H ) are Legendre transforms
[37]. The minimum in Eq. (8) is attained at H = H (z) which
is a solution of �′(H ) = −zeH . As will be explained subse-
quently, a remarkable feature of the present problem is that for
ξ >

√
8 this equation has more than one solution, which leads

to different possible branches for 	(z). In that case, we will
call the “optimal” 	(z) the function defined from Eq. (8) [and
Eq. (7)], i.e., as a global minimum, which will thus exhibit
a first-order transition, with a jump in 	 ′(z). Our strategy
will be to compute all branches of 	(z), which allow us to
reconstruct �(H ) and �̂(Z ). As we will see below, both �(H )
and �̂(Z ) are smooth functions. However, they can develop
nonconvex parts leading to a first-order transition in 	(z), as
in other large deviation problems [44].

C. Outline

The outline of the paper is as follows. We start by showing
that the problem is described by the interpolating system in
Sec. II. In Sec. III we solve the interpolating system using
the inverse scattering method for mixed-time boundary con-
ditions. Section IV is devoted to the results as applied to
the present problem in MFT. In Sec. IV A we give the main
branch of 	(z) and in Sec. IV B we show that there are other
branches, we obtain them as well as �(H ). In Sec. IV C we
discuss the first-order transition in 	(z) and in Sec. IV D the
structure in terms of solitons. In Sec. V we study the large ξ

limit and show that it matches the known results from WNT
for the KPZ equation at short time. In Sec. VI we sketch an
asymptotic analysis of a Fredholm determinant formula. In
Sec. VII A we apply our results to the problem of the extremal
diffusion. Finally, in Sec. VII B we discuss other models such
as the SEP. The derivations in the main text have been stream-
lined, and all the details are contained the Appendices.

II. INTERPOLATING SYSTEM

To compute 	(z) we note that, as in Ref. [10], the l.h.s. of
Eq. (7) can be represented as a path integral∫∫

DQDPe−√
T (S[P,Q]+z

∫ +∞
ξ

dx Q(x,1)), (9)

where the associated dynamical action is

S[P, Q] =
∫ 1

0
dt

∫
R

dx
[
P
(
∂t − ∂2

x

)
Q − Q2(∂xP)2

]
, (10)

and P
√

T is the response field. In the large T limit the
path integral in Eq. (9) is controlled by its saddle point.
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Taking the functional derivatives w.r.t. {P, Q}, introducing the
field R(x, t ) = ∂xP(x, t ), and performing a Galilean transfor-
mation x → x − ξ t to bring ξ back to zero (see details in
Appendix A), we arrive at the system of coupled equations

∂t Q = ∂2
x Q + 2β∂x(Q2R) + 2gQ2R,

−∂t R = ∂2
x R − 2β∂x(QR2) + 2gQR2, (11)

with β = −1 [38] and g = −βξ/2 and with the mixed-time
boundary conditions

Q(x, t = 0) = δ(x), R(x, t = 1) = �δ(x), (12)

with β� = ze− ξ2

4 [39]. Once this system is solved, the value
of 	(z) is obtained from the saddle point via (see Appendix A)

	 ′(z) =
∫ +∞

0
dx Q(x, 1)e− 1

2 xξ− ξ2

4 (13)

and 	(0) = 0, where Q(x, 1) is the z-dependent solution of
the above system. This system interpolates between (i) the
{P, Q} system for β = 0 (with P called R here), i.e., the cousin
of the NLS equation [12,13] which controls the WNT of the
KPZ equation [10,11], and (ii) the cousin of the DNLS equa-
tion [14] for g = 0, which controls the MFT for this model
for ξ = 0 [40]. Thus, as ξ = Y√

T
is increased, g increases

and in the limit of large ξ , which corresponds to atypical
directions, one recovers the large deviations associated to the
KPZ equation (see below). Remarkably, this interpolating sys-
tem is again integrable [41]. We will thus extend the inverse
scattering analysis of our previous work [10,11] on the {P, Q}
system. Note in passing that the functions Q(x, t ) and R(x, t )
are not even for β �= 0 but as in the {P, Q} system they still
enjoy the symmetry

R(x, t ) = �Q(−x, 1 − t ). (14)

III. INVERSE SCATTERING SOLUTION OF THE
INTERPOLATING SYSTEM

We now solve the problem using the inverse scattering
method. It is a simple generalization of our previous works
[10,11] so we will sketch it. The Lax pair of linear differential
equation reads ∂x�v = U1�v, ∂t �v = U2�v, where �v = (v1, v2)ᵀ is
a two component vector (depending on x, t, k), where

U1 =
(

− ik
2 −(g + iβk)R(x, t )

Q(x, t ) ik
2

)
, U2 =

(
A B
C −A

)
,

(15)

with A = k2

2 − (g + iβk)QR, B = −(g + iβk)((ik − ∂x )R +
2βQR2), C = (∂x + ik)Q + 2βQ2R. One can check that the
compatibility condition ∂tU1 − ∂xU2 + [U1,U2] = 0 recovers
(11). Let �v = ek2t/2φ with φ = (φ1, φ2)ᵀ and �v = e−k2t/2φ̄ be
two independent solutions of the linear problem such that at
x → −∞, φ 
 (e−ikx/2, 0)ᵀ and φ̄ 
 (0,−eikx/2)ᵀ. Assuming
from now on that {Q, R} vanish at infinity, the x → +∞
behavior of these solutions defines scattering amplitudes

φ 

x→+∞

(
a(k, t )e− ikx

2

b(k, t )e
ikx
2

)
, φ̄ 


x→+∞

(
b̃(k, t )e− ikx

2

−ã(k, t )e
ikx
2

)
. (16)

Plugging this form into the ∂t equation of the Lax pair at x →
+∞, one finds a very simple time dependence, a(k, t ) = a(k)
and b(k, t ) = b(k)e−k2t , ã(k, t ) = ã(k) and b̃(k, t ) = b̃(k)ek2t .
Another normalization relation is obtained from the Wron-
skian of the two solutions, a(k)ã(k) + b(k)b̃(k) = 1.

Integrating the ∂x equation of the Lax pair successively for
φ̄ and φ at t = 0 and at t = 1, using Eq. (12), allows us to
obtain (see details in Appendix B)

b̃(k) = (g + iβk)�e−k2
, b(k) = 1, (17)

and

a(k) = 1 − (g + iβk)�Q−(k),

ã(k) = 1 − (g + iβk)�Q+(k), (18)

where we have defined the half-Fourier transforms

Q±(k) =
∫
R±

dx Q(x, 1)e−ikx, (19)

where R± refers to the positive axis R+ or the negative axis
R−, respectively. From the normalization relation one also
obtains

a(k)ã(k) = 1 − b(k)b̃(k) = 1 − (g + iβk)�e−k2
, (20)

which Q±(k) must satisfy. For β = 0 this equation was first
obtained by us in Ref. [10] and used recently in Ref. [42]. As
noted there, it is akin to the Fourier transform of the Wiener-
Hopf formulas obtained in Ref. [35, Eqs. (S65) and (S66)].
Our Eq. (20) is thus the natural extension to arbitrary g, β.

Taking these relations in the large k limit we obtain that
Q(x, 1) has a jump at x = 0, with some relation between
the right and left values Q(0±, 1). We now follow similar
manipulations as in the recent work [40], the details are given
in Appendix C. As k → ∞ one has

Q±(k) 
 ± 1

ik
Q(0±, 1), (21)

a(k) 
 1 + β�Q(0−, 1), (22)

ã(k) 
 1 − β�Q(0+, 1). (23)

Equation (20) at k → ∞ thus implies a first relation,

[1 − β�Q(0+, 1)][1 + β�Q(0−, 1)] = 1. (24)

The complete solution of Eq. (20) is given by (see Ap-
pendix C)

a(k) = (1 + β�Q(0−, 1))e�+(k),

ã(k) = (1 − β�Q(0+, 1))e�−(k), (25)

where

�±(k) = ±
∫
R

dq

2iπ

ln(1 − (g + iβq)�e−q2
)

q − k ∓ i0+

= ±−
∫
R

dq

2iπ

ln(1 − (g + iβq)�e−q2
)

q − k

+ 1

2
ln(1 − (g + iβk)�e−k2

). (26)

The first expression for �±(k) is valid for k in the com-
plex upper/lower half plane including the real line, while the
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second is valid for real k only. In the limit β → 0 one has
Q(0+, 1) = Q(0−, 1) and one recovers the same formula as
first obtained in Ref. [10]. In the limit g → 0 one recovers the
recent result in Ref. [40].

We still need to determine the two unknown constants
Q(0±, 1) which are related by Eq. (24). Combining Eqs. (18)
and (25) we obtain the relation

(g + iβk)�Q∓(k) = 1 − (1 ± β�Q(0∓, 1))e�±(k), (27)

which is valid for �(k) ∈ R±. Taken at k = ig
β

= −i ξ

2 one
obtains

1 ± β�Q(0∓, 1) = e−�±(ig/β ), (28)

where, for g/β �= 0,

�±(ig/β ) = ±β

∫
R

dq

2π

ln(1 − (g + iβq)�e−q2
)

g + iβq
(29)

are opposite real numbers, so that Eq. (28) is compatible with
Eq. (24). As discussed below and in Appendix C, Eqs. (26)
and (29) are valid only for �g < 1.

IV. SPECIALIZATION OF THE SOLUTION
TO THE MFT PROBLEM

A. Rate function �(z): main branch

We now compute 	(z) from Eq. (13) and replace β = −1,
g = −β

ξ

2 and β� = ze−ξ 2/4. We note that the right-hand side
(r.h.s.) of Eq. (13) is equal to

	 ′(z) = Q+

(
k = −i

ξ

2

)
e− ξ2

4 = 1 − Q−

(
k = −i

ξ

2

)
e− ξ2

4 ,

(30)

where the second equality comes from the conservation of
probability [see Eq. (A13)]. These quantities [Q±(k = −i ξ

2 )]
can be obtained by taking derivatives. Taking a derivative
w.r.t. k of Eq. (27) at k = ig

β
= −i ξ

2 and using Eq. (28) one
obtains (see details in Appendix E)

z	 ′(z) = −
∫
R

dq

2π

ln
(
1 − z

(
iq − ξ

2

)
e−q2− ξ2

4
)

(
iq − ξ

2

)2 + z�(−ξ ),

(31)
where here and below we use the convention that �(0) = 1/2
and the principal part is needed only for ξ = 0. Integrating
over z one obtains

	(z) = −−
∫
R

dq

2π

Li2
(
z
(
iq − ξ

2

)
e−q2− ξ2

4
)

(
iq − ξ

2

)2 + z�(−ξ ), (32)

where the last term guarantees analyticity of 	(z) in ξ . Denot-
ing here 	ξ (z) to indicate the dependence in ξ and performing
the change q → −q in the integrand we see that it obeys the
symmetry

	−ξ (z) = 	ξ (−z) + z, (33)

which is expected from the definition (7), since upon the sym-
metry y → −y in Eqs. (2) and (4), the PDF of Z (Y, T ) must
be the same as the PDF of 1 − Z (−Y, T ), see Appendix D.

For ξ = 0 one can check (see Appendix H 5) that Eq. (32) is
consistent with the result in Ref. [40].

Expanding Eq. (32) in series of z one predicts the cumu-
lants of the probability Z = Z (Y, T ) in Eq. (3). The first one
is the typical value Z = Ztyp(ξ ) = eHtyp(ξ ) (i.e., in a typical
random field η),

Ztyp(ξ ) = 	 ′(0) = −−
∫
R

dq

2π

e−q2− ξ2

4

iq − ξ

2

+ �(−ξ )

= 1

2
Erfc

(
ξ

2

)
=

∫ +∞

ξ

dx√
4π

e− x2

4 , (34)

as expected since the mean (and typical) behavior is standard
diffusion. The second cumulant is predicted as Z (Y, T )2

c 

−T −1/2	 ′′(0) = 1

4
√

2πT
e− ξ2

2 , as confirmed by a direct weak-
noise expansion, see Appendix H 6 (and Appendix H 7 for the
cumulants of H = ln Z).

B. Branch cuts, branches of �(z), and the rate function �(H )

We will determine in this section the rate function �(H )
for ξ � 0 [for ξ < 0 we rely on the symmetry (33)]. From our
expression for 	(z) a priori one can now determine the rate
function for the PDFs in Eq. (5) by inverting the Legendre
transform (8), which gives the parametric representation

�(H ) = 	(z) − zeH , 	 ′(z) = eH , (35)

and in terms of Z ,

�̂(Z ) = 	(z) − zZ, Z = 	 ′(z). (36)

As mentioned in the Introduction, the parametric representa-
tion (36) can lead to different branches, i.e., a multivaluation
of 	(z). The ”optimal” 	(z), i.e., solution of the Legendre
transform (8), is defined as the minimum over the different
branches.

The origin of these different branches can be traced to
the ambiguity which remains for 	(z) since we have not
specified the determination of the logarithm in Eq. (31). The
functions ln(1 − x), and Li2(x) [which appeared in Eq. (32)],
admit a branch cut for x > 1. There are thus branch cuts in
the complex plane for q, which is the integration variable in
Eq. (31), and for some values of {z, ξ} one of these branch
cuts may cross the integration axis, see figures in Appendix G
(see also Appendix F for a recall of the case of the KPZ
equation). These branch cuts originate from the values of q
such that the argument of the logarithm in Eq. (31) vanishes.
Parameterizing the integration variable as q = ip, we then
have to find the solutions (i.e., the zeros) of the following
equation

e−p2+ ξ2

4 + z

(
p + ξ

2

)
= 0. (37)

For z > zc where zc = − 2
ξ
eξ 2/4 � 0, there is never a branch

cut crossing the real axis, see Appendix G, hence Eqs. (31)
and (32) are valid in this regime and determine what we call
the main branch (as detailed in Appendix E).

For z < zc all real solutions of Eq. (37) for p are negative
and as consequence one branch cut crosses the real axis,
see Appendix G. It is then necessary to obtain the analytical
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TABLE I. Determination of the jump function �(z) in the different phases in the case ξ � 0. One has zc = − 2
ξ
eξ2/4 � 0 and the points

z = zc1 and z = zc2 are turning points which depend on ξ . In the interval z ∈ [zc1, zc2], the function �(z) is multivalued (i.e., it has several
branches) due to these turning points. The definition of �� is given in Eq. (39).

ξ 0 � ξ � ξ1
ξ1 � ξ � ξ2

zc1 < zc2 < zc

ξ2 � ξ

zc1 < zc < zc2

�(z) =
{

0, zc < z
�1(z), z < zc

⎧⎪⎪⎨
⎪⎪⎩

0, zc < z
�1(z), zc1 < z < zc

�2(z), zc1 < z < zc2

�3(z), z < zc2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, zc < z
�1(z), zc1 < z < zc

�2(z), zc1 < z < zc

�2(z) − �1(z), zc < z < zc2

�3(z) − �1(z), zc < z < zc2

�3(z), z < zc

continuation of Eqs. (31) and (32) to any z by deforming the
contour of integration for q to avoid this branch cut. In the
easiest case this is possible in the complex plane, and in other
cases one needs to consider the Riemann sheets, which leads
to more branches and multivaluation. The analysis is involved
and detailed in Appendix G. Here we summarize the main
results. The general formula for 	(z) takes the form

	(z) = 	0(z) + �(z), (38)

where 	0(z) is the same integral as in Eq. (32) [43], and
�(z) is the jump contribution from the branch cut, which is
discussed below. The convention �(z) = 0 defines the main
branch of 	(z). The other branches and the form of �(z) as a
function of ξ and z are shown in Table I.

To understand Table I one needs to first discuss the behav-
ior of the real zeros of Eq. (37) which are the relevant ones to
determine 	(z). For zc � z � 0, there is always one positive
zero to Eq. (37) denoted p1 = p1(z, ξ ). For z < zc, the zeros
of Eq. (37) are all negative and their number is:

(1) for 0 < ξ < ξ1 = √
8, there is one zero p1(z, ξ );

(2) for ξ1 < ξ and z ∈]zc1, zc2[ there are three zeros
p1(z, ξ ) > p2(z, ξ ) > p3(z, ξ ). The zeros degenerate, i.e.,
p1 = p2 for z = zc1 and p2 = p3 for z = zc2 which define
zc1, zc2. For z > zc2, there is only one zero p1(z, ξ ). For z <

zc1, there is only one zero p3(z, ξ ).
Note that zc1 < zc2 < 0, with zc1 = zc2 at ξ = ξ1, and their

explicit expression and dependence on ξ is given in the Ap-
pendix in Eq. (H2).

To come back to 	(z) we now define a jump function for
� = {1, 2, 3} as

��(z) = −
∫ zc

z

dz′

z′
4p�(z′, ξ )

ξ (2p�(z′, ξ ) + ξ )
, (39)

see Eqs. (G14) and (G17) in the Appendix for more explicit
formula. Our result, as we now discuss, is that the jump �(z)
in Eq. (38) is always a linear combination of the ��(z).

Remarkably, the behavior of 	(z) exhibits three “phases”
depending on the value of ξ with respect to the two critical
values ξ1 = √

8 and ξ2 
 3.13, Eq. (H1) in the Appendix; see
Table I. The function �(z) is multivalued (i.e., it has several
branches) for ξ > ξ1 and z ∈ [zc1, zc2]. Using the correspond-
ing expressions for 	(z) = 	0(z) + �(z) one can compute
	 ′(z) for each branch, which is shown in Fig. 1(a). Using the
parametric system (35) one obtains the relation between z and
H , which reads Z = eH = 	 ′(z) and is shown in Fig. 1(b).
Note that z(H ) is single-valued but H (z) may not be. One also

obtains the rate function �(H ), plotted in Fig. 1(c) and �̂(Z ),
plotted in Fig. 1(d). We now comment on these plots.

We start with ξ < ξ1. In that case, see Fig. 1(a), the
function 	 ′(z) is nicely decreasing from 	 ′(−∞) = 1 to
	 ′(+∞) = 0 and it leads to a function H (z) which is single-
valued and monotonous. In Table I, the appearance of �1(z)
below zc is due to the fact that the zero p1 becomes negative
and the branch cut of the logarithm in Eq. (31) crosses the real
axis.

For ξ > ξ1 the function 	 ′(z) is multivalued in the in-
terval z ∈ [zc1, zc2], as can be seen in Fig. 1(a). Outside of
z ∈ [zc1, zc2], 	 ′(z) is monotonously decreasing and it still
has the correct limits 	 ′(−∞) = 1 to 	 ′(+∞) = 0. As a
consequence of the multivaluation of 	 ′(z), the correspond-
ing function z(H ), shown in Fig. 1(b), is not monotonous
anymore, which implies that H as a function of z ∈ [zc1, zc2]
has three branches, Hj (z), j = 1, 2, 3. These correspond to
the three extrema of �(H ) + zeH , and among these extrema
only one is the absolute minimum. In Table I, the appearance
of �2(z) and �3(z) arise from the fact that (i) at the turning
point z = zc1 we stop following the first zero p1 and start
following p2 instead, (ii) at the turning point z = zc2 we stop
following the second zero p2 and start following p3 instead.
The turning points are located where the consecutive zeros
pi(z, ξ ) coalesce.

For ξ � ξ2, the ordering between zc and zc2 changes.
Hence, to follow the second zero p2 until its coalescence with
p3, one needs to cross z = zc where the branch cut of the
logarithm in Eq. (31) crosses again the real axis, requiring to
take into account the jump �1(z) again.

C. Multivaluation and first-order transition

To interpret the S-shape form of 	 ′(z) shown with all its
branches in Fig. 1(a), we recall that the optimal 	 ′(z) = 〈Z〉z

is the expectation value of the random variable Z under the
z-dependent tilted measure

P (Z )e−√
T zZ ∼ e−√

T (�̂(Z )+zZ ). (40)

The key point is that for ξ > ξ1 the function �̂(Z ) has a con-
cave part; see Fig. 1(d). As a consequence, for z ∈ [zc1, zc2] the
tilted measure (40) develops three extrema at Zj (z) = eHj (z),
solutions of �̂′(Z ) = −z. They lead to the three branches of
	 ′(z) = Zj (z). Equivalently, there are three extremal values
Hj (z) in Eq. (8) solutions of Eq. (35). The “optimal” 	(z) is
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FIG. 1. For ξ = (0, 1, 2, 3, 4, 5) we plot the following. (Top left (a)) The derivative rate function 	 ′(z) from Table I as a function of z,
with 	 ′(+∞) = 0 and 	 ′(−∞) = 1 (all the branches are shown). For ξ > ξ1 and z ∈ [zc1, zc2] the function is multivalued (see text). (Inset)
First-order transition: at z = z∗ such that the areas of the two shaded regions become equal the value of (the optimal) 	 ′(z) jumps from one
branch to the other, shown for ξ = 4. (Top right (b)) The function z = z(H ) from the Legendre transform (35). The reciprocal function H (z)
is multivalued for ξ > ξ1 and z ∈ [zc1, zc2]. (Bottom left (c)) The large deviation rate function �(H ) versus H , obtained using the parametric
representation (35) and Table I. As ξ increases, the location Htyp of the minimum at �(Htyp ) = 0 is shifted toward negative values. (Bottom
right (d)) The rate function �̂(Z ) versus Z . For ξ = 0, it is symmetric around Z = 0.5 and one recovers the result of Ref. [40] (in general,
the symmetry is Z (ξ ) ↔ 1 − Z (−ξ )). For large values ξ > ξ1, �̂(Z ) develops a concave part which is responsible for the first-order phase
transition.

determined by the minimum in Eq. (35); hence, it is given by

	(z) = min
j=1,2,3

[�̂(Zj ) + zZ j], (41)

and the optimal j switches from j = 1 to j = 3 at z = z∗(ξ ),
where z∗ is the solution of (see Appendix H)

�1(z∗) = �3(z∗). (42)

It is also the point given by an equal area law on the curve
	 ′(z), as in standard magnetization versus field curve for a
first-order phase transition; see Fig. 1(a) (inset). The points
Z = {Z1, Z3} are “stable,” whereas Z = Z2 is “unstable.” The
optimal rate function 	(z) thus exhibits a first-order transi-
tion. This type of transition occurs in other large deviation
problems [44].

D. Solitons

Let us discuss the significance of the multiple branches in
terms of the nature of the solutions of the interpolating system
(11). For any value of ξ , the logarithm in the integrand of
�± in Eq. (26) has branch cuts for q in the complex plane.
Equivalently, the product a(k)ã(k) in Eq. (20) vanishes for
some complex k = ks = ipc where pc are generic complex
solutions of Eq. (37), indicating the spontaneous generation
of a soliton [12]. This means that additional solutions with a
solitonic component are possible, as was the case for the WNT
of the KPZ equation [10,11]. For that problem, by obtaining
the exact solution of the {P, Q} system for any space-time
point, we were able to show that the multivaluation of 	(z)
was equivalent to the coexistence of two solutions (in that
case with and without a soliton) for the same mixed-time
boundary conditions. Here, for ξ >

√
8 the multivaluation of
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	(z) similarly indicates the coexistence of three solutions for
�g ∈ [zc2/zc, zc1/zc] (a ξ -dependent interval), at least two of
them being solitonic. Each of these solutions give rise to a
different value Zj (z), i.e., of the value of the right hand side of
Eq. (13). The precise nature and interactions of these solitons
will be investigated in a subsequent work [45].

V. LARGE ξ LIMIT AND CONVERGENCE TO KPZ.

We now consider the limit where the tracer particle is
located extremely far, i.e., ξ → +∞. In that limit we can ap-

proximate in Eq. (32) iq − ξ

2 
 − ξ

2 and define z̃ = z ξ

2 e− ξ2

4 =
−z/zc to obtain

	0(z) 
 −−
∫
R

dq

2π

Li2
(−z ξ

2 e−q2− ξ2

4
)

(
ξ

2

)2 = 4

ξ 2
	KPZ(z̃), (43)

where

	KPZ(z̃) = − 1√
4π

Li5/2(−z̃) (44)

is the main branch of the large-deviation rate function for the
height field hKPZ(0, TKPZ) of the KPZ equation with droplet
initial condition. This rate function was obtained in Ref. [46]
from a Fredholm determinant formula and in Ref. [10] from
the exact solution of the WNT, i.e., of the {P, Q} system. It
admits a second branch denoted 	KPZ(z̃) + �KPZ(z̃), which is
also recovered; see below.

Hence, at the level of the large deviations, the MFT in
the regime Y ∼ √

T recovers, in the large ξ = Y√
T

limit, the
result of the WNT for the KPZ equation valid for small KPZ
time TKPZ � 1. Comparing [10,46] and the present result (43)
shows that the correspondence between the MFT time T and
the KPZ time TKPZ reads (see Appendix I 7)

TKPZ = Y 4

16T 3
= ξ 4

16T
. (45)

This can be compared with Ref. [20] where it was shown, in
the different scaling regime Y ∼ T 3/4, i.e., TKPZ = O(1), that

in law Z (Y, T ) 
 Y
2T e− Y 2

4T ehKPZ (0,TKPZ ), with the same TKPZ as

in Eq. (45) (see Appendix I 7 for details). Since z̃ = z ξ

2 e− ξ2

4 ,
the two results match perfectly, showing that no intermediate
regime exists between the diffusive scaling Y ∼ √

T and the
of the finite-time KPZ equation scaling Y ∼ T 3/4 (note that
the large-time Tracy-Widom KPZ class universality is seen
only for Y � T 3/4).

Finally, as detailed in Appendices I 1 and I 7, we obtain
the convergence at large ξ � 1 of the rate function for the
logarithm H = ln Z , to the rate function of the reduced KPZ
height HKPZ

�(H ) 
 4

ξ 2
�KPZ(HKPZ), (46)

with the correspondence H = − ξ 2

4 − ln( ξ

2 ) + HKPZ and �KPZ

is the rate function for the KPZ equation, see details and
definitions in I 7.

We now discuss what happens to the other branches of 	(z)
at large ξ . We show how the second branch of the KPZ rate
function and the value of its jump, �KPZ, is recovered in the

limit. Recovering this second branch, which exists for −1 �
z̃ < 0, is necessary for Eq. (46) to hold for all HKPZ ∈ R. To
this aim, we first define the rescaled critical values of z as

z̃c = − zc

zc
, z̃c1 = − zc1

zc
, z̃c2 = − zc2

zc
, (47)

and take their large ξ limit which reads

z̃c = −1, z̃c1 
 −1, z̃c2 
 0. (48)

From the last column of Table I we now see that, in that
limit:

(1) the branches �1(z) and �2(z) disappear due to the
coalescence of zc and zc1,

(2) the next branch recovers the second branch of the KPZ
limit, i.e.,

�2(z) − �1(z) → 4

ξ 2
�KPZ(z̃) = 16

3ξ 2
ln

(−1

z̃

) 3
2

, (49)

which can be explicitly checked (I 1).
(3) When z̃ approaches z̃c2, we obtain in the large ξ limit

that the corresponding value of HKPZ goes to +∞, hence the
branches �3(z) − �1(z) and �3(z) disappear at infinity, see
Fig. 7 in Appendix I. This corresponds to events where Z =
O(1) which become irrelevant in that limit [47].

VI. FREDHOLM DETERMINANT FORMULA

We can now compare our result (32) obtained using the in-
verse scattering method, to a formula obtained by completely
different methods, for a model of sticky Brownian motions
[19]. That model, which allows for a rigorous formulation, is
believed (up to mathematical subtleties) to be equivalent to the
one considered here. The original formula of Ref. [19] is valid
for any time T and any Y , and here we obtain its limit in the
large deviation diffusive scaling regime. Applied to our model
this formula reads

e−uZ (Y,T ) = det(I − Ku), (50)

where the kernel Ku was derived in Ref. [19, Theorem 1.11]
and is recalled in Eq. (J4).

We scale u = √
T z with z = O(1) in Eq. (50) so that the

l.h.s. of Eq. (50) can be identified to the l.h.s. of Eq. (7). We
perform asymptotic analysis on the kernel Ku and extract the
large T large deviation rate function 	(z) by using the first
cumulant method introduced in Refs. [48–50]. The manipula-
tions, sketched in Appendix J, are quite heuristic, but allow
us to recover nicely the algebraic form of formula (32). It
remains open how to make it more mathematically rigorous.

VII. APPLICATIONS

A. Extremal diffusions

Consider the rightmost of N independent particles in the
same random field, of position YN (T ) = maxi=1,...,N Yi(T ).
Without random field and for N � 1, YN (T ) has a deter-
ministic part 
 2

√
T ln N plus a “thermal” fluctuation part


 G
√

T
ln N , G being a Gumbel random variable. With the

random field, for ln N ∼ T � 1, there is also a O(1) sample-
to-sample fluctuation part, with a Tracy-Widom distribution
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[15,22]. In the more accessible regime ln N ∼ √
T � 1, as

shown in Refs. [16,20] this fluctuating term is distributed as
h(0, TKPZ)/

√
ln N , the droplet solution of the KPZ equation.

These phenomena go beyond the Gaussian nature of Ein-
stein’s diffusion. They allow for a detectable fingerprint of
the random medium. Recently, these two regimes have been
observed numerically [51]. The present results allow us to
study yet another regime, ln N � √

T , where diffusive scaling
holds and the scaled position yN (T ) = YN (T )√

T
of the maximum

converges to

yN (T ) 
 2
√

ln N + G − cN + δH√
ln N

, (51)

where for typical environments δH = O(T −1/4) is an
Edwards-Wilkinson random variable with a computable vari-
ance, see Appendix K, and for rare environments δH = H −
Htyp(ξ ) = O(1) with the rate function (5) computed here
and ξ = 2

√
ln N . We also find that in the regime N ∼ √

T
the disorder average CDF takes the large deviation form
P (yN (T ) < ξ ) ∼ e−√

T �ξ (n), with n = N√
T

= O(1) fixed, and
�ξ (n) a rate function explicitly obtained in Appendix K.

B. Extension to the SEP

Our results are relevant within the class of MFT models
with quadratic noise variance σ (�). These models enjoy a
mapping to the {R, Q} DNLS system (A7); see Appendix L.
Recently, the exact solution of the MFT of the SEP was
investigated in Ref. [42] using the well-known gauge transfor-
mation of Wadati and Sogo [65, Eq. (4.5)], to map the {R, Q}
DNLS system to the {P, Q} NLS system. The remarkable
result of Ref. [42] is that under this gauge transformation, the
annealed initial condition of the SEP is mapped onto the initial
condition solved by us in Ref. [10] (with different coupling
constant [52]). The natural extension of Ref. [42] would be to
study the statistics of a tracer at arbitrary position in an MFT
model with quadratic variance and annealed initial condition.
The inverse scattering method we have pursued in this work
provides the right tools to answer this question.

VIII. CONCLUSION

We have elucidated here in great detail the crossover upon
adding an asymmetry, between the MFT for diffusive systems

and the WNT of the KPZ equation. We have focused on
the example of the diffusion of a tracer in a time-dependent
random medium in an atypical direction and a “droplet”-type
initial condition. We have obtained the large-deviation func-
tions in the context of classical integrability using simple,
standard and versatile inverse scattering methods. For this
model it was based on the integrable crossover between the
DNLS and NLS equations. Obtaining the complete solution
of this interpolating system (11) beyond the large-deviation
observable requires further efforts involving the use of Fred-
holm determinants similarly to what we have achieved in
Refs. [10,11] for the complete solution of the WNT. This is
one open question that we leave to subsequent works [45], to-
gether with other outstanding questions, such as investigating
the MFT-KPZ crossover for more general models, or within
the present model, to study Eq. (2) for other initial conditions,
in particular those identified in Ref. [16] to converge in atyp-
ical directions to solutions of the KPZ equation for flat and
stationary geometries [11].

Note added. After completion, the paper in Ref. [53] ap-
peared, where the results of Ref. [11] are proved rigorously.
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APPENDIX A: DERIVATION OF THE INTERPOLATING
SYSTEM

Let us detail the steps performed in the text to obtain
	(z) defined from the expectation value in Eq. (7) via the
saddle-point method. Introducing the standard dynamical path
integral representation, one has (where overlines represent
averages w.r.t. the random field η̃)

e−z
√

T Z (Y,T ) = e−z
√

T
∫ +∞
ξ

dxQη̃ (x,t=1) (A1)

=
∫∫

DQ̃DP̃e− ∫ 1
0 dt

∫
R dx[

√
T P̃(∂t Q̃−∂2

x Q̃−∂x

√
2η̃(x,t )Q̃)]−z

√
T

∫ +∞
ξ

dxQ̃(x,t=1) (A2)

=
∫∫

DQ̃DP̃e−√
T (S[P̃,Q̃]+z

∫ 1
0 dtδ(t−1)

∫ +∞
ξ

dxQ̃(x,t )), (A3)

where the equation of motion (6) has been expressed using the response field P̃
√

T , and the associated dynamical action is

S[P̃, Q̃] =
∫ 1

0
dt

∫
R

dx
[
P̃
(
∂t − ∂2

x

)
Q̃ − Q̃2(∂xP̃)2

]
. (A4)
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For T → +∞ one can use the saddle-point method. Here we
denote the fields and their saddle-point values in the original
frame as {P̃, Q̃} to distinguish them from the Galilean trans-
formed fields {P, Q} introduced below. Taking the functional
derivative w.r.t. {P̃, Q̃} we obtain

∂t Q̃ = ∂2
x Q̃ + 2β∂x(Q̃2(∂xP̃)), (A5)

−∂t P̃ = ∂2
x P̃ − 2βQ̃(∂xP̃)2 − zδ(t − 1)�(x − ξ ), (A6)

with β = −1. We will keep β as a parameter but for the
application to obtain 	(z) it is understood that it is set to
β = −1. Initially the upper boundary in time is t = +∞ but
since P̃ vanishes for t > 1, we can equivalently restrict the
equations for t ∈ [0, 1] and interpret the last term in the sec-
ond equation (which must be integrated backward in time) as
a boundary condition P(x, t = 1) = −z �(x − ξ ) for P̃(x, t ),
so it drops from the equation. To make the two equations more
symmetric let us now introduce the derivative field R̃(x, t ) =
∂xP̃(x, t ), leading to

∂t Q̃ = ∂2
x Q̃ + 2β∂x(Q̃2R̃),

−∂t R̃ = ∂2
x R̃ − 2β∂x(Q̃R̃2), (A7)

with the boundary conditions

Q̃(x, t = 0) = δ(x),

R̃(x, t = 1) = �0δ(x − ξ ), �0 = −z. (A8)

This system is the cousin of the DNLS equation (identical to
it upon the change t → it).

Now we perform a Galilean transformation x → x − ξ t to
bring back ξ to zero. Anticipating a bit, let us introduce the
interpolating system introduced in the text in Eq. (11), which
we recall here

∂t Q = ∂2
x Q + 2β∂x(Q2R) + 2gQ2R,

−∂t R = ∂2
x R − 2β∂x(QR2) + 2gQR2, (A9)

and notice that if Q̃, R̃ satisfies this system with couplings
(β, g), then

Q(x, t ) = Q̃(x − vt, t )e− 1
2 xv+ v2

4 t ,

R(x, t ) = R̃(x − vt, t )e
1
2 xv− v2

4 t (A10)

also satisfies the same system with couplings (β, g + β v
2 ).

Thus, consider Q̃, R̃ which satisfy the above DNLS sys-
tem (A7) with boundary conditions Q̃(x, 0) = Q0(x) and
R̃(x, 1) = �0δ(x − ξ ). We will choose v = −ξ so that

Q(x, t ) = Q̃(x + ξ t, t )e
1
2 xξ+ ξ2

4 t ,

R(x, t ) = R̃(x + ξ t, t )e− 1
2 xξ− ξ2

4 t (A11)

satisfies the interpolating system (A9) with couplings
(β,−β

ξ

2 ) and boundary conditions

Q(x, 0) = Q̃0(x)e
1
2 xξ , R(x, 1) = �0δ(x)e− ξ2

4 , (A12)

which for Q̃0(x) = δ(x) gives the result (12) in the text, where

we called � = �0e− ξ2

4 .

1. Symmetries

Note that the DNLS equation (A7) is invariant by x → −x
and R → −R. The interpolating system {R, Q} (A9) is invari-
ant by x → −x, R → −R and g → −g.

2. Conserved quantities

Note that the system (A7) admits a series of conserved
(i.e., time independent) quantities, the simplest one being∫
R dx Q̃(x, t ) = 1 [here its value is fixed to unity by the initial

condition (A8)]. This conservation law originates from the
conservation of probability in the Fokker-Planck equation,
d
dt

∫
dt qη(x, t ) = 0. Upon a Galilean transformation it be-

comes ∫
R

dx Q(x, t )e−x ξ

2 − ξ2

4 t = 1. (A13)

Note that R̃ also satisfies the conservation law
∫
R dx R̃(x, t ) =

� and after a Galilean transformation
∫
R dx R(x, t )ex ξ

2 + ξ2

4 t =
�0 = �eξ 2/4. One can check that this is consistent with the
symmetry (14).

3. Coupling constant

If one compares with Ref. [10] the true coupling constant
of the {P, Q} (i.e., here {R, Q}) system used there (called
g there) is ĝ = �g. Since β� = ze−ξ 2/4 and g = −β

ξ

2 , this

gives ĝ = −z ξ

2 e−ξ 2/4. The special point zc discussed in the text
thus corresponds to ĝ = 1, as for the case of the WNT of the
KPZ equation.

4. The rate function �(z) from the saddle point

The value of 	(z) defined in Eq. (7) is then obtained from
the saddle-point value in Eq. (A3). One has

	(z) =
[

S[P̃, Q̃] + z
∫ +∞

ξ

dx Q̃(x, 1)

]∣∣∣∣
sp

, (A14)

where P̃, Q̃ must be replaced by the z dependent solutions
of the system (A7) with boundary conditions (A8). Taking a
derivative w.r.t. z and using the saddle-point conditions, only
the explicit derivation w.r.t. z remains, and one obtains the
formula (13) given in the text

	 ′(z) =
∫ +∞

ξ

dx Q̃(x, 1) =
∫ +∞

0
dx Q(x, 1)e− 1

2 xξ− ξ2

4 ,

(A15)

where Q(x, 1) is the z-dependent solution of the interpolating
system (A9) with boundary conditions (12). Since by defini-
tion 	(0) = 0 this equation is sufficient to obtain 	(z) if the
r.h.s. is known as a function of z.

APPENDIX B: DIRECT SCATTERING SOLUTION
FOR THE INTERPOLATING SYSTEM

In this section we derive formulas (17) and (18) for the
scattering amplitudes {a(k), ã(k), b(k), b̃(k)} given in the text.
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1. Equation for φ̄ at t = 1

This equation allows us to obtain the relations involving
ã(k) and b̃(k). We call φ̄1,2(x, t ) the two components of φ̄ (the
dependence in k is implicit). Let us recall that at x → −∞,
φ̄ 
 (0,−eikx/2)ᵀ. The first equation of the Lax pair ∂x�v =
U1�v with �v = e−k2t/2φ̄ reads in components at t = 1, from
Eq. (15) and using that R(x, 1) = �δ(x),

∂x
(
ei k

2 xφ̄1
) = −(g + iβk)�δ(x)φ̄2ei k

2 x,

∂x
(
e−i k

2 xφ̄2
) = Q(x, 1)φ̄1e−i k

2 x. (B1)

Let us integrate the first equation from x = −∞ to x. Since
φ̄1 vanishes at x = −∞, it gives

φ̄1(x, 1) = −(g + iβk)�e−i k
2 x�(x)φ̄2(0, 1). (B2)

Taking the limit x → +∞, we thus obtain

b̃(k, t = 1) = −(g + iβk)�φ̄2(0, 1). (B3)

To determine φ̄2(0, 1) we can integrate the second equation in
Eq. (B1), which gives, using Eqs. (B2) and (B3),

e−i k
2 xφ̄2(x, 1) = φ̄2(0, 1) + b̃(k, 1)

∫ x

0
dx′Q(x′, 1)e−ikx′

, x > 0,

φ̄2(x, 1) = −ei k
2 x, x < 0, (B4)

where in the second equation we have used that φ̄2(x, 1) 

−ei k

2 x for x → −∞. Assuming continuity of φ̄2(x, 1) at x =
0, this leads to φ̄2(0, 1) = −1 and to

b̃(k, t = 1) = (g + iβk)� ⇒ b̃(k) = (g + iβk)�e−k2
, (B5)

since we recall that b̃(k, t ) = b̃(k)ek2t . Taking the x → +∞
limit of Eq. (B4) and using the asymptotics (16) we also obtain
the relation

ã(k, 1) = ã(k) = 1 − (g + iβk)�
∫ +∞

0
dx′Q(x′, 1)e−ikx′

.

(B6)

2. Equation for φ at t = 0

This equation allows us to obtain the relations involving
a(k) and b(k). We call φ1,2(x, t ) the two components of φ (the
dependence in k is implicit). Let us recall that at x → −∞,

φ 
 (e−ikx/2, 0)ᵀ. The first equation of the Lax pair ∂x�v = U1�v
with �v = ek2t/2φ reads in components at t = 0, from Eq. (15)
and using that Q(x, 1) = δ(x),

∂x
(
ei k

2 xφ1
) = −(g + iβk)R(x, 0)φ2ei k

2 x,

∂x
(
e−i k

2 xφ2
) = δ(x)φ1e−i k

2 x. (B7)

Integrating the second equation of Eq. (B7) from x = −∞ to
x. Since φ2 vanishes at x = −∞, it gives

φ2(x, 0) = ei k
2 x�(x)φ1(0, 0). (B8)

Taking the limit x → +∞, we thus obtain

b(k, t = 0) = φ1(0, 0). (B9)

To determine φ1(0, 0) we can integrate the first equation in
Eq. (B7), which gives, using Eqs. (B8) and (B9),

ei k
2 xφ1(x, 0) = φ1(0, 0) − (g + iβk)b(k, 0)

∫ x

0
dx′R(x′, 0)eikx′

, x > 0,

φ1(x, 0) = e−i k
2 x, x < 0, (B10)

where in the second equation we have used that φ1(x, 0) 

ei k

2 x for x → −∞. Assuming continuity of φ1(x, 0) at x = 0,
this leads to φ1(0, 0) = 1 and to

b(k, t = 0) = b(k) = 1. (B11)

Taking the x → +∞ limit of Eq. (B10) and using the asymp-
totics (16) we also obtain the relation

a(k, 0) = a(k) = 1 − (g + iβk)
∫ +∞

0
dx′R(x′, 0)eikx′

.

(B12)

At this stage we can use the symmetry (14) and obtain

a(k) = 1 − (g + iβk)�
∫ 0

−∞
dx′Q(x′, 1)e−ikx′

, (B13)

which completes the derivation of the Eqs. (18) and (17) in
text. Alternatively one may derive Eq. (B13) without using
the symmetry (14) by considering the equation for φ at t = 1.
We now present that derivation.

3. Equation for φ at t = 1

This equation allows us to obtain a(k) in Eq. (B13). Let us
recall that at x → −∞, φ 
 (e−ikx/2, 0)ᵀ. The first equation of
the Lax pair, ∂x�v = U1�v with �v = ek2t/2φ as given in the text
now reads, in components and at t = 1, using that R(x, 1) =
�δ(x),

∂x
(
ei k

2 xφ1
) = −(g + iβk)�δ(x)φ2ei k

2 x,

∂x
(
e−i k

2 xφ2
) = Q(x, 1)φ1e−i k

2 x. (B14)
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Integrating these two equations, and using the asymptotics
(16) at x → +∞ we obtain

φ1(x, 1) = e−i k
2 x[�(−x) + a(k)�(x)],

a(k) − 1 = −(g + iβk)�φ2(0, 1), (B15)

φ2(x, 1) = ei k
2 x

∫ x

−∞
dx′Q(x′, 1)e−ikx′

[�(−x′) + a(k)�(x′)],

where we used that a(k, t ) = a(k); see the main text. Setting
x = 0 in the second equation we obtain the relation displayed
in the text

φ2(0, 1) =
∫ 0

−∞
dx′Q(x′, 1)e−ikx′

,

a(k) = 1 − (g + iβk)�
∫ 0

−∞
dx′Q(x′, 1)e−ikx′

. (B16)

APPENDIX C: DETAILS OF THE CALCULATION OF THE
SCATTERING AMPLITUDES

So far the scattering amplitudes {a, ã} have been expressed
as half-Fourier transforms in Eqs. (B6) and (B16). To de-
termine them more explicitly, one wants to solve Eq. (20),
namely the normalization relation of the scattering ampli-
tudes, which read here

a(k)ã(k) = 1 − (g + iβk)�e−k2
, (C1)

where a(k) and ã(k) satisfy Eq. (18), which we recall reads

a(k) = 1 − (g + iβk)�Q−(k),

ã(k) = 1 − (g + iβk)�Q+(k), (C2)

Q±(k) =
∫
R±

dx Q(x, 1)e−ikx.

Clearly for k complex, Q+(k), hence ã(k), is analytic in the
lower half-plane, and Q−(k), hence a(k), is analytic in the
upper half-plane. Now we define the parametrization

a(k) = a(∞)e�+(k), a(∞) = 1 + β�Q(0−, 1), (C3)

ã(k) = ã(∞)e�−(k), ã(∞) = 1 − β�Q(0+, 1), (C4)

where a(∞) and ã(∞) where obtained in Eq. (21), so that
�±(k) → 0 as k → ±∞. Using Eq. (24), i.e., a(∞)ã(∞) =
1, one can thus rewrite Eq. (C1) for real k as

1 − (g + iβk)�e−k2 = e�+(k)e�−(k), (C5)

where e�±(k) are analytic, respectively, in the upper-half plane
(UHP)/lower-half plane (LHP). This is a typical Riemann-
Hilbert [54–56] or Wiener-Hopf problem. In some domain,
taking the logarithm of this equation, it can be written as

ln(1 − (g + iβk)�e−k2
) = �+(k) + �−(k) + 2iπn(k)

(C6)

for some integer-valued function n(k). One can check that
for ĝ = �g < 1 the l.h.s. of Eq. (C6) is analytic in a strip
around the real axis in k (see Appendix G) and decays fast at
infinity along the real axis. In this strip n(k) = 0, and for ĝ =
�g < 1 the multivaluation occurs only outside this strip. As

in Ref. [40], one can use the well-known Sokhotskyi-Plemelj
formula∫

R

dq

2iπ

f (q)

q − k ± i0+ = −
∫
R

dq

2iπ

f (q)

q − k
∓ 1

2
f (k), (C7)

which leads to the decomposition of a general function f (k),

f (k) =
∫
R

dk′

2iπ

f (k′)
k′ − k − i0+ −

∫
R

dk′

2iπ

f (k′)
k′ − k + i0+ (C8)

in parts which are analytic in the UHP and LHP, respectively.
This implies that

�±(k) = ±
∫
R

dq

2iπ

ln(1 − (g + iβq)�e−q2
)

q − k ∓ i0+ . (C9)

The formula for �+(k) is valid only in the UHP and the one
for �−(k) is valid only in the LHP (at least in a strip around
the real axis). This recovers Eq. (26) in the text.

1. Validity

The results above are valid for �g < 1. For their continua-
tion beyond that domain see Appendix G below.

2. Recovering the case β = 0

If we set β = 0 in the interpolating system (11), then
we obtain the {P, Q} system extensively discussed in
Refs. [10,11]. Let us show that one then recovers the solution
obtained in our previous work [10]. There, we studied a more
general initial condition Q(x, t = 0) = Q0(x), and to identify
we must set g → g� (since there R(x, t = 1) = δ(x) while
here R(x, t = 1) = �δ(x) while there � is set to unity). Tak-
ing this into account there we obtained b̃(k) = ge−k2

which
agrees with Eq. (17), and

a(k) =
√

1 − gb(k)�e−k2 e−iϕ(k),

ϕ(k) = −
∫
R

dq

2π

1

q − k
ln(1 − gb(q)�e−q2

), (C10)

together with ã(k) = a(−k) for real k, and ϕ(−k) = −ϕ(k).
It is easy to see that it agrees with Eq. (C9) for β = 0 using
Eq. (C7) with f (k) = ln(1 − gb(k)�e−k2

), that is, in that case
for k ∈ R,

�±(k) = −iϕ(±k) + 1
2 ln(1 − gb(k)�e−k2

). (C11)

Of course here we restricted to the special case of the droplet
initial condition Q0(x) = δ(x), where b(k) = 1 as found in
Ref. [10] and recovered here in Eq. (17).

3. General initial condition for β �= 0

Extending the previous discussion we see that the solution
of the interpolating system for a more general initial condition
Q(x, 0) = Q0(x) reads

�±(k) = ±
∫
R

dq

2iπ

ln(1 − (g + iβq)�b(q)e−q2
)

q − k ∓ i0+ , (C12)

where there is a map between Q0(x) and b(q) which can be
obtained by solving the scattering problem.
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APPENDIX D: BOUNDS AND SYMMETRIES FOR �(z)

We give here some properties of the function 	(z). Since
we start from its definition (7) we are dealing here with what
we call in the text the “optimal” 	(z), also given by the min-
imization (8). From its definition (7) the expansion of 	(z) in
powers of z around z = 0 gives the cumulants of Z = Z (Y, T ),

	(z) = − 1√
T

ln exp(−z
√

T Z ) = −
∑
p�1

(−z)p

p!
T

p−1
2 Z pc

,

(D1)

hence the leading behavior of each cumulant at large time is
given by

Z pc 
 (−1)p+1T
1−p

2 	 (p)(0). (D2)

However, taking derivatives of 	(z) w.r.t. z for any z lead
to

	 ′(z) = 〈Z〉z, 	 ′′(z) = −
√

T 〈Z2〉c
z,

〈O〉z = O exp(−z
√

T Z )

exp(−z
√

T Z )
, (D3)

where the expectation values are w.r.t. the tilted measure also
defined in the text. Since the random variable Z obeys 0 <

Z < 1 it implies

0 < 	 ′(z) < 1, 	 ′′(z) < 0. (D4)

The function 	(z) must thus be concave. Note that some of the
branches obtained in the text are not concave hence they do
not appear in the optimal 	(z). In such cases there is instead a
jump of 	 ′(z) from one branch to another one, for z = z∗. As
discussed in the text, at this point the tilted measure has two
degenerate maxima hence the fluctuations are anomalously
large,

√
T 〈Z2〉c

z=z∗ = +∞.
Let us now make the dependence in ξ apparent and denote

Zξ = Z (Y, T ). By definition one has

Zξ =
∫ +∞

ξ

dy qη(y, T ), 1 − Z−ξ =
∫ −ξ

−∞
dy qη(y, T ),

(D5)

where 0 < Zξ < 1. Equation (2) is invariant by y → −y and
η(y, τ ) → −η(−y,−τ ), which leaves the PDF of the noise
invariant, hence Zξ and 1 − Z−ξ have the same PDF. This
observation inserted into Eq. (7) gives

exp(−z
√

T Zξ ) ∼ exp(−
√

T 	ξ (z))

= exp(−z
√

T (1 − Z−ξ ))

= exp(−
√

T (z + 	−ξ (−z))), (D6)

hence it implies the symmetry given in the text,

	−ξ (z) = 	ξ (−z) + z. (D7)

1. Remark

To measure Zξ and −Z−ξ one can use the DNLS
equation with boundary condition P(x, 1) = �(x − ξ ), i.e.,
R(x, 1) = δ(x − ξ ) for the first, and P(x, 1) = �(−x − ξ ),

i.e., R(x, 1) = −δ(−x − ξ ) for the second. Using the symme-
try x → −x and R → −R one arrives at the same conclusion.

APPENDIX E: DERIVATION OF THE RATE
FUNCTION �(z)—MAIN BRANCH

Let us give some more details on how Eq. (32) in the text
is obtained. Taking a derivative w.r.t. k of Eq. (27) at k = ig

β

and using Eq. (28) one obtains

iβ�Q∓

(
ig

β

)
= −�′

±

(
ig

β

)
. (E1)

Let us verify that this is consistent with the second equality in
Eq. (30) (which comes from the conservation of probability).
For that let us first recall that [from Eq. (C6) with n(k) = 0]

ln(1 − (g + iβk)�e−k2
) = �+(k) + �−(k), (E2)

where �±(k) are given in Eq. (C9) for k in the complex
upper/lower half planes.

Taken at k = ig
β

it again shows that �±( ig
β

) are opposite

quantities. Taking a derivative w.r.t. k at k = ig
β

= −i ξ

2 one
obtains

−iβ�eξ 2/4 = �′
+

(
ig

β

)
+ �′

−

(
ig

β

)
, (E3)

which, from Eq. (E1), is exactly equivalent to the second
equality in Eq. (30).

One must be careful in computing �′
±(k) for k = ig

β
=

−iξ/2 since the formula (26) given in the text and above in
Eq. (C9) for �±(k) are valid only for k in the UHP/LHP,
respectively. There are thus two cases:

(1) If g/β > 0, i.e., ξ < 0, then we can use Eq. (26) for
�+ for �(k) � 0 and one obtains

�′
+

(
ig

β

)
=

∫
R

dq

2iπ

ln(1 − (g + iβq)�e−q2
)(

q − ig
β

)2 , (E4)

while, using Eq. (E3) one has

�′
−

(
ig

β

)
= −

∫
R

dq

2iπ

ln(1 − (g + iβq)�e−q2
)(

q − ig
β

)2

− iβ�eξ 2/4�(−ξ ). (E5)

(2) If g/β < 0, i.e., ξ > 0, then we can use Eq. (26) for
�− for �(k) � 0 and one obtains

�′
−

(
ig

β

)
= −

∫
R

dq

2iπ

ln(1 − (g + iβq)�e−q2
)(

q − ig
β

)2 , (E6)

while, using Eq. (E3) one has

�′
+

(
ig

β

)
=

∫
R

dq

2iπ

ln(1 − (g + iβq)�e−q2
)(

q − ig
β

)2

− iβ�eξ 2/4�(ξ ). (E7)
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Putting the two cases together, we obtain from the equality
(E1)

iβ�Q∓

(
ig

β

)
= −�′

±

(
ig

β

)

= ∓−
∫
R

dq

2iπ

ln(1 − (g + iβq)�e−q2
)(

q − ig
β

)2

+ iβ�eξ 2/4�(±ξ ), (E8)

a result which remains true for g = ξ = 0 provided the inte-
grals are then interpreted as principal values and that we use
the convention �(0) = 1/2.

Now using Eq. (30) and inserting β = −1, g = −β
ξ

2 , and

β� = ze−ξ 2/4 we obtain the result (31) in the text, from which
Eq. (32) is obtained upon integration over z.

1. Remark on the Heaviside function

The appearance of the term �(±ξ ) in Eq. (E8) can also be
seen as follows. Let us expand Eq. (26) in series of �

�′
±(k) = ∓

∑
n�1

(iβ�)n

n

∫
R

dq

2iπ

(
q − ig

β

)n
e−nq2

(q − k ∓ i0+)2
. (E9)

Taking k = ig
β

we can neglect the term ±i0+ except for n = 1.
The term n = 1 is

∓ (iβ�)
∫
R

dq

2iπ

e−q2

q + iξ
2 ∓ i0+

= ∓(iβ�)−
∫
R

dq

2iπ

e−q2

q + iξ
2

− iβ�eξ 2/4�(±ξ ). (E10)

2. Recovering the typical probability

Similarly the expansion of z	 ′(z) in powers of z contains
a term with a pole at q = −iξ/2 only for n = 1. As shown in
the text, this term recovers the typical probability Z = Ztyp. In
deriving Eq. (34) we have used the identity, for real a,

−
∫
R

dq

2π

1

iq + a
e−q2 = 1

2
ea2

(Erfc(a) − 2�(−a)). (E11)

3. Range of validity

As discussed in the text the formula for 	(z) presented in
this section is what we call the “main branch” valid only for
z/zc < 1 with zc = − 2

ξ
eξ 2/4. As a result it only allows us to

determine �(H ) for H < Hc. To obtain the full solution to
the problem we need to consider analytical continuations, to
which we now turn.

APPENDIX F: ANALYTIC CONTINUATION IN THE CASE
OF THE WNT FOR THE KPZ EQUATION

Before discussing the intricacies of the analytic continua-
tions for the present problem, we recall here how it works in
the case of the WNT for the KPZ equation. It is necessary
to do so since we show below that at large ξ the results for
KPZ equation are recovered. We present further details than
given in Ref. [10] as they will be very useful below. Indeed

FIG. 2. Plot of the Riemann surface of the logarithm z �→ ln z.
This surface is composed of different sheets continuously connected
is a staircase manner.

the situation in the present paper is already quite similar to
the one for the KPZ equation where 	KPZ(z̃) admits a second
branch for −1 � z̃ < 0.

For the KPZ equation one first obtains for z̃ ∈ [0,+∞)

	KPZ(z̃) = 	KPZ,0(z̃) := − 1√
4π

Li5/2(−z̃), (F1)

which can be continued for z̃ ∈ [−1,+∞). The polylogarithm
function Li5/2(−z̃) is analytic in the complex z̃ plane except
on a branch cut for z̃ ∈ (−∞,−1]. Across this branch cut it
has a jump, which leads to

	KPZ,0(z̃ + i0+) − 	KPZ,0(z̃ − i0+) = �KPZ(z̃),

�KPZ(z̃) = 4
3 i(ln(−z̃))3/2 (F2)

for z ∈ (−∞,−1].

1. Analogy with the logarithm

This situation is analogous to the study of the logarithm
which admits different determination in the complex plane.
Indeed, along the negative real axis, the logarithm has a jump
of value 2iπ . A better understanding of the logarithm is done
by considering its domain of definition not in the complex
plane but rather on a Riemann surface, see Fig. 2, where it
does not have any jump. In the case of the logarithm, the
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FIG. 3. Schematic plot of the argument of the logarithm in Eq. (F5) in the complex q plane for various values of z̃. (Top left) z̃ � −1, z̃ ∈ R.
(Top right) z̃ � −1, z̃ ∈ R. (Bottom) �(z̃) < −1, �(z̃) = 0+. The black crosses correspond to the locations where the argument AKPZ(q) is zero
and the red curves correspond to the branch cuts of ln AKPZ(q).

Riemann surface is composed of different sheets joined by
winding around the origin and the correct definition of the
logarithm on the nth sheet is ln z + 2iπn where ln z is the
principal determination or main branch.

Pursuing the construction of 	KPZ(z̃) on a Riemann surface
rather than on the complex plane, we extend continuously
the definition 	KPZ,0(z̃) to the first Riemann sheet along the
branch cut as follows:

	KPZ(z̃) =
{
	KPZ,0(z̃), �(z̃) > 0,

	KPZ,0(z̃) + �KPZ(z̃), �(z̃) < 0.
(F3)

On the real axis it is multivalued, i.e., there is a first branch
for 	KPZ(z̃) given by the first line, and a second branch given
by the second line. One can now continue these two branches
for z̃ ∈] − 1, 0] and one finds that the second branch is

	KPZ,0(z̃) + �KPZ(z̃) = − 1√
4π

Li5/2(−z̃) + 4

3
(− ln(−z̃))3/2

(F4)

for z̃ ∈] − 1, 0].

2. Another route to find the analytic continuation

One can arrive at the same result from the integral repre-
sentation. Indeed, for z̃ ∈] − 1,+∞[ one has

z̃	 ′
KPZ(z̃) =

∫
R

dq

2π
ln(1 + z̃e−q2

) = z̃	 ′
0,KPZ(z̃)

= − 1√
4π

Li3/2(−z̃). (F5)

Let us plot the argument of the logarithm AKPZ(q) = 1 +
z̃e−q2

in the complex q plane. This is shown schematically in
Fig. 3. For z̃ > −1 no branch cut crosses the real axis (integra-
tion axis). When z̃ reaches −1 the two symmetric branch cuts
along the imaginary axis join. For z̃ < −1 they form a “cross”
[see Fig. 3 (top right)] with ends located at q = ±√

ln(−1/z̃).
It is impossible to integrate over the real axis without crossing
them. However, suppose now we consider z̃ → z̃ ± iε. We can
see that the two branch cuts then avoid each other, and it is
possible to deform slightly the integration contour to avoid
crossing them [see Fig. 3 (bottom)]. This is consistent with
the function Li3/2(−z̃) being analytic away from the negative
real axis for z̃.

Now one can see that the additional contribution �KPZ(z)
comes for z̃ < −1 from the jump across the horizontal part of
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FIG. 4. Schematic behavior of the zeros pi of the equation fz,ξ (pi ) = 0 as a function of z < 0 for ξ > 0. (Top left) The case ξ < ξ1 = √
8

in which case there is a single zero, which changes sign at z = zc. (Top right) The case ξ1 < ξ < ξ2 in which case there are three zeros
p1 > p2 > p3 in the interval z ∈ (zc1, zc2) and zc2 < zc. (Bottom) The case ξ > ξ2, same but now zc2 > zc. The zeros p2, p3 coalesce and
annihilate at z = zc2 and p2, p3 at z = zc1. The points zc1 and zc2 also serve as turning points in the definition of the function 	(z).

the “cross” [see Fig. 3 (bottom)] and is precisely

z̃�′
KPZ(z̃) = 2iπ

∫ √− ln(−1/z̃)

−√− ln(−1/z̃)

dq

2π
= 2i[ln(−z̃)]1/2, (F6)

while its continuation for z̃ > −1—which enters the second
branch—can be obtained as an integral around the comple-
mentary of the branch cut in Fig. 3 (top left),

z̃�′
KPZ(z̃) = 2iπ

∫ i
√

ln(−1/z̃)

−i
√

ln(−1/z̃)

dq

2π
= −2[− ln(−z̃)]1/2, (F7)

consistent with the previous argument. These considerations
will be useful for the next subsection.

APPENDIX G: ANALYTIC CONTINUATION AND
ADDITIONAL BRANCHES OF THE RATE FUNCTION �(z)

1. Preliminaries: Solutions of Eq. (37) in the text

As mentioned in the text, and for the discussion below
about the branch cuts in the integration in the formulas (31)
and (32) for z	 ′(z) and 	(z), it is important to study the
argument of the logarithm in Eq. (31), which we denote A(q)

A(q) := 1 − z

(
iq − ξ

2

)
e−q2− ξ2

4 (G1)

and in particular to find the points where it vanishes, i.e., the
zeros, solutions of A(q) = 0. There are many such zeros but

it turns out, see below, that the zeros on the imaginary axis
are the ones which play an important role. Setting q = ip, it is
equivalent to study A(ip) or the function fz,ξ (p) defined as

fz,ξ (p) = e−p2+ ξ2

4 A(ip) = e−p2+ ξ2

4 + z

(
p + ξ

2

)
(G2)

and finding its real zeros, fz,ξ (p) = 0, which is Eq. (37) in the
text.

We will consider ξ > 0 (the case ξ < 0 can be studied
from the symmetry (ξ, z) → (−ξ,−z)). Consider also z < 0
(see z > 0 below). Since fz,ξ (p) → ∓∞ as p → ±∞ it has
at least one real zero, but in some cases can have three. When
there are three zeros we will denote them p1 > p2 > p3 in de-
creasing order. They are functions of (z, ξ ), i.e., pi = pi(z, ξ ).

The evolution of the zeros when z < 0 is varied is shown
in Fig. 4. There are three cases depending in the values of ξ

which we now describe. In all three cases the largest zero p1

vanishes for the value of z = zc = zc(ξ ) = − 2e
ξ2
4

ξ
< 0. One

finds that
(1) for 0 < ξ < ξ1 = √

8, and for all z < 0, there is only
one zero, p1 = p1(z, ξ ); see Fig. 4 (top left).

(2) for ξ > ξ1 there is an interval of values of z, z ∈
]zc1, zc2[, where there are three zeros. To find this interval one
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looks for double zeros fz,ξ (p) = f ′
z,ξ (p) = 0, i.e.,

e−p2+ ξ2

4 = −z

(
p + ξ

2

)
= z

2p
. (G3)

For a given ξ one can solve these conditions for the couple
(z, p). One finds that there are no real solutions for ξ <

√
8

but that there are two solutions (zc1, pc1) and (zc2, pc2) for ξ >

ξ1 = √
8. These read, with zc1 < zc2,

zc1 = zc1(ξ ) = − 1
2 e

1
8 [ξ (ξ+

√
ξ 2−8)+4](ξ −

√
ξ 2 − 8),

pc1 = − 1
4 (ξ −

√
ξ 2 − 8), (G4)

zc2 = zc2(ξ ) = − 1
2 e

1
8 [ξ (ξ−

√
ξ 2−8)+4](ξ +

√
ξ 2 − 8),

pc2 = − 1
4 (ξ +

√
ξ 2 − 8). (G5)

For any ξ > ξ1, and as can be seen in Fig. 4, the two smallest
zeros annihilate at z = zc2 where their values are p2 = p3 =
pc2 and the two largest zeros annihilate at z = zc1 where their
values are p1 = p2 = pc1. Note that at ξ = √

8 the interval
is a single point and one has zc1 = zc2 = −√

2e3/2 and pc1 =
pc2 = −1/

√
2.

(3) It will turn out to be important below to distinguish the
cases where zc2 < zc and zc2 > zc; see Fig. 4. Let us determine
the value of ξ , denoted ξ = ξ2, at which zc(ξ ) = zc2(ξ ). Insert-

ing z = zc(ξ ) = − 2e
ξ2
4

ξ
into Eq. (G3) one gets two equations,

ξ pe−p2 = −1, p2 + pξ

2
= −1

2
, (G6)

where here p should be set to p = pc2(ξ ) given in Eq. (G5).
Combining we obtain a closed equation for pξ/2, i.e.,

pξ

2
e

pξ
2 = −1

2
e−1/2 ⇒ ξ pc2(ξ )

2
= W−1

(
− 1

2
√

e

)
,

(G7)

which using pc2(ξ ) from Eq. (G5) and solving for ξ finally
leads to ξ = ξ2, with

ξ2 = −2

√
2

−2W−1
( − 1

2
√

e

) − 1
W−1

(
− 1

2
√

e

)

 3.13395.

(G8)

Note that we have discarded the other solution ξ pc2(ξ ) = −1
of Eq. (G7) which does not provide a solution for ξ2. Hence,
we finally find that for ξ < ξ2 one has zc2 < zc and for ξ > ξ2

one has zc < zc2; see Fig. 4. This will be important below.

2. Continuation and branches of �(z) for 0 < ξ < ξ1

We now study the analytical continuations and various
branches of 	(z). Let us first recall the expressions of 	(z)
and 	 ′(z) obtained in the text in Eqs. (31) and (32) for ξ > 0,

z	 ′(z) = −
∫
R

dq

2π

ln
(
1 − z(iq − ξ

2 )e−q2− ξ2

4
)

(
iq − ξ

2

)2 ,

	(z) = −−
∫
R

dq

2π

Li2
(
z(iq − ξ

2 )e−q2− ξ2

4
)

(iq − ξ

2 )2
. (G9)

The argument of the logarithm and polylogarithm is A(q)
defined in Eq. (G1). The integrand has branch cuts in the
complex plane for q when A(q) ∈ R−, i.e., is real negative.
In the previous subsection we found some of the zeros (those
on the imaginary axis) from which the branch cuts originate.
There are additional ones, and the full picture for all ξ > 0
is shown schematically in Fig. 5 where the zeros of A(q) are
represented by crosses and the branch cuts by red lines.

Here we examine the simplest case ξ < ξ1 = √
8. Then

one finds that for zc < z < 0 (top left in Fig. 5) no branch
cut crosses the real axis. This corresponds to the regime with
a single positive zero p = p1 to Eq. (37). In that regime the
formula in Eq. (G9) are valid. This is the main branch.

For z � zc(ξ ) = − 2e
ξ2
4

ξ
the single zero p = p1 becomes

negative hence the branch cut along the positive imaginary
axis intersects the real axis at q = 0. This is represented in
Fig. 5 (top right). In the case however, i.e., for 0 < ξ < ξ1, it is
always possible (i.e., for any z � zc) to deform the integration
contour of q away from the real axis to pass below the branch
cut (as represented in Fig. 5). We call this new contour C.
This provides a natural analytical continuation to all real z.
This leads to

z	 ′(z) =
∫

C

dq

2π

ln(1 − z
(
iq − ξ

2

)
e−q2− ξ2

4 )(
iq − ξ

2

)2

= z	 ′
0(z) + z�′

1(z),

z	 ′
0(z) =

∫
R

dq

2π

ln
(
1 − z

(
iq − ξ

2

)
e−q2− ξ2

4
)

(
iq − ξ

2

)2 .

(G10)

In the second line we have split the integral into an integral
over the real axis which passes right through the branch cut,
and a contribution denoted z�′

1(z) which represents the contri-
bution of a contour around the branch cut (taking into account
the 2iπ discontinuity of the logarithm), which reads

z�′
1(z) =

∫ p1

0

d p

(p + ξ/2)2
= 4p1

ξ (2p1 + ξ )
, (G11)

with p1 = p1(z, ξ ). The first piece, z	 ′
0(z) is by definition the

integral over R computed “naively,” that is with a jump of
the integrand when the argument of the logarithm crosses the
negative real axis (which occurs for q = 0) and in such a way
that the invariance under the change of variable iq → −iq
ensures that the result is real (in other words one can, e.g.,
replace

∫
R = 2� ∫

R−) and not worry about the branch cut.
We can repeat the same procedure for the formula for 	(z)

itself in Eq. (G9), the branch cut of the Li2 function being
identical to the one of the logarithm with however a different
value of the jump,

Li2(t + i0+) − Li2(t − i0+) = −2iπ ln t . (G12)
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FIG. 5. Schematic plots of the argument of the logarithm A(q) given in Eq. (G1) as a function of q in the complex plane for ξ > 0 and
z < 0. The crosses indicate the positions of the zeros of A(q) and the red lines are the branch cuts. (Top left) zc < z < 0 for all ξ > 0. No
branch cut crosses the real axis. (Top right) z < zc for 0 < ξ < ξ1 = √

8, and zc2 < z < zc for ξ1 < ξ < ξ2. In that case one branch cut crosses
the real axis. The integration contour in q in Eq. (G9) can be deformed (dotted lines) to avoid the branch cut. (Bottom left) zc1 < z < zc2 for
ξ1 < ξ . It is still possible to avoid the branch cut. (Bottom right) ξ > ξ1 and z < zc1. In that case the branch cuts have met and form a cross,
and there is no way to deform the integration contour to avoid them.

One obtains

	(z) = −
∫

C

dq

2π

Li2
(
z
(
iq − ξ

2

)
e−q2− ξ2

4
)

(
iq − ξ

2

)2

= 	0(z) + �1(z),

	0(z) = −
∫
R

dq

2π

Li2
(
z
(
iq − ξ

2

)
e−q2− ξ2

4
)

(
iq − ξ

2

)2 ,

(G13)

with

�1(z) = −
∫ p1

0

d p

(p + ξ/2)2
ln

(
−z

(
p + ξ

2

)
ep2− ξ2

4

)
(G14)

= �̂(p1(z, ξ )),

�̂(p) = 1

ξ

[
− (ξ 2 + 2)(ln(ξ ) − ln(ξ + 2p))

+ 2p(p − ξ ) − 4p

ξ + 2p

]
, (G15)

where we have defined a new function �̂(p) which will be
useful below. To obtain this expression for �1(z) one can

either compute the contribution of the branch cut, as done
above, or integrate the expression (G11) over z. In the latter
case one uses the following differential relation for p1 =
p1(z),

d p1

dz
= −1

z

p1 + ξ

2

1 + 2p1
(
p1 + ξ

2

) , (G16)

and write

�1(z) = −
∫ zc

z

dz′

z′
4p1(z′)

ξ (2p1(z′) + ξ )

=
∫ p1

0
d p

2p

ξ

1 + 2p
(
p + ξ

2

)
(
p + ξ

2

)2 , (G17)

which also yields (G14), showing that the two methods agree.
The above formula are those used for the plots of 	 ′(z)

in the main text for 0 < ξ < ξ1. We have checked numeri-
cally that for large negative z → −∞, 	 ′(z) → 1 since p1 →
− ξ

2 − 1
z + o(1/z). This gives confidence that this is the correct

solution.
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3. Remark

We call 	(z) = 	0(z) + �1(z) for z < zc a new branch
different from the main branch, although in a sense they are
the same branch by some choice of integration contour. The
important point here is the identification of the jump function
�1(z) which, as we will see now, plays an important role to
determine the several other branches for ξ > ξ1.

4. Remark

The structure of branch cuts in the complex plane discussed
here for ξ > 0 is already present for ξ = 0, although in that
case zc = −∞ (for ξ → 0+) so no analytic continuation is
needed. There is some interpretation of the corresponding ze-
ros of a(k) and ã(k) in terms of additional solitonic solutions
of the DNLS equation, as discussed in the main text. For
z > zc these are presumably irrelevant for the large deviations.

5. Continuation and branches of �(z) for ξ > ξ1

Let us consider now the case ξ > ξ1 = √
8. First, for

zc(ξ ) < z < 0 it is still true that no branch cut crosses the real
axis. This is because the largest zero p1 is strictly positive
hence the branch cut q ∈ [ip1,+i∞[ does not cross the real
axis. Thus, the formula in Eq. (G9) are valid, and this is again
the main branch.

Next, as discussed in a previous subsection, see Fig. 4,
there is an interval of values of z, z ∈]zc1, zc2[, where there are
three real zeros p1 > p2 > p3 to the equation A(ip) = 0. Then
there are two sub-cases, for ξ1 < ξ < ξ2 one has zc2 < zc,
while for ξ2 < ξ one has zc < zc2.

In terms of branch cuts, as one can see in Fig. 5, one finds
that for z < zc the branch cut q ∈ [ip1,+i∞[ crosses the real
axis. However, as long as z > zc1 there is a way to deform
the contour of integration avoid this branch cut. For z < zc1

something nasty happens, the upper and lower branch cuts
meet and form a cross see Fig. 5 (bottom right). The same
happened for the KPZ equation, as discussed in the previous
section. In that case, it is not possible anymore to deform the
integration contour to avoid these branch cuts. We can now use
the “jump” function �1(z) obtained in the previous section to
propose the proper analytical continuations and the ensuing
new branches.

When z reaches zc1 the zeros p1 and p2 annihilate (corre-
sponding to the merging of the upper and lower branch cuts)
and for z < zc1 the only remaining zero is p3. Thus, one would
like to write

	(z) = 	0(z) + �3(z), �3(z) = �̂(p3(z)), (G18)

where �̂(p) was defined in Eq. (G15). This branch appears
indeed in the Table I. However, since �3(zc1) �= �1(zc1) it
is not a continuous extension of 	0(z) + �1(z). This means
that there are other branches that will allow a continuous
extension. As we now discuss, they will be constructed by first
decreasing z from +∞ down to a turning point, increasing it
up to a second turning point, and finally decreasing it again
down to −∞.

We will thus consider the point z = zc1 as the first turning
point and start to follow the second zero p2 = p2(z). One then

proposes the continuous extension defined for z ∈]zc1, zc2[,

	(z) = 	0(z) + �2(z), �2(z) = �̂(p2(z)). (G19)

It is a new branch and since 	0(z) + �1(z) also exists in the
same interval z ∈]zc1, zc2[ the function 	(z) is multivalued in
that interval.

When z reaches zc2 the zeros p2 = p2(z) and p3 = p3(z)
annihilate [corresponding to the disappearance of the lower
branch-cut as seen in Fig. 5 (top right)]. We then again con-
sider z = zc2 as a second turning point and start following the
third zero p3. The candidate for the next continuous extension
is therefore

	(z) = 	0(z) + �3(z), �3(z) = �̂(p3(z)), (G20)

which is precisely the one in Eq. (G18).
This procedure is sufficient for ξ1 < ξ < ξ2 and leads the

third column in the Table I. Using the two turning points one
thus obtains a continuous extension, which is multivalued in
the interval ]zc1, zc2[.

In the case ξ > ξ2 this however is insufficient. Indeed, there
is a last feature of the branch cuts to take into account. When
z increases from zc1 to zc2 and then decreases from zc2 to
−∞ it can cross the value z = zc depending whether zc is in
the interval [zc1, zc2]. This is the case when ξ > ξ2. When z
crosses the value zc, the branch point ip1 crosses the real axis,
either descending from the upper half plane or ascending from
the lower half plane. We have observed for the first branch that
crossing zc from above, i.e., z = zc + 0+ → zc + 0− implies
that the function 	0 is modified as

	0 → 	0 + �1. (G21)

Conversely, crossing zc from below, i.e., z = zc + 0− → zc +
0+ implies that the function 	0 should be modified as

	0 → 	0 − �1. (G22)

To obtain the complete solution for ξ > ξ2 one then needs
to take into account the coalescence of the zeros p1, p2, p3

shown in Fig. 4 and also the different crossing of z = zc

independently. This leads to the fourth column of Table I.

6. Remark

In all these formula 	0(z) denotes the integral (G13) along
the real axis which may or may not have a jump in the inte-
grand depending on whether z < zc or z > zc.

APPENDIX H: SUMMARY OF THE RESULTS:
DETERMINATION OF �(H )

In this Appendix we summarize the exact results for the
large-deviation rate function �(H ) of the diffusion in time-
dependent random medium for arbitrary position of the tracer
ξ > 0. The rate function �̂(Z ) defined in the text is simply
obtained as �̂(Z ) = �(ln Z ).
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TABLE II. Case ξ = 0.

Interval of H Interval of z H = �(H ) =
H ∈ R− z ∈ R ln 	 ′

0(z) 	0(z) − z	 ′
0(z)

1. Exact expressions for all rate functions and critical values

a. Critical values of ξ

There are two critical values of the position of tracer de-
noted ξ1 and ξ2. Their value is given as

ξ1 =
√

8 
 2.82843,

ξ2 = −2

√
2

−2W−1
(− 1

2
√

e

) − 1
W−1

(
− 1

2
√

e

)

 3.13395,

(H1)

where W−1 is the second real branch of the Lambert function
[57].

(1) For ξ � ξ1 there can be three real zeros to Eq. (37)
depending on z, whereas for ξ � ξ1 there is only one real zero.

(2) The value ξ2 is determined as the solution of zc(ξ ) =
zc2(ξ ). For ξ � ξ2, we have the ordering zc1 < zc < zc2.

b. Critical values of z

There are three critical values of the parameter z denoted
zc, zc1 and zc2. Their dependence on the tracer position ξ is
given as

zc(ξ ) = −2e
ξ2

4

ξ
,

zc1(ξ ) = −1

2
e

1
8 [ξ (ξ+

√
ξ 2−8)+4](ξ −

√
ξ 2 − 8),

zc2(ξ ) = −1

2
e

1
8 [ξ (ξ−

√
ξ 2−8)+4](ξ +

√
ξ 2 − 8).

(H2)

(1) The quantities zc1, zc2 are real only for ξ > ξ1. They
are determined by the value of p where the function fz,ξ has
two degenerate zeros, i.e., fz,ξ (p) = f ′

z,ξ (p) = 0.

(2) For z < zc, the largest real zero of fz,ξ (p) is negative,
whereas for z > zc it is positive.

c. Critical values of the zeros p

pc = 0, (H3)

pc1 = − 1
4 (ξ −

√
ξ 2 − 8), (H4)

pc2 = − 1
4 (ξ +

√
ξ 2 − 8). (H5)

2. The rate function �(H )

We obtain the rate function �(H ) parametrically. In prac-
tice, its numerical determination will be done by parts using
all the different branches of 	(z). Since z(H ) is single-valued,
this procedure allows us to obtain �(H ) in the whole range
] − ∞, 0]. We provide in the following the representations
which were used for the numerical plots.

a. ξ = 0

The rate function (see Table II) reads:

b. 0 < ξ � ξ1

Defining the critical height Hc = ln 	 ′
0(zc), the rate func-

tion (see Table III) reads:

c. ξ1 < ξ � ξ2

Defining the three critical heights

Hc = ln 	 ′
0(zc),

Hc1 = ln(	 ′
0(zc1) + �′

1(zc1)) = ln(	 ′
0(zc1) + �′

2(zc1)),

Hc2 = ln(	 ′
0(zc2) + �′

2(zc2)) = ln(	 ′
0(zc2) + �′

3(zc2)),
(H6)

the rate function (see Table IV) reads:
It is important to note that the expressions for H and for

�(H ) as a function of z in the second and third line of the
above table merge continuously at H = Hc1 around the turn-
ing point at z = zc1. This can be seen from Eqs. (G11) and
(G17) as the jumps � j (z) = �̂(p j (z)), j = 1, 2 are the same
function of the zeros pj (z), hence one has �1(zc1) = �2(zc1)
as well as �′

1(zc1) = �′
2(zc1), since p1(z) = p2(z) at z = zc1.

This implies that as z decreases from +∞ down to the turn-
ing point zc1 and then increases again from zc1 , the function
H = H (z) smoothly increases, and �(H ) is a smooth function
of H around Hc1. These features can be seen in Fig. 1(b) in the
text. The same holds for each turning point and is also valid
for the table in the next section.

d. ξ2 < ξ

Defining the five critical heights

Hc = ln 	 ′
0(zc),

Hc10 = ln(	 ′
0(zc1) + �′

1(zc1)),

Hc11 = ln(	 ′
0(zc) + �′

2(zc)),

Hc20 = ln(	 ′
0(zc2) + �′

2(zc2) − �′
1(zc2)),

Hc21 = ln(	 ′
0(zc) + �′

3(zc)),

(H7)

the rate function (see Table V) reads:

3. Optimal rate function �(z)

As discussed in the text the “optimal” 	(z) follows by
definition the minimum of the different branches of 	(z)
that we have found. For ξ < ξ1 there is no multivaluation
of 	(z), hence 	(z) follows continuously the two branches
z > zc and z < zc. For ξ > ξ1 there is multivaluation of 	(z)
for z ∈]zc1, zc2[ leading to a discontinuity, i.e., a jump of 	(z)
The value of z for which 	(z) jumps from a branch to the next
[see inset of Fig. 1(a)] is given by z∗ solution of

�1(z∗) = �3(z∗). (H8)

This value is located between zc1 and zc2. We provide in the
two Tables VI the value of the optimal Legendre solution.
Note that the jump in the value of Z is always �′

3(z∗) −
�′

1(z∗) (jumps between the two maxima of the tilted measure
for Z as discussed in the text).
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TABLE III. Case 0 < ξ � ξ1.

Interval of H Interval of z H = �(H ) =
H � Hc zc � z ln 	 ′

0(z) 	0(z) − z	 ′
0(z)

0 > H > Hc zc > z ln(	 ′
0(z) + �′

1(z)) 	0(z) + �1(z) − z(	 ′
0(z) + �′

1(z))

4. Additional plots

In this Appendix we show the plot of 	(z) versus z, as well
as the plot of �(H (z)) versus z, see Fig. 6.

5. Result for ξ = 0 and correspondence with Ref. [40]

We provide in this Appendix a correspondence between the
variables and functions studied in this work and in the work
[40] in the particular case ξ = 0. In that case g = 0. This is
summarized in Table VII.

Consider the formulas (27) and (29) in Ref. [40]. Taken
together they give

s(λ) − λ j(λ) =
∫
R

dk

8πk2
Li2

(−λ2k2e−2k2)
,

λ j(λ) =
∫
R

dk

4πk2
ln

(
1 + λ2k2e−2k2)

. (H9)

From Table VII we should identify the first result as 	(z) −
z/2 and the second as z/2 − z	 ′(z). Using the duplication
formula for the dilogarithm

Li2(z) + Li2(−z) = 1
2 Li2(z2), (H10)

we indeed find agreement with our formulas (32) and (31)
with z = −λ and using �(ξ = 0) = 1/2 as discussed in the
text.

6. Cumulant expansion of Z and checks

From its definition (7) the function 	(z) encodes the cu-
mulant expansion

	(z) = −
∑
p�1

(−z)p

p!
T

p−1
2 Z (Y, T )p. (H11)

We will now check from perturbation theory that the lowest
order matches our exact result. Since Z (Y, T ) is the cumula-
tive probability (4), from Eq. (2) it satisfies the SDE

∂τ Z (y, τ ) = ∂2
y Z (y, τ ) −

√
2η(y, τ )∂yZ (y, τ ), (H12)

which we can call the derivative stochastic heat equation,
with initial condition Z (y, τ = 0) = �(−y). We rescale the
space and time variables as y = x

√
T , τ = tT . Here we will

abuse notations and use the same letter to denote Z (y, τ ) =

Z (x, t ). The original variable is recovered at the end. The
rescaling yields the dimensionless equation with small noise
amplitude

∂t Z (x, t ) = ∂2
x Z (x, t ) −

√
2T −1/4η(x, t )∂xZ (x, t ), (H13)

with initial condition Z (x, t = 0) = �(−x). Denoting
G(x, t ) = 1√

4πt
e−x2/(4t ) the free Green’s function, this can

also be written as

Z (x, t ) = Z0(x, t ) −
√

2

T 1/4

∫ t

0
du

∫
R

dx′G(x − x′, t − u)

× η(x′, u)∂x′Z (x′, u),

Z0(x, t ) =
∫
R

dx′G(x − x′, t )�(−x′). (H14)

(1) For the first moment one recovers indeed

Z (Y, T ) = Z (x, 1) = Z0(x, 1) =
∫ +∞

x
dy G(y, 1)

= 1

2
Erfc

(
x

2

)
= 	 ′(0). (H15)

(2) To lowest order in T −1/2 one finds the second cumulant

Z (x, 1)2
c = 2T −1/2

∫ 1

0
du

∫
R

dx′G(x − x′, 1 − u)2

× (∂x′Z0(x′, u))2 + O(T −1). (H16)

Using that ∂x′Z0(x′, u) = −G(x′, u) one finds the remarkably
simple result

Z (Y, T )2
c = Z (ξ, 1)2

c = T −1/2 e− ξ2

2

4
√

2π
+ O(T −1). (H17)

However, one must have

−T 1/2Z (Y, T )2
c = 	 ′′(0) = −1

2

∫
R

dq

2π
e−2q2− ξ2

2

= − 1

4
√

2π
e− ξ2

2 , (H18)

since 	 ′′(0) is the coefficient of z2 in z	 ′(z).

TABLE IV. Case ξ1 < ξ � ξ2.

Interval of H Interval of z H = �(H ) =
H � Hc zc � z ln 	 ′

0(z) 	0(z) − z	 ′
0(z)

Hc < H � Hc1 zc1 � z < zc ln(	 ′
0(z) + �′

1(z)) 	0(z) + �1(z) − z(	 ′
0(z) + �′

1(z))
Hc1 < H � Hc2 zc1 < z � zc2 ln(	 ′

0(z) + �′
2(z)) 	0(z) + �2(z) − z(	 ′

0(z) + �′
2(z))

Hc2 < H < 0 zc2 > z ln(	 ′
0(z) + �′

3(z)) 	0(z) + �3(z) − z(	 ′
0(z) + �′

3(z))
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TABLE V. Case ξ2 < ξ .

Interval of H Interval of z H = �(H ) =
H � Hc zc � z ln 	 ′

0(z) 	0(z) − z	 ′
0(z)

Hc < H � Hc10 zc1 � z < zc ln(	 ′
0(z) + �′

1(z)) 	0(z) + �1(z) − z(	 ′
0(z) + �′

1(z))
Hc10 < H � Hc11 zc1 < z � zc ln(	 ′

0(z) + �′
2(z)) 	0(z) + �2(z) − z(	 ′

0(z) + �′
2(z))

Hc11 < H � Hc20 zc < z � zc2 ln(	 ′
0(z) + �′

2(z) − �′
1(z)) 	0(z) + �2(z) − �1(z) − z(	 ′

0(z) + �′
2(z) − �′

1(z))
Hc20 < H � Hc21 zc � z < zc2 ln(	 ′

0(z) + �′
3(z) − �′

1(z)) 	0(z) + �3(z) − �1(z) − z(	 ′
0(z) + �′

3(z) − �′
1(z))

Hc21 < H < 0 zc > z ln(	 ′
0(z) + �′

3(z)) 	0(z) + �3(z) − z(	 ′
0(z) + �′

3(z))

This shows that our formula (32) for the large-deviation
function 	(z) yields correctly the two lowest cumulants, as
stated in the text. These first two cumulants describe the
typical fluctuations of Z (Y, T ) in the diffusive scaling regime,
Y 
 √

T , a regime which was studied previously in the math-
ematical literature [59,60].

7. Cumulants of H

One can obtain the cumulants of H from the derivatives of
the rate function �(H ) (see, e.g., Ref. [58, Sec. 4.2.5 of the
Supplemental Material]). Here they scale as Hqc ∼ T

1−q
2 . The

typical value H = Htyp is determined by �′(Htyp) = 0, which
leads eHtyp = 	 ′(0) (see previous subsection) and the second
cumulant reads

H2
c = T − 1

2

�′′(Htyp)
= −T − 1

2
	 ′′(0)

	 ′(0)2
= C2(ξ ) T − 1

2 ,

C2(ξ ) = 1√
2π

e− ξ2

2

(
Erfc

(
ξ

2

))−2

. (H19)

Indeed, one can relate the derivatives �(q)(Htyp) to those of
	(z) around z = 0 by differentiating the relations 	 ′(z) =
eH and �′(H ) = −zeH . One obtains �′′(H ) − �′(H ) =
− dz

dH eH = − e2H

	 ′′(z) . Taken at z = 0 and H = Htyp they lead to
Eq. (H19). One has the asymptotics at small and large ξ ,

C2(ξ ) = 1√
2π

+
√

2

π
ξ + O(ξ 2),

C2(ξ ) =
√

π

2

(
ξ 2

4
+ 1

)
+ O

(
1

ξ 2

)
. (H20)

APPENDIX I: CONVERGENCE TO THE LARGE
DEVIATIONS OF THE KARDAR-PARISI-ZHANG

EQUATION

1. Large ξ limit: Matching MFT at large time T � 1
to WNT at small time TKPZ � 1

We ought to understand in this Appendix the behavior of
our solution in the large ξ limit. In this regime, one first needs
to rescale the variable z as

z̃ = z
ξ

2
e− ξ2

4 = − z

zc
. (I1)

2. Values of the main branch of the large-deviation
function �0(z)

Recalling the definition of 	0(z) in Eq. (32) for ξ > 0,
approximating iq − ξ

2 ∼ − ξ

2 and using the series expansion
of the dilogarithm Li2(y) = ∑

n>0 yn/n2, we obtain that

	0(z) 
 − 1(
ξ

2

)2

+∞∑
n=1

(−z̃)n

n2

∫
R

dq

2π
e−nq2


 4

ξ 2
	KPZ,0(z̃). (I2)

To go from the first line to the second one, we performed
the Gaussian integral and used the identity

	KPZ,0(z̃) = − 1√
4π

Li5/2(−z̃). (I3)

3. Critical values of z

In the same way, we rescale the critical values of z as
follows:

z̃c = − zc

zc
, z̃c1 = − zc1

zc
, z̃c2 = − zc2

zc
, (I4)

TABLE VI. (Left) Case ξ1 < ξ � ξ2. In the inversion of the Legendre-Fenchel transform, Z jumps from 	 ′
0(z∗) + �′

1(z∗) to 	 ′
0(z∗) +

�′
3(z∗). (Right) Case ξ2 < ξ (assuming zc < z∗). In the inversion of the Legendre-Fenchel transform, Z jumps from 	 ′

0(z∗) to 	 ′
0(z∗) +

�′
3(z∗) − �′

1(z∗). Note that zc > z∗ would lead to a jump between the second branch and the last branch with the same jump criterion (H8).

Interval of z “Optimal” 	(z) = Interval of z “Optimal” 	(z) =
zc � z 	0(z) z∗ � z 	0(z)
z∗ � z < zc 	0(z) + �1(z) zc � z < z∗ 	0(z) + �3(z) − �1(z)
z∗ > z 	0(z) + �3(z) zc > z 	0(z) + �3(z)
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FIG. 6. Plots for various values of ξ = 0, 1, 2, 3, 4, 5. (Left) Large deviation rate function �(H (z)) as a function of z using the definition
(35). The function is symmetric for ξ = 0 and becomes asymmetric for nonzero values of ξ . It satisfies the symmetry �(H (z))|−ξ =
�(H (−z))|ξ . (Right) Large deviation rate function 	(z). The minimum branch of 	(z) defines the “optimal” solution to the Legendre inversion
of Eq. (8). For large negative values of z, the function becomes almost linear, i.e., 	(z) 
 z.

and we take the ξ � 1 limit to obtain the limiting values

z̃c = −1, z̃c1 = −1 + O
(

1

ξ 2

)
,

z̃c2 = e1− ξ2

4

[
1 − ξ 2

2
+ O

(
1

ξ 2

)]
. (I5)

4. Values of the zeros p1, p2, p3

Equation (37) determining the position of the branch cut
reads with this variable

e−p2 + z̃

(
1 + 2p

ξ

)
= 0. (I6)

At the first order at large ξ , the zeros of this equation read

p1 

√

ln

(
zc

z

)
=

√
− ln(−z̃),

p2 
 −
√

ln

(
zc

z

)
= −

√
− ln(−z̃),

p3 
 −ξ

2
− 1

z
= −ξ

2
− ξ

2z̃
e−ξ 2/4.

(I7)

To study only real zeros imposes that z̃ ∈ [−1, 0].

TABLE VII. Correspondence between the variables of this work
and Ref. [40] for ξ = 0.

Present work Ref. [40]

z = β� −λ

βR v

Q u

Z = eH = 	 ′(z) j + 1

2
�(H ) = 	(z) − zeH = 	(z) − z	 ′(z) s( j)

−z = e−H�′(H ) λ = ds

d j

5. Values of the derivative of the jump function

Recalling that the derivative of the jump function (39) reads

z̃∂z̃�� = 4p�

ξ (2p� + ξ )
. (I8)

It yields for the different zeros

z̃∂z̃�1 
ξ→∞
4

ξ 2

√
− ln(−z̃),

z̃∂z̃�2 
ξ→∞ − 4

ξ 2

√
− ln(−z̃),

z̃∂z̃�3 
ξ→∞ z = 2z̃

ξ
e

ξ2

4 .

(I9)

6. Discussion about which branches remain in the large ξ limit

Recalling the different branches of the large-deviation
function 	(z) in Table V, we now discuss how the different
branches behave in the large ξ limit. Since we have z̃c = z̃c1,
the branches

	(z) = 	0(z) + �1(z),

	(z) = 	0(z) + �2(z) (I10)

disappear on the z̃ scale. We now explain that the next branch,
i.e.,

	(z) = 	0(z) + �2(z) − �1(z), (I11)

is the only one, besides the main branch, to remain on the z̃
scale. Indeed, looking at the derivative

z̃∂z̃	(z) = z̃∂z̃	0(z) + z̃∂z̃�2(z) − z̃∂z̃�1(z)


 4

ξ 2
[z̃∂z̃	KPZ,0(z̃) − 2

√
− ln(−z̃)], (I12)

which has a jump function part identical to Eq. (F7). Hence,
that branch converges to the second branch of the KPZ rate
function, i.e., to 	KPZ(z̃) = 	KPZ,0(z̃) + �KPZ(z̃), as claimed
in the text.

Furthermore, as explained in the main text, the last two
branches with � = �3 − �1 and � = �3 disappear in the
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FIG. 7. Plot of z̃ = −z/zc as a function of HKPZ = H + ξ2

4 +
ln( ξ

2 ) for several values of ξ = 4, 5, 6 as compared with the asymp-
totic ξ = ∞ KPZ expression. All branches are represented. The
convergence to KPZ is excellent. The last two branches in Table I
correspond to the sharp decrease to z̃ → −∞ and is pushed to
HKPZ = +∞ as ξ = +∞. It corresponds to events where Z ≈ 1
which become irrelevant in that limit.

region H ∼ 0 or equivalently Z ∼ 1, which correspond to
HKPZ → +∞ see discussion below.

7. Matching to the regime Y ∼ T 4/3

It was predicted in Refs. [16,18], and proved in Ref. [20],
that the sample-to-sample fluctuations of the probability de-
noted here as Z (Y, T ) = eH (Y,T )—defined in Eq. (3)—when
seen in an atypical space time direction, are related to those
of the random height field hKPZ(x, t ) = h(x, t ) solution of the
KPZ equation

∂t h(x, t ) = ∂2
x h(x, t ) + (∂xh)2 +

√
2η(x, t ), (I13)

with droplet initial condition eh(x,0) = δ(x), where η is a stan-
dard space-time white noise. The relation to the KPZ solution
at finite time, hKPZ(0, t ), holds when one scales Y ∼ T 3/4.
The scaling studied here Y ∼ T 1/2 thus corresponds to short
KPZ time, while the scaling Y ∼ T corresponds to the limit
of infinite KPZ time, leading to the Tracy-Widom distribution
[15].

Let us recall the result of Ref. [20, Sec. 3.2 Eq. (30)]
established in the scaling regime Y ∼ T 3/4 (we consider here
Y > 0). Setting y = 0 and t = 2T there (to account for the
different units) it translates into the equality in law in the large
T limit [for the diffusion (2)]

lnP [y(T ) > x̃(2T )3/4] + 1
2 x̃2(2T )1/2

+ 1

4
ln(2T ) − ln x̃ = hKPZ

(
0,

x̃4

2

)
, (I14)

where x̃ = Y
(2T )3/4 . Hence, denoting

TKPZ = Y 4

16T 3
(I15)

we have the equalities in law

H (Y, T ) = hKPZ(0, TKPZ) − Y 2

4T
+ ln

Y

2T

⇔ Z (Y, T ) = Y

2T
e− Y 2

4T ehKPZ(0,TKPZ ), (I16)

valid a priori in the regime Y ∼ T 3/4. Let us now set Y =
ξ
√

T , with ξ > 0. One gets

Z (Y, T ) = ξ

2
√

T
e− ξ2

4 ehKPZ(0,TKPZ ), TKPZ = ξ 4

16T
, (I17)

valid a priori in the regime ξ ∼ T 1/4. We now show that it
holds beyond that, i.e., in the large deviation regime where
ξ is of order one but large, which is also the regime where
the KPZ time is small, TKPZ � 1. To compare with the known
large deviation results for the KPZ equation at short time, it is
useful to introduce

HKPZ := hKPZ(0, TKPZ) + ln(
√

TKPZ). (I18)

These results read [46], given here in the form of [10, Eqs. (4)
and (22)]

exp(−z̃ehKPZ(0,TKPZ )) = exp

(
− z̃√

TKPZ
eHKPZ

)

= exp

(
−	KPZ(z̃)√

TKPZ

)
, (I19)

where 	KPZ(z̃) = 	KPZ,0(z̃) = − 1√
4π

Li5/2(−z̃). While the
l.h.s. exists a priori only for z̃ > 0 this formula admits an ana-
lytic continuation, called the main branch, for z̃ ∈ [−1,+∞].
Already at this level we can match with the results of the
present study. Indeed here we obtained for the main branch
for z > zc, see Eqs. (43) and (44) in the text

exp(−z
√

T Z ) = exp

(
−

√
T

4

ξ 2
	KPZ,0(z̃)

)
, z̃ = z

ξ

2
e−ξ 2/4,

(I20)

which is in perfect agreement with Eq. (I19) using the
relations in Eq. (I17). Hence, the large deviations in the
regime Y ∼ T 3/4 and the diffusive regime Y ∼ √

T match
smoothly.

As discussed in Refs. [10,46] one obtains the rate function
for the KPZ equation, �KPZ(HKPZ), upon Legendre inversion
in the parametric form

�KPZ(HKPZ) = 	KPZ(z̃) − z̃eHKPZ , eHKPZ = 	 ′
KPZ(z̃).

(I21)

For the KPZ equation the main branch 	KPZ,0(z̃) allows
us to obtain �KPZ(HKPZ) only for HKPZ < HKPZ,c = ln ζ (3/2)

4π

which corresponds to the field at which z̃ = z̃(HKPZ) solu-
tion of Eq. (I21) with 	KPZ → 	KPZ,0 reaches z̃ = −1. For
HKPZ > HKPZ,c one needs to use the second branch 	KPZ →
	KPZ,0 + �KPZ(z̃) and z̃(HKPZ) increases again from −1 to 0
as HKPZ → +∞.

As we have shown in the previous subsection in the limit
ξ → +∞ one obtains the convergence

	(z) → 4

ξ 2
	KPZ(z̃), (I22)
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not just for the main branch, but for all the branches which
survive in that limit. Thus, we expect the correspondence
between the fields obtained upon Legendre transform

H (z) = ln

(
d	

dz

)



ξ�1
ln

(
4

ξ 2

dz̃

dz

d	KPZ

dz̃

)



ξ�1

−ξ 2

4
− ln

(
ξ

2

)
+ HKPZ(z̃). (I23)

The prediction is thus that using the results of the present
work for ξ → +∞, one should have that z̃ = −z/zc plotted
versus HKPZ = H + ξ 2

4 + ln ξ

2 reaches a limit curve indentical
to z̃(HKPZ) for the KPZ equation. As one can see from Eq.(7)
this is indeed the case.

Finally we can check that Eq. (I23) is indeed consistent
with the correspondence discussed above from the matching
to the Y ∼ T 3/4 regime. Indeed, using Eqs. (I18) and (I17) one
has

HKPZ(z̃) = hKPZ(0, TKPZ) + ln(
√

TKPZ)

= hKPZ(0, TKPZ) − ln(
√

T ) + ln(ξ 2/4)

= H + ξ 2

4
+ ln

ξ

2
, (I24)

which is identical to Eq. (I23).
In conclusion, inserting into the parametric representation

of the Legendre transform one obtains for ξ � 1

�(H ) 
 4

ξ 2
�KPZ(HKPZ), HKPZ = H + ξ 2

4
+ ln

ξ

2
, (I25)

as given in the text which means that one can identify the large
deviations probabilities

P (H ) ∼ exp(−
√

T �(H )) ∼ exp

(
−�(HKPZ)√

TKPZ

)

∼ PKPZ(HKPZ). (I26)

APPENDIX J: LARGE-TIME LIMIT OF THE FREDHOLM
DETERMINANT RESULT FOR THE STICKY

BROWNIAN MOTION

In this section we start from the formula of Ref. [19] and
study the diffusive limit where T and Y are large with ξ =
Y/

√
T fixed. This leads to a conjectural form for 	(z) which

agrees with the one derived in the text using inverse scatter-
ing. The manipulations in this Appendix are quite heuristic
but they have the merit to show that the algebraic structure
which emerges from the Fredholm determinant is similar to
the one derived in the text from first principles by the inverse
scattering method. We hope that it will help to obtain in the
future a more precise and rigorous derivation.

In Ref. [19] the quantity which corresponds to Z (Y, T ) was
studied. It was denoted K0,t (0, [x,+∞[) and called the kernel
of the uniform Howitt-Warren flow [61]. The equivalence
between the two objects, mathematically very subtle, was
discussed in Ref. [19, Remark 2.4] (see also Refs. [62,63]).
Note that the regime of typical fluctuations of Z (Y, T ) was
studied in Ref. [59] (see also Ref. [60]) and it was shown
to have Edwards-Wilkinson type of fluctuations with T 1/4

scaling.

Here, the quantity which we define as Z (Y, T ) obeys
a backward Fokker-Planck equation. Indeed, from the
definition

Z (Y, τ ) =
∫ +∞

Y
dy qη(y, τ ), qη(y, τ ) = −∂yZ (y, τ ), (J1)

one easily obtains upon integrating Eq. (2)

∂τ Z (Y, τ ) = ∂2
Y Z (Y, τ ) −

√
2η(Y, τ )∂Y Z (Y, τ ), (J2)

with initial condition Z (Y, τ = 0) = �(−Y ). This is equiva-
lent to Ref. [19, Eq. (19)]. The correspondence of notations
is that the space and time variables there must be replaced
by t → 2T and x = Y . Note that in Ref. [19, Eq. (19)] the
noise term is −√

2η(y, T ) =
√

2√
λ
η̂(y, T ) where η̂ is standard

space-time white noise. Hence, below λ is set to unity.
The identity proved in Ref. [19, Theorem 1.11] reads for u

nonnegative

E[e−uZ (Y,T )] = Det(I − Ku)|L2(C), (J3)

where C is a positively oriented circle with radius R and
centered at R and

Ku(v, v′) = 1

2iπ

∫
1/2+iR

π

sin πs
us g(v)

g(v + s)

ds

s + v − v′ .

(J4)

The definition of g(v) is

g(v) = �(v)eaY ψ0(v)+bT ψ1(v), (J5)

where ψ0,1 denote polygamma functions and a = λ and b =
λ2. Here λ is set to unity.

We now use ζ = v + s as a variable, for which the integra-
tion contour can be chosen as 1/2 + 2R + iR—see remark
in Ref. [19, Proposition 2.3]—where we recall that C is the
integration contour for v, v′. We factorize the kernel (J4) into
the following form,

Ku(v, v′) =
∫

1/2+2R+iR

dζ

2iπ
A(v, ζ )Ã(ζ , v′), (J6)

A(v, ζ ) = πuζ−v

sin(π (ζ − v))

g(v)

g(ζ )
,

Ã(ζ , v′) = 1

ζ − v′ . (J7)

We now use the identity

π

sin(πs)
us =

∫
R

dr
u

u + e−r
e−sr, (J8)

which, inserted into Eq. (J7), allows us to factorize the kernel
A as

A(v, ζ ) =
∫
R

dr
u

u + e−r
e−(ζ−v)r g(v)

g(ζ )

=
∫
R

drσ (r)A1(v, r)A2(r, ζ )

= (A1σA2)(v, ζ ), (J9)

where the kernels A1, A2 and the function σ read

A1(v, r) = g(v)evr,
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A2(r, ζ ) = e−ζ r

g(ζ )
,

σ (r) = u

u + e−r
. (J10)

Hence, using Sylvester’s identity

Det(I − Ku)|L2(C) = Det(I − AÃ)

= Det(I − A1σA2Ã)

= Det(I − σA2ÃA1)|L2(R). (J11)

This last Fredholm determinant has the typical structure for
which the first cumulant method, developed in Refs. [48–50]
to study the relevant asymptotics (here large T ), applies.
Defining a determinantal point process {a�}�∈N associated to
the kernel A2ÃA1, the following identity holds,

Det(I − σA2ÃA1) = E

[ ∞∏
�=1

(1 − σ (a�))

]
= E

[ ∞∏
�=1

e−ϕ(a� )

]
,

(J12)

where e−ϕ = 1 − σ . The first cumulant approximation asserts
[48, Sec. 6] that as some parameter goes to infinity (here it will
be T , see below), we expect the point process to self-average,
i.e.,

E

[ ∞∏
�=1

e−ϕ(a� )

]
∼ e−E[ϕ(a)] = e−Tr(ϕA2ÃA1 ). (J13)

If the first cumulant method works, then we aim to have under
the right scaling

Det(I − Ku)|L2(C) ∼ exp[−Tr(ϕA2ÃA1)]. (J14)

The explicit expression of the kernel A2ÃA1 is obtained as

(A2ÃA1)(r, r′) =
∫

1/2+2R+iR

dζ

2iπ

∫
C

dv′

2iπ

g(v′)
g(ζ )

1

ζ − v′ e
r′v′−rζ ,

(J15)

taking into account that the measure on the variables v is dv
2iπ .

Using that

ϕ(r) = ln(1 + uer ) = −Li1(−uer ) (J16)

to apply the first cumulant method we need to calculate the
following quantity which only involves the diagonal part of
the kernel A2ÃA1,

Tr(ϕA2ÃA1) = −
∫
R

dr
∫

1/2+2R+iR

dζ

2iπ

×
∫

C

dv′

2iπ
Li1(−uer )

g(v′)
g(ζ )

1

ζ − v′ e
r(v′−ζ ).

(J17)

We recall that �(ζ − v′) > 0 by construction. We further
proceed to an integration by part with respect to r to

obtain

Tr(ϕA2ÃA1) = −
∫
R

dr
∫

1/2+2R+iR

dζ

2iπ

×
∫

C

dv′

2iπ
Li2(−uer )

g(v′)erv′

g(ζ )erζ
. (J18)

The boundary terms of the integration by part are zero since
er(1+v′−ζ ) → 0 for r → −∞ and the polylogarithms behave
as Lis(er ) ∼ rs at r → +∞.

At this stage we proceed to the large-time rescaling to the
diffusive regime using the rescaled variables

{Y = ξ
√

T , v = w
√

T , ζ = ω
√

T , u = z
√

T }.
(J19)

We then rewrite Eq. (J17) as

Tr(ϕA2ÃA1) = −
∫
R

drLi2(−uer )I (r)

= −
∫
R

drLi2(−zer )I (r − ln
√

T ), (J20)

where we have shifted the variable r by − ln
√

T and defined

I (r − ln
√

T ) =
∫

1/2+2R+iR

dζ

2iπ

∫
C

dv′

2iπ

g(v′)e(r−ln(
√

T )))v′

g(ζ )e(r−ln(
√

T ))ζ

=
∫

1/2+2R+iR

dζ

2iπ
e−(ln g(ζ )+(r−ln

√
T )ζ )

×
∫

C

dv

2iπ
e(ln g(v)+(r−ln

√
T )v). (J21)

The large-time expansion of the function g(v) given in
Eq. (J5) reads

ln g(v) = aY ψ0(v) + bT ψ1(v) + ln �(v)

=
√

T (φ(w) + (w + aξ ) ln
√

T )

+χ (w) − 1

2
ln(

√
T ) + o(T ), (J22)

where we defined

φ(w) = b

w
− w + (w + aξ ) ln(w),

χ (w) = b

2w2
− aξ

2w
+ 1

2
ln(2πw). (J23)

At this stage we will choose the radius of the circle C
conveniently to be equal to R = T/Y so that its mapping
under the large-T limit is a circle C′ of radius 1/ξ centered at
1/ξ (we assume here and below that ξ > 0). Upon the change
of variable (J19) in the large T limit, inserting Eq. (J22) into
Eq. (J21) and noting that constant terms cancel from the two
integrals we obtain

I (r − ln
√

T ) 
 T
∫

2/ξ+0++iR

dω

2iπ
e−√

T (φ(ω)+rω)−χ (ω)

×
∫

C′

dw

2iπ
e
√

T (φ(w)+rw)+χ (w). (J24)
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In the large-T limit these integrals are dominated by saddle
points. The saddle-point equation reads

φ′(w) = − 1

w2
+ ξ

w
+ ln(w) = −r (J25)

and the same for ω. Since w is on the circle C′ we can
parametrize it in the following way,

1

w
= −iq + ξ

2
, q ∈ R. (J26)

The saddle-point equation becomes

er =
(

−iq + ξ

2

)
e−q2− ξ2

4 , (J27)

which is very reminiscent of Eq. (37). To make this saddle
point easily attainable, one way is to deform the integra-
tion contour of r which is not R anymore but the image
of Eq. (J27) as q varies on the real axis, which we call
γ . We will assume that this is possible. This is a closed
curve for er , touching the real axis at values er = 0 and

er = ξ

2 e− ξ2

4 . The solution of Eqs. (J26) and (J27) defines a
function w(r) so that the saddle-point evaluation of Eq. (J24)
gives

I (r − ln
√

T ) 
 −
√

T

2iπ

1

φ′′(w(r))
, (J28)

where we have also assumed that the integration contour
of ω could be deformed to be folded around C′. This
ensures that the dominant exponential at the saddle-point
cancel.

To summarize, the first cumulant (J20) of the Fredholm
determinant reads in the large T -limit

Tr(ϕA2ÃA1) =
√

T

2iπ

∫
γ

dr Li2(−zer )
1

φ′′(w(r))
. (J29)

We will now perform the change of variable (J27). Using the
saddle-point equation φ′(w(r)) = −r we obtain upon deriva-
tion the Jacobian of this change of variable

φ′′(w(r))
dw(r)

dq

dq

dr
= −1,

1

φ′′(w(r))
dr = −i

dq(
iq − ξ

2

)2 . (J30)

Inserting into Eq. (J29) we finally obtain

	(z) = 1√
T

Tr(ϕA2ÃA1)=−
∫
R

dq

2π

Li2
(
z
(
iq − ξ

2

)
e−q2− ξ2

4
)

(
iq − ξ

2

)2 ,

(J31)

which is in agreement with Eq. (32) in the text.

APPENDIX K: EXTENSION TO THE EXTREMAL
DIFFUSION BEYOND EINSTEIN’S DIFFUSION THEORY

In this section we study the position of the maximum of
N walkers in the same random field (by sample below we
mean one given environment, i.e., random field). Previous

works started with Refs. [15,22] which studied the β ran-
dom walk and pointed out that for N � 1, and in the regime
ln N ∼ T , the position of the maximum has sample to sample
fluctuations given by the Tracy-Widom distribution. Another
regime, ln N ∼ √

T , was obtained in Refs. [16,20] where
these fluctuations are described by the solution of the KPZ
equation at finite time. Numerical simulations which confirm
these regimes have been performed recently [51]. Extending
these arguments, our present work allows us to study another
regime, ln N � √

T , not studied previously.
Consider N independent particles in the same environ-

ment. One denotes YN (T ) = maxi Yi(T ) with i = 1, . . . , N
and ZN (Y, T ) = P (YN (T ) > Y ). One has the exact relation

1 − ZN (Y, T ) = P (YN (T ) < Y ) = P (Y (T ) < Y )N

= (1 − Z (Y, T ))N . (K1)

We focus below on the diffusive scaling Y ∼ √
T at large

T , not considered previously in the discussion of the extremal
diffusion. We will thus denote yN (T ) = 1√

T
YN (T ). There are

several observables of interest.

1. Large deviations of the CDF of the maximum

The first observable is ZN = P (yN (T ) > ξ ), which is sim-
ply the analog of Z for the maximum position of N particles.
One can ask, for any finite N , what are the large deviations
of the PDF of ZN for T � 1. From the above simple relation
(K1) one finds for

P (ZN ) ∼ exp(−
√

T �̂ξ (1 − (1 − ZN )1/N )), (K2)

where the rate function �̂ξ (Z ) is the one obtained in the
present work (for N = 1). Here and below we indicate explic-
itly the dependence in ξ of the rate functions.

2. Averaged CDF of the maximum

Another observable is the following average over the envi-
ronment,

P (yN (T ) < ξ ) =
∫ 1

0
dZeN ln(1−Z )

∼
∫ 1

0
dZeN ln(1−Z )−√

T �̂ξ (Z ), (K3)

where in the last equation we have substituted the large de-
viation form. Note that considering instead of the average
moments of order q is equivalent to substitute n → nq.

There are several regimes depending on N . If N � √
T ,

then the second term dominates and implies that Z ≈ Ztyp(ξ )
so that

P (yN (T ) < ξ ) 
 eN ln(1−Ztyp(ξ )), (K4)

and the result is identical as the CDF of the maximum position
for N particles in the absence of random field.

If N = n
√

T � 1 with n = O(1) fixed, then the two terms
can balance each other and one finds that this observable takes
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the large deviation form

P (yN (T ) < ξ ) ∼ e−√
T �ξ (n),

�ξ (n) = min
Z

(�̂ξ (Z ) − n ln(1 − Z )), (K5)

with a rate function obtained from a non trivial variational
formula. Here for a given ξ the value of Z which realizes the
optimum is different from Ztyp(ξ ) and thus involves rare en-
vironments. Upon some simple manipulations, recalling that
Z = 	 ′(z) and �̂′(Z ) = −z we obtain z = n

1−Z leading to the
parametric representation

�ξ (n) = 	ξ (z) − z + n − n ln

(
n

z

)
, z[1 − 	 ′

ξ (z)] = n.

(K6)

Note that the approximation N ln(1 − Z ) 
 −NZ valid for
Z = 	 ′

ξ (z) � 1 would instead lead to z 
 n and �ξ (n) 

	ξ (z). Although we leave this study to the future, it is quite
likely that a phase transition similar to the one of 	(z) for
ξ > ξ1 for and for some values of z should also occur here. For
n → 0 one has n 
 z[1 − 	 ′

ξ (0)] = z[1 − Ztyp(ξ )] and one
recovers (K4). More precisely one has the expansion

�ξ (n) = −n ln(1 − 	 ′
ξ (0)) + 	 ′′

ξ (0)n2

2[1 − 	 ′
ξ (0)]2

+ O(n3),

	 ′
ξ (0) = Ztyp(ξ ). (K7)

3. Position of the maximum: Typical behavior

One can ask about the position of the maximum and
its fluctuations. Let us introduce N i.i.d exponential ran-
dom variables gi of PDF P(g) = e−g�(g), and call GN =
maxi gi − ln N . At large N , GN → G a Gumbel random vari-
able with P (G < g) = e−e−g

. For any N one has P (G < g) =
(1 − 1

N e−g)N . In a given environment one can write

P (YN (T ) < Y ) = eN ln(1−Z (Y,T ))

= �(GN + ln N + H (Y, T ) < 0)
GN

. (K8)

This formula is valid for any N and for large N one obtains the
same formula with GN → G by approximating eN ln(1−Z ) 

e−NZ . Note that GN and G in this formula are independent
of H (Y, T ). As discussed below, the approximation Z � 1
is also realized for any N with large probability when ξ =
Y/

√
T is large. The random position of the maximum YN (T ),

in a given environment is then given by

GN + ln N + H (Y, T ) < 0 ⇔ YN (T ) < Y (K9)

Note that GN + ln N is a positive random variable. Since
Z (Y, T ) and thus H (Y, T ) is a positive decreasing function of
Y in any sample, one may argue [by taking a derivative w.r.t.
Y in Eq. (K8)] that Eq. (K9) is equivalent to

GN + ln N + H (YN (T ), T ) = 0. (K10)

This formula generalizes Ref. [20, Eq. (50)] to any N .
Until now this is exact. Let us again consider the

diffusive scaling regime Y ∼ √
T at large T . In a

typical environment, one has H (Y, T ) 
 Htyp(ξ ) where

ξ = Y/
√

T and Htyp(ξ ) = ln(
∫ +∞
ξ

e−x2/4√
4π

) = ln( 1
2 Erfc( ξ

2 )) =

− ξ 2

4 − ln(
√

πξ ) + O(ξ−1). Note that Htyp(ξ ) varies from 0
for ξ → −∞ to −∞ for ξ → +∞. Let us denote ytyp

N the
scaled position of the maximum in a typical environment. At
large T it reaches a finite limit in distribution such that

GN + ln N + Htyp
(
ytyp

N

) = 0

⇔ ytyp
N = H−1

typ (−GN − ln N ), (K11)

where H−1
typ (h) = ξ is the reciprocal function of Htyp(ξ ) = h.

This is correct for any N . The distribution of ytyp
N is exactly

the same as the one for the maximum of N Brownian mo-
tions at time t = 1, performing each diffusion dBi(t )2 = 2dt ,
started at Bi(0) = 0 at t = 0, i.e., for the problem without the
quenched random field. For N � 1, using the asymptotics of
Htyp(ξ ) one finds the standard result

ytyp
N 
 2

√
ln N + G − 1

2 ln(4π ln N )√
ln N

+ · · · (K12)

We can now study the typical fluctuations from sample
to sample. To lowest order one should take into account the
typical fluctuations of H (Y, T ), which are δH = O(T 1/4).
The variance was obtained in Eq. (H19) as H2

c = C2(ξ )T −1/2,
where the function C2(ξ ) was given there. The position of the
maximum is now determined by

GN + ln N + Htyp(yN ) +
√

C2(yN )T −1/4ω = 0, (K13)

where ω is a Gaussian random variable of unit variance.
Inverting to leading order at large time we find (an equa-
tion valid for any N)

yN = H−1
typ

(−GN − ln N −
√

C2
(
ytyp

N

)
T −1/4ω

) + o(T −1/4)

(K14)

= ytyp
N −

√
C2

(
ytyp

N

)
H ′

typ

(
ytyp

N

) T −1/4ω + o(T −1/4). (K15)

If N � 1, then one finds

yN = 2
√

ln N +
G − 1

2 ln(4π ln N ) +
√

C2
(
ytyp

N

)
T −1/4ω

√
ln N

+ · · · , (K16)

where we recall that the ω term represents the sample-to-
sample fluctuations and the Gumbel variable G the “thermal”
fluctuations, the two random variables being uncorrelated.

We can compare this result with Ref. [20, Eqs. (57) and
(58)] setting D = 1 and r0 = 2 there, which were obtained
when N and T are large with the parameter g = ln N√

T
kept

fixed. The KPZ time there is TKPZ = g2 = (ln N )2

T . This agrees
perfectly with the KPZ time in the present work TKPZ =
ξ 4/(16T ) where ξ ∼ yN ∼ 2

√
ln N from Eq. (K16). For the

matching to Ref. [20, Eqs. (57) and (58)] to be perfect we need
the variance of the KPZ height field at very short time (i.e., in
the Edward-Wilkinson regime for droplet initial condition),
which is given by [46]

h(0, TKPZ)2
c 
 CKPZ

2 T 1/2
KPZ, CKPZ

2 =
√

2

π
. (K17)
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One then easily checks that it exactly matches the amplitude
of the fluctuating term ∼ω in Eq. (K16) using the large ξ

behavior (H20), C2(ξ ) 
 ξ 2

4

√
2
π

.
To summarize, Eqs. (K14) and (K16) extend the results of

Ref. [20] about “typical” extremal diffusion to the diffusive
regime Y ∼ √

T . In that new regime ln N � √
T , i.e., T �

(ln N )2 and the fluctuations are of the Edwards-Wilkinson
type. If N is large, then ln N does not need to be very large.
As (ln N )2/T is increased there is a perfect match to the
predictions of Ref. [20] in the regime Y ∼ T 3/4 where the
sample-to-sample fluctuations are governed by the finite-time
KPZ equation.

4. Remark

The two independent random contributions in Eq. (K16)
can be separated by considering simultaneously the “quantile”
as done in numerical simulations [51], that is, instead of
yN (T ), xN (T ) = XN (T )√

T
defined by

∫ +∞
XN (T ) dyqη(y, T ) = 1

N in a
given sample, or in other words,

ln H (XN (T ), T ) = − ln N, Z (XN (T ), T ) = 1

N
. (K18)

5. Position of the maximum: Large deviations

Finally, our results yield additional information about
the large deviations of extremal diffusion, i.e., for rare
environments such that H − Htyp = O(1). In that case, if
one heuristically replaces in Eq. (K10), H (YN (T ), T ) →
Htyp(yN (T )) + (H − Htyp(ytyp

N )), then one obtains

yN 
 H−1
typ (−GN − ln N − (H − Htyp)), (K19)

and for N � 1,

yN 
 2
√

ln N + G − 1
2 ln(4π ln N ) + (H − Htyp(ξ ))√

ln N

+ · · · , (K20)

with ξ = 2
√

ln N , for rare environments which occur with
probability ∼ exp(−√

T �ξ (H )). Since ξ is large, rewriting

H = − ξ 2

4 − ln ξ

2 + HKPZ, this is equivalent to extend the es-
timate of Ref. [20] for the fluctuations of the position of
the maximum to the large deviations regime of the KPZ
equation (with rare environments occurring with probability
∼ exp(− 1√

TKPZ
�KPZ(HKPZ)) and with TKPZ = ξ 4

16T = (ln N )2

T �
1.

APPENDIX L: EXTENSION TO GENERAL QUADRATIC
MODELS IN THE MFT: DIFFUSION IN RANDOM MEDIUM

AND THE SYMMETRIC SIMPLE EXCLUSION PROCESS

One definition of the MFT is as the Langevin equation of a
diffusive gas with particle density q(x, t ) [64]

∂t q = ∂x[D(q)∂xq −
√

σ (q)ξ (x, t )], (L1)

where ξ (x, t ) is a standard space-time white noise. The
model solved in this present paper corresponds to σ (q) =
2q2 and D(q) = 1. Averages of solutions of Eq. (L1)

over the noise can be obtained from the dynamical ac-
tion S[q, p] = ∫∫

dxdt [p∂t q − H(q, p)] with Hamiltonian
H(q, p) = −D(q)∂xq∂x p + 1

2σ (q)(∂x p)2, and where p(x, t )
is the response field. At large time these averages can
be obtained from the solutions to the saddle-point equa-
tions ∂t q = δH

δp and ∂t p = − δH
δq , which admit the conservation

law d
dt H(p, q) = 0.

We will focus below on a subclass of models within the
MFT called quadratic models and show how the work of this
present paper is relevant to solve them.

1. Mapping of quadratic models in the MFT to the coupled
DNLS system

Consider here the quadratic MFT models which have a
noise variance parameterized as

σ (q) = 2Aq(B − q) (L2)

and a diffusion constant D(q) = 1. This class contains both
the SEP and the present model of diffusion in random
medium. The MFT hydrodynamic equations (i.e., the saddle-
point equations) read

∂t q = ∂x[∂xq − 2Aq(B − q)∂x p],

∂t p = −∂2
x p − A(B − 2q)(∂x p)2. (L3)

We introduce the generalized derivative Cole-Hopf transform

R(x, t ) = A∂x p(x, t )eABp(x,t ), Q(x, t ) = q(x, t )e−ABp(x,t ).

(L4)

The variables {R, Q} then verify the coupled DNLS system
(A7) with β = 1,

∂t Q = ∂2
x Q + 2∂x(Q2R),

−∂t R = ∂2
x R − 2∂x(QR2). (L5)

2. Gauge transformation between NLS and DNLS and relation
with the nonlocal transformation of Ref. [42]

a. Change of variable of Wadati and Sogo

Wadati and Sogo proved in 1982 [65] that the non-
linear Schrodinger equation and the derivative nonlinear
Schrodinger equation were gauge equivalent. Indeed, consider
the following systems in the conventions of Ref. [65], first the
coupled NLS,

iq1t + q1xx − 2r1q2
1 = 0,

ir1t − r1xx + 2r2
1q1 = 0, (L6)

and second the coupled DNLS,

q2t − iq2xx − (
r2q2

2

)
x = 0,

r2t + ir2xx − (
r2

2q2
)

x = 0. (L7)

Wadati and Sogo showed that the following change of vari-
ables allows us to map the coupled DNLS system to the
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coupled NLS system,

q1 = q2

2
exp

(
−i

∫ x

−∞
r2q2

)
,

r1 = (−ir2x + r2
2q2/2

)
exp

(
i
∫ x

−∞
r2q2

)
. (L8)

To show the relation with the nonlocal transformation of
Ref. [42], one needs to relate the conventions of Wadati to the
ones of this present work and of Ref. [42]. We first transform
the time in Eqs. (L6) and (L7) as t → it , and choose

q1 = v, r1 = u,

q2 = −2R, r2 = iQ. (L9)

We obtain that Eq. (L7) is the {R, Q} system with β = 1 [that
is, e.g., Eq. (11) with g = 0 or Eq. (A7)] and that Eq. (L6) is
the {P, Q} system with g = −1. This {P, Q} system is precisely
the equations verified by the functions {v, u} of Ref. [42] (with
v = P and u = Q).

Now, considering the MFT for the SEP, we have shown
in Eq. (L4) that the derivative Cole-Hopf transform of the
MFT variables verify the DNLS {R, Q} system. Performing
the gauge transformation (L8) with our new variables thus
leads to

u = (Q2R + ∂xQ) exp

(
2

∫ x

−∞
dy QR

)
,

v = −R exp

(
−2

∫ x

−∞
dy QR

)
. (L10)

We can now go back to the variables q and p of the MFT using
the generalized derivative Cole-Hopf transform (L4), and we
obtain

u = (−Aq(B − q)∂x p + ∂xq) exp

(
−

∫ x

−∞
dy A(B − 2q)∂y p

)
,

(L11)

v = −A∂x p exp

(∫ x

−∞
dy A(B − 2q)∂y p

)
, (L12)

which is valid for any quadratic theory. This recovers the
“generalized Cole-Hopf equations” obtained very recently in
Ref. [42, Eqs. (10)–(11)] (which use the notations H = p and
� = q). Note however the missing the factor A in the second
equation in that work.

3. Stationary measure

The stochastic equation (L1) admits generically a family
of stationary measures. For instance if one fixes the boundary
conditions as q(0) = q(L) = �, and if the problem is taken on
a finite-size interval, the stationary measure is [2,26,64,66]

Peq({q(x)}) ∼ e− ∫ L
0 dx( f (q(x))− f (�)−(q(x)−�) f ′ (�)), (L13)

where f ′′(q) = 2D(q)
σ (q) . The linear term is determined so that the

maximum probability is for q = �.
Consider the model of diffusion in a random environment

studied here in Eq. (2), with a more general amplitude for the
noise. In that case one has D(q) = 1 and σ (q) = 2αq2, hence

f ′′(q) = 1/(αq2). This leads to f (q) = − 1
α

ln q + kq + c, and
to the stationary measure

Peq({q(x)}) ∝ e− 1
α

∫ L
0 dx(− ln(q(x)/�)+ q−�

�
))
. (L14)

4. Remark

The stationary measure (L14) is the analog in the contin-
uum of a discrete measure on a lattice defined as a product
of independent � variables at each site, i.e.,

∏
x wx, with PDF

p(w) ∝ wγ−1e−w. Indeed that measure appeared as a station-
ary measure in the β polymer problem. The fact that its one
point distribution is a � variable was found in Ref. [18], and
recently proved for the continuum model in Ref. [62, Prop.
5.4]. The fact that it is a product measure of � variables was
conjectured recently in Ref. [67, discussion below Conjecture
1.14]. For the more general quadratic model parametrized as
Eq. (L2), in particular for the SEP, the corresponding discrete
stationary measures are instead factorized Bernoulli.

5. Remark

From a mathematical standpoint the precise meaning of
Eq. (L13) is nontrivial, more generally the continuum analog
of a discrete i.i.d. process is subtle [68] and some exotic noises
appear in related Howitt-Warren stochastic flows [69].

6. Remark

For the diffusion model, one has B = 0 in Eq. (L2). Hence,
R = A∂x p and Q = q satisfy the DNLS system with β = 1.
By choosing here A = −α one can vary the exponent γ of the
local � distribution to any value in the stationary measure.

7. Extension of Ref. [42] to quadratic MFT models with
annealed initial condition and tracer away from the origin

Let us consider a model within the MFT where the noise
variance is parametrized as (L2). We study here the annealed
case where the initial condition of the hydrodynamic equa-
tions (L3) is fluctuating according to the stationary measure of
the MFT [2,35,36]. We choose the initial condition as a local
equilibrium configuration with two different densities on the
positive and negative axis,

P (q(x, 0)) ∼ e−√
TF (q(x,0)),

F (q(x, 0)) =
∫
R

dx
∫ q(x,0)

q̄(x)
dz

2D(z)

σ (z)
[q(x, 0) − z], (L15)

with q̃(x) = q−�(−x) + q+�(x) is the step density profile.
We will be interested in the position Xt of a tracer initially

located at position X0 = 0 and at final position X1 = ξ . Its
position at any time is defined as∫ Xt

0
dx q(x, t ) =

∫ ∞

0
dx [q(x, t ) − q(x, 0)]. (L16)

If we focus on the generating function of X1 or the cur-
rent at the right of X1, i.e., Z (ξ ) = ∫ ∞

ξ
dx [q(x, 1) − q(x, 0)],

then it was shown [26,35,36] that the mixed-time boundary
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conditions of the hydrodynamic system (L2) read

p(x, 1) = λ�(x − ξ ), (L17)

p(x, 0) = λ�(x) +
∫ q(x,0)

q̄(x)
dr

2D(r)

σ (r)
(L18)

for some constant λ. Using the gauge transformation (L12)
along with the same manipulations as the ones in Ref. [42,
below Eqs. (14) and (15)] allows us to transform these bound-
ary conditions for {p, q} into simple boundary conditions for
{u, v},

u(x, 0) = ω

K
δ(x), v(x, 1) = Kδ(x − ξ ). (L19)

for some constant K to be determined as in Ref. [42]. These
boundary conditions have an asymmetry due to the presence
of ξ that we can cancel using the same boost transformation
as in Eq. (A10),

U (x, t ) = u(x − vt, t )e− 1
2 xv+ v2

4 t ,

V (x, t ) = v(x − vt, t )e
1
2 xv− v2

4 t . (L20)

Note that this boost leaves the coupled NLS system (L6)
invariant. We choose v = −ξ so that

U (x, t ) = u(x + ξ t, t )e
1
2 xξ+ ξ2

4 t ,

V (x, t ) = v(x + ξ t, t )e− 1
2 xξ− ξ2

4 t , (L21)

which yields for boundary conditions

U (x, 0) = ω

K
δ(x), V (x, 1) = Ke− ξ2

4 δ(x). (L22)

One can then proceed as in this work to complete the scatter-
ing analysis and solve the large-deviation problem.

8. Discussion on the quench and annealed initial conditions

The quadratic models of MFT have been investigated
through the spectrum of classical integrability in three works
and two contexts of initial conditions:

(1) Reference [42] considered the SEP with an initial con-
dition in the annealed class and solved the problem through
the mapping to the coupled NLS {P, Q} system and the use of
its scattering theory. The remarkable feature of that work is
that the annealed initial condition for the SEP admits a simple
quenched δ, δ mixed-time boundary conditions interpretation
in the coupled NLS {P, Q} system.

(2) The present work as well as Ref. [40] considered the
diffusion in random media, equivalent to the KMP model,
with a quenched initial condition and solved the problem us-
ing the scattering theory of the coupled DNLS {R, Q} system.

At this stage, the observation is that depending on whether
the quench or annealed initial condition is considered, a spe-
cific integrable model might be more suited to obtain the exact
solution of the problem. Since other gauge transformations
between integrable models have been proposed in Ref. [65], it
would be interesting to investigate whether mappings to other
integrable models would allow us to answer new questions.
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